
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

A fully stochastic second-order trust region
method

Frank E. Curtis & Rui Shi

To cite this article: Frank E. Curtis & Rui Shi (2020): A fully stochastic second-order trust region
method, Optimization Methods and Software, DOI: 10.1080/10556788.2020.1852403

To link to this article: https://doi.org/10.1080/10556788.2020.1852403

Published online: 25 Nov 2020.

Submit your article to this journal

Article views: 16

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2020.1852403
https://doi.org/10.1080/10556788.2020.1852403
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1852403
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1852403
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1852403&domain=pdf&date_stamp=2020-11-25
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1852403&domain=pdf&date_stamp=2020-11-25

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2020.1852403

A fully stochastic second-order trust region method

Frank E. Curtis and Rui Shi

Department of Industrial and Systems Engineering, Lehigh University, Bethlehem, PA, USA

ABSTRACT
A stochastic second-order trust region method is proposed, which
can be viewed as an extension of the trust-region-ish (TRish)
algorithmproposed by Curtis et al. [A stochastic trust regionalgorithm
based on careful step normalization. INFORMS J. Optim. 1(3) 200–220,
2019]. In each iteration, a search direction is computed by (approx-
imately) solving a subproblem defined by stochastic gradient and
Hessian estimates. The algorithm has convergence guarantees in the
fully stochastic regime, i.e. when each stochastic gradient is merely
an unbiased estimate of the gradient with bounded variance and the
stochastic Hessian estimates are bounded. This framework covers a
variety of implementations, such aswhen the stochastic Hessians are
defined by sampled second-order derivatives or diagonal matrices,
such as in RMSprop, Adagrad, Adam and other popular algorithms.
The proposed algorithm has a worst-case complexity guarantee in
the nearly deterministic regime, i.e. when the stochastic gradients
and Hessians are close in expectation to the true gradients and Hes-
sians. The results of numerical experiments for training CNNs for
image classification and an RNN for time series forecasting are pre-
sented. These results show that the algorithm can outperform a
stochastic gradient and first-order TRish algorithm.

ARTICLE HISTORY
Received 4 May 2020
Accepted 14 November 2020

KEYWORDS
Stochastic optimization;
finite-sum optimization;
stochastic Newton methods;
trust region methods;
machine learning; deep
neural networks; time series
forecasting

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
90C15; 90C26; 90C30;
49M15; 65K05

1. Introduction

For many years, the foundational approach for solving stochastic optimization problems
has been the stochastic gradient method [34], hereafter referred to as SG. However, despite
its theoretical and practical advantages, there remain some shortcomings in the use of SG
for solving many stochastic optimization problems, including many arising in machine
learning and signal processing, areas in which SG and its variants are very popular. For
example, one disadvantage of SG andmany variants of it (see §2) is that the variance of the
step taken by the algorithm in each iteration is proportional to the variance of the stochastic
gradient estimate, which can be large. In the fully stochastic regime, i.e. when the variances
of the stochastic gradient estimates are merely bounded by some (large) constant, SG can
take a large step even though the norm of the true gradient may be relatively small.

In [16], a first-order stochastic optimization algorithm is proposed that is designed to
mitigate the effects of large variances of the stochastic gradient estimates. Based on a trust
region methodology, this trust-region-ish algorithm, known as TRish, uses a careful step

CONTACT Frank E. Curtis frank.e.curtis@gmail.com

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1852403&domain=pdf&date_stamp=2020-11-25
http://orcid.org/0000-0001-7214-9187
mailto:frank.e.curtis@gmail.com

2 F. E. CURTIS AND R. SHI

normalization procedure to attain theoretical convergence properties on par with those of
SG, but in such a way that the empirical performance can be better than that of SG. The
results of experiments on logistic regression and deep neural network training problems
show that the empirical performance of TRish can be significantly better than that of SG.
In particular, TRish is able to reach better solutions more quickly, and in a more stable
manner, meaning that the quality of the solution estimate does not vary wildly from one
iteration to the next.

In this paper, we extend theTRishmethodology to allow for the use of stochastic second-
order information, in the form of stochastic Hessian estimates that are incorporated in
the trust region subproblems. (These ‘Hessian estimates’ need not involve second-order
derivatives, and instead could be defined by a limited memory quasi-Newton strategy
or a diagonal scaling scheme.) The resulting algorithm, which we continue to refer to as
TRish, is shown to have good convergence properties in a wide range of settings. In par-
ticular, in the fully stochastic regime and with a very loose requirement on the accuracy
with which the trust region subproblems are solved, we show that the algorithm achieves
convergence properties on par with those of TRish. Admittedly, this is done with assump-
tions that impose stricter requirements on the stepsizes employed in the algorithm, but
the results are still non-trivial to obtain, and the theoretical analysis in this paper requires
different techniques than those employed in [16]. We also include some theoretical guar-
antees that are stronger than have been presented for the first-order variant of TRish.
On the other end of the theoretical spectrum, we show that when the stochastic gradi-
ent and Hessian estimates are very close in expectation to the true gradient and Hessian
values, and when the subproblems are solved exactly, TRish offers a worst-case complex-
ity property that is similar to that offered by a deterministic second-order trust region
method.

As has been the motivation for other authors considering second-order extensions of
stochastic optimization algorithms, one of the motivations for our work is to design an
algorithm that can ideally inherit the benefits of Newton-trust-region methods for mini-
mization, such as their scale invariance, ability to employ problem-independent stepsizes
near a solution, ability to handle nonconvexity and avoid saddle points without extra com-
putational procedures, and asymptotic fast rate of convergence. These properties cannot
fully be attained in the stochastic regime, but our numerical experiments demonstrate
that the TRish methodology can benefit from the use of stochastic second-order derivative
information in practice. The results that we present in this paper are for training convolu-
tional neural networks (CNNs) for image classification, and for training a recurrent neural
network (RNN) for time series forecasting. Our results suggest that TRish can be an effec-
tive approach for stochastic and finite-summinimization over broad classes of challenging
problems.

Another motivation for our work is to lay a foundation for how to merge the TRish
methodology with diagonally scaled variants of SG, which are very popular in the lit-
erature on optimization methods for machine learning (see §2). Such algorithms can be
viewed as second-order-type techniques with ‘Hessian approximations’ that are built not
using second-order derivative estimates, but other quantities, such as sums of squares of
previously computed gradient components. With simple safeguards, our framework and
analysis shows how such ideas can be merged with stochastic trust region ideas through
our proposed algorithmic framework.

OPTIMIZATION METHODS & SOFTWARE 3

2. Literature review

The literature on SG, a stochastic first-order method, is extensive. For a few papers with
analyses of SG and variants of it, see [1,7,8,12,17,21,22,29,32,34,35].

Stochastic second-order methods, which can be classified as methods that compute
each step by (approximately) minimizing a quadratic model of the objective function, have
received less attention in the literature. That said, many types of methods have been pro-
posed, analysed, and tested. Overall, one may characterize stochastic second-order meth-
ods into four categories (see [7]): stochastic Newton methods, stochastic quasi-Newton
methods, natural gradient methods, and diagonal-scaling methods.

Stochastic Newton methods, like the deterministic Newton method for minimiza-
tion, compute each step by approximately minimizing a quadratic model of the form
gTk s+ 1

2 s
THks over s ∈ Rn, where gk is a stochastic gradient estimate andHk is a stochastic

Hessian estimate. For practical purposes, such an approach would typically use an iterative
method such as the conjugate gradient (CG) algorithm tominimize this quadratic function
approximately. In this manner, one need not form nor factor the matrix Hk; instead, one
need only perform matrix-vector products with Hk, which can be done with back propa-
gation. (In nonconvex settings, a regularization term might also be added if Hk might not
be positive definite, or one might terminate CG once negative curvature is detected, as in
the standard Steihaug-CG routine [38].) For examples of stochastic Newton methods in
the literature, see [2,6,7,9,15].

Stochastic quasi-Newton methods borrow the idea from the deterministic optimiza-
tion literature that, instead of employing second-derivative information, one could derive
(inverse) Hessian approximations by observing differences in gradients from one iteration
to the next. In the stochastic regime, such an approach needs to have safeguards to account
for the fact that the gradients are only estimated in each iteration. For examples of stochastic
quasi-Newton methods, see [7,9,14,36,40].

Motivated by insights from information geometry, the idea of the natural gradient
method is to employ the Fischer information matrix in place of the Hessian when com-
puting a search direction. Due to various simplifications to derive a practical algorithm,
such an approach reduces to a type of (generalized) Gauss-Newton algorithm. For further
information on natural gradient and related ideas, see [18,24,28,42].

Diagonal-scaling methods, wherein each step can be expressed as a diagonal scaling
matrix times the negative stochastic gradient, are not always classified as second-order
methods. However, we argue that these methods should be viewed in this light, and one
can argue that the good performance of suchmethods in practice is because the algorithms
are emulating second-order-type properties. A few popular diagonal scaling methods are
RMSprop [39], Adagrad [19], and Adam [25,33].

Finally, one shouldmention the algorithms based on probabilisticmodels that have been
investigated in the literature in recent years; see, e.g. [3–5,10,11,23]. These approaches also
allow for stochastic information about the objective function to be employed and have been
shown to possess certain strong worst-case complexity guarantees. This is accomplished
with search directions being computed based on probabilistic local models of the objective
function that might even allow biased gradient estimates to be employed, as long as the
computedmodels are sufficiently accurate with sufficient probability. These approaches are
interesting, but they are quite distinct from TRish and other SG-type methods that offer

4 F. E. CURTIS AND R. SHI

different types of guarantees while only requiring unbiased stochastic gradient estimates
(and not sufficient model accuracy with sufficient probability). We also direct the reader to
the use of trust regions in reinforcement learning; see, e.g. [27,37]. This setting is distinct
from the one considered in this paper, but these works provide further evidence of how
optimization algorithms based on trust region ideas can be effective in various settings.

3. Problem and algorithm descriptions

In this section, we formally present our problem of interest, introduce relevant notation
and terminology, and present our proposed algorithm.

The algorithm that we propose is designed to solve stochastic optimization problems. It
is designed tominimize an objective function f : Rn→ R that is defined by an expectation
of a function F : Rn ×�→ R that depends on a random variable ξ , as in

min
x∈Rn

f (x), where f (x) = Eξ [F(x, ξ)]. (1)

Here, Eξ [·] denotes expectation taken with respect to the distribution of ξ . A related type
of problem is one obtained by taking a stochastic average approximation (SAA) of (1).
This leads to a finite-sum objective of the form f (x) = 1

N
∑N

i=1 fi(x), where fi := F(·, ξi),
with ξi for all i ∈ {1, . . . ,N} denoting a realization of the random variable ξ . Our algorithm
automatically extends to this setting –whether or not the function arises froman SAAof (1)
– where in place of the distribution of ξ one can consider a discrete uniform distribution
over {1, . . . ,N}.

The algorithm that we propose makes use of stochastic gradient and stochastic Hes-
sian estimates that, at an algorithm iterate xk ∈ Rn, are intended to approximate ∇f (xk)
and ∇2f (xk), respectively. These can be understood as follows. First, in the context of (1),
a stochastic gradient estimate may be computed as gk = ∇xF(xk, ξk), where ξk is a real-
ization of ξ . On the other hand, in the context of minimizing a finite sum, one may
consider gk = ∇xfik(xk), where ik has been generated from a discrete uniform distribu-
tion over the index set {1, . . . ,N}. In either setting, gk could instead represent an average
of such quantities and still be thought of as a stochastic gradient estimate. In this case, gk
is commonly referred to as a mini-batch estimate. Specifically, for (1) one may consider
gk = 1

|Sk|
∑

j∈Sk
∇xF(xk, ξk,j) and for the finite-sum setting one may consider the estimate

gk = 1
|Sk|

∑
j∈Sk
∇xfik,j(xk), where in each case Sk represents a finite set of indices, one

for each sample. In the statement of our algorithm, we capture all of these possibilities
by writing gk ≈ ∇f (xk).

For the stochastic Hessian estimates employed in our algorithm, we write Hk ≈
∇2f (xk), but in this context, the meaning of ‘estimate’ is meant muchmore loosely. Indeed,
in the context of computing gk, the possibilities in the previous paragraphmake sense since
our analysis requires that gk be an unbiased estimator of ∇f (xk). However, our assump-
tion on Hk can be much less restrictive. While one might choose in the context of (1) to
defineHk = ∇2

xxF(xk, ξHk) for some realization ξHk of ξ (or with a mini-batch), most of our
analysis merely requires that {Hk} is uniformly bounded.

Our algorithm is stated below as TRish. Similar to the first-order version in [16], each
iteration involves solving a trust region subproblem involving stochastic derivative esti-
mates. Importantly, for much of our analysis, the algorithm merely requires that each

OPTIMIZATION METHODS & SOFTWARE 5

subproblem is solved such that Cauchy decrease is achieved. This only requires that the
solution vector sk is feasible and yields a value for the subproblem objective that is at least
as good as that offered by the Cauchy point, which is the minimizer of the subproblem
objective along its steepest descent direction from the origin (subject to the trust region
constraint); see, e.g. [13,31]. If Hk = 0 for all k ∈ N := {1, 2, . . . }, then the algorithm
reduces to that in [16]. However, clearly, the algorithm presented here offers much more
computational flexibility.

Algorithm TRish : (Second-Order) Trust-Region-ish Algorithm
1: Choose an initial iterate x1 ∈ Rn and positive stepsizes {αk}.
2: Choose parameters {γ1,k} and {γ2,k} such that 0 < γ2,k ≤ γ1,k <∞ for all k ∈ N.
3: for all k ∈ N do
4: Generate a stochastic gradient gk ≈ ∇f (xk).
5: Compute sk yielding at least Cauchy decrease for the subproblem

min
s∈Rn

gTk s+
1
2
sTHks s.t. ‖s‖2 ≤ �k (2)

6: using matrix-vector products with Hk, where

�k←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1,kαk‖gk‖2 if ‖gk‖2 ∈
[
0, 1

γ1,k

)
αk if ‖gk‖2 ∈

[
1

γ1,k
, 1

γ2,k

]
γ2,kαk‖gk‖2 if ‖gk‖2 ∈

(
1

γ2,k
,∞

]
.

(3)

7: Set xk+1← xk + sk.
8: end for

Further motivation for the scheme for choosing the trust region radii, namely, (3), can
be found in [16]. In short, if one were merely to choose �k = αk for all k ∈ N so that the
steplength is normalized in all iterations, then one might not have a convergent algorithm;
it is possible that the algorithm would compute a direction that is one of expected ascent.
An example showing this possibility is shown as [16, Ex. 1]. Hence, (3) embodies a careful
step normalization strategy that might choose �k = αk, but otherwise uses a nonlinear
stepsize control scheme to adjust the steplength. The specific formulas for the radii in (3)
ensure that (in the case Hk = 0) the steplength ‖xk+1 − xk‖2 is a continuous function of
‖gk‖2; see [16, Figure 1].

4. Convergence analysis

We prove convergence results for TRish under various settings. We begin by proving fun-
damental lemmas under basic sets of assumptions. These results illuminate the critical
features of the algorithm that lead to all convergence guarantees. We present these guar-
antees first for the case of nonconvex f and different stepsize and parameter choices, then
for f satisfying the well-known Polyak-Łojasiewicz (PL) condition, of which strongly con-
vex functions are a special case. Again, these results are presented for a few stepsize and

6 F. E. CURTIS AND R. SHI

parameter choices. As TRish generalizes the first-order algorithm proposed in [16], the
convergence theorems proved in this section essentially generalize those results proved for
the first-order algorithm. However, the proofs presented here require different approaches
due to the influence of {Hk} on the subproblems.

For convenience, we denote for all k ∈ N the following cases, which clearly correspond
to the different cases for the trust region radius �k in (3):

‖gk‖2 ∈
[
0,

1
γ1,k

)
, (Case 1)

‖gk‖2 ∈
[

1
γ1,k

,
1

γ2,k

]
, (Case 2)

or ‖gk‖2 ∈
(

1
γ2,k

,∞
)
. (Case 3)

Also, for shorthand, we use Ek[·] to denote expectation of a random variable conditioned
on the event that the algorithm has reached the iterate xk; i.e.

Ek[·] ≡ E[· | the kth iterate is xk].

Wemake the following assumptions throughout our analysis. These assumptions are essen-
tially the same as the basic assumptions from [16], except that we add the assumption that f
is twice continuously differentiable, which is a reasonable assumption to add in the context
of a second-order-type algorithm.

Assumption 4.1: The objective function f : Rn→ R is twice continuously differentiable
and bounded below by a scalar finf := infx∈Rn f (x) ∈ R. In addition, the gradient function
∇f : Rn→ Rn is Lipschitz continuous with constant Lg ∈ R>0 (i.e. f is Lg-smooth).

It is known (see, e.g. [30, Lemma 1.2.2]), that under Assumption 4.1 one has

‖∇2f (x)‖2 ≤ Lg for all x ∈ R
n. (4)

Assumption4.2: For all k ∈ N, the stochastic gradient estimate gk is an unbiased estimator
of the gradient ∇f (xk) in the sense that Ek[gk] = ∇f (xk).

Under Assumption 4.2, one finds for all k ∈ N that

Ek[‖∇f (xk)− gk‖22] = Ek[‖∇f (xk)‖22 − 2∇f (xk)Tgk + ‖gk‖22]
= −‖∇f (xk)‖22 + Ek[‖gk‖22]. (5)

4.1. Fundamental lemmas

Our first lemma provides a bound on the subsequent function value with each step that
holds regardless of the properties of the generated stochastic derivative estimates.

OPTIMIZATION METHODS & SOFTWARE 7

Lemma 4.1: Suppose Assumption 4.1 holds. For all k ∈ N, for any (gk,Hk), one has

f (xk+1) ≤ f (xk)+ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
(Lg + ‖Hk‖2)‖sk‖22.

Proof: Since f is twice continuously differentiable under Assumption 4.1, it follows by
Taylor’s theorem that there exists x̂k on the line segment [xk, xk+1] such that

f (xk+1)− f (xk) = ∇f (xk)Tsk + 1
2
sTk∇2f (x̂k)sk

= gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
sTk (∇2f (x̂k)−Hk)sk.

Then, since the Cauchy-Schwarz and triangle inequalities together imply with (4) that

sTk (∇2f (x̂k)−Hk)sk ≤ ‖∇2f (x̂k)−Hk‖2‖sk‖22 ≤ (Lg + ‖Hk‖2)‖sk‖22,

the desired result follows. �

Our next lemma is a Cauchy decrease result on the reduction in a quadratic model of
the objective function yielded by each computed step. This type of result is standard in the
literature on trust region methods, so we state it without a detailed proof.

Lemma 4.2: For all k ∈ N, for any (gk,Hk), since sk is computed to satisy Cauchy decrease,
one finds

gTk sk +
1
2
sTk Hksk ≤ −12‖gk‖2 min

{
�k,
‖gk‖2
‖Hk‖2

}
.

Proof: The result follows in the standardmanner for Cauchy decrease as in the trust region
method literature (see, e.g. [13, Corollary 6.3.2] or [31, Lemma 4.3]). �

We also make use of a second Cauchy decrease result, stated below as our third lemma.
This lemma is useful only when one adds an additional assumption that the norm of the
stochastic Hessian estimate is sufficiently small. We shall add such an assumption for one
of our main theorems. (The proof the lemma follows using a similar argument as in the
standard proof for Lemma 4.2, but with alternative final steps.)

Lemma 4.3: For all k ∈ N, for any (gk,Hk), since sk is computed to satisy Cauchy decrease,
one finds

gTk sk +
1
2
sTk Hksk ≤ −min

{
�k‖gk‖2 − 1

2
�2

k‖Hk‖2, 12
‖gk‖22
‖Hk‖2

}
.

Proof: Using standard analysis for theCauchy point (see, e.g. [31, Lemma 4.3], one has that
the Cauchy point lies in the interior of the trust region constraint if ‖gk‖32 ≤ �kgTk Hkgk and
lies on the boundary of the trust region constraint otherwise. If the Cauchy point lies in

8 F. E. CURTIS AND R. SHI

the interior, then it is given by sCk := −(‖gk‖22/gTk Hkgk)gk, meaning that, by the Cauchy-
Schwarz inequality, the step sk must satisfy

gTk sk +
1
2
sTk Hksk ≤ gTk s

C
k +

1
2
sCk

THksCk = −
1
2
‖gk‖42
gTk Hkgk

≤ −1
2
‖gk‖22
‖Hk‖2

.

On the other hand, if the Cauchy point lies on the boundary of the trust region constraint,
then it is given by sCk := −(�k/‖gk‖2)gk and the step sk must satisfy

gTk sk +
1
2
sTk Hksk ≤ gTk s

C
k +

1
2
sCk

THksCk

= −�k‖gk‖2 + 1
2
�2

k
gTk Hkgk
‖gk‖22

≤ −�k‖gk‖2 +�2
k‖Hk‖2.

The result follows by combining the conclusions of these two cases. �

Our next lemma shows that if the stepsize parameter αk is sufficiently small relative
to a quantity involving γ1,k, γ2,k, and ‖Hk‖2, then the expected reduction in the objective
function value with each step is bounded by a function of the expected squared norm of
the stochastic gradient estimate, the variance of the stochastic gradient estimate, and the
algorithm parameters. The bound on the reduction proved here will be refined in various
ways later in our analysis as we consider the behaviour of the algorithm under different sets
of assumptions on the derivative estimates and on the stepsize and parameter sequences.

Lemma 4.4: Suppose that Assumption 4.1 holds and that, for all k ∈ N,

0 < αk ≤ γ2,k

4γ 2
1,k(Lg + ‖Hk‖2)

. (6)

Then, for all k ∈ N, one finds

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2,kαkEk[‖gk‖22]+

γ 2
1,k

γ2,k
αkEk[‖∇f (xk)− gk‖22].

Proof: We divide the proof according to the three cases defined on page 6.

Case 1. By Lemma 4.2, it follows in this case that

gTk sk +
1
2
sTk Hksk ≤ −12‖gk‖2 min

{
γ1,kαk‖gk‖2, ‖gk‖2‖Hk‖2

}
.

Since (6) ensures

γ1,kαk ≤ γ2,k

4γ1,k(Lg + ‖Hk‖2)
≤ 1

4(Lg + ‖Hk‖2)
≤ 1
‖Hk‖2

,

this implies

gTk sk +
1
2
sTk Hksk ≤ −12γ1,kαk‖gk‖22.

Combining this with the result of Lemma 4.1, the Cauchy-Schwarz inequality, and the
fact that ‖sk‖2 ≤ γ1,kαk‖gk‖2 in this case, one finds that

f (xk+1)− f (xk)

OPTIMIZATION METHODS & SOFTWARE 9

≤ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −1
2
γ1,kαk‖gk‖22 + ‖∇f (xk)− gk‖2‖sk‖2 + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −1
2
γ1,kαk‖gk‖22 + γ1,kαk‖∇f (xk)− gk‖2‖gk‖2 + 1

2
γ 2
1,kα

2
k(Lg + ‖Hk‖2)‖gk‖22.

(7)

Since

0 ≤
(
1
2
‖gk‖2 − ‖∇f (xk)− gk‖2

)2

= 1
4
‖gk‖22 − ‖∇f (xk)− gk‖2‖gk‖2 + ‖∇f (xk)− gk‖22

and since (6) implies

γ1,kαk ≤ γ2,k

4γ1,k(Lg + ‖Hk‖2)
≤ 1

4(Lg + ‖Hk‖2)
,

one finds that

f (xk+1)− f (xk)

≤ −1
2
γ1,kαk‖gk‖22 + γ1,kαk

(
1
4
‖gk‖22 + ‖∇f (xk)− gk‖22

)

+ 1
2
γ 2
1,kα

2
k(Lg + ‖Hk‖2)‖gk‖22

≤ −1
8
γ1,kαk‖gk‖22 + γ1,kαk‖∇f (xk)− gk‖22,

which implies the desired conclusion since γ1,k ≥ γ2,k.
Case 2. By Lemma 4.2 and since in this case one has γ2,k‖gk‖2 ≤ 1, it follows that

gTk sk +
1
2
sTk Hksk ≤ −12‖gk‖2 min

{
αk,
‖gk‖2
‖Hk‖2

}

≤ −1
2
‖gk‖2 min

{
γ2,kαk‖gk‖2, ‖gk‖2‖Hk‖2

}
.

Since (6) ensures

γ2,kαk ≤ γ1,kαk ≤ γ2,k

4γ1,k(Lg + ‖Hk‖2)
≤ 1

4(Lg + ‖Hk‖2)
≤ 1
‖Hk‖2

,

this implies that

gTk sk +
1
2
sTk Hksk ≤ −12γ2,kαk‖gk‖22.

Combining this with the result of Lemma 4.1, the Cauchy-Schwarz inequality, and the
fact that ‖sk‖2 ≤ αk in this case, one finds that

f (xk+1)− f (xk)

10 F. E. CURTIS AND R. SHI

≤ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −1
2
γ2,kαk‖gk‖22 + ‖∇f (xk)− gk‖2‖sk‖2 + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −1
2
γ2,kαk‖gk‖22 + αk‖∇f (xk)− gk‖2 + 1

2
α2
k(Lg + ‖Hk‖2).

Since

0 ≤ γ2,k

γ 2
1,k

(
1
2
− γ 2

1,k
γ2,k
‖∇f (xk)− gk‖2

)2

= γ2,k

4γ 2
1,k
− ‖∇f (xk)− gk‖2 +

γ 2
1,k

γ2,k
‖∇f (xk)− gk‖22

and since 1 ≤ γ1,k‖gk‖2 in this case, the above and (6) imply the desired conclusion
that

f (xk+1)− f (xk)

≤ −1
2
γ2,kαk‖gk‖22 + αk

(
γ2,k

4γ 2
1,k
+ γ 2

1,k
γ2,k
‖∇f (xk)− gk‖22

)
+ 1

2
α2
k(Lg + ‖Hk‖2)

= −1
2
γ2,kαk‖gk‖22 +

1
4
γ2,kαk‖gk‖22 +

γ 2
1,k

γ2,k
αk‖∇f (xk)− gk‖22

+ 1
2
γ 2
1,kα

2
k(Lg + ‖Hk‖2)‖gk‖22

≤ −1
8
γ2,kαk‖gk‖22 +

γ 2
1,k

γ2,k
αk‖∇f (xk)− gk‖22.

Case 3. The proof follows in the same manner as the proof for Case 1, using γ2,k ≤ γ1,k.

The desired conclusion follows by combining the results for the three cases. �

Our final fundamental lemma proves a similar type of bound on the expected reduc-
tion in the objective function as in the preceding lemma, except that it can offer a stronger
bound when the difference γ1,k − γ2,k is proportional to αk and there is an appropriate
balance between the stepsize αk and the norm of the stochastic Hessian estimate. (Note
that to ensure the bound on ‖Hk‖2 that is required for the lemma, one might need to
scale Hk, causing Ek[Hk] �= ∇2f (xk). This might not seem ideal, but as is known in the
deterministic optimization literature, it still allows one to incorporate some (approximate)
second-order information, which can be beneficial in practice.)We consider the behaviour
of the algorithm in such situations in one of our main theorems.

OPTIMIZATION METHODS & SOFTWARE 11

Lemma 4.5: Suppose that Assumption 4.1 holds and, for all k ∈ N and some η ∈ R>0,

0 < αk ≤ min

{
γ2,k

4γ 2
1,k(Lg + ‖Hk‖2)

,
1

6η + 2γ1,k(Lg + ‖Hk‖2)

}
,

‖Hk‖2 ≤ η

2γ1,k
, and γ1,k − γ2,k = 1

2
ηγ1,kαk.

(8)

(For one thing, this ensures (6) holds for all k ∈ N.) Then, for all k ∈ N, one has

Ek[f (xk+1)] ≤ f (xk)− 1
4
γ2,kαk‖∇f (xk)‖22

+ 1
2
(
3η + γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖∇f (xk)− gk‖22].

Proof: We divide the proof according to the three cases defined on page 6.

Case 1. By (6), it follows that

γ1,kαk ≤ γ2,k

4γ1,k(Lg + ‖Hk‖2)
≤ 1

4(Lg + ‖Hk‖2)
≤ 1

2‖Hk‖2
for all k ∈ N, meaning that for all k ∈ N one finds in this case that

�k‖gk‖2 − 1
2
�2

k‖Hk‖2 = γ1,kαk‖gk‖22 −
1
2
γ 2
1,kα

2
k‖gk‖22‖Hk‖2 ≤ 1

2
‖gk‖22
‖Hk‖2

,

while at the same time 1
2‖Hk‖2 ≤ 2‖Hk‖2 ≤ η

γ1,k
, meaning for all k ∈ N that

�k‖gk‖2 − 1
2
�2

k‖Hk‖2 = γ1,kαk‖gk‖22 −
1
2
γ 2
1,kα

2
k‖gk‖22‖Hk‖2

≥ γ1,kαk‖gk‖22 − γ1,kα
2
kη‖gk‖22 = (1− αkη)γ1,kαk‖gk‖22.

(Observe that (8) ensures that αk < 1
η
, meaning that 1− αkη > 0.) Combining these

facts with the results of Lemmas 4.1 and 4.3, the Cauchy-Schwarz inequality, and the
fact that ‖sk‖2 ≤ γ1,kαk‖gk‖2 in this case, one finds that

f (xk+1)− f (xk)

≤ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −(1− αkη)γ1,kαk‖gk‖22 + ‖∇f (xk)− gk‖2‖sk‖2 + 1
2
(Lg + ‖Hk‖2)‖sk‖22

≤ −(1− αkη)γ1,kαk‖gk‖22 + γ1,kαk‖∇f (xk)− gk‖2‖gk‖2
+ 1

2
γ 2
1,kα

2
k(Lg + ‖Hk‖2)‖gk‖22.

Since

0 ≤ 1
2
(‖gk‖2 − ‖∇f (xk)− gk‖2)2

12 F. E. CURTIS AND R. SHI

= 1
2
‖gk‖22 − ‖∇f (xk)− gk‖2‖gk‖2 + 1

2
‖∇f (xk)− gk‖22,

it follows that

f (xk+1)− f (xk)

≤ −
(
1− αkη − 1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαk‖gk‖22

+ 1
2
γ1,kαk(‖gk‖22 + ‖∇f (xk)− gk‖22)

= −
(
1
2
− αkη − 1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαk‖gk‖22 +

1
2
γ1,kαk‖∇f (xk)− gk‖22,

which along with (5) (applied twice) implies that

Ek[f (xk+1)]− f (xk)

≤ −
(
1
2
− αkη − 1

2
γ1,kαk(Lg + ‖Hk‖2)

)
γ1,kαkEk[‖gk‖22]

+ 1
2
γ1,kαk(−‖∇f (xk)‖22 + Ek[‖gk‖22])

= −1
2
γ1,kαk‖∇f (xk)‖22

+
(

η + 1
2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖gk‖22]

= −1
2
γ1,kαk‖∇f (xk)‖22

+
(

η + 1
2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
k(‖∇f (xk)‖22 + Ek[‖∇f (xk)− gk‖22])

= −
(
1
2
−
(

η + 1
2
γ1,k(Lg + ‖Hk‖2)

)
αk

)
γ1,kαk‖∇f (xk)‖22

+
(

η + 1
2
γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖∇f (xk)− gk‖22].

Hence, with the inequality above, the desired result follows in this case due to the
upper bound imposed on αk and the fact that γ1,k ≥ γ2,k for all k ∈ N.

Case 2. Under the conditions of the lemma, one has αk ≤ 1
η
and 2‖Hk‖2 ≤ η

γ1,k
. In

addition, in this case, one has γ1,k‖gk‖2 ≥ 1. These facts combined imply that

�k‖gk‖2 − 1
2
�2

k‖Hk‖2 = αk‖gk‖2 − 1
2
α2
k‖Hk‖2 ≤ ‖gk‖2

η

while
1
2
‖gk‖22
‖Hk‖2

≥ γ1,k‖gk‖22
η

≥ ‖gk‖2
η

.

OPTIMIZATION METHODS & SOFTWARE 13

By Lemma 4.3 and the facts that 1
2‖Hk‖2 ≤ 2‖Hk‖2 ≤ η

γ1,k
and γ1,k‖gk‖2 ≥ 1, it

follows that

gTk sk +
1
2
sTk Hksk ≤ −�k‖gk‖2 + 1

2
�2

k‖Hk‖2

= −αk‖gk‖2 + 1
2
α2
k‖Hk‖2

≤ −(1− αkη)αk‖gk‖2.

Combining this fact with the results of Lemmas 4.1 and 4.3, the Cauchy-Schwarz
inequality, and the facts that γ2,k‖gk‖2 ≤ 1, γ1,k‖gk‖2 ≥ 1, and ‖sk‖2 ≤ αk in this case,
one finds that

f (xk+1)− f (xk)

≤ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
(Lg + ‖Hk‖2)‖sk‖22

≤ −(1− αkη)αk‖gk‖2 + ‖∇f (xk)− gk‖2‖sk‖2 + 1
2
(Lg + ‖Hk‖2)‖sk‖22

≤ −(1− αkη)γ2,kαk‖gk‖22 + αk‖∇f (xk)− gk‖2 + 1
2
α2
k(Lg + ‖Hk‖2)

≤ −(1− αkη)γ2,kαk‖gk‖22 + γ1,kαk‖∇f (xk)− gk‖2‖gk‖2
+ 1

2
γ 2
1,kα

2
k(Lg + ‖Hk‖2)‖gk‖22.

Since

0 ≤ 1
2
(‖gk‖2 − ‖∇f (xk)− gk‖2)2

= 1
2
‖gk‖22 − ‖∇f (xk)− gk‖2‖gk‖2 + 1

2
‖∇f (xk)− gk‖22,

it follows that

f (xk+1)− f (xk)

≤ −
(

(1− αkη)γ2,k − 1
2
γ 2
1,kαk(Lg + ‖Hk‖2)

)
αk‖gk‖22

+ 1
2
γ1,kαk

(‖gk‖22 + ‖∇f (xk)− gk‖22
)

= −
(

(1− αkη)γ2,k − 1
2
γ1,k − 1

2
γ 2
1,kαk(Lg + ‖Hk‖2)

)
αk‖gk‖22

+ 1
2
γ1,kαk‖∇f (xk)− g‖22,

which along with (5) (applied twice) implies that

Ek[f (xk+1)]− f (xk)

14 F. E. CURTIS AND R. SHI

≤ −
(

(1− αkη)γ2,k − 1
2
γ1,k − 1

2
γ 2
1,kαk(Lg + ‖Hk‖2)

)
αkEk[‖gk‖22]

+ 1
2
γ1,kαk(−‖∇f (xk)‖22 + Ek[‖gk‖22])

= −1
2
γ1,kαk‖∇f (xk)‖22

+
(

γ1,k − γ2,k +
(

ηγ2,k + 1
2
γ 2
1,k(Lg + ‖Hk‖2)

)
αk

)
αkEk[‖gk‖22]

≤ −1
2
γ1,kαk‖∇f (xk)‖22 +

(
γ1,k − γ2,k +

(
ηγ2,k + 1

2
γ 2
1,k(Lg + ‖Hk‖2)

)
αk

)

αk
(‖∇f (xk)‖22 + Ek[‖∇f (xk)− gk‖22]

)
= −

(
1
2
γ1,k − (γ1,k − γ2,k)−

(
ηγ2,k + 1

2
γ 2
1,k(Lg + ‖Hk‖2)

)
αk

)
αk‖∇f (xk)‖22

+
(

γ1,k − γ2,k +
(

ηγ2,k + 1
2
γ 2
1,k(Lg + ‖Hk‖2)

)
αk

)
αkEk[‖∇f (xk)− gk‖22]

= −
(
1
2
− 1

2
(
3η − η2αk + γ1,k(Lg + ‖Hk‖2)

)
αk

)
γ1,kαk‖∇f (xk)‖22

+ 1
2
(
3η − η2αk + γ1,k(Lg + ‖Hk‖2)

)
γ1,kα

2
kEk[‖∇f (xk)− gk‖22].

Hence, the desired result follows for this case, again due to the upper bound on αk
and the fact that γ1,k ≥ γ2,k for all k ∈ N.

Case 3. The proof for this case follows in the same manner as the proof for Case 1, where
the result for this case has a similar form except with γ1,k replaced by γ2,k. For the
proof, it should be noted that γ2,kαk ≤ γ1,kαk ≤ 1

2‖Hk‖2 ,
1
2‖Hk‖2 ≤ η

γ1,k
≤ η

γ2,k
, and

‖sk‖2 ≤ γ2,kαk‖gk‖2.

The desired conclusion follows by combining the results for the three cases. �

Now that these fundamental lemmas have been established, which focus on the
behaviour of the algorithm over a single iteration, we turn to analysing the behaviour of
the algorithm over the entire sequence of iterations.We break our analysis into parts based
on different assumptions about the problem function and the stochastic derivative esti-
mates. For simplicity in much of our analysis, we consider the behaviour of the algorithm
when the parameter sequences {γ1,k} and {γ2,k} are constant. In such cases, one could
prove similar results that allow the sequences not to be constant, as long as they remain
within bounded intervals. We also prove one result showing that, in practice, one might
define these sequences to have the same limit point, which makes the algorithm behave
asymptotically like a stochastic Newton-type method.

OPTIMIZATION METHODS & SOFTWARE 15

4.2. General (nonconvex) objective functions

First, we consider the case when the algorithm is employed to minimize an objective satis-
fying only Assumptions 4.1 and 4.2, and when the following loose assumption holds about
the algorithm parameters, stochastic gradients, and stochastic Hessians.

Assumption 4.3: The variance of the stochastic gradient estimates and the sequence of
stochastic Hessian estimates are both uniformly bounded in the sense that there exist
constants (Mg ,MH) ∈ R>0 ×R>0 such that, for all k ∈ N,

Ek[‖∇f (xk)− gk‖22] ≤ Mg and ‖Hk‖2 ≤ MH .

In addition, (αk, γ1,k, γ2,k) = (α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0 and

0 < α ≤ γ2

4γ 2
1 (Lg +MH)

,

which, in particular, implies that (6) holds for all k ∈ N.

Combining Lemma 4.4 with Assumption 4.3 leads to the following result showing that
the expected average squared norm of the gradient at the iterates is bounded.

Theorem 4.1: Under Assumptions 4.1, 4.2, and 4.3, TRish yields

E

[K∑
k=1
‖∇f (xk)‖22

]
≤
(

8
γ2α

)
(f (x1)− finf)+ K

(
8γ 2

1
γ 2
2
− 1

)
Mg (9a)

and E

[
1
K

K∑
k=1
‖∇f (xk)‖22

]
≤ 1

K

(
8

γ2α

)
(f (x1)− finf)+

(
8γ 2

1
γ 2
2
− 1

)
Mg

K→∞−−−→
(
8γ 2

1
γ 2
2
− 1

)
Mg . (9b)

Proof: Since Assumption 4.3 ensures (6) holds for all k ∈ N, it follows that Lemma 4.4
holds; hence, with parameters as in Assumption 4.3, for all k ∈ N one has

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2αEk[‖gk‖22]+

γ 2
1

γ2
αEk[‖∇f (xk)− gk‖22].

Hence, due to Assumption 4.3 and (5), it follows for all k ∈ N that

Ek[f (xk+1)]− f (xk)

≤ −1
8
γ2α(‖∇f (xk)‖22 + Ek[‖∇f (xk)− gk‖22])+

γ 2
1

γ2
αEk[‖∇f (xk)− gk‖22]

= −1
8
γ2α‖∇f (xk)‖22 + α

(
γ 2
1

γ2
− 1

8
γ2

)
Ek[‖∇f (xk)− gk‖22]

≤ −1
8
γ2α‖∇f (xk)‖22 + α

(
γ 2
1

γ2
− 1

8
γ2

)
Mg . (10)

16 F. E. CURTIS AND R. SHI

Taking total expectation, it follows for all k ∈ N that

E[f (xk+1)]− E[f (xk)] ≤ −18γ2αE[‖∇f (xk)‖22]+ α

(
γ 2
1

γ2
− 1

8
γ2

)
Mg ,

which implies

E[‖∇f (xk)‖22] ≤
(

8
γ2α

)
(E[f (xk)]− E[f (xk+1)])+

(
8γ 2

1
γ 2
2
− 1

)
Mg .

Summing this inequality over all k ∈ {1, . . . ,K} and using the fact that f is bounded below
by finf yields (9a), which, in turn, implies (9b). �

Next, we consider the behaviour of TRish whenAssumptions 4.1 and 4.2 hold andwhen
the algorithm satisfies the following assumption involving diminishing stepsizes.

Assumption 4.4: The variance of each stochastic gradient estimate is proportional to the
stepsize and the sequence of stochasticHessian estimates is uniformly bounded in the sense
that there exist constants (Mg ,MH) ∈ R>0 ×R>0 such that, for all k ∈ N,

Ek[‖∇f (xk)− gk‖22] ≤ Mgαk and ‖Hk‖2 ≤ MH . (11)

In addition, (γ1,k, γ2,k) = (γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0, and

{αk} =
{

a
b+ k

}
for some (a, b) ∈ R>0 ×R>0

such that (6) holds for all k ∈ N.

In practice, the first inequality in (11) in Assumption 4.4 can be assured using noise
reduction techniques. Following the same argument as for [16, Assumption 4] (see also
[21]), if the stochastic gradient estimates are generated based on an average of mk inde-
pendent samples during iteration k, then under reasonable assumptions one can guarantee
the first inequality in (11) by choosingmk =
α−1k � for all k ∈ N.

Under Assumption 4.4, which is stronger than Assumption 4.3, we obtain the following
result, which, not surprisingly, is stronger than the result in Theorem 4.1.

Theorem 4.2: Under Assumptions 4.1, 4.2, and 4.4, TRish yields

lim
K→∞E

[K∑
k=1

αk‖∇f (xk)‖22
]

<∞ (12a)

and E

[
1∑K

k=1 αk

K∑
k=1

αk‖∇f (xk)‖22
]

K→∞−−−→ 0. (12b)

In addition, it follows that

lim inf
k→∞

‖∇f (xk)‖22 = 0 with probability 1. (13)

OPTIMIZATION METHODS & SOFTWARE 17

Proof: Following the same arguments as in the proof of Theorem 4.1, for all k ∈ N,

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2αk‖∇f (xk)‖22 +

(
γ 2
1

γ2
− 1

8
γ2

)
Mgα

2
k , (14)

which, taking total expectation, implies for all k ∈ N that

E[f (xk+1)]− E[f (xk)] ≤ −18γ2αkE[‖∇f (xk)‖22]+
(

γ 2
1

γ2
− 1

8
γ2

)
Mgα

2
k .

Rearranging terms and summing over all k ∈ {1, . . . ,K}, it follows that

1
8
γ2

K∑
k=1

αkE[‖∇f (xk)‖22] ≤
K∑

k=1

(
E[f (xk)]− E[f (xk+1)]

)+ (γ 2
1

γ2
− 1

8
γ2

)
Mg

K∑
k=1

α2
k .

(15)
Since

∑K
k=1

(
E[f (xk)]− E[f (xk+1)]

) ≤ f (x1)− finf <∞ for any K ∈ N and since
Assumption 4.4 implies

∑∞
k=1 α2

k <∞, it follows from (15) that (12a) holds. Moreover,
dividing (15) by

∑K
k=1 αk and since Assumption 4.4 implies

∑∞
k=1 αk = ∞, it follows

that (12b) holds.
Let us now prove (13). Defining the scalars β1 := 1

8γ2 and β2 :=
(

γ 2
1

γ2
− 1

8γ2

)
Mg , it

follows from (14) that, for all k ∈ N, the expected reduction in f satisfies

Ek[f (xk+1)] ≤ f (xk)− β1αk‖∇f (xk)‖22 + β2α
2
k

=⇒ Ek[f (xk+1)]+ β2

∞∑
i=k+1

α2
i ≤ f (xk)− β1αk‖∇f (xk)‖22 + β2

∞∑
i=k

α2
i .

Considering the stochastic processes {pk} and {qk}, where, for all k ∈ N,

pk := β1αk‖∇f (xk)‖22 and qk := f (xk)+ β2

∞∑
i=k

α2
i ,

it follows from above that, for all k ∈ N,

Ek[qk+1 − finf] ≤ qk − finf − pk. (16)

One finds from this relationship that E[qk − finf] <∞ and Ek[qk+1 − finf] ≤ qk − finf for
all k ∈ N, which with qk − finf ≥ 0 for all k ∈ N implies that {qk − finf} is a nonnegative
supermartingale. This implies (see, e.g. [20] and similar use in [40]) that there exists q
such that limk→∞ qk = q with probability 1 and E[q] ≤ E[q1]. From (16), one finds that

18 F. E. CURTIS AND R. SHI

E[pk] ≤ E[qk]− E[qk+1], which under Assumptions 4.1 and 4.4 yields

E

[∞∑
k=1

pk

]
≤
∞∑
k=1

(E[qk]− E[qk+1]) =
∞∑
k=1

(E[f (xk)]− E[f (xk+1)]+ β2α
2
k) <∞

and hence that

∞∑
k=1

β1αk‖∇f (xk)‖22 =
∞∑
k=1

pk <∞ with probability 1. (17)

Since
∑∞

k=1 αk = ∞ under Assumption 4.4, it follows from (17) that there exists a subse-
quence of gradient norms converging to zero with probability one, which yields the desired
conclusion in (13). �

To conclude this section, let us prove a result that in part considers the behaviour of the
algorithm under the following assumption.

Assumption 4.5: The second moment of the stochastic gradient estimates is uniformly
bounded in the sense that there exists a constantMg,2 ∈ R>0 such that, for all k ∈ N,

Ek[‖gk‖22] ≤ Mg,2.

It should be said that Assumption 4.5 is strong since it implies that the variance of the
stochastic gradient estimates is smaller at points at which ‖∇f (xk)‖2 is large. In particular,
under Assumptions 4.2 and Assumption 4.5, it follows (recall (5)) that

Ek[‖gk‖22] ≤ Mg,2 =⇒ Ek[‖∇f (xk)− gk‖22] ≤ Mg,2 − ‖∇f (xk)‖22.

That said, if the iterates of the algorithm happen to remain in a region over which ‖∇f (·)‖2
is bounded, then it is interesting to note that Assumption 4.5 leads to the following strong
result about the behaviour of the algorithm. (A result similar to the following was proved
for a stochastic quasi-Newton method as [40, Theorem 2.6], and our proof borrows from
that one. That said, our proof corrects an oversight made in the proof of [40, Theorem 2.6]
when one considers the negation of a statement of the form (18); in particular, in the nega-
tion, one should only assume that the limit does not hold with some positive probability,
not with complete certainty.)

Theorem 4.3: Under Assumptions 4.1, 4.2, 4.4, and 4.5, TRish yields

lim
k→∞
‖∇f (xk)‖2 = 0 with probability 1. (18)

Proof: To derive a contradiction, suppose that (18) does not hold, meaning that with some
nonzero probability there exists ε ∈ (0,∞) and an infinite index set K1 ⊆ N such that
‖∇f (xk)‖2 > ε for all k ∈ K1. On the other hand, from Theorem 4.2 it follows that (13)
holds, meaning that with probability one there exists an infinite index set K2 such that

OPTIMIZATION METHODS & SOFTWARE 19

‖∇f (xk)‖2 ≤ 1
2ε for all k ∈ K2. Together, these facts imply with nonzero probability the

existence of index sets {mi}∞i=1 ⊂ N and {ni}∞i=1 ⊂ N withmi < ni for all i ∈ N such that

‖∇f (xmi)‖2 ≥ ε, ‖∇f (xni)‖2 <
1
2
ε,

and ‖∇f (xk)‖2 ≥ 1
2
ε for all k ∈ {mi + 1, . . . , ni − 1}.

(19)

For the rest of the proof, let us condition on the event that (19) holds. With (17),

∞ >

∞∑
k=1

αk‖∇f (xk)‖22 ≥
∞∑
i=1

ni−1∑
k=mi

αk‖∇f (xk)‖22 ≥
1
4
ε2
∞∑
i=1

ni−1∑
k=mi

αk with probability 1,

meaning that

lim
i→∞

ni−1∑
k=mi

αk <∞ with probability 1. (20)

Now notice that, for any k ∈ N, for any (gk,Hk), Assumption 4.5 implies

Ek[‖xk+1 − xk‖2] = Ek[‖sk‖2] ≤ αkmax{1, γ1Ek[‖gk‖2]} = αkmax
{
1, γ1

√
Mg,2

}
,

from which it follows that

Ek[‖xni − xmi‖2] ≤ max
{
1, γ1

√
Mg,2

} ni−1∑
k=mi

αk.

Therefore, with (20), one finds that limi→∞ ‖xni − xmi‖2 = 0 with probability 1, which
with Lipschitz continuity of ∇f under Assumption 4.1 implies that limi→∞ ‖∇f (xni)−
∇f (xmi)‖2 = 0 with probability 1. However, this contradictions (19). �

4.3. Objective functions satisfying the Polyak-Łojasiewicz condition

We now consider when the algorithm is employed to minimize an objective function satis-
fying Assumptions 4.1 and 4.2 along with the Polyak-Łojasiewicz (PL) condition. We state
this condition in the form of the following assumption.

Assumption 4.6: There exists a constant c ∈ (0,∞) such that, for all x ∈ Rn,

2c(f (x)− finf) ≤ ‖∇f (x)‖22 for all x ∈ R
n. (21)

Functions satisfying Assumption 4.6 include c-strongly convex functions but also other
nonconvex functions. Assumptions 4.1 and 4.6 combined do not guarantee that f has a
minimizer, although they do guarantee that if a stationary point exists then it is a global
minimizer with objective value finf. The PL condition is known as a relatively weak con-
dition under which certain algorithms, such as gradient descent, can enjoy a linear rate of
convergence. In this section, we show that the theoretical properties for TRish are stronger
under the PL condition than they are in the more general situations considered in §4.2.

20 F. E. CURTIS AND R. SHI

Our first result shows that if the variance of the stochastic gradient estimates and the
stochastic Hessian estimates are both uniformly bounded and the algorithm is run with
certain fixed parameter settings, then the expected optimality gap is bounded above by a
sequence that converges linearly to a constant proportional toMg/c. This result is compa-
rable to one that can be proved for SG with a fixed stepsize, for which the limiting constant
is alsoO(Mg/c); see [7, Theorem 4.6].

Theorem 4.4: Under Assumptions 4.1, 4.2, 4.3, and 4.6, if α ≤ 4/(γ2c), then with

θ := 4
(

γ 2
1

γ 2
2
− 1

8

)
Mg

c
(22)

TRish yields

E[f (xK+1)]− finf ≤ θ +
(
1− 1

4
γ2cα

)K
(f (x1)− finf − θ)

K→∞−−−→ θ .

Proof: As in the proof of Theorem 4.1 (see (10)), it follows for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2α‖∇f (xk)‖22 + α

(
γ 2
1

γ2
− 1

8
γ2

)
Mg .

Hence, by Assumption 4.6, it follows for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
4
γ2cα(f (xk)− finf)+ α

(
γ 2
1

γ2
− 1

8
γ2

)
Mg .

Subtracting finf from both sides and taking total expectation, it follows for all k ∈ N that

E[f (xk+1)]− finf ≤
(
1− 1

4
γ2cα

)
(E[f (xk)]− finf)+ α

(
γ 2
1

γ2
− 1

8
γ2

)
Mg .

Therefore, with θ defined in (22), it follows for all k ∈ N that

E[f (xk+1)]− finf − θ ≤
(
1− 1

4
γ2cα

)
(E[f (xk)]− finf − θ).

Applying this bound repeatedly for k ∈ {1, . . . ,K} yields the desired result. �

Let us now prove, under similar assumptions as in the previous theorem (in particular
with respect to the stochastic gradient and Hessian estimates), that TRish can offer sub-
linear decrease of the expected optimality gap to zero if the stepsizes vanish along with
the differences {γ1,k − γ2,k}. This is the only theorem that we prove in which we consider
a case in which {γ1,k} and {γ2,k} are not both constant; in particular, we assume {γ1,k} is
constant, but that {γ2,k} is not. Other similar results can be proved, say with {γ1,k} converg-
ing to a constant sequence {γ2,k}, or with {γ1,k} and {γ2,k} both not constant as long as the
sequences remain within a positive interval and the difference sequence is proportional to
the stepsize sequence in the sense that {γ1,k − γ2,k} = O(αk).

For this theorem only, we consider the following assumption.

OPTIMIZATION METHODS & SOFTWARE 21

Assumption 4.7: The variance of the stochastic gradient estimates and the sequence of
stochastic Hessian estimates are both uniformly bounded in the sense that there exist
constants (Mg ,MH) ∈ R>0 ×R>0 such that, for all k ∈ N,

Ek[‖∇f (xk)− gk‖22] ≤ Mg and ‖Hk‖2 ≤ MH .

In addition, γ1,k = γ1 > 0 for all k ∈ N, and

{αk} =
{

a
b+ k

}
and {γ2,k} =

{
γ1

(
1− 1

2
ηαk

)}

for some (a, b, η) ∈ R>0 ×R>0 ×R>0 such that (8) holds for all k ∈ N.

Under this assumption, we prove sublinear decrease of the expected optimality gap.

Theorem 4.5: Under Assumptions 4.1, 4.2, 4.6, and 4.7, if the pair (a, b) ∈ R>0 ×R>0 is
chosen such that αk ≤ 2

γ2,1c for all k ∈ N, then for all k ∈ N the expected optimality gap
satisfies

E[f (xk)]− finf ≤ φ

b+ k
, (23)

where

φ := max
{
(b+ 1)(f (x1)− finf),

δ2a2

δ1a− 1

}
∈ (0,∞), (24)

with

δ1 := 1
2
γ2,1c ∈

(
0,

1
α1

]
and δ2 := 1

2
(3η + γ1(Lg +MH))γ1Mg ∈ (0,∞). (25)

Proof: By Lemma 4.5, it follows for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
4
γ2,1αk‖∇f (xk)‖22 +

1
2
(3η + γ1(Lg +MH))γ1Mgα

2
k . (26)

Hence, by Assumption 4.6, it follows for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
2
γ2,1cαk(f (xk)− finf)+ 1

2
(3η + γ1(Lg +MH))γ1Mgα

2
k .

Subtracting finf and taking total expectation, it follows for all k ∈ N that

E[f (xk+1)]− finf ≤
(
1− 1

2
γ2,1cαk

)
(E[f (xk)]− finf)+ 1

2
(3η + γ1(Lg +MH))γ1Mgα

2
k .

Let us now prove (23) by induction. First, for k = 1, the inequality holds by the definition
of φ in (24). Now suppose that (23) holds up to k ∈ N. Then, with (δ1, δ2) defined in (25),
one finds for iteration (k+ 1) ∈ N that

E[f (xk+1)]− finf ≤ (1− δ1αk)(E[f (xk)]− finf)+ δ2α
2
k

22 F. E. CURTIS AND R. SHI

=
(
1− δ1a

b+ k

)
(E[f (xk)]− finf)+ δ2a2

(b+ k)2

≤
(
1− δ1a

b+ k

)
φ

b+ k
+ δ2a2

(b+ k)2

= (b+ k)φ
(b+ k)2

− δ1aφ
(b+ k)2

+ δ2a2

(b+ k)2

= (b+ k− 1)φ
(b+ k)2

− (δ1a− 1)φ
(b+ k)2

+ δ2a2

(b+ k)2

≤ (b+ k− 1)φ
(b+ k)2

≤ φ

b+ k+ 1
,

where the last equation follow from the definition ofφ in (24) and the last inequality follows
from the fact that (z − 1)(z + 1) ≤ z2 for any z ∈ R. �

TRish can also yield sublinear decrease of the expected optimality gap with fixed
parameters. This is of interest in practice since, with fixed parameters, there are fewer val-
ues that need to be tuned for each application of the algorithm. However, this can only be
guaranteed with the stronger assumption on the stochastic gradient estimates stipulated in
Assumption 4.4 (specifically in (11)).

Theorem 4.6: Under Assumptions 4.1, 4.2, 4.4, and 4.6, if the pair (a, b) ∈ R>0 ×R>0
is chosen such that αk ≤ 4

γ2c for all k ∈ N, then for all k ∈ N the expected optimality gap
satisfies

E[f (xk)]− finf ≤ φ

b+ k
, (27)

where

φ := max
{
(b+ 1)(f (x1)− finf),

δ2a2

δ1a− 1

}
∈ (0,∞),

with

δ1 := 1
4
γ2c ∈

(
0,

1
α

]
and δ2 =

(
γ 2
1

γ 2
2
− 1

8
γ2

)
Mg ∈ (0,∞).

Proof: As in the proof of Theorem 4.2 (see (14)), it follows for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2αk‖∇f (xk)‖22 +

(
γ 2
1

γ2
− 1

8
γ2

)
Mgα

2
k ,

Noting that this inequality has the same form as that in (26), the remainder of the proof
follows in the same manner as that for Theorem 4.5. �

Finally in this section, let us consider the behaviour of the algorithmunder the following
stronger assumption, which requires that the variance of the stochastic gradient estimates
vanishes at a geometric rate. Specifically, consider the following assumption. Under rea-
sonable assumptions in practice, this property of the variance can be assured through noise

OPTIMIZATION METHODS & SOFTWARE 23

reduction techniques by having the mini-batch size grow proportionally as
τ k� for some
τ ∈ (1,∞); see, e.g. [7, Section 5.2].

Assumption 4.8: The variances of the stochastic gradient estimates decreases at a geomet-
ric rate and the sequence of stochastic Hessian estimates is uniformly bounded in the sense
that there exist constants (Mg ,MH , ζ) ∈ R>0 ×R>0 × (0, 1) such that, for all k ∈ N,

Ek[‖∇f (xk)− gk‖22] ≤ Mgζ
k−1 and ‖Hk‖2 ≤ MH .

In addition, (αk, γ1,k, γ2,k) = (α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0 and

0 < α ≤ γ2

4γ 2
1 (Lg +MH)

,

which, in particular, implies that (6) holds for all k ∈ N.

This assumption leads to the following theorem.

Theorem 4.7: Under Assumptions 4.1, 4.2, 4.6, and 4.8, Trish yields

E[f (xk)]− finf ≤ ωρk−1, (28)

where

κ1 := 1
8
γ2, κ2 :=

(
γ 2
1

γ2
− 1

8
γ2

)
Mg , ω := max

{
f (x1)− finf,

κ2

cκ1

}
,

and ρ := max{1− cκ1α, ζ } ∈ (0, 1).
(29)

Proof: Using the same arguments as in the beginning of the proof of Theorem 4.1
(specifically leading to (10)), one has for all k ∈ N that

Ek[f (xk+1)] ≤ f (xk)− 1
8
γ2α‖∇f (xk)‖22 + α

(
γ 2
1

γ2
− 1

8
γ2

)
Mgζ

k−1.

Applying the bound in Assumption 4.6, subtracting finf from both sides, and taking total
expectation, one finds with (κ1, κ2) defined in (29) that, for all k ∈ N, one has

E[f (xk+1)]− finf ≤ (1− 2cκ1α)(E[f (xk)]− finf)+ κ2αζ k−1.

Let us now prove (28) by induction. First, for k = 1, the inequality follows by the definition
ofω in (29). Then, assuming the inequality holds true for k ∈ N, one finds from above that

E[f (xk+1)]− finf ≤ (1− 2cκ1α)ωρk−1 + κ2αζ k−1

= ωρk−1
(
1− 2cκ1α + κ2α

ω

(
ζ

ρ

)k−1)

≤ ωρk−1
(
1− 2cκ1α + κ2α

ω

)
≤ ωρk−1(1− cκ1α) ≤ ωρk,

which proves that the conclusion holds for k+ 1, as desired. �

24 F. E. CURTIS AND R. SHI

5. Complexity analysis

In this section, we prove a complexity result for TRish. While not representing the
behaviour of the algorithm in the fully stochastic regime, the result shows that if one com-
putes sufficiently accurate gradient andHessian estimates, then one obtains –with the same
algorithm – a worst-case performance that is reminiscent of results that can be proved
for a deterministic algorithm with optimal complexity properties. To keep our result in
the stochastic setting, we assume only that the stochastic gradients and Hessians are suffi-
ciently accurate in expectation. Consequently, our theorem is weaker than those that can
be proved in the deterministic setting. (If one were to replace the conditional expectations
in (30) with computed values, then the same arguments would show that TRish yields
first-order ε-stationarity in at mostO(ε−3/2) iterations.)

Assumption 5.1: The Hessian function ∇2f : Rn→ Rn×n is Lipschitz continuous with
constant LH ∈ R>0. In addition, given ε ∈ R>0, the expected distances of the stochastic
gradient and stochastic Hessian estimates from the true gradients and Hessians, respec-
tively, are uniformly bounded with respect to (LH , ε) in the sense that there exist constants
μ1 ∈ (0, 1

12) and μ2 ∈ (0, 1
12) such that, for all k ∈ N,

Ek[‖∇f (xk)− gk‖2] ≤ μ1

LH
ε and Ek[‖∇2f (xk)−Hk‖2] ≤ μ2

√
ε. (30)

Moreover, for all k ∈ N, the subproblem (2) is solved to global optimality.

Under Assumption 5.1, since the subproblem (2) is solved to global optimality for all
k ∈ N, it follows for all k ∈ N that there exists a scalar υk such that

gk + (Hk + υkI)sk = 0 (31a)

Hk + υkI � 0 (31b)

and 0 ≤ υk ⊥ �k − ‖sk‖2 ≥ 0. (31c)

For any k ∈ N with ‖gk‖2 ≤ Glow for some Glow ∈ R>0, one has with (30) that

Ek[‖∇f (xk)‖2] ≤ O(ε)+ Glow.

By contrast, the following theorem addresses situations in which there exist a sufficiently
large number of iterations with ‖gk‖2 > Glow.

Theorem 5.1: Suppose Assumptions 4.1, 4.2, and 5.1 hold, and suppose that TRish is run
with (αk, γ1,k, γ2,k) = (α, γ1, γ2) for all k ∈ N, where γ1 ≥ γ2 > 0.

(a) Suppose for some constants Ghigh ∈ R>0 and λ2 ∈ (0, 1) the algorithm employs

γ2 ∈
(
0,

1
λ2Ghigh

]
. (32)

Then, for any k ∈ N such that ‖gk‖2 ≤ Ghigh and υk ≤
√

ε one has

Ek[‖∇f (xk+1)‖2|υk ≤
√

ε] ≤ O(ε). (33)

OPTIMIZATION METHODS & SOFTWARE 25

(b) Suppose for some constants (Glow,Ghigh) ∈ R>0 ×R>0 and (λ0, λ1, λ2) ∈ (0, 1)×
(0, 1)× (0, 1) satisfying

λ20λ
2
1 −

μ1

λ2
− μ2

λ22
− 2

3λ32
≥ 1

6
(34)

the algorithm employs

α ∈
[
2λ0
√

ε

LH
,
2
√

ε

LH

]
, γ1 ∈

[
λ1

Glow
,∞

)
, and γ2 ∈

(
0,

1
λ2Ghigh

]
. (35)

Let K := 3L2H(f1 − finf)ε−3/2 = O(ε−3/2). Then, if Glow ≤ ‖gk‖2 ≤ Ghigh and υk >√
ε for all k ∈ {1, . . . ,K}, then the (conditionally) expected total decrease in f over these

iterations is at least the initial optimality gap, i.e.

K∑
k=1

Ek[f (xk)− f (xk+1) | υk >
√

ε] ≥ f1 − finf. (36)

Overall, within K = O(ε−3/2) iterations over which ‖gk‖2 ≥ Glow, either the algorithm
produces an iterate such that the norm of the gradient in the subsequent iteration will beO(ε)

in expectation (see (33)), or the conditionally expected total decrease in f up through iteration
K is at least the initial optimality gap (see (36)).

Proof: Under Assumption 5.1, it follows for all k ∈ N that

f (xk + sk)− f (xk)−∇f (xk)Tsk − 1
2
sTk∇2f (xk)sk ≤ LH

6
‖sk‖32 (37a)

and ‖∇f (xk + sk)− ∇f (xk)−∇2f (xk)sk‖2 ≤ LH
2
‖sk‖22. (37b)

For the next parts of the proof, we consider two cases. In the first case, we show that if the
nonnegative scalar υk in the optimality conditions (31) is sufficiently small for some k ∈ N,
then the conditional expectation of the gradient of f at xk+1 is at most proportional to ε.
In the second case, when υk is not sufficiently small for any k ∈ {1, . . . ,K}, we show that
the conditional expected decrease in the objective function value is at least proportional to
ε3/2 in all iterations up through iteration K.

First, suppose under the conditions in (a) that υk ≤
√

ε for some k ∈ N. It follows from
the Cauchy-Schwarz inequality, (37b), (31a), and the trust region in (2) that

‖∇f (xk+1)‖2 ≤ ‖∇f (xk+1)−∇f (xk)−∇2f (xk)sk‖2
+ ‖∇f (xk)− gk‖2 + ‖(∇2f (xk)− Hk)sk‖2 + ‖gk +Hksk‖2

≤ LH
2
‖sk‖22 + ‖∇f (xk)− gk‖2 + ‖∇2f (xk)− Hk‖2‖sk‖2 + υk‖sk‖2

≤ LH
2

�2
k + ‖∇f (xk)− gk‖2 +�k‖∇2f (xk)−Hk‖2 +�k

√
ε. (38)

26 F. E. CURTIS AND R. SHI

Let us now consider the three cases defined on page 6. In Case 1, one has that ‖gk‖2 ≤ 1/γ1,
meaning �k = γ1α‖gk‖2 ≤ α. In Case 2, one has that �k = α. Finally, in Case 3, one has
by (32) that �k = γ2α‖gk‖2 ≤ γ2αGhigh ≤ α/λ2. Thus, (38) implies

‖∇f (xk+1)‖2 ≤ LH
2

(
α

λ2

)2
+ ‖∇f (xk)− gk‖2 + α

λ2
‖∇2f (xk)− Hk‖2 + α

λ2

√
ε

≤
(

1
λ22
+ 1

λ2

)
2
LH

ε + ‖∇f (xk)− gk‖2 + 2
LHλ2

‖∇2f (xk)− Hk‖2
√

ε.

Taking conditional expectation, it follows that

Ek[‖∇f (xk+1)‖2|υk ≤
√

ε]

≤
(

1
λ22
+ 1

λ2

)
2
LH

ε + Ek[‖∇f (xk)− gk‖2]+ 2
LHλ2

Ek[‖∇2f (xk)−Hk‖2]
√

ε

≤
((

1
λ22
+ 1

λ2

)
2
LH
+ μ1

LH
+ 2μ2

LHλ2

)
ε = O(ε).

Second, suppose that υk >
√

ε for all k ∈ {1, . . . ,K}. For such k, it follows by (31c) that
‖sk‖2 = �. Therefore, by (37a), (31), and the Cauchy-Schwarz inequality,

f (xk+1)− f (xk)

≤ ∇f (xk)Tsk + 1
2
sTk∇2f (xk)sk + LH

6
‖sk‖32

≤ gTk sk +
1
2
sTk Hksk + (∇f (xk)− gk)Tsk + 1

2
sTk (∇2f (xk)−Hk)sk + LH

6
‖sk‖32

≤ gTk sk +
1
2
sTk Hksk + ‖∇f (xk)− gk‖2‖sk‖2 + 1

2
‖∇2f (xk)−Hk‖2‖sk‖22 +

LH
6
‖sk‖32

= gTk sk +
1
2
sTk Hksk +�k‖∇f (xk)− gk‖2 + 1

2
�2

k‖∇2f (xk)−Hk‖2 + LH
6

�3
k

≤ −1
2
υk�

2
k +�k‖∇f (xk)− gk‖2 + 1

2
�2

k‖∇2f (xk)− Hk‖2 + LH
6

�3
k

≤ −1
2
√

ε�2
k +�k‖∇f (xk)− gk‖2 + 1

2
�2

k‖∇2f (xk)−Hk‖2 + LH
6

�3
k. (39)

Let us consider the three cases defined on page 6. InCase 1, it follows underAssumption 5.1
and by (35) and the fact that ‖gk‖2 ≤ 1/γ1 that�k = γ1α‖gk‖2 ≥ γ1αGlow ≥ 2λ0λ1

LH
√

ε and
�k ≤ α ≤ 2

LH
√

ε. In Case 2, one finds that �k = α ∈ [2λ0LH
√

ε, 2
LH
√

ε]. Finally, in Case 3,
one finds as before that �k ≤ α/λ2, meaning that �k ≤ 2

LHλ2

√
ε. Moreover, one finds by

the fact that ‖gk‖2 ≥ 1/γ2 in this case that�k ≥ α ≥ 2λ0
LH
√

ε. Hence, for all k ∈ {1, . . . ,K},
one finds

�k ∈
[
2λ0λ1
LH

√
ε,

2
LHλ2

√
ε

]
.

Combining this inclusion with (39) and (34), one finds that

Ek[f (xk+1)|υk >
√

ε]− f (xk) ≤ −
2λ20λ

2
1

L2H
ε3/2 + 2μ1

L2Hλ2
ε3/2 + 2μ2

L2Hλ22
ε3/2 + 4

3L2Hλ32
ε3/2

OPTIMIZATION METHODS & SOFTWARE 27

≤ − 2
L2H

(
λ20λ

2
1 −

μ1

λ2
− μ2

λ22
− 2

3λ32

)
ε3/2 ≤ − 1

3L2H
ε3/2.

Hence, in the case that υk >
√

ε for all k ∈ {1, . . . ,K}, one finds from above that

K∑
k=1

Ek[f (xk)− f (xk+1) | υk >
√

ε] ≥ K
(

1
3L2H

)
ε3/2 = f1 − finf,

as desired. �

6. Numerical experiments

The goal of our numerical experiments is to show that TRish, with stochastic second-order
derivative information incorporated, can outperform SG and first-order TRish (i.e. TRish
with Hk = 0 for all k ∈ N). In particular, our goal is to show with a few interesting test
problems that with a common computational budget, TRish can offer a better final solution
than alternative numerical methods.

6.1. Implementation details

We implemented TRish, SG, and Adagrad [19] in Python. All of our test problems
involve training neural networks. The problems were implemented using PyTorch, which
allows one to use back propagation to compute stochastic gradient estimates and perform
matrix-vector products with stochastic Hessian estimates. For TRish, we implemented a
Steihaug-CG routine (see [38]) for approximately solving the trust region subproblems,
where for each subproblem the same batch of data samples used to define the stochastic
gradient estimate is used to define the stochastic Hessian estimate. To ensure that TRish
did not expend too much effort solving any single subproblem, we imposed a limit of 3 on
the number of CG iterations performed when solving each subproblem. In our compar-
isons, we equate the cost of one stochastic gradient estimate with the cost of computing
one stochastic–Hessian–vector product. This allows the other methods to perform more
optimization iterations per epoch than TRish is able to perform. Overall, we define an
epoch to have occurred each time that

(# stochastic gradients + # stochastic-Hessian-vector products)× batch size

(which equates to the number of times that a point in the dataset has been accessed) reaches
the number of points in the dataset. Asmentioned alongwith the results of our experiments
in the subsequent sections, this method of measuring epochs turned out to be appropriate
in the sense that, for each test problem, the CPU times required for all algorithms were
comparable.

6.2. Hyperparameter tuning

The hyperparameters for all algorithms were tuned using a similar approach to that used
in [16]. In particular, for each test problem, we proceeded as follows. First, to establish
a baseline for the hyperparameter values, we ran SG with a fixed stepsize of α = 0.1 and

28 F. E. CURTIS AND R. SHI

computedG as the average normof the stochastic gradient estimates computed throughout
the run.We then established sets of possible hyperparameter values with the formulas α =
10λ, γ1 = 2a

G , and γ2 = 1
2bG , where λ, a, and b were evenly distributed in some interval.

(Different intervals were used for each test problem so that, e.g. the best stepsize for SGwas
never at the extreme of the allowed range. Details are given in the following subsections
for each test problem.) For simplicity, we only consider the behaviour of the algorithms
with fixed hyperparameter values. To ensure that all algorithms were tuned with the same
amount of effort, we fixed the total number of hyperparameter settings to be the same for
all algorithms. For example, if (first-order) TRish considers 4 values of α, 3 values of γ1,
and 3 values of γ2, then we allowed SG and Adagrad to consider 4× 3× 3 = 36 stepsizes.

To choose the best hyperparameter values for each algorithm for each test problem,
we used a standard type of cross validation procedure. Each dataset came equipped with a
training set and a testing set of data.We began by randomly selecting points from the train-
ing set to form a validation set. For each hyperparameter setting, we ran each algorithm
and observed its performance in terms of final validation accuracy (in the case of image
classification) or final validation loss (in terms of time series forecasting). Once the best
hyperparameter setting was found in this manner, we ran the algorithm using this set-
ting on all of the original training data. In the subsections below, we provide plots of the
accuracy and/or loss during this final run for the training and testing data.

6.3. FashionMNIST

The first dataset that we considered was FashionMNIST [41]. This consists of images of
10 different types of clothing. Each is a colour image of size 28× 28. There are 60,000 train-
ing images and 10,000 testing images.We randomly chose 10,000 images out of the training
set as our validation set, and chose the best set of hyperparameters for each algorithm as
the one yielding highest classification accuracy on the validation set.

The neural network that we considered for performing classification for this dataset was
composed of two convolutional layers (involving 10 and 20 output channels, respectively,
with kernal size 5) followed by a dropout layer and three fully connected layers. ReLU
activation was used at each hidden layer and the objective is defined using the logistic loss
(cross entropy) function. It is known that one can achieve better classification accuracy
on FashionMNIST using a more sophisticated neural network, but this network offers
sufficiently good results in order for us to demonstrate the behaviour of TRish.

We ran each algorithm for 10 epochs with a mini-batch size of 128. Dur-
ing tuning, we obtained G = 1.5644. For TRish and first-order TRish, we con-
sidered 8 stepsize values over [0.1, 1], namely, α = 10−1+i/7 for i ∈ {0, 1, . . . , 7},
along with γ1 ∈ { 4G , 16G } = {2.5568, 10.2274} and γ2 ∈ { 12G , 1

8G } = {0.3196, 0.07990}. For
a fair comparison (see [16]), this means that it was appropriate to allow SG
and Adagrad to consider 32 stepsize choices in the range [1

8G × 10−1, 16G × 100] =
[10−2.0974, 101.0097] = [0.00799, 10.2275]. TRish ended up with the values (α, γ1, γ2) =
(0.1930, 10.2274, 0.07990) = (10−5/7, 16

1.5644 ,
1

8(1.5644)), first-order TRish ended up with
the values (α, γ1, γ2) = (0.3727, 2.5568, 0.3196) = (10−3/7, 4

1.5644 ,
1

2(1.5644)), SG ended up
with the value α = 0.4192 = 10−0.3775, and Adagrad ended up with the value α =
0.5243 = 10−0.2804.

OPTIMIZATION METHODS & SOFTWARE 29

Figure 1. Training loss and testing accuracy during the first ten epochswhen TRish, first-order TRish, SG,
and Adagrad are employed to train a convolutional neural network over the FashionMNIST dataset.

Once the hyperparameter values were determined, we ran the algorithms on the train-
ing data five times each. In Figure 1, we plot the training loss and testing accuracy over
the 10 epochs. The line for each algorithm for each plot shows the mean values over
the 5 runs with the shaded region showing one standard deviation above and below the
mean. One finds that while the first-order algorithms and Adagrad have an edge in the
early parts of the runs, eventually TRish overtakes all of the other algorithms in terms of
final training loss (for which lower is better) and final testing accuracy (for which higher
is better). The CPU times for all runs of all of the algorithms were comparable; on aver-
age, TRish required 29.63 s, first-order TRish required 30.91 s, SG required 32.35 s, and
Adagrad required 33.24 s.

6.4. CIFAR-10

The second dataset that we considered was CIFAR-10 [26]. This dataset consists of 10
classes of colour images of different objects. Each image has size 32× 32. There are 50,000
training images and 10,000 testing images.We randomly chose 5000 of the training images
to compose the validation set. As in the previously subsection, the best set of hyperparam-
eters for each algorithm was chosen as the one yielding highest classification accuracy on
the validation set.

The neural network that we considered for this dataset was composed of two convolu-
tional layers (involving 6 and 16 output channels, respectively, with kernal size 5) followed
by a max pooling layer, a dropout layer, and three fully connected layers. ReLU activation
was used at each hidden layer and the objective was again the logistic loss function. Again,
one can achieve better testing accuracy using amore sophisticated neural network, but this
network gave sufficiently good results to demonstrate the behaviour of our algorithm.

We ran 40 epochs with a mini-batch size of 128. We obtained G = 2.7819
and considered α = 10−1+i/7 for i ∈ {0, 1, . . . , 7}, γ1 ∈ { 4G , 16G } = {1.4378, 5.7515}, and
γ2 ∈ { 14G , 1

80G } = {0.08986, 0.004493}. This means that SG and Adagrad were tuned
with 32 choices of α in the range [1

80G × 10−1, 16G × 100] = [10−3.3474, 100.7598] =
[0.0004493, 5.7515]. TRish chose (α, γ1, γ2) = (0.1389, 5.7515, 0.004493) = (10−6/7,
16

2.7819 ,
1

80(2.7819)), first-order TRish chose (α, γ1, γ2) = (0.3727, 5.7515, 0.08986) =

30 F. E. CURTIS AND R. SHI

Figure 2. Training loss and testing accuracy during the first 40 epochs when TRish, first-order TRish
and SG are employed to train a convolutional neural network over the CIFAR10 dataset.

(10−3/7, 16
2.7819 ,

1
4(2.7819)), SG chose α = 0.2316 = 10−0.6352, and Adagrad chose α =

0.3113 = 10−0.5068.
Figure 2 shows the result of this experiment over 5 runs. Interestingly, for this problem,

TRish does not outperform the others in terms of training loss; indeed, first-order TRish
appears to give the best results in terms of training loss. However, TRish eventually offers
better testing accuracy. While one cannot guarantee that such would be the behaviour in
general, one does see benefits of TRish-based methods compared to SG and Adagrad. In
these experiments, the runs for all algorithms were comparable in terms of CPU time; on
average, TRish required 250.80 s, first-order TRish required 233.63 s, SG required 239.74 s,
and Adagrad required 240.13 s.

6.5. NSW2016

As a final test problem, we considered one of time series forecasting. For this, we used his-
torical data posted online by the Australian Energy Market Operator (AEMO) on demand
for electricity in New South Wales in 2016.1 This gives a univariate time series of length
17,423. We used the first 17,000 values for our experiments. We used the first 12,000 as the
training set, the following 2000 as the validation set, and the remaining 3000 as the testing
set. We chose the set of hyperparameters that yielded the lowest validation loss.

The recurrent neural network that we considered for this dataset was composed of a
single long short-term memory (LSTM) layer with hidden size 32 followed by a fully con-
nected layer. A time step of 10 was used with ReLU activation after the LSTM layer. The
objective function used was the mean squared error.

We ran the experiment for 20 epochs using a mini-batch size of 100. We
obtained G = 720.1389 and considered α = 10−1+i/3 for i = {0, 1, . . . , 6} along with
γ1 ∈ { 4G , 16G } = {0.005555, 0.02222} and γ2 ∈ { 12G , 1

20G } = {0.0006944, 0.00006944}. SG
and Adagrad were tuned with 16 choices of α in the range [1

20G × 10−1, 16G × 101] =
[0.000006944, 0.2222] = [10−5.1586, 10−0.6532]. As a result of hyperparameter tuning,
TRish chose (α, γ1, γ2) = (2.1544, 0.2222, 0.00006944) = (101/3, 16

720.1389 ,
1

20(720.1389)),
first-order TRish chose (α, γ1, γ2) = (0.4641, 0.005555, 0.0006944) = (10−1/3, 4

720.1389 ,

OPTIMIZATION METHODS & SOFTWARE 31

Figure 3. Training loss and testing loss during the first twenty epochs when TRish, first-order TRish,
and SG are employed to train a recurrent neural network over the NSW2016 dataset.

1
2(720.1389)), SG chose α = 0.0002204 = 10−3.6567, and Adagrad chose α = 0.0004216 =
10−3.3751.

Figure 3 shows the result of this experiment over 50 runs. The losses are plotted on
a logarithmic scale for better viewing of the differences. From the plots, it is clear that
all algorithms reach solutions of comparable quality in terms of training loss, but only
TRish, first-order TRish, and SG reach solutions of comparable quality in terms of test-
ing loss. Adagrad reduces the training loss quickly, but with highly variable behaviour (as
indicated by the wide shaded region for Adagrad in the plots). On the other hand, TRish
reduces the training lossmore quickly than the first-ordermethods and reaches the optimal
testing loss more quickly. The CPU times for all algorithms were comparable; on aver-
age, TRish required 19.61 s, first-order TRish required 16.81 s, SG required 15.93 s, and
Adagrad required 16.45 s.

7. Conclusion

A stochastic second-order trust region algorithm has been proposed, analysed, and tested.
It can be viewed as a second-order extension of the algorithm proposed in [16]. We proved
theoretical guarantees for the method that are on par with those proved for the first-order
algorithm in [16], and in turn comparable to those possessed by SG and many of its vari-
ants. That said, our numerical experiments demonstrate that the algorithm can perform
better in practice, in terms of reaching better solutions within the same computational
budget. We attribute this better behaviour to the algorithm’s use of carefully chosen trust
region radii and stochastic second-order information.

Of central importance for first-/second-order TRish algorithms are the sequences {γ1,k}
and {γ2,k}. In our numerical experiments, which consider constant sequences (i.e. γ1,k = γ1
and γ2,k = γ2 for all k ∈ N), we found that second-order TRish achieved its best per-
formance with the range [γ2, γ1] being wider than the range for which first-order TRish
achieved its best performance. This means that the range [1/γ1, 1/γ2] over which the step-
size is given by �k = αk (recall (3) and TRish in our analysis) ended up being wider for
second-order TRish than for first-order TRish. We conjecture that this is due to the use
of second-order information helping to produce better steps, meaning that the algorithm

32 F. E. CURTIS AND R. SHI

can use a simple trust-region-type normalization for a larger range of the norm of the
stochastic gradients. It remains an open question how the practical behaviour of TRish-
type algorithms is affected by different combinations of choices for the sequences {γ1,k}
and {γ2,k}. Answering this question requires a larger and more comprehensive numerical
study that is beyond the scope of this article.

Note

1. https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard.

Acknowledgments

The authors would like to thank sincerely the anonymous reviewers and the Associate Editor for
handling this paper. Their comments and suggestions led to important improvements, for which we
are grateful.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This material is based upon work supported by the U.S. Department of Energy, Office of Science,
Applied Mathematics, Early Career Research Program under Award Number [DE–SC0010615] and
by the U.S. National Science Foundation Division of Computing and Communication Foundations
[CCF-1618717, CCF–1740796].

Notes on contributors

Frank E. Curtis is an Associate Professor in the Department of Industrial and Systems Engineering
at Lehigh University. His research focuses on the design, analysis, and implementation of numeri-
cal methods for solving large-scale nonlinear optimization problems. He received an Early Career
Award from the Advanced Scientific Computing Research program of the U.S. Department of
Energy, and has received funding from various programs of the U.S. National Science Foundation.
He has also received honors such as being one of the awardees of the 2018 INFORMS Computing
Society Prize.

Rui Shi is an Operations Research Specialist at SAS. He received his doctoral degree from Lehigh
University. He is an expert in mathematical optimization, stochastic algorithms, and financial
modeling.

ORCID

Frank E. Curtis http://orcid.org/0000-0001-7214-9187

References

[1] A. Agarwal and L. Bottou, A lower bound for the optimization of finite sums, Proceedings of the
International Conference onMachine Learning, Lille, France, Vol. 37, PMLR, 2015, pp. 78–86.

[2] D. Anbar, A stochastic Newton-Raphson method, J. Stat. Plan. Inference. 2(2) (1978), pp.
153–163.

https://www.aemo.com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard
http://orcid.org/0000-0001-7214-9187

OPTIMIZATION METHODS & SOFTWARE 33

[3] A.S. Bandeira, K. Scheinberg, and L.N. Vicente, Convergence of trust-region methods based on
probabilistic models, SIAM J. Optim. 24(3) (2014), pp. 1238–1264.

[4] E. Bergou, Y. Diouane, V. Kungurtsev, and C.W. Royer, A stochastic Levenberg-Marquardt
method using random models with complexity results and application to data assimilation,
preprint (2020). Available at arXiv:1807.02176.

[5] J. Blanchet, C. Cartis,M.Menickelly, andK. Scheinberg,Convergence rate analysis of a stochastic
trust regionmethod for nonconvex optimization, preprint (2016). Available at arXiv:1609.07428.

[6] R. Bollapragada, R.H. Byrd, and J. Nocedal, Exact and inexact subsampled Newton methods for
optimization, IMA J. Numer. Anal. 39(2) (2018), pp. 545–578.

[7] L. Bottou, F.E. Curtis, and J. Nocedal, Optimization methods for large-scale machine learning,
SIAM Rev. 60(2) (2018), pp. 223–311.

[8] R.H. Byrd, G.M. Chin, J. Nocedal, and Y. Wu, Sample size selection in optimization methods for
machine learning, Math. Program. Ser. B 134(1) (2012), pp. 127–155.

[9] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, SIAM J. Optim. 26(2) (2016), pp. 1008–1031.

[10] C. Cartis and K. Scheinberg, Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models, Math. Program. 169 (2018), pp. 1–39.

[11] R. Chen,M.Menickelly, and K. Scheinberg, Stochastic optimization using a trust-region method
and random models, Math. Program. 169(2) (2018), pp. 447–487.

[12] K.L. Chung, On a stochastic approximation method, Ann. Math. Statist. 25(3) (1954), pp.
463–483.

[13] A.R. Conn, N.I.M. Gould, and P.L. Toint, Trust Region Methods, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2000.

[14] F.E. Curtis, A self-correcting variable-metric algorithm for stochastic optimization, Proceedings
of the 33rd International Conference on Machine Learning, JMLR, New York, 2016.

[15] F.E. Curtis and D.P. Robinson, Exploiting negative curvature in deterministic and stochastic
optimization, Math. Program. Ser. B 176(1) (2019), pp. 69–94.

[16] F.E. Curtis, K. Scheinberg, and R. Shi, A stochastic trust region algorithm based on careful step
normalization, INFORMS J. Optim. 1(3) (2019), pp. 200–220.

[17] C.D. Dang and G. Lan, Stochastic block mirror descent methods for nonsmooth and stochastic
optimization, SIAM J. Optim. 25(2) (2015), pp. 856–881.

[18] G. Desjardins, K. Simonyan, R. Pascanu, and K. Kavukcuoglu, Natural neural networks, in
Advances in Neural Information Processing Systems, Montreal, Canada, 2015, pp. 2071–2079.

[19] J.Duchi, E.Hazan, andY. Singer,Adaptive subgradientmethods for online learning and stochastic
optimization, J. Mach. Learn. Res. 12 (2011), pp. 2121–2159.

[20] R. Durrett, Probability: Theory and Examples, 5th ed., Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press, Cambridge, 2019.

[21] M.P. Friedlander and M. Schmidt, Hybrid deterministic-stochastic methods for data-fitting,
SIAM J. Sci. Comput. 34 (2012), pp. A1380–A1405.

[22] S. Ghadimi and G. Lan, Stochastic first- and zeroth-order methods for nonconvex stochastic
programming, SIAM J. Optim. 23(4) (2013), pp. 2341–2368.

[23] S. Gratton, C.W. Royer, L.N. Vicente, and Z. Zhang, Complexity and global rates of trust-region
methods based on probabilistic models, IMA J. Numer. Anal. 38(3) (2017), pp. 1579–1597.

[24] R. Grosse and J. Martens,A kronecker-factored approximate fisher matrix for convolution layers,
International Conference on Machine Learning, New York City, NY, USA, 2016, pp. 573–582.

[25] D.P. Kingma and J. Ba, Adam: a method for stochastic optimization, preprint (2014). Available
at arXiv:1412.6980.

[26] A. Krizhevsky, Learning multiple layers of features from tiny images, Tech. Rep., University of
Toronto, 2009.

[27] T. Kurutach, I. Clavera, Y. Duan, A. Tamar, and P. Abbeel, Model-ensemble trust-region pol-
icy optimization, International Conference on Learning Representations, Vancouver, Canada,
2018. Available at OpenReview.net.

[28] J. Martens, New insights and perspectives on the natural gradient method, preprint (2014).
Available at arXiv:1412.1193.

http://OpenReview.net

34 F. E. CURTIS AND R. SHI

[29] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, Robust stochastic approximation approach
to stochastic programming, SIAM J. Optim. 19(4) (2009), pp. 1574–1609.

[30] Y. Nesterov, Introductory lectures on convex optimization: a basic course, in Applied Optimiza-
tion, 1st ed., Springer Science+Business Media, LLC, 2004.

[31] J. Nocedal and S.J. Wright, Numerical Optimization, 2nd ed., Springer Series in Operations
Research and Financial Engineering, Springer, New York, 2006.

[32] A. Rakhlin, O. Shamir, and K. Sridharan, Making gradient descent optimal for strongly con-
vex stochastic optimization, 29th International Conference on Machine Learning, Omnipress,
Edinburgh, Scotland, 2012, pp. 1571–1578.

[33] S.J. Reddi, S. Kale, and S. Kumar, On the convergence of adam and beyond, International Con-
ference on Learning Representations, Vancouver, Canada, 2018. Available at OpenReview.net.

[34] H. Robbins and S.Monro,A stochastic approximationmethod, Ann.Math. Statist. 22(3) (1951),
pp. 400–407.

[35] H. Robbins and D. Siegmund, A convergence theorem for nonnegative almost supermartingales
and some applications, in Optimizing Methods in Statistics, J. S. Rustagi, ed., Academic Press,
New York, 1971.

[36] N.N. Schraudolph, J. Yu, and S. Günter, A stochastic quasi-Newton method for online convex
optimization, in Proceedings of the Eleventh International Conference onArtificial Intelligence
and Statistics, Juan, Puerto Rico, Vol. 2, PLMR, 2007, pp. 436–443.

[37] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy optimization,
International Conference on Machine Learning, Lille, France, PMLR, 2015, pp. 1889–1897.

[38] T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM
J. Numer. Anal. 20(3) (1983), pp. 626–637.

[39] T. Tieleman and G. Hinton, Lecture 6.5. RMSPROP: divide the gradient by a running average of
its recent magnitude, COURSERA: Neural Networks for Machine Learning, 2012.

[40] X. Wang, S. Ma, D. Goldfarb, and W. Liu, Stochastic Quasi-Newton methods for nonconvex
stochastic optimization, SIAM J. Optim. 27(2) (2017), pp. 927–956.

[41] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms, preprint (2017). Available at arXiv:1708.07747.

[42] G. Zhang, J. Martens, and R.B. Grosse, Fast convergence of natural gradient descent for over-
parameterized neural networks, in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, eds., Curran
Associates, Inc., Vancouver, Canada, 2019, pp. 8082–8093.

http://OpenReview.net

	1. Introduction
	2. Literature review
	3. Problem and algorithm descriptions
	4. Convergence analysis
	4.1. Fundamental lemmas
	4.2. General (nonconvex) objective functions
	4.3. Objective functions satisfying the Polyak-Łojasiewicz condition

	5. Complexity analysis
	6. Numerical experiments
	6.1. Implementation details
	6.2. Hyperparameter tuning
	6.3. FashionMNIST
	6.4. CIFAR-10
	6.5. NSW2016

	7. Conclusion
	Note
	Acknowledgments
	Funding
	ORCID
	References

