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ptimization lies at the heart of machine learning (ML) and

signal processing (SP). Contemporary approaches based on

the stochastic gradient (SG) method are nonadaptive in the
sense that their implementation employs prescribed parameter
values that need to be tuned for each application. This article
summarizes recent research and motivates future work on adap-
tive stochastic optimization methods, which have the potential
to offer significant computational savings when training large-
scale systems.

Introduction

The success of stochastic optimization algorithms for solving
problems arising in ML and SP are now widely recognized.
Scores of articles have appeared in recent years as researchers aim
to build on fundamental methodologies, such as the SG method
[26]. The motivation and scope of many of these efforts have been
captured in various books and review articles; see, e.g., [4], [10],
[15], and [21].

Despite these advances and the accumulation of knowledge,
there remain significant challenges in the use of stochastic opti-
mization algorithms in practice. The dirty secret in the use of
these algorithms is the tremendous computational costs required
to tune them for each application. For large-scale, real-world sys-
tems, tuning an algorithm to solve a single problem might require
weeks or months of effort on a supercomputer before the algo-
rithm performs well. To appreciate the consumption of energy to
accomplish this, the authors of [1] list multiple recent articles in
which training a model for a single task requires thousands of
CPU days, and they remark how 10* CPU days are comparable
to driving from Los Angeles to San Francisco with 50 Toyota
Camrys. One avenue for avoiding expensive tuning efforts is to
employ adaptive optimization algorithms. Long the focus of the
deterministic optimization community, with widespread success
in practice, such algorithms become significantly more difficult to
design for the stochastic regime in which many modern problems
reside, including those arising in large-scale ML and SP.

The purpose of this article is to summarize recent work and
motivate continued research into the design and analysis of
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adaptive stochastic optimization methods. In particular, we pres-
ent an analytical framework—new to the literature for adaptive
deterministic optimization—that sets the stage for establishing
convergence rate guarantees for adaptive stochastic optimization
techniques. With this framework in hand, we remark on important
open questions related to how the architecture can be extended
further for the design of new methods. We also discuss challenges
and opportunities for the methods’ use in real-world systems.

Background

Many problems in ML and SP are formulated as optimization
problems. For example, given a data vector y € R™ from an un-
known distribution, one often desires to have a vector of model
parameters x € R" such that a composite objective function
f:R" - R is minimized, as in

min f(x), where f(x) := Ey[¢(x, )] + 20 (x).

Here, the function ¢ : R"*” — R defines the data-fitting term
Ey[¢(x, ¥)], an expectation across the distribution of y. For ex-
ample, in supervised ML, the vector y may represent the input
and the output from an unknown mapping, and one aims to find
x to minimize the discrepancy between the output vector and the
predicted value captured by ¢. Alternatively, the vector y may
represent a noisy signal measurement, and one may aim to find
x that filters out the noise to reveal the true signal. The function
p : R" - R with the weight A € [0, o) is included as a regular-
izer. This can be used to induce desirable properties of the vector
x, such as sparsity, and/or to help avoid overfitting a particular set
of data vectors that is used when (approximately) minimizing f.
Supposing that instances of y can be generated—one-by-one or in
minibatches, essentially ad infinitum—the problem of minimiz-
ing f'becomes a stochastic problem across x.

Traditional algorithms for minimizing f are often very simple
to understand and implement. For example, given a solution
estimate xx, the well-known and celebrated SG method [26]
computes the next estimate as Xi+1 < Xk — axgk, Where g
approximates the gradient of f at x; by taking a uniform random
sample y;, and setting gx — V¢ (X, yi,) + AV.p(xx) (or by tak-
ing a minibatch of samples and setting g« as the average sampled
gradient). This value estimates the gradient since, as is typically
assumed, [£x[g«] = Vf(xx), where [E[-] represents conditions
on the history of the behavior of the algorithm up to iteration
k € N. Under reasonable assumptions about the stochastic gradi-
ent estimates and with a prescribed sequence of step-size parame-
ters {ox}, such an algorithm enjoys good convergence properties,
which ensure that {xx} converges in probability to a minimizer, or
at least a stationary point, of f. For other successful modern vari-
ants of SG, see [13] and [18].

A practical issue in the use of SG is that the variance of the
stochastic gradient estimates, i.e., B[] gk — Vf(xx) |3], can be
large, which inhibits the algorithm from attaining convergence
rate guarantees on par with those for first-order algorithms in
deterministic settings. To address this, variance reduction tech-
niques have been proposed and analyzed, such as those used
in the stochastic variance reduced gradient algorithm, the self-
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adaptive genetic algorithm, and other methods [12], [17], [23],
[27]. That said, SG and its variants are inherently nonadaptive in
the sense that each iteration involves a prescribed number of data
samples to compute g, in addition to a prescribed sequence of
step-sizes {a}. Determining which parameter values (defining
the minibatch sizes, step-sizes, and other factors) work well for
a particular problem is a nontrivial task. Tuning these param-
eters means that problems cannot be solved once; they need to
be solved numerous times until reasonable parameter values are
determined for future use on new data.

lllustrative example

To illustrate the use of adaptivity in stochastic optimization, con-
sider a problem of binary classification by logistic regression us-
ing the well-known Modified National Institute of Standards and
Technology (MNIST) data set. Specifically, consider the minimi-
zation of a logistic loss plus an ¢>-norm squared regularizer (with
A = 107" to classify images as showing the number five or not.
Employing SG with a minibatch size of 64 and different fixed
step-sizes, one obtains the plot of the testing accuracy through
10 epochs, as seen in Figure 1(a). One finds that for a step-size
of ax =1 for all k € N, the model achieves a testing accuracy
of roughly 98%. However, for a step-size of ox = 0.01 for all
k € N, the algorithm stagnates and never achieves an accuracy
much better than 90%.

By comparison, we also ran an adaptive method. This approach,
like SG, begins with a minibatch size of 64 and the step-size
parameter indicated in the plot in Figure 1(b). However, in each
iteration, it checks the value of the objective (across only the cur-
rent minibatch) at the current iterate x; and trial iterate xx — ax g«.
If the minibatch objective would not reduce sufficiently as a result
of the trial step, then the step is not taken, the step-size parameter
is reduced by a factor, and the minibatch size is increased by a
factor. This results in a more conservative step-size with a more
accurate gradient estimate in the subsequent iteration. Otherwise,
if the minibatch objective would reduce sufficiently with the trial
step, then the step is taken, the step-size parameter is increased
by a factor, and the minibatch size is reduced by a factor. Despite
the data accesses required by this adaptive algorithm to evaluate
minibatch objective values in each iteration, the attained testing
accuracy with all initializations competes with that attained by
the best SG run.

This experiment demonstrates the potentially significant
savings in computational costs offered by adaptive stochastic
optimization methods. While one might be able to achieve a
good practical performance with a nonadaptive method, one’s
success might come only after expensive tuning efforts. By
contrast, an adaptive algorithm can perform well without such
expensive tuning.

Framework for analyzing adaptive

deterministic methods

The rigorous development of adaptive stochastic optimization
methods requires a solid foundation in terms of convergence rate
guarantees. The types of adaptive methods that have enjoyed
great success in the realm of deterministic optimization are 1)
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FIGURE 1. SG versus an adaptive stochastic method on regularized logistic
regression on the MNIST data set. (a) Accuracies with SG. (b) Accuracies
with the adaptive method.

Algorithm 1. Adaptive deterministic framework.

Inifialization
Choose constants 7 € (0,1),y € (1, ), and @ € (0, ).
Choose an initial iterate xo € R" and step-size parameter
ao € (0, al.

1. Determine model and compute step
Choose a local model my of faround xk. Compute a step sk k)
such that the model reduction mu (xk) — mi(xk + sk(ak)) = O is
sufficiently large.

2. Check for sufficient reduction in f
Check if the reduction f(xk) — f(xk + sk (ak)) is sufficiently large
relative to the model reduction mi (xk) — m (xk + sk (ak)) using a
condition parameterized by 7.

3. Successful iteration
If sufficient reduction has been attained (along with other potential
requirements), then set xk+1 < xk + sk(ct) and
ak+1 — min{yak, aj.
4. Unsuccessful iteration
Otherwise, xk+1 — Xk, and otk1 — 7' otk

5. Next iteration
Set k — k+ 1.

trust region (TR), 2) line search (LS), and 3) regularized New-
ton methods. These approaches can be applied when derivative
estimates are readily available and when using model-based,
derivative-free methods, which build gradient and Hessian esti-
mates using function values (see [19] and the references therein).
Extending these techniques to the stochastic regime is a highly
nontrivial task. After all, these methods traditionally require ac-
curate function information at each iterate, which is what they use
to adapt their behavior. When an oracle can return only stochastic
function estimates, comparing function values to make adaptive
algorithmic decisions can be problematic. In particular, when ob-
jective values are merely estimated, poor decisions can be made,
and the combined effects of these poor decisions can be difficult
to estimate and control.

As a first step toward showing how these challenges can be
overcome, let us establish a general framework for convergence
analysis for adaptive deterministic optimization. This will lay a
foundation for the framework that we present for adaptive sto-
chastic optimization in the “Framework for Analyzing Adaptive
Stochastic Methods” section. The analytical framework presented
here is new for the deterministic optimization literature. A typi-
cal convergence analysis for adaptive deterministic optimization
partitions the set of iterations into successful and unsuccessful
ones. Nonzero progress in reducing the objective function is made
on successful iterations, whereas unsuccessful iterations merely
result in an update of a model or algorithmic parameter to pro-
mote success in the subsequent iteration. As such, a convergence
rate guarantee results from a lower bound on the progress made in
each successful iteration and a limit on the number of unsuccess-
ful iterations that can occur between successful ones. By contrast,
in the framework presented here, the analysis is structured around
a measure in which progress is made in all iterations.

In the remainder of this section, we consider all three afore-
mentioned types of adaptive algorithms under the assumption that
f1s continuously differentiable, with Vf being Lipschitz continu-
ous with constant L &€ (0, o). Each of these methods follows the
general algorithmic framework that we state as Algorithm 1. The
role of the sequence {ax} = 0 in the algorithm is to control the
length of the trial steps {s«(ctx)}. In particular, as seen in our dis-
cussion of each type of adaptive algorithm, one presumes that for
a given model my, the norm of s () is directly proportional to
the magnitude of c. Another assumption—and the reason that we
refer to it as a deterministic optimization framework—is that the
models agree with the objective, at least up to first-order deriva-
tives; i.e., mr(xx) = f(xx) and Vi (xr) = Vf(xx) forall k € N.

Our analysis involves three central ingredients. We define
them here in such a way that they are easily generalized when we
consider our adaptive stochastic framework later on.

m {D;} =0 is a sequence whose role is to measure the prog-
ress of the algorithm. The choice of this sequence may vary
by the type of algorithm and the assumptions on f.

m { Wi} is a sequence of indicators; specifically, for all k € N,
if iteration k is successful, then Wi = 1; otherwise, Wi =—1.

m T, the stopping time, is the index of the first iterate that
satisfies a desired convergence criterion parameterized
by e.
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These quantities are not part of the algorithm itself, and therefore
do not influence the iterates. They are merely tools of the analysis.
At the heart of the analysis is the goal to show that the following
condition holds.

Condition 1

The following statements hold with respect to {(®«, ok, Wi)}

and Te:

1) There exists a scalar a, € (0, o0) such that for each k € N
such that oy < ya,, the iteration is guaranteed to be success-
ful; i.e., Wik = 1. Therefore, ax = o, forall k € N.

There exists a nondecreasing function 4. : [0, o0) — (0, o)
and a scalar © € (0, o) such that for all k < Te, Dk — P+
> Ohe(ak).

The goal to satisfy Condition 1 is motivated by the fact that,
if the condition holds, it is trivial to derive (since ®x = 0 for all
k € N) that

D
< __ ¥0o
1= Ghe(a,) M
For generality, we have written o, and h. as parameterized by &.
However, in the context of different algorithms, one or the other
of these quantities may be independent of &. Throughout our
analysis, we denote f+ := infrerf(x) > —oc.

Classical TR

In a classical TR method, the model m; is chosen as at least a
first-order accurate Taylor series approximation of fat xx, and the
step s« (crx) is computed as a minimizer of 7 in a ball of radius
o centered at xx. In step 2, the sufficient reduction condition is
chosen as

JOer) — flxx + si(ak)) -

m(xr) —m(xi + si(ox) — "

@

Figure 2 shows the need to distinguish between successful and
unsuccessful iterations in a TR method. Even though the model is
(at least) first-order accurate, a large TR radius may enable a large
enough step such that the reduction predicted by the model does
not well represent the reduction in the function itself. We contrast
these illustrations later with situations in the stochastic setting that
are complicated by the fact that the model might be inaccurate
regardless the size of the step.

For simplicity in our discussions, for iteration k € N to be suc-
cessful, we impose the additional condition that ox < T | Vf(xx) |
for some suitably large constant T € (0, oc). (Throughout the
article, consider all norms to be (2.) This condition is actually not
necessary for the deterministic setting, but it is needed in our ana-
lytical framework in the stochastic setting to ensure that the trial
step is not too large compared to the size of the gradient estimate.
‘We impose it now in the deterministic setting for consistency.

For this TR instance of Algorithm 1, consider the first-order
e-stationarity stopping time

Te :=min{k € N : | Vf(xn) | < €}, ©)

corresponding to which we define
i =v(fl) —f) + (1 = v)ai @

for some v € (0, 1) (to be determined in the following). Standard
TR analysis involves two key results. First, while || Vf(xx) | > €, if
o is sufficiently small, then iteration k is successful; i.e., Wi = 1.
In particular, ax = o, := c1€ forall kK € N for some sufficiently
small ¢ € (0, oo) dependent on L, 7, and y. In addition, if itera-
tion k is successful, then the ratio condition (2) and our imposed
condition ax < 7 | Vf(xx) | yield

Fe0) = fxrs) = neaoi
for some c¢2 € (0, 00), meaning that
Qi — Div1 = vnerai — (1 —v)(v* — Das
otherwise, if iteration k is unsuccessful, then
D= e = (1 =) (1 -y ).

We aim to show in either case that @ — @1 > Oai for
some © > 0. This can be done by choosing v sufficiently close
to one such that

vea = (1=v)(y* =y 7).

In this manner, it follows from the previous observations that Con-
dition 1 holds with %e(ax) := af and © := (1 —v)(1 — )
Thus, by (1), the number of iterations required until a first-order
e-stationary point is reached satisfies

7. < V@) =)+ (1 =vap
T A-nU-yete

This shows that 7. = O (7).

Classical LS

In a classical LS method, the model is again chosen as at least a
first-order accurate Taylor series approximation of f at xi, with
care taken to ensure it is convex so a minimizer of it exists. The

N

N

X Xkt Sk

(b)

FIGURE 2. (a) Successful and (b) unsuccessful steps in a TR method.
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trial step sk(ax) is defined as ardi for some direction of suffi-
cient descent di. In step 2, the sufficient reduction condition often
includes the Armijo condition

FCe) = fxe+ si(on) = =0V se(ow).

As is common, suppose my is chosen and d is computed such
that, for a successful iteration, one finds for some ¢3 € (0, c0),
dependent on L and the angle between dx and — Vf(xx), that

FO) = flee) = npesa]| Ve [

Using common techniques, this can be ensured with ax = a
for all k€ N for some a € (0,00) dependent on L, 7, and
y. As in the “Classical TR” section, let us also impose that
I di | < B | VF(xk) || for some suitably large B € (0, oo). For this
LS instance of Algorithm 1, for the stopping time 7. defined in
(3), consider

D 1= v (fxn) —f) + (1 = vyax]| Ve |-
If iteration k is successful, then

@i — Ot = vyesan]| V) |
— (1 =) (yau| Vi) P = e ) .

By the Lipschitz continuity of Vf, it follows that
| Vf@esn || < @ap+ D] Vo |
Squaring both sides and applying ox < & yields
[ Ve [ = @ap+ 0?| Vi I
Overall, if iteration & is successful, then

@i — Ot = vresan] Vo |
~(1 =) ((LaB+ 1)y — Daw| Vi [

On unsuccessful iterations, one simply finds
O — @1 = (1) (1 —y D] Vi .
By selecting v sufficiently close to one such that
vies = (1=v)(LaB+ 1)y =y ™),
one ensures, while | Vf(xx) | > &, that Condition 1 holds with
he(o) := axe?, and © := (1 —v)(1 —y~"). Thus, by (1), the

number of iterations required until a first-order e-stationary point
is reached satisfies

7 < VUG =)+ (L= vao| Yo [
o 1= -yae’ ’

which again shows that 7, = O (7).

Regularized Newton

Regularized Newton methods have been popular during recent
years due to their ability to offer optimal worst-case complex-
ity guarantees for nonconvex smooth optimization across the
class of practical second-order methods. For example, in the
cublicly regularized Newton, the model is chosen as m(x) =
For) + V) T (e —xx) + (172) (x — x0) TV () (x — xx) + (1/3)
ak | x—x«|?, and in step 2, the imposed sufficient reduction
condition has the same form as that in a TR method, namely, the
ratio condition (2).

As for the aforementioned LS method, one can show that if
the Hessian of f'is Lipschitz continuous on a set containing the
iterates, an iteration of the cublicly regularized Newton will be
successful if the step-size parameter is sufficiently small; conse-
quently, ax = « for all k € N for some a € (0, o) dependent
on L, the Lipschitz constant for Vv? f, n, and y. However, to prove
the optimal complexity guarantee in this setting, one must account
for the progress in a successful iteration as being dependent on the
magnitude of the gradient at the next iterate, not the current one.
(As we will see, this leads to complications for analysis in the
stochastic regime.) For this reason, and ignoring the trivial case
when || Vf(xo) | < &, let us define

Te :=min{ke N : | Vi(u+1) | < €}
along with
3
@i 1= v (f0r) =) + (1 =v)ax] Vieu .

If iteration k is successful, then

FC) = fxis1) = neao]| VG ) H%

for some ¢4 € (0,00) [6], meaning that

O — Dpv1 = vigeaor| Vi) H%
+ (1= v)ox| V(xw) H%
— (1= v)ax+1| Vs H%
> vnesau| Ve |2

— (1 = vy VG |

otherwise, if iteration k is unsuccessful, then
@u= 11 = (1= (1 =y e Ve P
Choosing v sufficiently close to one such that
vieaZ (L=v)(y+1-y),
one ensures, while | Vf(xx+1) | > &, that Condition 1 holds with
he(ox) := axe™ and © := (1 —v,)(1 — y™"). Thus, by (1), the

number of iterations required until a first-order e-stationary point
will be reached (in the next iteration) has

36 IEEE SIGNAL PROCESSING MAGAZINE | September 2020 |

Authorized licensed use limited to: Columbia University Libraries. Downloaded on January 02,2021 at 17:22:30 UTC from IEEE Xplore. Restrictions apply.



~ V(@) =)+ 1 =v)a] V(o) HZ
1-v)d -y )otgz

which shows that 7. = O(¢>?). One can obtain the same result
with a second-order TR method; see [9]. It should be said, how-
ever, that this method requires a more complicated mechanism for
adjusting the step-size parameter than that stated in Algorithm 1.

Additional examples

Our analysis so far has focused on the setting of having a stopping
time based on a first-order stationarity criterion and no assump-
tions on f besides first- and/or second-order Lipschitz continuous
differentiability. However, the framework can be extended to
other situations, as well. For example, if one is interested in ap-
proximate second-order stationarity, then one can let

Te:=minf{ke N : y; < e},
— Amin (V2 f(x0)) },

where yi: =

with Amin(-) denoting the minimum eigenvalue of its symmetric
matrix argument. One can show that if the model m is chosen
as a (regularized) second-order Taylor series approximation
of fat xi, then for all the aforementioned methods, one ob-
tains 7. = O (e7). For a TR method, for example, one can de-
rive this using

D= v(fxp) —f) + (A —v)ai.

On the other hand, if one is interested in specially analyzing
the case of f being convex, or even strongly convex, then one
might consider

Te :=min{k e N : f(x) —f« < g}.

In this case, improved complexity bounds can be obtained through
other careful choices of {®}. For example, when fis convex and
the LS method from the “Classical LS” section is employed, one
can let

<I>k:=1/<%— >+(1—V)0!k.

1
S — f+

Under the assumption that level sets of f are bounded, one can
show that (f(xe+1) —f) ™' — (f(xx) — f+) " is uniformly bounded
below by a positive constant across all successful iterations, while
for all k € N, one has ax = a. Hence, for a suitable constant v,
one can determine /. (otx) and © to satisfy Condition 1. In this
case, the function %, does not depend on € but on @ = o™,
meaning that 7, = O (™).

Similarly, when f'is strongly convex and the LS method from
the “Classical LS” section is employed, consider

D, = V<10g(%> - log<m>>
+ (1 —v)log (ax).

This time, log((f(xe+1) =) ™) — log(f(xr) —£) ") is uni-
formly bounded below by a positive constant across all successful
iterations, and, similar to the convex case, one can determine v,
he, and © independent of & to show that @y = O (log(¢™")) im-
plies 7. = O (log (e ™")).

Framework for analyzing adaptive stochastic methods
‘We now present a generalization of the framework introduced in
the previous section that facilitates the analysis of adaptive sto-
chastic optimization methods. This framework is based on the
techniques proposed in [7], which served to analyze the behavior
of algorithms when derivative estimates are stochastic and func-
tion values can be computed exactly. It is also based on the subse-
quent work in [2], which enables function values to be stochastic,
as well. For our purposes of providing intuition, we discuss a sim-
plification of the framework, avoiding some technical details. See
[2] and [7] for complete information.

As in the deterministic setting, let us define a generic algo-
rithmic framework, which we state as Algorithm 2, that encapsu-
lates multiple types of adaptive algorithms. This algorithm has the
same structure as Algorithm 1, except it makes use of a stochastic
model of f to compute the trial step, and it employs stochastic
objective value estimates when determining whether a sufficient
reduction has been achieved.

Corresponding to Algorithm 2, let {(®«, W)} be a stochastic
process such that {®:} = 0 for all k € N. The sequences { D}
and { Wi} play roles similar to those in our analysis of Algorithm 1,
but it should be noted that now each Wi is a random indicator
influenced by the iterate sequence {xx} and the step-size param-
eter sequence {ax}, which are themselves stochastic processes.

Let F« denote the o-algebra generated by all the stochas-
tic processes within Algorithm 1 at the beginning of iteration k.
Roughly, F7 is generated by {(®;, &}, x;)}5—0. Note that this

Algorithm 2. Adaptive stochastic framework

Initialization
Choose (1, 81,82) € (0,1)%, 7 € (1, ), and @ € (0, ).
Choose an initial iterate xo € R" and step-size parameter
ao € (0, al

1. Determine model and compute step
Choose a stochastic model mk of faround xk, which satisfies
some sufficient accuracy requirement with a probability of at least
1—81. Compute a step sk (ak) such that the model reduction
mi(xk) — mi(xk + sk(ak)) = O is sufficiently large.

2. Check for sufficient reduction
Compute estimates f¢ and i of f(xk) and f(xk+ sk(crk)), respec-
tively, which satisfy some sufficient accurgcy requirement with a
probability of at least 1— &2. Check if f2 — f; is sufficiently large
relative to the model reduction mi (xk) — mk (xk + sk (ak)) using a
condition parameterized by 7.

3. Successful iteration
If a sufficient reduction has been attained (along with other poten-
tial requirements), then set xk+1 < xk + sk (k) and
ak+1 — min{yak, a}.

4. Unsuccessful iteration
Otherwise, xk+1 — Xk, and otk — 77" otk

5. Next iteration
Set k — k+ 1.
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includes {(®}, o}, x j)}l;';%) but not Wy, as this random variable
depends on what happens during iteration k. We then let 7.
denote a family of stopping times for {(®, Wi)} with respect
to {Fi} parameterized by & € (0, o). The goal of our analyti-
cal framework is to derive an upper bound for the expected stop-
ping time [E[Te] under various assumptions on the behavior of
{(®4, Wi)} and on the objective f. At the heart of the analysis is
the goal to show that the following condition holds, which can be
seen as a generalization of Condition 1.

Condition 2

The following statements hold with respect to {(®«, ok, Wi)}

and T.

1) There exists a scalar o, € (0, c0) such that, conditioned on
the event that ax < a,, one has W = 1 with the probability
1 —6 > 1/2, conditioned on F%. (This means that, if it
becomes sufficiently small, one is more likely to see an
increase in the step-size parameter than a decrease in it.)

2) There exists a nondecreasing function /%, :[0, o) — (0, o)
and a scalar © € (0, oo) such that, for all k£ < T, the condi-
tional expectation of @ — P+ with respect to Fi is at
least ©h (ax); specifically,

Tie< g E[®r1| Fr] < Lik< ) (Ok — Ohe(ai)).

Whereas Condition 1 requires that the step-size parameter o«
remains above a lower bound and that the reduction @ — @+ 1 is
nonnegative with certainty, Condition 2 allows more flexibility. In
particular, it says that until the stopping time is reached, one tends
to find @« — P+ sufficiently large, namely, at least Oh. (o)
for each k < T.. In addition, the step-size parameter is allowed
to fall below the threshold «,; in fact, it can become arbitrarily
small. That said, if ox < o, then one tends to find ax+1 > ax.
With this added flexibility, one can still prove complexity guaran-
tees. Intuitively, the reduction @ — @+ is at least the determin-
istic amount ©%.(c,) often enough that one is able to bound the
total number of such occurrences (since {®@x} = 0). The follow-
ing theorem (see [2, Th. 2.2]) bounds the expected stopping time
in terms of a deterministic value.

Theorem 1
If Condition 2 holds, then

1-6 [Of)

Bl =55 Ohe(a))

+1.

In the “Stochastic TR” and “Stochastic LS” sections, we
summarize how this framework has been applied to analyze the
behavior of stochastic TR and LS methods. In each case, the keys
to applying the framework are determining how to design the pro-
cess {D} as well as how to specify details of Algorithm 2 to
ensure that Condition 2 holds. For these aspects, we first need to
describe different adaptive accuracy requirements for stochastic
functions and derivative estimates that might be imposed in steps
1 and 2 as well the techniques that have been developed to ensure
these requirements.

Error bounds for stochastic functions and derivative estimates
In this section, we describe various types of conditions that one
may require in an adaptive stochastic optimization algorithm when
computing the objective function, gradient, and Hessian estimates.
These conditions have been used in some previously proposed
adaptive stochastic optimization algorithms [2], [5], [7], [24].

Let us remark in passing that one does not necessarily need to
employ sophisticated error bound conditions in stochastic opti-
mization to achieve improved convergence rates. For example, in
the case of minimizing the strongly convex f, the linear rate of
convergence of the gradient descent can be emulated by an SG-
like method if the minibatch size grows exponentially [14], [25].
However, attaining similar improvements in the (not strongly)
convex and nonconvex settings has proved elusive. Moreover,
while the stochastic estimates become better with the progress
of such an algorithm, this improvement is based on prescribed
parameters, and hence the algorithm is not adaptive in our desir-
able sense. Therefore, one still needs to tune such algorithms for
each application. Returning to our setting, in the types of error
bounds presented in the following, for a given f : R" — R and
xeR”, let f(x), g(x), and H(x) denote stochastic approxima-
tions of fx), V£(x), and V>f(x), respectively.

Taylorlike conditions

Corresponding to a norm | ||, let B (xx, Ax) denote a ball of ra-
dius A centered at xi. If the function, gradient, and Hessian
estimates satisfy

| Foo) — fle) | < kAR, (5a)
| @) = V@) | < koA, (5b)

and
| HOo = VP | < ku (5¢)

for some nonnegative scalars (ky, k¢, ku), then the model
mi(x) = Flxn) + g (x— xw) + (1/2) (x — x0) T H (xe) (x — xx)
gives an approximation of f within B (xx, A¢) that is comparable
to that given by an accurate first-order Taylor series approximation
(with error dependent on A). Similarly, if (5) holds with the right-
hand side values replaced by k¢ Ak e A2, and kA, respective-
ly, then my gives an approximation of fthat is comparable to that
given by an accurate second-order Taylor series approximation.
In a stochastic setting, when unbiased estimates of f(xx), Vf(xx),
and V? f(xx) can be computed, such conditions can be ensured,
with some sufficiently high probability of 1 — &, by sample aver-
age approximations using a sufficiently large number of samples.
For example, to satisfy (5b) with the probability 1 — &, the sample
size for computing g (xx) can be Q(V,/ (k3 AD)), where V, is the
variance of the stochastic gradient estimators corresponding to a
minibatch size of one. Here, the Q notation hides the dependence
on &, which is weak if | g (xx) — Vf(xx) | is bounded.

Gradient norm condition
If, for some 6 € [0, 1), one has

| g (o) = VFGo) | < 6| Vo | ©)
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then we say that g(xx) satisfies the gradient norm condition at
x«. Unfortunately, verifying the gradient norm condition at x
requires knowledge of | Vf(xx) |, which makes it an impractical
condition. In [5], a heuristic is proposed that attempts to approxi-
mate the sample size for which the gradient norm condition holds.
More recently, in [3], the authors improve on the gradient norm
condition by introducing an angle condition, which, in principle,
enables smaller sample set sizes to be employed. However, again,
the angle condition requires a bound in terms of | Vf(xx)|, for
which a heuristic estimate needs to be employed.

Instead of employing the unknown quantity | Vf(xx) | on the
right-hand side of the norm and the angle conditions, one can
substitute € € (0, 00), the desired stationarity tolerance. In this
manner, while | Vf(xx) | > € and | gk — Vf(xx) | < 6¢, the norm
condition is satisfied. This general idea has recently been exploit-
ed in several articles (e.g., [28] and [30]), where gradient and Hes-
sian estimates are computed based on large-enough numbers of
samples, then assumed to be accurate in every iteration (with a
high probability) until an e-stationary solution is reached. While
strong iteration complexity guarantees can be proved for such
algorithms, these approaches are too conservative to be competi-
tive with truly stochastic algorithms.

Stochastic gradient norm condifions

Consider again the conditions in (5), although now contemplate
the specific setting of defining Ax := o | g(xx) || for all k € N.
This condition, which involves a bound comparable to (6) when
g (xx) = Vf(xy), is particularly useful in the context of LS meth-
ods. It is possible to impose it in probability since, unlike (6), it
does not require knowledge of | Vf(xx)|. In this case, to satisty
(5) for Ax := o | g (xx) | with a probability of 1 — &, the sample
size for computing g (xx) need only be Q (V,/(k2a7 | g(xx) | %)).
While g (xx) is not known when the sample size for computing
it is chosen, one can use a simple loop that guesses the value
of | g(xx)|, then iteratively increases the number of samples as
needed; see [7] and [24].

Note that all of the preceding conditions can be adaptive in
terms of the progress of an algorithm, assuming that {Ax} and/
or {| g(xx) ||} vanish as k — oo. However, this behavior does not
have to be monotonic, which is a benefit of adaptive step-sizes
and accuracy requirements.

Stochastic TR

The idea of designing stochastic TR methods has been attractive
for years, even before the recent explosion of efforts on algo-
rithms for stochastic optimization. This is due to the impressive
practical performance that TR methods offer, especially when
(approximate) second-order information is available. Since TR
methods typically compute trial steps by minimizing a quadratic
model of the objective in a neighborhood around the current
iterate, they are inherently equipped to avoid certain spurious
stationary points that are not local minimizers. In addition, by
normalizing the step length by a TR radius, the behavior of the
algorithm is kept relatively stable. Indeed, this feature enables
TR methods to offer stability, even in the nonadaptive stochastic
regime; see [11].

However, it has not been until the last couple of years that
researchers have been able to design stochastic TR methods
that can offer strong expected complexity bounds, which are
essential for ensuring that the practical performance of such
methods can be competitive across broad classes of problems;
see, e.g., [16]. The recently proposed algorithm known as sto-
chastic optimization with random models (STORM), intro-
duced in [8], achieves such complexity guarantees by requiring
the Taylor-like conditions (5) to hold with a probability of at
least 1 — &, conditioned on . (In what follows, all accuracy
conditions are assumed to hold with some probability, con-
ditioned on Fi. We omit the mention of this conditioning
for brevity.) In particular, in step 1 of Algorithm 2, a model
me(x) 1= Fon) + g0 (o —xx) + (1/2) (x — x0) T H (1) (x — x1)
is computed with components satisfying (5) with a probability
of 1 — &1 (where Ax := ay for all k € N), then the step s« (ax)
is computed by minimizing m (approximately) within a ball of
radius o In step 2, the estimates f{ and fi are computed to
satisfy (5a) with a probability of 1 — §2. The imposed sufficient
reduction condition is

f-F -
mi(xx) — mr(xi + 51) -

An iteration is successful if the preceding holds and | g« | = Tax
for some user-defined 7 € (0, ).

For brevity, we omit some details of the algorithm. For exam-
ple, the constant Ky in (5) cannot be too large, whereas k, and
km can be arbitrarily large. Naturally, the magnitudes of these
constants affect the constants in the convergence rate; see [2]
for further details. Based on the stochastic process generated by
Algorithm 2, let us define, as in the deterministic setting, 7. and
{®+} by (3) and (4), respectively. It is shown in [2] that for suffi-
ciently small constants &1, 82, and © (independent of &), Condi-
tion 2 holds with

a,:={e and h(ay) := ar

for some positive constants ¢ and O that depend on the algorithm
parameters and properties of fbut not on €. The probability 1 — &
that arises in Condition 2 is at least (1 —&1)(1 — &§2). Thus, by
Theorem 1, the expected complexity of reaching a first-order
e-stationary point is at most O (¢2), which matches the com-
plexity of the deterministic version of the algorithm up to the fac-
tor dependent on (1 —&1)(1 — 62).

Letus give some intuition of how Condition 2 is ensured. Let us
say that the model m is “good” if its components satisfy (5) and
“bad” otherwise. Similarly, the estimates f¢ and f{ are “good”
if they satisfy (5a) and “bad” otherwise. By the construction of
steps 1 and 2 of the algorithm, m; is “good,” with a probability
of at least 1 — &1, and f{ and f{ are “good,” with a probability
of atleast 1 — &2. Figure 3 illustrates the four possible outcomes.
When both the model and the estimates are good, the algorithm
essentially behaves as its deterministic counterpart; in particular,
if ax < a, and k < T, then the kth iteration is successful, and
the reduction @ — @y~ is sufficiently large. If the model is
bad and the estimates are good, or if the model is good and the
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estimates are bad, then the worst case (depicted in Figure 3) is
that the step is deemed unsuccessful, even though ax < . This
shows that the step-size parameter can continue to decrease, even
if it is already small. Finally, if both the model and the estimates
are bad, which happens with a probability of at most §182, then
it is possible that the iteration will be deemed successful despite
the fact that @41 > Di. (Recall that this cannot occur in the
deterministic setting, where { @} decreases monotonically.) The
key step in showing that @;+1 < Py in expectation is to establish
that, in each iteration, the possible decrease of this measure is pro-
portional to any possible increase, and thus by ensuring that §152
is sufficiently small and (1 — 81) (1 — §2) is sufficiently large, one
can guarantee a desired reduction in expectation.

The same TR algorithm can be employed with minor modifica-
tions to obtain good expected complexity properties with respect
to achieving second-order e-stationarity. In this case, the require-
ments on the estimates need to be stronger; in particular, (5) has
to be imposed with right-hand side values & ¢ ai Kk ¢ a2, and kyox,
respectively. In this case, Condition 2 holds for /(ax) = aj.
Hence, the expected complexity of reaching a second-order
e-stationary point by Algorithm 2 is bounded by O (), which
similarly matches the deterministic complexity.

Stochastic LS
A major disadvantage of an algorithm such as SG is that one is
very limited in the choice of step-size sequences that can be em-
ployed to adhere to the theoretical guidelines. One would like to
be able to employ a type of line search, as has been standard prac-
tice throughout the history of research on deterministic optimiza-
tion algorithms. However, devising LS methods for the stochastic
regime turns out to be extremely difficult. This is partially due to
the fact that, unlike TR methods, LS algorithms employ steps that
are highly influenced by the norm of the gradient | Vf(xx) |, or
in the stochastic regime, influenced by | g (x«) |. Since the norm
of the gradient estimate may have a high variance, the algorithm
needs to have a carefully controlled step-size selection mecha-
nism to ensure convergence.

In [3] and [14], two backtracking LS methods were proposed
that use different heuristic sample size strategies when computing

gradient and function estimates. In both cases, the backtracking is
based on the Armijo condition applied to function estimates that
are computed on the same batch as the gradient estimates. A dif-
ferent type of LS method that uses a probabilistic Wolfe condi-
tion for choosing the step-size was proposed in [20], although this
approach possesses no known theoretical guarantees.

In [29], the authors argue that with the overparameterization of
deep neural networks (DNNs), the variance of stochastic gradients
tends to zero near stationarity points, and they analyze a stochas-
tic LS method under this assumption. This supposition makes the
design and analysis of stochastic methods significantly easier, and
it might also be used to simplify the methods considered in this
article. However, it is not generally true, even for DNNs; thus, our
focus is on methods that adaptively control the variance.

Here, we summarize the results in [24], where an LS method
with an adaptive sample size selection mechanism is proposed and
complexity bounds are provided. This method can be described
as a particular case of Algorithm 2. As in the deterministic case,
a stochastic model m; is chosen in step 1, and s(ox) =—ardk,
where dir makes an obtuse angle with the gradient estimate
g(xx). The sufficient reduction in step 2 is based on the esti-
mated Armijo condition

= fi =—ng (0" si(ow).

The algorithm requires that the components of the model
my satisfy (5) with a probability of at least 1 — &1 and that the
estimates f{ and fi satisfy (5a) with a probability of at least
1 — &2. Here, it is critical that (5a) not be imposed with the right-
hand side being ax || g« |*> (even though the deterministic case
might suggest this as being appropriate) since this quantity can
vary uncontrollably from one iteration to the next. To avoid this
issue, the approach defines an additional control sequence { A}
used for governing the accuracy of f{ and fi. Intuitively, for
all k € N, the value A7 is meant to approximate o | V£(xx) |
which, as seen in the deterministic case, is the desired reduction
in fif iteration k is successful. This control sequence needs to be
set carefully. The first value in the sequence is set arbitrarily, with
subsequent values set as follows. If iteration k is unsuccessful,

A\ A\

N

d d

7 N .

Xk

(b)

X+ Sk

Xy + Sk Xy

(c)

X+ Sk Xy

(d)

FIGURE 3. “Good” and “bad” models and estimates in a stochastic TR method. (a) A good model and good estimates. (b) A good model and bad esti-
mates. (c) A bad model and good estimates. (d) A bad model and bad estimates.
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then Ax+1 < Ar. Otherwise, if iteration k is successful, then one
checks whether the step is reliable in the sense that the accuracy
parameter is sufficiently small; i.e.,

arl g0 [ = Ak )

If (7) holds, then one sets Ag+i — ﬁ Ayx; otherwise, one sets
Ak+1 < \/F Ak to promote the reliability of the step in the
subsequent iteration. Using {A} defined in this manner, an ad-
ditional bound is imposed on the variance of the objective value
estimates. For all k € N, one requires

max{]E| = fxe) 2,E| fE—=flxe+ sk(ak))|2}
< max{wa%” Vi(xk) 2,K/Aﬁ}.

Note that because of the “max” in the right-hand side of this in-
equality, and because A is a known value, it is not necessary
to know | V£(xx) |* to impose this condition. Also note that this
condition is stronger than imposing the Taylor-like condition (5a)
with some probability less than one because the bound on expec-
tation does not allow | £ — f(xx) | to be arbitrarily large with a
positive probability, while (5a) permits it and thus is more tolerant
to outliers.

For analyzing this LS instance of Algorithm 2, again let 7% be
as in (3). However, now let

@ = v (f0) —f) + (1 =) ( T Ve [+ nat).

Using a strategy similar to that for STORM combined with the
logic of the “Classical LS” section, it is shown in [24] that Condi-
tion 2 holds with

h(ar) = are?.

The expected complexity of this stochastic LS method has been
analyzed for minimizing convex and strongly convex f using
modified definitions for @, and T, as described in the “Addi-
tional Examples” section; see [24].

Stochastic regularized Newton

As we have seen, stochastic TR and LS algorithms have been
developed that fit into the adaptive stochastic framework
that we have described, showing that they can achieve ex-
pected complexity guarantees on par with their deterministic
counterparts. However, neither of these types of algorithms
achieves complexity guarantees that are optimal in the deter-
ministic regime.

Cublicly regularized Newton [6], [22], described and analyzed
in the “Regularized Newton” section, enjoys optimal conver-
gence rates for second-order methods for minimizing noncon-
vex functions. We have shown how our adaptive deterministic
framework gives a O (&) complexity bound for this method
for achieving first-order e-stationarity, in particular, to achieve
| Vf(xk+1) | < €. There have also been works that propose sto-
chastic and randomized versions of cubic regularization methods
[28], [30], but these impose strong conditions on the accuracy of
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the function, gradient, and Hessian estimates that are equivalent
to using € (i.e., the desired accuracy threshold) in place of A
for all k € N in (5). Thus, these approaches essentially reduce
to sample average approximation with very tight accuracy toler-
ances and are not adaptive enough to be competitive with truly
stochastic algorithms in practice. For example, in [28], no adap-
tive step-sizes or batch sizes are employed, and in [30], only Hes-
sian approximations are assumed to be stochastic. Moreover, the
convergence analysis is performed under the assumption that the
estimates are sufficiently accurate (for a given €) in every itera-
tion. Thus, essentially, the analysis is reduced to that in the deter-
ministic setting and applies only as long as no iteration fails to
satisfy the accuracy condition. Hence, a critical open question is
whether one can extend the framework described here (or anoth-
er approach) to develop and analyze a stochastic algorithm that
achieves optimal deterministic complexity.

The key difficulty in extending the analysis described in the
“Regularized Newton” section to the stochastic regime is the
definition of the stopping time. For Theorem 1 to hold, Te has to
be a stopping time with respect to {Fr}. However, with s (ctx)
being random, xx+1 is not measurable in { F}; hence, T, as it is
defined in the deterministic setting, is not a valid stopping time in
the stochastic regime. A different definition is needed that would
be agreeable with the analysis in the stochastic setting.

Another algorithmic framework that enjoys optimal complex-
ity guarantees is the TR Algorithm with Contractions and Expan-
sions (TRACE) [9]. This algorithm borrows much from the
traditional TR methodology, which is also followed by STORM,
but it incorporates a few algorithmic variations that reduce the
complexity from O(e%) to O(e*%) for achieving first-order
e-stationarity. It remains an open question whether one can employ
the adaptive stochastic framework to analyze a stochastic vari-
ant of TRACE, the main challenge being that TRACE involves a
relatively complicated strategy for updating the step-size param-
eter. Specifically, deterministic TRACE requires knowledge of
the exact Lagrange multiplier of the TR constraint at a solution of
the step computation subproblem. If the model m is stochastic
and the subproblem is solved only approximately, then it remains
open how to maintain the optimal (expected) complexity guaran-
tee. In addition, the issue of determining the correct stopping time
in the stochastic regime is also open for this method.

Other possible extensions

‘We have shown that the analytical framework for analyzing adap-
tive stochastic optimization algorithms presented in the “Frame-
work for Analyzing Adaptive Stochastic Methods™ section has
offered a solid foundation on which stochastic TR and stochastic
LS algorithms have been proposed and analyzed. We have also
shown the challenges and opportunities for extending the use of
this framework for analyzing algorithms whose deterministic
counterparts have optimal complexity.

Other interesting questions remain to be answered. For ex-
ample, great opportunities exist for the design of error bound
conditions other than those mentioned in the “Error Bounds for
Stochastic Function and Derivative Estimates” section, especially
when it comes to bounds that are tailored for particular problem
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settings. While improved error bounds might not lead to advances
in the iteration complexity, they can have great effects on the work
complexity of various algorithms, which translates directly into
performance gains in practice.

The proposed analytical framework might also benefit from
extensions in terms of the employed algorithmic parameters. For
example, rather than using a single constant y when updating
the step-size parameter, one might consider different values for
increases versus decreases as well as when different types of steps
are computed. This will enable improved bounds on the accuracy
probability tolerances &1 and J2.

Finally, numerous open questions remain in terms of how
best to implement adaptive stochastic algorithms in practice. For
different algorithm instances, practitioners need to explore how
best to adjust minibatch sizes and step-sizes so that one can truly
achieve good performance without wasteful tuning efforts. One
hopes that with additional theoretical advances, these practical
questions will become easier to answer.
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