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O ptimization lies at the heart of machine learning (ML) and 
signal processing (SP). Contemporary approaches based on 
the stochastic gradient (SG) method are nonadaptive in the 

sense that their implementation employs prescribed parameter 
values that need to be tuned for each application. This article 
summarizes recent research and motivates future work on adap-
tive stochastic optimization methods, which have the potential 
to offer significant computational savings when training large-
scale systems.

Introduction
The success of stochastic optimization algorithms for solving 
problems arising in ML and SP are now widely recognized. 
Scores of articles have appeared in recent years as researchers aim 
to build on fundamental methodologies, such as the SG method 
[26]. The motivation and scope of many of these efforts have been 
captured in various books and review articles; see, e.g., [4], [10], 
[15], and [21].

Despite these advances and the accumulation of knowledge, 
there remain significant challenges in the use of stochastic opti-
mization algorithms in practice. The dirty secret in the use of 
these algorithms is the tremendous computational costs required 
to tune them for each application. For large-scale, real-world sys-
tems, tuning an algorithm to solve a single problem might require 
weeks or months of effort on a supercomputer before the algo-
rithm performs well. To appreciate the consumption of energy to 
accomplish this, the authors of [1] list multiple recent articles in 
which training a model for a single task requires thousands of 
CPU days, and they remark how 104 CPU days are comparable 
to driving from Los Angeles to San Francisco with 50 Toyota 
Camrys. One avenue for avoiding expensive tuning efforts is to 
employ adaptive optimization algorithms. Long the focus of the 
deterministic optimization community, with widespread success 
in practice, such algorithms become significantly more difficult to 
design for the stochastic regime in which many modern problems 
reside, including those arising in large-scale ML and SP.

The purpose of this article is to summarize recent work and 
motivate continued research into the design and analysis of 
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adaptive stochastic optimization methods. In particular, we pres-
ent an analytical framework—new to the literature for adaptive 
deterministic optimization—that sets the stage for establishing 
convergence rate guarantees for adaptive stochastic optimization 
techniques. With this framework in hand, we remark on important 
open questions related to how the architecture can be extended 
further for the design of new methods. We also discuss challenges 
and opportunities for the methods’ use in real-world systems.

Background
Many problems in ML and SP are formulated as optimization 
problems. For example, given a data vector y Rm!  from an un-
known distribution, one often desires to have a vector of model 
parameters x Rn!  such that a composite objective function 

:f R Rn "  is minimized, as in

( ), ( ) : [ ( , )] ( ).min f x f x x y xwhere E
x

y
Rn

z mt= +
!

Here, the function : RRn m "z +  defines the data-fitting term 
[ ( , )],x yEy z  an expectation across the distribution of y. For ex-

ample, in supervised ML, the vector y may represent the input 
and the output from an unknown mapping, and one aims to find 
x to minimize the discrepancy between the output vector and the 
predicted value captured by .z  Alternatively, the vector y may 
represent a noisy signal measurement, and one may aim to find 
x that filters out the noise to reveal the true signal. The function 

: R Rn "t  with the weight [ , )0 3!m  is included as a regular-
izer. This can be used to induce desirable properties of the vector 
x, such as sparsity, and/or to help avoid overfitting a particular set 
of data vectors that is used when (approximately) minimizing f. 
Supposing that instances of y can be generated—one-by-one or in 
minibatches, essentially ad infinitum—the problem of minimiz-
ing f becomes a stochastic problem across x.

Traditional algorithms for minimizing f are often very simple 
to understand and implement. For example, given a solution 
estimate ,xk  the well-known and celebrated SG method [26] 
computes the next estimate as ,x x gk k k k1 ! a-+  where gk  
approximates the gradient of f at xk  by taking a uniform random 
sample yik  and setting ( , ) ( )g x y xk x k i x kk! d dz m t+  (or by tak-
ing a minibatch of samples and setting gk  as the average sampled 
gradient). This value estimates the gradient since, as is typically 
assumed, [ ] ( ),g f xEk k kd=  where [·]Ek  represents conditions 
on the history of the behavior of the algorithm up to iteration 

.k N!  Under reasonable assumptions about the stochastic gradi-
ent estimates and with a prescribed sequence of step-size parame-
ters { },ka  such an algorithm enjoys good convergence properties, 
which ensure that { }xk  converges in probability to a minimizer, or 
at least a stationary point, of f. For other successful modern vari-
ants of SG, see [13] and [18].

A practical issue in the use of SG is that the variance of the 
stochastic gradient estimates, i.e., [ ( ) ],g f xEk k k 2

2d< <-  can be 
large, which inhibits the algorithm from attaining convergence 
rate guarantees on par with those for first-order algorithms in 
deterministic settings. To address this, variance reduction tech-
niques have been proposed and analyzed, such as those used 
in the stochastic variance reduced gradient algorithm, the self-

adaptive genetic algorithm, and other methods [12], [17], [23], 
[27]. That said, SG and its variants are inherently nonadaptive in 
the sense that each iteration involves a prescribed number of data 
samples to compute ,gk  in addition to a prescribed sequence of 
step-sizes { }.ka  Determining which parameter values (defining 
the minibatch sizes, step-sizes, and other factors) work well for 
a particular problem is a nontrivial task. Tuning these param-
eters means that problems cannot be solved once; they need to 
be solved numerous times until reasonable parameter values are 
determined for future use on new data.

Illustrative example
To illustrate the use of adaptivity in stochastic optimization, con-
sider a problem of binary classification by logistic regression us-
ing the well-known Modified National Institute of Standards and 
Technology (MNIST) data set. Specifically, consider the minimi-
zation of a logistic loss plus an 2, -norm squared regularizer (with 

)10 4m = -  to classify images as showing the number five or not. 
Employing SG with a minibatch size of 64 and different fixed 
step-sizes, one obtains the plot of the testing accuracy through 
10 epochs, as seen in Figure 1(a). One finds that for a step-size 
of 1ka =  for all ,k N!  the model achieves a testing accuracy 
of roughly 98%. However, for a step-size of .0 01ka =  for all 

,k N!  the algorithm stagnates and never achieves an accuracy 
much better than 90%.

By comparison, we also ran an adaptive method. This approach, 
like SG, begins with a minibatch size of 64 and the step-size 
parameter indicated in the plot in Figure 1(b). However, in each 
iteration, it checks the value of the objective (across only the cur-
rent minibatch) at the current iterate xk  and trial iterate .x gk k ka-  
If the minibatch objective would not reduce sufficiently as a result 
of the trial step, then the step is not taken, the step-size parameter 
is reduced by a factor, and the minibatch size is increased by a 
factor. This results in a more conservative step-size with a more 
accurate gradient estimate in the subsequent iteration. Otherwise, 
if the minibatch objective would reduce sufficiently with the trial 
step, then the step is taken, the step-size parameter is increased 
by a factor, and the minibatch size is reduced by a factor. Despite 
the data accesses required by this adaptive algorithm to evaluate 
minibatch objective values in each iteration, the attained testing 
accuracy with all initializations competes with that attained by 
the best SG run. 

This experiment demonstrates the potentially significant 
savings in computational costs offered by adaptive stochastic 
optimization methods. While one might be able to achieve a 
good practical performance with a nonadaptive method, one’s 
success might come only after expensive tuning efforts. By 
contrast, an adaptive algorithm can perform well without such 
expensive tuning.

Framework for analyzing adaptive  
deterministic methods
The rigorous development of adaptive stochastic optimization 
methods requires a solid foundation in terms of convergence rate 
guarantees. The types of adaptive methods that have enjoyed 
great success in the realm of deterministic optimization are 1) 
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trust region (TR), 2) line search (LS), and 3) regularized New-
ton methods. These approaches can be applied when derivative 
estimates are readily available and when using model-based, 
derivative-free methods, which build gradient and Hessian esti-
mates using function values (see [19] and the references therein). 
Extending these techniques to the stochastic regime is a highly 
nontrivial task. After all, these methods traditionally require ac-
curate function information at each iterate, which is what they use 
to adapt their behavior. When an oracle can return only stochastic 
function estimates, comparing function values to make adaptive 
algorithmic decisions can be problematic. In particular, when ob-
jective values are merely estimated, poor decisions can be made, 
and the combined effects of these poor decisions can be difficult 
to estimate and control.

As a first step toward showing how these challenges can be 
overcome, let us establish a general framework for convergence 
analysis for adaptive deterministic optimization. This will lay a 
foundation for the framework that we present for adaptive sto-
chastic optimization in the “Framework for Analyzing Adaptive 
Stochastic Methods” section. The analytical framework presented 
here is new for the deterministic optimization literature. A typi-
cal convergence analysis for adaptive deterministic optimization 
partitions the set of iterations into successful and unsuccessful 
ones. Nonzero progress in reducing the objective function is made 
on successful iterations, whereas unsuccessful iterations merely 
result in an update of a model or algorithmic parameter to pro-
mote success in the subsequent iteration. As such, a convergence 
rate guarantee results from a lower bound on the progress made in 
each successful iteration and a limit on the number of unsuccess-
ful iterations that can occur between successful ones. By contrast, 
in the framework presented here, the analysis is structured around 
a measure in which progress is made in all iterations.

In the remainder of this section, we consider all three afore-
mentioned types of adaptive algorithms under the assumption that 
f is continuously differentiable, with fd  being Lipschitz continu-
ous with constant ( , ).L 0 3!  Each of these methods follows the 
general algorithmic framework that we state as Algorithm 1. The 
role of the sequence { } 0k $a  in the algorithm is to control the 
length of the trial steps { ( )}.sk ka  In particular, as seen in our dis-
cussion of each type of adaptive algorithm, one presumes that for 
a given model ,mk  the norm of ( )sk a  is directly proportional to 
the magnitude of .a  Another assumption—and the reason that we 
refer to it as a deterministic optimization framework—is that the 
models agree with the objective, at least up to first-order deriva-
tives; i.e., ( ) ( )m x f xk k k=  and ( ) ( )m x f xk k kd d=  for all .k N!

Our analysis involves three central ingredients. We define 
them here in such a way that they are easily generalized when we 
consider our adaptive stochastic framework later on.

■■ { } 0k $U  is a sequence whose role is to measure the prog-
ress of the algorithm. The choice of this sequence may vary 
by the type of algorithm and the assumptions on f.

■■ { }Wk  is a sequence of indicators; specifically, for all ,k N!  
if iteration k is successful, then ;W 1k =  otherwise, .W 1k =-

■■ ,Tf  the stopping time, is the index of the first iterate that 
satisfies a desired convergence criterion parameterized  
by .f
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FIGURE 1. SG versus an adaptive stochastic method on regularized logistic 
regression on the MNIST data set. (a) Accuracies with SG. (b) Accuracies 
with the adaptive method.

Algorithm 1. Adaptive deterministic framework.

Initialization
      �Choose constants ( , ), ( , ),0 1 1 3! !h c  and ( , ).0 3!ar  

Choose an initial iterate x Rn
0 !  and step-size parameter 

, .( ]00 !a ar

1. Determine model and compute step
      �Choose a local model mk  of f around .xk  Compute a step ( )sk ka  

such that the model reduction ( ) ( ( ))m x m x s 0k k k k k k $a- +  is 
sufficiently large.

2. Check for sufficient reduction in f
      �Check if the reduction ( ) ( ( ))f x f x sk k k ka- +  is sufficiently large 

relative to the model reduction ( ) ( ( ))m x m x sk k k k k ka- +  using a 
condition parameterized by .h

3. Successful iteration
      �If sufficient reduction has been attained (along with other potential 

requirements), then set ( )x x sk k k k1 ! a++  and 
{ , }.mink k1 !a ca a+ r

4. Unsuccessful iteration
      �Otherwise, ,x xk k1 !+  and .k k1

1!a c a+
-

5. Next iteration
      �Set .k k 1! +
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These quantities are not part of the algorithm itself, and therefore 
do not influence the iterates. They are merely tools of the analysis. 
At the heart of the analysis is the goal to show that the following 
condition holds.

Condition 1
The following statements hold with respect to {( , , )}Wk k kaU  
and :Tf
1)	 There exists a scalar ( , )0 3!af  such that for each k N!  

such that ,k #a caf  the iteration is guaranteed to be success-
ful; i.e., .W 1k =  Therefore, k $a af  for all .k N!

There exists a nondecreasing function : [ , ) ( , )h 0 0"3 3f  
and a scalar ( , )0 3!H  such that for all ,k T k k 11 U U-e +

( ).h k$ aH f

The goal to satisfy Condition 1 is motivated by the fact that, 
if the condition holds, it is trivial to derive (since 0k $U  for all 

)k N!  that

	
( )

.T
h

0#
aH
U
f f

e � (1)

For generality, we have written af  and hf  as parameterized by .f  
However, in the context of different algorithms, one or the other 
of these quantities may be independent of .f  Throughout our 
analysis, we denote : ( ) .inff f x* x Rn 32= -!

Classical TR
In a classical TR method, the model mk  is chosen as at least a 
first-order accurate Taylor series approximation of f at ,xk  and the 
step ( )sk ka  is computed as a minimizer of mk  in a ball of radius 

ka  centered at .xk  In step 2, the sufficient reduction condition is 
chosen as

	
( ) ( ( ))
( ) ( ( ))

.
m x m x s

f x f x s
k k k k

k k k k
$

a

a
h

- +
- +

� (2)

Figure 2 shows the need to distinguish between successful and 
unsuccessful iterations in a TR method. Even though the model is 
(at least) first-order accurate, a large TR radius may enable a large 
enough step such that the reduction predicted by the model does 
not well represent the reduction in the function itself. We contrast 
these illustrations later with situations in the stochastic setting that 
are complicated by the fact that the model might be inaccurate 
regardless the size of the step.

For simplicity in our discussions, for iteration k N!  to be suc-
cessful, we impose the additional condition that ( )f xk kd# < <a x  
for some suitably large constant ( , ) .0 3!x  (Throughout the 
article, consider all norms to be .)2,  This condition is actually not 
necessary for the deterministic setting, but it is needed in our ana-
lytical framework in the stochastic setting to ensure that the trial 
step is not too large compared to the size of the gradient estimate. 
We impose it now in the deterministic setting for consistency.

For this TR instance of Algorithm 1, consider the first-order 
f-stationarity stopping time

	 : { : ( ) },minT k f xN kd! # f=f � (3)

corresponding to which we define

	 : ( ( ) ) ( )f x f 1*k k k
2o o aU = - + - � (4)

for some ( , )0 1!o  (to be determined in the following). Standard 
TR analysis involves two key results. First, while ( ) ,f xkd 2< < f  if 

ka  is sufficiently small, then iteration k is successful; i.e., .W 1k =  
In particular, : ck 1$a a f=f  for all k N!  for some sufficiently 
small ( , )c 01 3!  dependent on L, ,h  and .c  In addition, if itera-
tion k is successful, then the ratio condition (2) and our imposed 
condition ( )f xk kd# < <a x  yield

( ) ( )f x f x ck k k1 2
2$ h a- +

for some ( , ),c 02 3!  meaning that

( ) ( ) ;c 1 1k k k k1 2
2 2 2$ oh a o c aU U- - - -+

otherwise, if iteration k is unsuccessful, then

( )( ) .1 1k k k1
2 2o c aU U- = - -+
-

We aim to show in either case that k k k1
2$ aU U H- +  for 

some .02H  This can be done by choosing o sufficiently close 
to one such that

( ) ( ) .c 12
2 2$oh o c c- - -

In this manner, it follows from the previous observations that Con-
dition 1 holds with ( ) :h k k

2a a=f  and : ( ) ( ).1 1 2o cH = - - -  
Thus, by (1), the number of iterations required until a first-order 
f-stationary point is reached satisfies

( )( )
( ( ) ) ( )

.T
c

f x f
1 1

1*
2

1
2 2

0 0
2

#
o c f

o o a

- -

- + -
f -

This shows that ( ).T O 2f=f -

Classical LS
In a classical LS method, the model is again chosen as at least a 
first-order accurate Taylor series approximation of f at ,xk  with 
care taken to ensure it is convex so a minimizer of it exists. The 

xk xk + sk xk xk + sk

(a) (b)

FIGURE 2. (a) Successful and (b) unsuccessful steps in a TR method.
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trial step ( )sk ka  is defined as dk ka  for some direction of suffi-
cient descent .dk  In step 2, the sufficient reduction condition often 
includes the Armijo condition

( ) ( ( )) ( ) ( ).f x f x s f x sk k k k k
T

k kd$a h a- + -

As is common, suppose mk  is chosen and dk  is computed such 
that, for a successful iteration, one finds for some ( , ),c 03 3!  
dependent on L and the angle between dk  and ( ),f xkd-  that

( ) ( ) ( ) .f x f x c f xk k k k1 3
2

d$ h a- +

Using common techniques, this can be ensured with k $a a  
for all k N!  for some ( , )0 3!a  dependent on L, ,h  and 

.c  As in the “Classical TR” section, let us also impose that 
( )d f xk kd< < # < <b  for some suitably large ( , ).0 3!b  For this 

LS instance of Algorithm 1, for the stopping time Tf  defined in 
(3), consider

: ( ( ) ) ( ) ( ) .f x f f x1*k k k k
2

do o aU = - + -

If iteration k is successful, then

( )

( )( ( ) ( ) ).

c f x

f x f x1

k k k k

k k k k

1 3
2

1
2 2

d

d d

$ oh a

o ca a

U U-

- - -

+

+

By the Lipschitz continuity of ,fd  it follows that

( ) ( ) ( ) .f x L f x1k k k1d d# a b++

Squaring both sides and applying k #a ar  yields

( ) ( ) ( ) .f x L f x1k k1
2 2 2

d d# ab++ r

Overall, if iteration k is successful, then

( )

( )(( ) ) ( ) .

c f x

L f x1 1 1

k k k k

k k

1 3
2

2 2

d

d

$ oh a

o ab c a

U U-

- - + -

+

r

On unsuccessful iterations, one simply finds

( )( ) ( ) .f x1 1k k k k1
1 2

d$ o c aU U- - -+
-

By selecting o sufficiently close to one such that

( ) (( ) ),c L1 13
2 1$oh o ab c c- + - -r

one ensures, while ( ) ,f xkd 2< < f  that Condition 1 holds with 
( ) : ,h k k

2a a f=f  and : ( ) ( ).1 1 1o cH = - - -  Thus, by (1), the 
number of iterations required until a first-order f-stationary point 
is reached satisfies

( )( )
( ( ) ) ( ) ( )

,T
f x f f x

1 1
1*

1 2
0 0 0

2
d

#
o c af

o o a

- -

- + -
f -

which again shows that ( ).T O 2f=f -

Regularized Newton
Regularized Newton methods have been popular during recent 
years due to their ability to offer optimal worst-case complex-
ity guarantees for nonconvex smooth optimization across the 
class of practical second-order methods. For example, in the 
cublicly regularized Newton, the model is chosen as ( )m xk =

( ) ( ) ( ) ( / ) ( ) ( ) ( ) ( / )f x f x x x x x f x x x1 2 1 3k k
T

k k
T

k k
2d d+ - + - - +  

,x xk k< <a - 3  and in step 2, the imposed sufficient reduction 
condition has the same form as that in a TR method, namely, the 
ratio condition (2).

As for the aforementioned LS method, one can show that if 
the Hessian of f is Lipschitz continuous on a set containing the 
iterates, an iteration of the cublicly regularized Newton will be 
successful if the step-size parameter is sufficiently small; conse-
quently, k $a a  for all k N!  for some ( , )0 3!a  dependent 
on L, the Lipschitz constant for ,f2d  ,h  and .c  However, to prove 
the optimal complexity guarantee in this setting, one must account 
for the progress in a successful iteration as being dependent on the 
magnitude of the gradient at the next iterate, not the current one. 
(As we will see, this leads to complications for analysis in the 
stochastic regime.) For this reason, and ignoring the trivial case 
when ( ) ,f x0d< < # f  let us define

: { : ( ) }minT k f xN k 1d! # f=f +

along with

: ( ( ) ) ( ) ( ) .f x f f x1*k k k k 2
3

do o aU = - + -

If iteration k is successful, then

( ) ( ) ( )f x f x c f xk k k k1 4 1 2
3

d$ h a- + +

for some ( , )c 04 3!  [6], meaning that

( )

( ) ( )

( ) ( )

( )

( ) ( ) ;

c f x

f x

f x

c f x

f x

1

1

1

k k k k

k k

k k

k k

k k

1 4 1

2
3

1 1 2
3

4 1 2
3

1 2
3

2
3

d

d

d

d

d

$

$

oh a

o a

o a

oh a

o ca

U U-

+ -

- -

- -

+ +

+ +

+

+

otherwise, if iteration k is unsuccessful, then

( )( ) ( ) .f x1 1k k k k1
1

1 2
3

d$ o c aU U- - -+
-

+

Choosing o sufficiently close to one such that

( ) ( ),c 1 14
1$oh o c c- + - -

one ensures, while ( ) ,f xk 1d 2< < f+  that Condition 1 holds with 
( ) : ,h /

k k
3 2a a f=f  and : ( ) ( ).1 1 1o cH = - -f

-  Thus, by (1), the 
number of iterations required until a first-order f-stationary point 
will be reached (in the next iteration) has
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( ) ( )

( ( ) ) ( ) ( )
,T

f x f f x

1 1

1*

1
2
3

0 0 0 2
3

d
#

o c af

o o a

- -

- + -
f

-

which shows that ( ).T O /3 2f=f -  One can obtain the same result 
with a second-order TR method; see [9]. It should be said, how-
ever, that this method requires a more complicated mechanism for 
adjusting the step-size parameter than that stated in Algorithm 1.

Additional examples
Our analysis so far has focused on the setting of having a stopping 
time based on a first-order stationarity criterion and no assump-
tions on f besides first- and/or second-order Lipschitz continuous 
differentiability. However, the framework can be extended to 
other situations, as well. For example, if one is interested in ap-
proximate second-order stationarity, then one can let

: { : },

: ( ) , ( ( )) ,

min

max

T k

f x f xwhere

N

min

k

k k k
2d d

! #| f

| m

=

= -

f

" ,

with (·)minm  denoting the minimum eigenvalue of its symmetric 
matrix argument. One can show that if the model mk  is chosen 
as a (regularized) second-order Taylor series approximation 
of f at ,xk  then for all the aforementioned methods, one ob-
tains ( ).T O 3f=f -  For a TR method, for example, one can de-
rive this using

: ( ( ) ) ( ) .f x f 1*k k k
3o o aU = - + -

On the other hand, if one is interested in specially analyzing 
the case of f being convex, or even strongly convex, then one 
might consider

: { : ( ) }.minT k f x fN *k! # f= -f

In this case, improved complexity bounds can be obtained through 
other careful choices of { }.kU  For example, when f is convex and 
the LS method from the “Classical LS” section is employed, one 
can let

:
( )

( ) .
f x f

1 1 1
*

k
k

ko
f

o aU = -
-

+ -c m

Under the assumption that level sets of f are bounded, one can 
show that ( ( ) ) ( ( ) )f x f f x f* *k k1

1 1- - -+
- -  is uniformly bounded 

below by a positive constant across all successful iterations, while 
for all ,k N!  one has .k $a a  Hence, for a suitable constant ,o  
one can determine ( )h kaf  and H to satisfy Condition 1. In this 
case, the function hf  does not depend on f  but on ( ),O0

1fU = -  
meaning that ( ).T O 1f=f -

Similarly, when f is strongly convex and the LS method from 
the “Classical LS” section is employed, consider

:
( )

( ) ( ).

log log

log
f x f

1 1

1
*

k
k

k

o
f

o a

U = -
-

+ -

c ` cj mm

This time, (( ( ) ) ) (( ( ) ) )log logf x f f x f* *k k1
1 1- - -+
- -  is uni-

formly bounded below by a positive constant across all successful 
iterations, and, similar to the convex case, one can determine ,o  

,hf  and H independent of f  to show that ( ( ))logO0
1fU = -  im-

plies ( ( )).logT O 1f=f -

Framework for analyzing adaptive stochastic methods
We now present a generalization of the framework introduced in 
the previous section that facilitates the analysis of adaptive sto-
chastic optimization methods. This framework is based on the 
techniques proposed in [7], which served to analyze the behavior 
of algorithms when derivative estimates are stochastic and func-
tion values can be computed exactly. It is also based on the subse-
quent work in [2], which enables function values to be stochastic, 
as well. For our purposes of providing intuition, we discuss a sim-
plification of the framework, avoiding some technical details. See 
[2] and [7] for complete information.

As in the deterministic setting, let us define a generic algo-
rithmic framework, which we state as Algorithm 2, that encapsu-
lates multiple types of adaptive algorithms. This algorithm has the 
same structure as Algorithm 1, except it makes use of a stochastic 
model of f to compute the trial step, and it employs stochastic 
objective value estimates when determining whether a sufficient 
reduction has been achieved.

Corresponding to Algorithm 2, let {( , )}Wk kU  be a stochastic 
process such that { } 0k $U  for all .k N!  The sequences { }kU  
and { }Wk  play roles similar to those in our analysis of Algorithm 1, 
but it should be noted that now each Wk  is a random indicator 
influenced by the iterate sequence { }xk  and the step-size param-
eter sequence { },ka  which are themselves stochastic processes.

Let Fk  denote the v-algebra generated by all the stochas-
tic processes within Algorithm 1 at the beginning of iteration k. 
Roughly, Fk  is generated by {( , , )} .xj j j j

k
0aU =  Note that this 

Algorithm 2. Adaptive stochastic framework.

Initialization
      �Choose ( , , ) ( , ) , ( , ),0 1 11 2

3 3! !h d d c  and ( , ).0 3!ar  
Choose an initial iterate x Rn

0 !  and step-size parameter 
( , ].00 !a ar

1. Determine model and compute step
      �Choose a stochastic model mk  of f around ,xk  which satisfies 

some sufficient accuracy requirement with a probability of at least 
.1 1d-  Compute a step ( )sk ka  such that the model reduction 

( ) ( ( ))m x m x s 0k k k k k k $a- +  is sufficiently large.

2. Check for sufficient reduction
      �Compute estimates fk

0u  and fk
su  of ( )f xk  and ( ( )),f x sk k ka+  respec-

tively, which satisfy some sufficient accuracy requirement with a 
probability of at least .1 2d-  Check if f fk k

s0
-u u  is sufficiently large 

relative to the model reduction ( ) ( ( ))m x m x sk k k k k ka- +  using a 
condition parameterized by .h

3. Successful iteration
      �If a sufficient reduction has been attained (along with other poten-

tial requirements), then set ( )x x sk k k k1 ! a++  and 
{ , }.mink k1 !a ca a+ r

4. Unsuccessful iteration
      �Otherwise, ,x xk k1 !+  and .k k1

1!a c a+
-

5. Next iteration
      �Set .k k 1! +
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includes {( , , )}xj j j j
k

0
1aU =
-  but not ,Wk  as this random variable 

depends on what happens during iteration k. We then let Tf  
denote a family of stopping times for {( , )}Wk kU  with respect 
to { }Fk  parameterized by ( , ).0 3!f  The goal of our analyti-
cal framework is to derive an upper bound for the expected stop-
ping time [ ]TE f  under various assumptions on the behavior of 
{( , )}Wk kU  and on the objective f. At the heart of the analysis is 
the goal to show that the following condition holds, which can be 
seen as a generalization of Condition 1.

Condition 2
The following statements hold with respect to {( , , )}Wk k kaU  
and .Tf
1)	 There exists a scalar ( , )0 3!af  such that, conditioned on 

the event that ,k #a af  one has W 1k =  with the probability 
/ ,1 1 22d-  conditioned on .Fk  (This means that, if it 

becomes sufficiently small, one is more likely to see an 
increase in the step-size parameter than a decrease in it.)

2)	 There exists a nondecreasing function : [ , ) ( , )h 0 0"3 3f  
and a scalar ( , )0 3!H  such that, for all ,k T1 f  the condi-
tional expectation of k k 1U U- +  with respect to Fk  is at 
least ( );h kaH f  specifically,

1 1[ ]  ( ( )).hE F{ } { }k T k k k T k k1 ; # aU U H-1 1 f+f f

Whereas Condition 1 requires that the step-size parameter ka  
remains above a lower bound and that the reduction k k 1U U- +  is 
nonnegative with certainty, Condition 2 allows more flexibility. In 
particular, it says that until the stopping time is reached, one tends 
to find k k 1U U- +  sufficiently large, namely, at least ( )h kaH f  
for each .k T1 f  In addition, the step-size parameter is allowed 
to fall below the threshold ;af  in fact, it can become arbitrarily 
small. That said, if ,k #a af  then one tends to find .k k1 2a a+  
With this added flexibility, one can still prove complexity guaran-
tees. Intuitively, the reduction k k 1U U- +  is at least the determin-
istic amount ( )h aH f f  often enough that one is able to bound the 
total number of such occurrences (since { } ).0k $U  The follow-
ing theorem (see [2, Th. 2.2]) bounds the expected stopping time 
in terms of a deterministic value.

Theorem 1
If Condition 2 holds, then

[ ]
( )

.T
h1 2

1 1·E 0#
d
d

aH
U

-
- +f

f f

In the “Stochastic TR” and “Stochastic LS” sections, we 
summarize how this framework has been applied to analyze the 
behavior of stochastic TR and LS methods. In each case, the keys 
to applying the framework are determining how to design the pro-
cess { }kU  as well as how to specify details of Algorithm 2 to 
ensure that Condition 2 holds. For these aspects, we first need to 
describe different adaptive accuracy requirements for stochastic 
functions and derivative estimates that might be imposed in steps 
1 and 2 as well the techniques that have been developed to ensure 
these requirements.

Error bounds for stochastic functions and derivative estimates
In this section, we describe various types of conditions that one 
may require in an adaptive stochastic optimization algorithm when 
computing the objective function, gradient, and Hessian estimates. 
These conditions have been used in some previously proposed 
adaptive stochastic optimization algorithms [2], [5], [7], [24].

Let us remark in passing that one does not necessarily need to 
employ sophisticated error bound conditions in stochastic opti-
mization to achieve improved convergence rates. For example, in 
the case of minimizing the strongly convex f, the linear rate of 
convergence of the gradient descent can be emulated by an SG-
like method if the minibatch size grows exponentially [14], [25]. 
However, attaining similar improvements in the (not strongly) 
convex and nonconvex settings has proved elusive. Moreover, 
while the stochastic estimates become better with the progress 
of such an algorithm, this improvement is based on prescribed 
parameters, and hence the algorithm is not adaptive in our desir-
able sense. Therefore, one still needs to tune such algorithms for 
each application. Returning to our setting, in the types of error 
bounds presented in the following, for a given :f RRn "  and 

,x Rn!  let ( ),f xu  g(x), and H(x) denote stochastic approxima-
tions of f(x), ( ),f xd  and ( ),f x2d  respectively.

Taylor-like conditions
Corresponding to a norm ,$< <  let ( , )xB k kT  denote a ball of ra-
dius kT  centered at .xk  If the function, gradient, and Hessian 
estimates satisfy

	 ( ) ( ) ,f x f xk k f k
2T# l-u � (5a)

	 ( ) ( ) ,g x f xk k g kd T# l- � (5b)

and

	 ( ) ( )H x f xk k H
2d # l- � (5c)

for some nonnegative scalars ( , , ),f g Hl l l  then the model 
( ) ( ) ( ) ( ) ( / ) ( ) ( ) ( )m x f x g x x x x x H x x x1 2k k k

T
k k

T
k k= + - + - -u  

gives an approximation of f within ( , )xB k kT  that is comparable 
to that given by an accurate first-order Taylor series approximation 
(with error dependent on ).kT  Similarly, if (5) holds with the right-
hand side values replaced by , ,f k g k

3 2T Tl l  and ,H kTl  respective-
ly, then mk  gives an approximation of f that is comparable to that 
given by an accurate second-order Taylor series approximation. 
In a stochastic setting, when unbiased estimates of ( ), ( ),f x f xk kd  
and ( )f xk

2d  can be computed, such conditions can be ensured, 
with some sufficiently high probability of ,1 d-  by sample aver-
age approximations using a sufficiently large number of samples. 
For example, to satisfy (5b) with the probability ,1 d-  the sample 
size for computing ( )g xk  can be ( / ( )),Vg g k

2 2TlX  where Vg  is the 
variance of the stochastic gradient estimators corresponding to a 
minibatch size of one. Here, the X notation hides the dependence 
on ,d  which is weak if ( ) ( )g x f xk kd< <-  is bounded.

Gradient norm condition
If, for some [ , ),0 1!i  one has

	 ( ) ( ) ( ) ,g x f x f xk k kd d# i- � (6)
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then we say that ( )g xk  satisfies the gradient norm condition at 
.xk  Unfortunately, verifying the gradient norm condition at xk  

requires knowledge of ( ) ,f xkd< <  which makes it an impractical 
condition. In [5], a heuristic is proposed that attempts to approxi-
mate the sample size for which the gradient norm condition holds. 
More recently, in [3], the authors improve on the gradient norm 
condition by introducing an angle condition, which, in principle, 
enables smaller sample set sizes to be employed. However, again, 
the angle condition requires a bound in terms of ( ) ,f xkd< <  for 
which a heuristic estimate needs to be employed.

Instead of employing the unknown quantity ( )f xkd< < on the 
right-hand side of the norm and the angle conditions, one can 
substitute ( , ),0 3!f  the desired stationarity tolerance. In this 
manner, while ( )f xkd 2< < f  and ( ) ,g f xk kd< < # if-  the norm 
condition is satisfied. This general idea has recently been exploit-
ed in several articles (e.g., [28] and [30]), where gradient and Hes-
sian estimates are computed based on large-enough numbers of 
samples, then assumed to be accurate in every iteration (with a 
high probability) until an e-stationary solution is reached. While 
strong iteration complexity guarantees can be proved for such 
algorithms, these approaches are too conservative to be competi-
tive with truly stochastic algorithms.

Stochastic gradient norm conditions
Consider again the conditions in (5), although now contemplate 
the specific setting of defining : ( )g xk k kT < <a=  for all .k N!  
This condition, which involves a bound comparable to (6) when 

( ) ( ),g x f xk kd=  is particularly useful in the context of LS meth-
ods. It is possible to impose it in probability since, unlike (6), it 
does not require knowledge of ( ) .f xkd< <  In this case, to satisfy 
(5) for : ( )g xk k kT < <a=  with a probability of ,1 d-  the sample 
size for computing ( )g xk  need only be ( / ( ) ).( )V g xg g k k

2 2 2< <l aX  
While ( )g xk  is not known when the sample size for computing 
it is chosen, one can use a simple loop that guesses the value 
of ( ) ,g xk< <  then iteratively increases the number of samples as 
needed; see [7] and [24]. 

Note that all of the preceding conditions can be adaptive in 
terms of the progress of an algorithm, assuming that { }kD  and/
or { ( ) }g xk< <  vanish as .k " 3  However, this behavior does not 
have to be monotonic, which is a benefit of adaptive step-sizes 
and accuracy requirements.

Stochastic TR
The idea of designing stochastic TR methods has been attractive 
for years, even before the recent explosion of efforts on algo-
rithms for stochastic optimization. This is due to the impressive 
practical performance that TR methods offer, especially when 
(approximate) second-order information is available. Since TR 
methods typically compute trial steps by minimizing a quadratic 
model of the objective in a neighborhood around the current 
iterate, they are inherently equipped to avoid certain spurious 
stationary points that are not local minimizers. In addition, by 
normalizing the step length by a TR radius, the behavior of the 
algorithm is kept relatively stable. Indeed, this feature enables 
TR methods to offer stability, even in the nonadaptive stochastic 
regime; see [11].

However, it has not been until the last couple of years that 
researchers have been able to design stochastic TR methods 
that can offer strong expected complexity bounds, which are 
essential for ensuring that the practical performance of such 
methods can be competitive across broad classes of problems; 
see, e.g., [16]. The recently proposed algorithm known as sto-
chastic optimization with random models (STORM), intro-
duced in [8], achieves such complexity guarantees by requiring 
the Taylor-like conditions (5) to hold with a probability of at 
least ,1 d-  conditioned on .Fk  (In what follows, all accuracy 
conditions are assumed to hold with some probability, con-
ditioned on .Fk  We omit the mention of this conditioning 
for brevity.) In particular, in step 1 of Algorithm 2, a model 

( ) : ( ) ( ) ( ) ( / ) ( ) ( ) ( )m x f x g x x x x x H x x x1 2k k k
T

k k
T

k k= + - + - -u  
is computed with components satisfying (5) with a probability 
of 1 1d-  (where :k kaD =  for all ),k N!  then the step ( )sk ka  
is computed by minimizing mk  (approximately) within a ball of 
radius .ka  In step 2, the estimates fk

0u  and fk
su  are computed to 

satisfy (5a) with a probability of .1 2d-  The imposed sufficient 
reduction condition is

( ) ( )
.

m x m x s
f f

k k k k k

k k
s0

$ h
- +
-u u

An iteration is successful if the preceding holds and gk k< < $ xa  
for some user-defined ( , ).0 3!x

For brevity, we omit some details of the algorithm. For exam-
ple, the constant fl  in (5) cannot be too large, whereas gl  and 

Hl  can be arbitrarily large. Naturally, the magnitudes of these 
constants affect the constants in the convergence rate; see [2] 
for further details. Based on the stochastic process generated by 
Algorithm 2, let us define, as in the deterministic setting, Tf  and 
{ }kU  by (3) and (4), respectively. It is shown in [2] that for suffi-
ciently small constants ,1d  ,2d  and H (independent of ),f  Condi-
tion 2 holds with

: ( ) :hand k k
2a gf a a= =f

for some positive constants g  and H that depend on the algorithm 
parameters and properties of f but not on .f  The probability 1 d-  
that arises in Condition 2 is at least ( ) ( ).1 11 2d d- -  Thus, by 
Theorem 1, the expected complexity of reaching a first-order 
f-stationary point is at most ( ),O 2f-  which matches the com-
plexity of the deterministic version of the algorithm up to the fac-
tor dependent on ( ) ( ).1 11 2d d- -

Let us give some intuition of how Condition 2 is ensured. Let us 
say that the model mk  is “good” if its components satisfy (5) and 
“bad” otherwise. Similarly, the estimates fk

0  and fk
s  are “good” 

if they satisfy (5a) and “bad” otherwise. By the construction of 
steps 1 and 2 of the algorithm, mk  is “good,” with a probability 
of at least ,1 1d-  and fk

0  and fk
s  are “good,” with a probability 

of at least .1 2d-  Figure 3 illustrates the four possible outcomes. 
When both the model and the estimates are good, the algorithm 
essentially behaves as its deterministic counterpart; in particular, 
if k #a af  and ,k T1 f  then the kth iteration is successful, and 
the reduction k k 1U U- +  is sufficiently large. If the model is 
bad and the estimates are good, or if the model is good and the 
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estimates are bad, then the worst case (depicted in Figure 3) is 
that the step is deemed unsuccessful, even though .k #a af  This 
shows that the step-size parameter can continue to decrease, even 
if it is already small. Finally, if both the model and the estimates 
are bad, which happens with a probability of at most ,1 2d d  then 
it is possible that the iteration will be deemed successful despite 
the fact that .k k1 2U U+  (Recall that this cannot occur in the 
deterministic setting, where { }kU  decreases monotonically.) The 
key step in showing that k k1 1U U+  in expectation is to establish 
that, in each iteration, the possible decrease of this measure is pro-
portional to any possible increase, and thus by ensuring that 1 2d d  
is sufficiently small and ( ) ( )1 11 2d d- -  is sufficiently large, one 
can guarantee a desired reduction in expectation.

The same TR algorithm can be employed with minor modifica-
tions to obtain good expected complexity properties with respect 
to achieving second-order f-stationarity. In this case, the require-
ments on the estimates need to be stronger; in particular, (5) has 
to be imposed with right-hand side values , ,f k g k

3 2l a l a  and ,H kl a  
respectively. In this case, Condition 2 holds for ( ) .h k k

3a a=  
Hence, the expected complexity of reaching a second-order  
f-stationary point by Algorithm 2 is bounded by ( ),O 3f-  which 
similarly matches the deterministic complexity.

Stochastic LS
A major disadvantage of an algorithm such as SG is that one is 
very limited in the choice of step-size sequences that can be em-
ployed to adhere to the theoretical guidelines. One would like to 
be able to employ a type of line search, as has been standard prac-
tice throughout the history of research on deterministic optimiza-
tion algorithms. However, devising LS methods for the stochastic 
regime turns out to be extremely difficult. This is partially due to 
the fact that, unlike TR methods, LS algorithms employ steps that 
are highly influenced by the norm of the gradient ( ) ,f xkd< <  or 
in the stochastic regime, influenced by ( ) .g xk< <  Since the norm 
of the gradient estimate may have a high variance, the algorithm 
needs to have a carefully controlled step-size selection mecha-
nism to ensure convergence.

In [3] and [14], two backtracking LS methods were proposed 
that use different heuristic sample size strategies when computing 

gradient and function estimates. In both cases, the backtracking is 
based on the Armijo condition applied to function estimates that 
are computed on the same batch as the gradient estimates. A dif-
ferent type of LS method that uses a probabilistic Wolfe condi-
tion for choosing the step-size was proposed in [20], although this 
approach possesses no known theoretical guarantees.

In [29], the authors argue that with the overparameterization of 
deep neural networks (DNNs), the variance of stochastic gradients 
tends to zero near stationarity points, and they analyze a stochas-
tic LS method under this assumption. This supposition makes the 
design and analysis of stochastic methods significantly easier, and 
it might also be used to simplify the methods considered in this 
article. However, it is not generally true, even for DNNs; thus, our 
focus is on methods that adaptively control the variance.

Here, we summarize the results in [24], where an LS method 
with an adaptive sample size selection mechanism is proposed and 
complexity bounds are provided. This method can be described 
as a particular case of Algorithm 2. As in the deterministic case, 
a stochastic model mk  is chosen in step 1, and ( ) ,s dk k ka a=-  
where dk  makes an obtuse angle with the gradient estimate 

( ).g xk  The sufficient reduction in step 2 is based on the esti-
mated Armijo condition

( ) ( ).f f g x sk k
s

k
T

k k
0 $ h a- -u u

The algorithm requires that the components of the model 
mk  satisfy (5) with a probability of at least 1 1d-  and that the 
estimates fk

0u  and fk
su  satisfy (5a) with a probability of at least 

.1 2d-  Here, it is critical that (5a) not be imposed with the right-
hand side being gk k

2< <a  (even though the deterministic case 
might suggest this as being appropriate) since this quantity can 
vary uncontrollably from one iteration to the next. To avoid this 
issue, the approach defines an additional control sequence { }kT  
used for governing the accuracy of fk

0u  and .fk
su  Intuitively, for 

all ,k N!  the value k
2T  is meant to approximate ( ) ,f xk k

2d< <a  
which, as seen in the deterministic case, is the desired reduction 
in f if iteration k is successful. This control sequence needs to be 
set carefully. The first value in the sequence is set arbitrarily, with 
subsequent values set as follows. If iteration k is unsuccessful, 

xk xk + sk xk xkxk + sk xk + sk xkxk + sk

(a) (b) (c) (d)

FIGURE 3. “Good” and “bad” models and estimates in a stochastic TR method. (a) A good model and good estimates. (b) A good model and bad esti-
mates. (c) A bad model and good estimates. (d) A bad model and bad estimates.
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then .k k1 !T T+  Otherwise, if iteration k is successful, then one 
checks whether the step is reliable in the sense that the accuracy 
parameter is sufficiently small; i.e.,

	 ( ) .g xk k k
2 2T$a � (7)

If (7) holds, then one sets ;k k1 !T Tc+  otherwise, one sets 
k k1

1!T Tc+
-  to promote the reliability of the step in the 

subsequent iteration. Using { }kT  defined in this manner, an ad-
ditional bound is imposed on the variance of the objective value 
estimates. For all ,k N!  one requires

, .

,max

max

f f x f f x s

f x

E Ek k k
s

k k k

f k k f k
2 2 4

0 2 2

d T# l a l

a- - +u u^
^

^ ^h
h

hh$
$ .

.

Note that because of the “max” in the right-hand side of this in-
equality, and because kT  is a known value, it is not necessary 
to know ( )f xk

2d< <  to impose this condition. Also note that this 
condition is stronger than imposing the Taylor-like condition (5a) 
with some probability less than one because the bound on expec-
tation does not allow ( )f f xk k

0; ;-u  to be arbitrarily large with a 
positive probability, while (5a) permits it and thus is more tolerant 
to outliers.

For analyzing this LS instance of Algorithm 2, again let Tf  be 
as in (3). However, now let

: ( ( ) ) ( ) ( ) .f x f
L

f x1*k k
k

k k2
2 2d To o

a
hU = - + - +` j

Using a strategy similar to that for STORM combined with the 
logic of the “Classical LS” section, it is shown in [24] that Condi-
tion 2 holds with

( ) .h k k
2fa a=

The expected complexity of this stochastic LS method has been 
analyzed for minimizing convex and strongly convex f using 
modified definitions for kU  and ,Tf  as described in the “Addi-
tional Examples” section; see [24].

Stochastic regularized Newton
As we have seen, stochastic TR and LS algorithms have been 
developed that fit into the adaptive stochastic framework 
that we have described, showing that they can achieve ex-
pected complexity guarantees on par with their deterministic 
counterparts. However, neither of these types of algorithms 
achieves complexity guarantees that are optimal in the deter-
ministic regime.

Cublicly regularized Newton [6], [22], described and analyzed 
in the “Regularized Newton” section, enjoys optimal conver-
gence rates for second-order methods for minimizing noncon-
vex functions. We have shown how our adaptive deterministic 
framework gives a ( )O /3 2f-  complexity bound for this method 
for achieving first-order f-stationarity, in particular, to achieve 

( ) .f xk 1d< < # f+  There have also been works that propose sto-
chastic and randomized versions of cubic regularization methods 
[28], [30], but these impose strong conditions on the accuracy of 

the function, gradient, and Hessian estimates that are equivalent 
to using f (i.e., the desired accuracy threshold) in place of kT  
for all k N!  in (5). Thus, these approaches essentially reduce 
to sample average approximation with very tight accuracy toler-
ances and are not adaptive enough to be competitive with truly 
stochastic algorithms in practice. For example, in [28], no adap-
tive step-sizes or batch sizes are employed, and in [30], only Hes-
sian approximations are assumed to be stochastic. Moreover, the 
convergence analysis is performed under the assumption that the 
estimates are sufficiently accurate (for a given )f  in every itera-
tion. Thus, essentially, the analysis is reduced to that in the deter-
ministic setting and applies only as long as no iteration fails to 
satisfy the accuracy condition. Hence, a critical open question is 
whether one can extend the framework described here (or anoth-
er approach) to develop and analyze a stochastic algorithm that 
achieves optimal deterministic complexity.

The key difficulty in extending the analysis described in the 
“Regularized Newton” section to the stochastic regime is the 
definition of the stopping time. For Theorem 1 to hold, Tf  has to 
be a stopping time with respect to { }.Fk  However, with ( )sk ka  
being random, xk 1+  is not measurable in { };Fk  hence, ,Tf  as it is 
defined in the deterministic setting, is not a valid stopping time in 
the stochastic regime. A different definition is needed that would 
be agreeable with the analysis in the stochastic setting.

Another algorithmic framework that enjoys optimal complex-
ity guarantees is the TR Algorithm with Contractions and Expan-
sions (TRACE) [9]. This algorithm borrows much from the 
traditional TR methodology, which is also followed by STORM, 
but it incorporates a few algorithmic variations that reduce the 
complexity from ( )O 2f-  to ( )O /3 2f-  for achieving first-order  
f-stationarity. It remains an open question whether one can employ 
the adaptive stochastic framework to analyze a stochastic vari-
ant of TRACE, the main challenge being that TRACE involves a 
relatively complicated strategy for updating the step-size param-
eter. Specifically, deterministic TRACE requires knowledge of 
the exact Lagrange multiplier of the TR constraint at a solution of 
the step computation subproblem. If the model mk  is stochastic 
and the subproblem is solved only approximately, then it remains 
open how to maintain the optimal (expected) complexity guaran-
tee. In addition, the issue of determining the correct stopping time 
in the stochastic regime is also open for this method.

Other possible extensions
We have shown that the analytical framework for analyzing adap-
tive stochastic optimization algorithms presented in the “Frame-
work for Analyzing Adaptive Stochastic Methods” section has 
offered a solid foundation on which stochastic TR and stochastic 
LS algorithms have been proposed and analyzed. We have also 
shown the challenges and opportunities for extending the use of 
this framework for analyzing algorithms whose deterministic 
counterparts have optimal complexity.

Other interesting questions remain to be answered. For ex
ample, great opportunities exist for the design of error bound 
conditions other than those mentioned in the “Error Bounds for 
Stochastic Function and Derivative Estimates” section, especially 
when it comes to bounds that are tailored for particular problem 
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settings. While improved error bounds might not lead to advances 
in the iteration complexity, they can have great effects on the work 
complexity of various algorithms, which translates directly into 
performance gains in practice.

The proposed analytical framework might also benefit from 
extensions in terms of the employed algorithmic parameters. For 
example, rather than using a single constant c  when updating 
the step-size parameter, one might consider different values for 
increases versus decreases as well as when different types of steps 
are computed. This will enable improved bounds on the accuracy 
probability tolerances 1d  and .2d

Finally, numerous open questions remain in terms of how 
best to implement adaptive stochastic algorithms in practice. For 
different algorithm instances, practitioners need to explore how 
best to adjust minibatch sizes and step-sizes so that one can truly 
achieve good performance without wasteful tuning efforts. One 
hopes that with additional theoretical advances, these practical 
questions will become easier to answer.
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