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Abstract

The random-permutation model (RPM) and the ideal-cipher model (ICM) are idealized mod-
els that offer a simple and intuitive way to assess the conjectured standard-model security of
many important symmetric-key and hash-function constructions. Similarly, the generic-group
model (GGM) captures generic algorithms against assumptions in cyclic groups by modeling
encodings of group elements as random injections and allows to derive simple bounds on the
advantage of such algorithms.

Unfortunately, both well-known attacks, e.g., based on rainbow tables (Hellman, IEEE Trans-
actions on Information Theory ’80), and more recent ones, e.g., against the discrete-logarithm
problem (Corrigan-Gibbs and Kogan, EUROCRYPT ’18), suggest that the concrete security
bounds one obtains from such idealized proofs are often completely inaccurate if one considers
non-uniform or preprocessing attacks in the standard model. To remedy this situation, this work

� defines the auxiliary-input (AI) RPM/ICM/GGM, which capture both non-uniform and
preprocessing attacks by allowing an attacker to leak an arbitrary (bounded-output) func-
tion of the oracle’s function table;

� derives the first non-uniform bounds for a number of important practical applications
in the AI-RPM/ICM, including constructions based on the Merkle-Damg̊ard and sponge
paradigms, which underly the SHA hashing standards, and for AI-RPM/ICM applications
with computational security; and

� using simpler proofs, recovers the AI-GGM security bounds obtained by Corrigan-Gibbs
and Kogan against preprocessing attackers, for a number of assumptions related to cyclic
groups, such as discrete logarithms and Diffie-Hellman problems, and provides new bounds
for two assumptions.

An important step in obtaining these results is to port the tools used in recent work by Coretti et
al. (EUROCRYPT ’18) from the ROM to the RPM/ICM/GGM, resulting in very powerful and
easy-to-use tools for proving security bounds against non-uniform and preprocessing attacks.
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�Supported by NSF grants CNS-1314722 and CNS-1413964; Part of this work done while the author was visiting
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1 Introduction

The random-permutation and ideal-cipher models. The random-permutation model (RPM)
and the ideal-cipher model (ICM) are idealized models that offer a simple and intuitive way to prove
the (conjectured) security of many important applications. This holds especially true in the realms
of symmetric cryptography and hash-function design since most constructions of block ciphers and
hash functions currently do not have solid theoretical foundations from the perspective of provable
security. In fact, the exact security bounds obtained in such idealized models are often viewed as
guidance for both designers and cryptanalysts in terms of the best possible security level that can be
achieved by the corresponding construct in the standard model. By and large, this method has been
quite successful in practice, as most separations between the standard model and various idealized
models [12, 11, 39, 30, 3, 8] are somewhat contrived and artificial and are not believed to affect the
security of widely used applications. In fact, the following RPM/ICM methodology appears to be a
good way for practitioners to assess the best possible security level of a given (natural) application.

RPM/ICM methodology. For “natural” applications of hash functions and block
ciphers, the concrete security proven in the RPM/ICM is the right bound even in the
standard model, assuming the “best possible” instantiation for the idealized component
(permutation or block cipher) is chosen.

Both the RPM and the ICM have numerous very important practical applications. In fact, most
practical constructions in symmetric-key cryptography and hash-function design are naturally de-
fined in the RPM/ICM. The following are a few representative examples:

� The famous AES cipher is an example of key-alternating cipher, which can be abstractly
described and analyzed in the RPM [2, 13], generalizing the Even-Mansour [24, 23] cipher
EMπ,s(x) = π(x ⊕ s) ⊕ s, where π is a public permutation, s is the secret key, and x is the
message.

� The compression function of the SHA-1/2 [47, 42] and MD5 [44] hash functions, as well as
the popular HMAC scheme [4], is implemented via the Davies-Meyer (DM) hash function
DME(x, y) = Ex(y)⊕y, for a block cipher E. But its collision-resistance can only be analyzed
in the ICM [52].

� The round permutation of SHA-3 [41]—as part of the sponge mode of operation [6]—can be
defined in the RPM: given old n-bit state s and new r-bit block message x (where r < n),
the new state is s′ = π(s⊕ (x‖0n−r)), where π is a public permutation. The sponge mode is
useful for building CRHFs, message authentication codes (MACs), pseudorandom functions
(PRFs) [7], and key derivation functions [26], among others.

� The round function of MD6 [45] can be written as fQ(x) = truncr(π(x‖Q)), where Q is a
constant, truncr is the truncation to r bits, and π is a public permutation. This construction
was shown indifferentiable from a random oracle in the RPM [21].

� Many other candidate collision-resistant hash functions can be described using either ideal
ciphers (e.g., the large PGV family [9]) or random permutations (e.g., [49, 6, 46, 21]).

The generic group model. Another well-known idealized model is the so-called generic-group
model (GGM), which serves the purpose of proving lower bounds on the complexity of generic at-
tacks against common computational problems in cyclic groups used in public-key cryptography,
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such as the discrete-logarithm problem (DL), the computational and decisional Diffie-Hellman prob-
lems (CDH and DDH), and many more. Generic attacks are algorithms that do not exploit the
specific representation of the elements of a group. This property is modeled by considering generic
encoding captured by a random injection σ : ZN → [M ] and allowing the algorithm access to a
group-operation oracle, which, given a pair of encodings (σ(x), σ(y)), returns σ(x+ y).

The justification for the GGM is rooted in the fact that there are no unconditional hardness
proofs for important group-related problems, and that there are some groups based on elliptic
curves for which no better algorithms than the generic ones are known. Hence, results in the GGM
provide at least some indication as to how sensible particular assumptions are. There are a plethora
of security bounds proven in the GGM, e.g., lower bounds on the complexity of generic algorithms
against DL or CDH/DDH by Shoup [48] or the knowledge-of-exponent assumption by Abe and
Fehr [1] and Dent [18].

Non-uniformity and preprocessing. Unfortunately, a closer look reveals that the rosy picture
above can only be true if one considers uniform attacks (as explained below). In contrast, most
works (at least in theoretical cryptography) consider attackers in the non-uniform setting, where
the attacker is allowed to obtain some arbitrary (but bounded) advice before attacking the system.
The main rationale for this modeling comes from the realization that a determined attacker will
know the parameters of a target system in advance and might be able to invest a significant amount
of preprocessing to do something to speed up the actual attack, or to break many instances at once
(therefore amortizing the one-time preprocessing cost). Perhaps the best known example of such
attacks are rainbow tables [33, 40] (see also [35, Section 5.4.3]) for inverting arbitrary functions; the
idea is to use one-time preprocessing to initialize a clever data structure in order to dramatically
speed up brute-force inversion attacks. Thus, restricting to uniform attackers might not accurately
model realistic preprocessing attacks one would like to protect against.

There are also other, more technical, reasons why the choice to consider non-uniform attackers is
convenient (see [15] for details), the most important of which is security under composition. A well-
known example are zero-knowledge proofs [29, 28], which are not closed under (even sequential)
composition unless one allows non-uniform attackers and simulators. Of course, being a special
case of general protocol composition, this means that any work that uses zero-knowledge proofs as
a subroutine must consider security against non-uniform attackers in order for the composition to
work. Hence, it is widely believed by the theoretical community that non-uniformity is the right
cryptographic modeling of attackers, despite being overly conservative and including potentially
unrealistic attackers—due to the potentially unbounded pre-computation allowed to generate the
advice.

Idealized models vs. non-uniformity and preprocessing. When considering non-uniform at-
tackers, it turns out that the RPM/ICM methodology above is blatantly false: once non-uniformity
or preprocessing is allowed, the separations between the idealized models and the standard model
are no longer contrived and artificial, but rather lead to impossibly good exact security of most
widely deployed applications. To see this, consider the following examples:

� One-way permutations: Hellman [33] showed that there is a preprocessing attack that takes
S bits of advice and makes T queries to a permutation π : [N ] → N and inverts a random
element of [N ] with probability roughly ST/N . Hence, a permutation cannot be one-way
against attackers of size beyond T = S = N1/2. However, in the RPM, a random permutation
is easily shown to be invertible with probability at most T/N , therefore suggesting security
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against attackers of size up to N .

� Even-Mansour cipher: In a more recent publication, Fouque et al. [25] showed a non-
uniform N1/3 attack against the Even-Mansour cipher that succeeds with constant probability.
As with OWPs, the analysis in the RPM model suggests an incorrect security leve, namely, up
to the birthday bound since one easily derives an upper bound of T 2/N on the distinguishing
advantage of any attacker in RPM.

Similar examples also exist in the GGM:

� Discrete logarithms: A generic preprocessing attack by Mihalcik [38] and Bernstein and
Lange [5] (and a recent variant by Corrigan-Gibbs and Kogan [16]) solves the DL problem
with advantage ST 2/N in a group of order N , whereas the security of DL in the GGM is
known to be T 2/N [48].

� Square DDH: A generic preprocessing attack by Corrigan-Gibbs and Kogan [16] breaks
the so-called square DDH (sqDDH) problem—distinguishing (gx, gx

2
) from (gx, gy) in a cyclic

group G = 〈g〉 of order N—with advantage
√
ST 2/N , whereas the security of sqDDH in the

GGM can be shown to be T 2/N .

1.1 Contributions: Non-Uniform Bounds in the RPM/ICM/GGM

Given the above failure of the idealized-models methodology, this paper revisits security bounds
derived in the RPM, ICM, and GGM and re-analyzes a number of applications highly relevant in
practice w.r.t. their security against non-uniform attackers or preprocessing. To that end, following
the seminal work of Unruh [51] as well as follow-up papers by Dodis et al. [19] and Coretti et al. [15],
the idealized models are replaced by weaker counterparts that adequately capture non-uniformity
and preprocessing by allowing the attacker to obtain oracle-dependent advice. The resulting models,
called the auxiliary-input RPM, ICM, and GGM, are parameterized by S (“space”) and T (“time”)
and work as follows: The attacker A in the AI model consists of two entities A1 and A2. The
first-stage attacker A1 is computationally unbounded, gets full access to the idealized primitive O,
and computes some advice z of size at most S. This advice is then passed to the second-stage
attacker A2, who may make up to T queries to oracle O (and, unlike A1, may have additional
application-specific restrictions, such as bounded running time, etc.). The oracle-dependent advice
naturally maps to non-uniform advice when the random oracle is instantiated, and, indeed, none of
the concerns expressed in the above examples remain valid in the AI-RPM/ICM/GGM.

Symmetric primitives. In the AI-RPM and AI-ICM, this work analyzes and derives non-uniform
security bounds for (cf. Table 1 and Section 4):

� basic applications such as inverting a random permutation (OWP), the Even-Mansour cipher
(EM), using the ideal cipher as a block cipher directly (BC-IC), the PRF security of Davies-
Meyer (PRF-DM), the collision resistance of a salted version of the Davies-Meyer compression
function (CRHF-DM);

� the collision-resistance, the PRF security, and the MAC security of the sponge construction,
which underlies the SHA-3 hashing standard;

� the collision-resistance of the Merkle-Damg̊ard construction with Davies-Meyer (MD-DM),
which underlies the SHA-1/2 hashing standards, and PRF/MAC security of NMAC and
HMAC.
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AI Security SM Security Best Attack

OWP ST
N

T
N

ST
N [33]

EM
(
ST 2

N

)1/2
+ T 2

N
T 2

N

(
S
N

)1/2
[17]

BC-IC
(
ST
K

)1/2
+ T

K
T
K

(
S
K

)1/2
[17]

PRF-DM
(
ST
N

)1/2
+ T

N
T
N

(
S
N

)1/2
[17]

CRHF-DM (ST )2

N
T 2

N not known

CRHF-S ST 2

2c + T 2

2r
T 2

2c + T 2

2r
ST 2

N [15]

PRF-S
(
ST 2

2c

)1/2 T 2

2c

(
S
N

)1/2
[17]

MAC-S ST 2

2c + T
2r

T 2

2c + T
2r min

{
ST
N ,
(
S2T
N2

)1/3}
+ T

N [33]

CRHF-MD ST 2

N
T 2

N
ST 2

N [15]

PRF-MD-N
(
ST 3

N

)1/2
+ T 3

N
T 3

N

(
S
N

)1/2
[17]

NMAC/HMAC ST 3

N
T 3

N min
{
ST
N ,
(
S2T
N2

)1/3}
+ T

N [33]

Table 1: Asymptotic upper and lower bounds on the security of applications in the AI-ICM/AI-RPM and
in the standard model (SM) against (S, T )-attackers.

Surprisingly, except for OWPs [17], no non-uniform bounds were known for any of the above appli-
cations; not even for applications as fundamental as BC-IC, Even-Mansour, or HMAC.

The bounds derived for OWP and the collision-resistance (CR) of Sponges and MD-DM are
tight, i.e., there exist matching attacks by Hellman [33] (for OWPs) and by Coretti et al. [15] (for
CR). For the remaining primitives significant gaps remain between the derived security bounds and
the best known attacks. Closing these gaps is left as an interesting (and important) open problem.

Generic groups. In the AI-GGM, the following applications are analyzed w.r.t. their security
against preprocessing (cf. Table 2 and Section 5): the discrete-logarithm problem (DL), the multiple-
discrete-logarithms problem (MDL), the computational Diffie-Hellman problem (CDH), the deci-
sional Diffie-Hellman problem (DDH), the square decisional Diffie-Hellman problem (sqDDH), the
one-more discrete-logarithm problem (OM-DL), and the knowledge-of-exponent assumption (KEA).

� For DL, MDL, CDH, DDH, and sqDDH, the derived bounds match those obtained in recent
work by Corrigan-Gibbs and Kogan [16]. As highlighted below, however, the techniques used
in this paper allow for much simpler proofs than the one based on incompressibility arguments
in [16]. All of these bounds are tight, except those for DDH, for which closing the gap remains
an open problem.

� The bounds for OM-DL and KEA are new and may be non-trivial to derive using compression
techniques.

Computational security. Idealized models such as the ROM, RPM, and ICM are also often
used in conjunction with computational hardness assumptions such as one-way functions, hardness
of factoring, etc. Therefore, this paper also analyzes the security of public-key encryption based on

4



AI-GGM Security GGM Security Best Attack

DL/CDH ST 2

N + T 2

N
T 2

N
ST 2

N [16, 38, 5]

t-fold MDL
(S(T+t)2

tN + (T+t)2

tN

)t ( (T+t)2

tN

)t
see caption [16]

DDH
(
ST 2

N

)1/2
+ T 2

N
T 2

N
ST 2

N [16, 38, 5]

sqDDH
(
ST 2

N

)1/2
+ T 2

N
T 2

N

(
ST 2

N

)1/2
[16]

OM-DL
(S(T+t)2

N

)
+ (T+t)2

N
T 2

N
ST 2

N [16, 38, 5]

KEA ST 2

N
T 2

N not known

Table 2: Asymptotic upper and lower bounds on the security of applications in the generic-group model
against (S, T )-attackers in the AI-ROM; new bounds are in a bold-face font. The value t for the one-more
DL problem stands for the number of challenges requested by the attacker. The attack against MDL succeeds
with constant probability and requires that ST 2/t+ T 2 = Θ (tN).

trapdoor functions (cf. Section 6) in the AI-RPM, specifically, of a scheme put forth by Phan and
Pointcheval [43]. Other schemes in the AI-RPM/ICM, e.g., [32, 34], can be analyzed similarly.

1.2 Methodology: Pre-Sampling

Bit-fixing oracles and pre-sampling. Unfortunately, while solving the issue of not capturing
non-uniformity and preprocessing, the AI models are considerably more difficult to analyze than the
traditional idealized models. From a technical point, the key difficulty is the following: conditioned
on the leaked value z, which can depend on the entire function table of O, many of the individual
values O(x) are no longer random to the attacker, which ruins many of the key techniques utilized
in the traditional idealized models, such as lazy sampling programmability, etc.

One way of solving the above issues is to use incompressibility arguments, as introduced by
Gennaro and Trevisan [27] and successfully applied to OWPs by De et al. [17], to the random-oracle
model by Dodis et al. [15], and to the GGM by Corrigan-Gibbs and Kogan [16]. Compression-
based proofs generally lead to tight bounds, but are usually quite involved and, moreover, seem
inapplicable to computationally secure applications. Hence, this paper, adopts the much simpler
and more powerful pre-sampling approach taken recently by Coretti et al. [15] and dating back to
Unruh [51]. The pre-sampling technique can be viewed as a general reduction from the auxiliary-
input model to the so-called bit-fixing (BF) model, where the oracle can be arbitrarily fixed on
some P coordinates, for some parameter P , but the remaining coordinates are chosen at random
and independently of the fixed coordinates. Moreover, the non-uniform S-bit advice of the attacker
in this model can only depend on the P fixed points, but not on the remaining truly random
points. This makes dealing with the BF model much easier than with the AI model, as many of the
traditional proof techniques can again be used, provided that one avoids the fixed coordinates.

Bit-fixing vs. auxiliary input. In order for the BF model to be useful, this work shows that
any (S, T )-attack in the AI-RPM/ICM/GGM model will have similar advantage in the P -BF-
RPM/ICM/GGM model for an appropriately chosen P , up to an additive loss of δ(S, T, P ) ≈ ST/P .
Moreover, for the special case of unpredictability applications (e.g., CRHFs, OWFs, etc.), one can set
P to be (roughly) ST , and achieve a multiplicative loss of 2 in the exact security. This gives a general
recipe for dealing with the AI models as follows: (a) prove security ε(S, T, P ) of the given application
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in the P -BF model; (b) for unpredictability applications, set P ≈ ST , and obtain final AI security
roughly 2 · ε(S, T, ST ); (c) for general applications, choose P to minimize ε(S, T, P ) + δ(S, T, P ).

The proof of the above connection is based on a similar connection between the AI-ROM and
BF-ROM shown by [15] (improving a weaker original bound of Unruh [51]). While borrowing a lot
of tools from [15], the key difficulty is ensuring that the P -bit-fixing cipher, which “approximates”
the ideal cipher conditioned on the auxiliary input z, is actually a valid cipher: the values at fixed
points cannot repeat, and the remaining values are chosen at random from the “unused” values
(similar issues arise for generic groups). Indeed, the proof in this paper is more involved and the
resulting bounds are slightly worse than those in [15].

Using the power of pre-sampling to analyze the applications presented above, the technical bulk
consists of showing the security of these applications in the easy-to-handle BF-RPM/ICM/GGM,
and then using Theorem 1 to translate the resulting bound to the AI-RPM/ICM/GGM. Most of
BF proofs are remarkably straightforward extensions of the traditional proofs (without auxiliary
input), which is a great advantage of the pre-sampling methodology over other approaches, such as
compression-based proofs.

Computational security. Note that, unlike compression-based techniques [19, 16], pre-sampling
can be applied to computational reductions, by “hardwiring” the pre-sampling set of size P into
the attacker breaking the computational assumption. However, this means that P cannot be made
larger than the maximum allowed running time t of such an attacker. Since standard pre-sampling
incurs additive cost Ω(ST/P ), one cannot achieve final security better that ST/t, irrespective of
the value of ε in the (t, ε)-security of the corresponding computational assumption.

Fortunately, the multiplicative variant of pre-sampling for unpredictability applications sets the
list size to be roughly P ≈ ST , which is polynomial for polynomial S and T and can be made
smaller than the complexity t of the standard-model attacker for the computational assumption
used. Furthermore, even though the security of public-key encryption is not an unpredictability
application, the analysis in Section 6 shows a way to use multiplicative pre-sampling for the part
that involves the reduction to a computational assumption.

1.3 Related Work

Tessaro [50] also adapted the presampling technique by Unruh to the random-permutation model;
the corresponding bound is suboptimal, however. De et al. [17] study the effect of salting for invert-
ing a permutation as well as for a specific pseudorandom generator based on one-way permutations.

Corrigan-Gibbs and Kogan [16], investigate the power of preprocessing in the GGM. Besides
deriving security bounds for a number of important GGM applications, they also provide new
attacks for DL (based on [38, 5]), MDL, and sqDDH.

The most relevant papers in the AI-ROM are those by Unruh [51], Dodis et al. [19], and Coretti
et al. [15]. Chung et al. [14] study the effects of salting in the design of collision-resistant hash
functions, and used Unruh’s pre-sampling technique to argue that salting defeats pre-processing in
this important case. However, they did not focus on the exact security and obtained suboptimal
bounds (compared to the expected “birthday” bound obtained by [19]). Using salting to obtain non-
uniform security was also advocated by Mahmoody and Mohammed [37], who used this technique
for obtaining non-uniform black-box separation results.

The realization that multiplicative error is enough for unpredictability applications and can lead
to non-trivial savings, is related to the work of Dodis et al. [20] in the context of improved entropy
loss of key derivation schemes.
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2 Capturing the Models

This section explains how the various idealized models considered in this paper—the ideal-cipher-
model (ICM), the random-permutation model (RPM), and the generic-group model (GGM)—are
captured. Attackers in these models are modeled as two-stage attackers A = (A1,A2), and ap-
plications as (single-stage) challengers C. Both A and C are given access to an oracle O. Oracles
O have two interfaces pre and main, where pre is accessible only to A1, which may pass auxiliary
information to A2, and both A2 and C may access main. In certain scenarios it is also useful to
consider an additional interface main-c that is only available to the challenger C.

Notation. Throughout this paper, P , K, N , and M are natural numbers and [x] = {0, . . . , x− 1}
for x ∈ N. For applications in the generic-group model, [N ] is identified with the cyclic group ZN .
Furthermore, denote by PN the set of permutations π : [N ]→ [N ] and by IN,M the set of injections
f : [N ]→ [M ].

Oracles. An oracle O has two interfaces O.pre and O.main, where O.pre is accessible only once
before any calls to O.main are made. Some oracles may also have an additional interface O.main-c.
Oracles used in this work are:

� Auxiliary-input ideal cipher AI-IC(K,N): Samples a random permutation πk ← PN for
each k ∈ [K]; outputs all πk at O.pre; answers both forward and backward queries (k, x) ∈ [N ]
at O.main by the corresponding value πk(x) ∈ [N ] or π−1

k (x) ∈ [N ], respectively.

� Bit-fixing ideal cipher BF-IC(P,K,N): Takes a list at O.pre of at most P query/answer
pairs (without collisions for each k); samples a random permutation πk ← PN consistent with
said list for each k; the other interfaces behave as with AI-IC.

� Auxiliary-input random permutation AI-RP(N): Special case of an auxiliary-input ideal
cipher with K = 1.

� Bit-fixing random permutation BF-RP(P,N): Special case of a bit-fixing ideal cipher
with K = 1.

� Auxiliary-input generic group AI-GG(N,M): Samples a random injection σ ← IN,M ;
outputs all of σ at O.pre; answers forward queries x ∈ [N ] at O.main by the corresponding
value σ(x) ∈ [N ]; answers group-operation queries (s, s′) at O.main as follows: if s = σ(x) and
s′ = σ(y) for some x, y, the oracle replies by σ(x + y) and by ⊥ otherwise; answers inverse
queries s at interface O.main-c by returning σ−1(s) if s is in the range of F and by ⊥ otherwise.

� Bit-fixing generic group BF-GG(P,N,M): Samples a random size-N subset Y of [M ] and
outputs Y at O.pre; takes a list at O.pre of at most P query/answer pairs without collisions
and all answers in Y; samples a random injection σ ← IN,M with range Y and consistent with
said list; the other interfaces behave as with AI-GG.

� Standard model: None of the interfaces offer any functionality.

The parameters P , K, N , and M are occasionally omitted in contexts where they are of no relevance.
Similarly, whenever evident from the context, explicitly specifying which interface is queried is
omitted. Note that the non-auxiliary-input versions of the above oracles can be defined by not
offering any functionality at O.pre. However, they are not used in this paper.
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Attackers with oracle-dependent advice. Attackers A = (A1,A2) consist of a preprocessing
procedure A1 and a main algorithm A2, which carries out the actual attack using the output of the
preprocessing. Correspondingly, in the presence of an oracle O, A1 interacts with O.pre and A2

with O.main.

Definition 1. An (S, T )-attacker A = (A1,A2) in the O-model consists of two procedures

� A1, which is computationally unbounded, interacts with O.pre, and outputs an S-bit string,
and

� A2, which takes an S-bit auxiliary input and makes at most T queries to O.main.

In certain contexts, if additional restrictions, captured by some parameters p, are imposed on A2

(e.g., time and space requirements of A2 or a limit on the number of queries of a particular type
that A2 makes to a challenger it interacts with), A is referred to as (S, T, p)-attacker.

Applications. Let O be an arbitrary oracle. An application G in the O-model is defined by
specifying a challenger C, which is an oracle algorithm that has access to O.main as well as possibly
to O.main-c, interacts with an attacker A = (A1,A2), and outputs a bit at the end of the interaction.
The success of A on G in the O-model is defined as

SuccG,O(A) := P
[
AO.main

2 (AO.pre
1 )↔ CO.main,O.main-c = 1

]
,

where AO.main
2 (AO.pre

1 ) ↔ CO.main,O.main-c denotes the bit output by C after its interaction with the
attacker. This work considers two types of applications, captured by the next definition.

Definition 2. For an indistinguishability application G in the O-model, the advantage of an at-
tacker A is defined as

AdvG,O(A) := 2

∣∣∣∣SuccG,O(A)− 1

2

∣∣∣∣ .
For an unpredictability application G, the advantage is defined as

AdvG,O(A) := SuccG,O(A) .

An application G is said to be ((S, T, p), ε)-secure in the O-model if for every (S, T, p)-attacker A,

AdvG,O(A) ≤ ε .

Combined query complexity. In order to state and prove Theorem 1 in Section 3, the inter-
action of some attacker A = (A1,A2) with a challenger C in the O-model must be “merged” into

a single entity D = (D1,D2) that interacts with oracle O. That is, D(·)
1 := A(·)

1 and D(·)
2 (z) :=

A(·)
2 (z)↔ C(·) for z ∈ {0, 1}S . D is called the combination of A and C, and the number of queries it

makes to its oracle is referred to as the combined query complexity of A and C. For all applications
in this work, there exists an upper bound T comb

G = T comb
G (S, T, p) on the combined query complexity

of any attacker and the challenger.
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3 Auxiliary Input vs. Bit Fixing

Since dealing with idealized models with auxiliary input (AI) directly is difficult, this section es-
tablishes useful connections between AI models and their bit-fixing (BF) counterparts, which are
much less cumbersome to analyze. Specifically, for ideal ciphers, random permutations (as special
cases of ideal ciphers), and generic groups, Theorem 1 below relates the advantage of attackers in
a BF model to that in the corresponding AI model, allowing to translate the security of (1) any
application at an additive security loss and of (2) unpredictability applications at a multiplicative
security loss from the BF setting to the AI setting.

Theorem 1. Let P,K,N,M ∈ N, N ≥ 16, and γ > 0. Moreover, let

(AI,BF) ∈ {(AI-IC(K,N),BF-IC(P,K,N)), (AI-GG(N,M),BF-GG(P,N,M))} .

Then,

1. if an application G is ((S, T, p), ε′)-secure in the BF-model, it is ((S, T, p), ε)-secure in the
AI-model, where

ε ≤ ε′ +
6(S + log γ−1) · T comb

G

P
+ γ ;

2. if an unpredictability application G is ((S, T, p), ε′)-secure in the BF-model for

P ≥ 6(S + log γ−1) · T comb
G ,

it is ((S, T, p), ε)-secure in the AI-model for

ε ≤ 2ε′ + γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof Outline

This section contains a brief outline of the proof of Theorem 1. The full proof of Theorem 1 is
provided in Appendix A; it follows the high-level structure of the proof in [15], where a similar
theorem is shown for the random-oracle model.

1. Leaky sources vs. dense sources: A (K,N)-cipher source X is the random variable cor-
responding to the function table of a cipher F : [K]× [N ]→ [M ]. It turns out that if X has
min-entropy H∞(X) = K logN !− S for some S, it can be replaced by a convex combination
of so-called dense sources, which are fixed on a subset of the coordinates and have almost full
min-entropy everywhere else:

Definition 3. A (K,N)-cipher source X is called (P̄ , 1 − δ)-dense for P̄ = (P1, . . . , PK) ∈
[N ]K if it is fixed on at most Pk coordinates (k, ·) for each k ∈ [K] and if for all families
I = {Ik}k∈[K] of subsets Ik of non-fixed coordinates (k, ·),

H∞(XI) ≥ (1− δ)
K∑
k=1

log(N − Pk)|Ik| ,

where ab := a!/(a−b)! and XI is X restricted to the coordinates in I. X is called (1−δ)-dense
if it is (0, 1− δ)-dense, and P̄ -fixed if it is (P̄ , 1)-dense.
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More concretely, one can prove that a cipher sourceX as above is close to a convex combination
of finitely many (P̄ ′, 1− δ)-dense sources for some P̄ = (P1, . . . , PK) satisfying

K∑
k=1

Pk ≈
S

δ
.

The proof is an adaptation of the proof of the corresponding lemma for random functions
in [15], the difference being that the version here handles cipher sources.

2. Dense sources vs. bit-fixing sources: Any dense source has a corresponding bit-fixing
source, which is simply a function table chosen uniformly at random from all those that agree
with the P fixed positions. It turns out that a T -query distinguisher’s

� advantage at telling a dense source and its corresponding bit-fixing source apart can be
upper bounded by approximately Tδ, and that its

� probability of outputting 1 is at most a factor of approximately 2Tδ larger when interacting
with the bit-fixing as compared to the dense source.

Compared to the case of random functions [15], some additional care is needed to properly
handle inverse queries. Given the above, by setting

δ ≈ S

P
,

one obtains additive and multiplicative errors of roughly ST/P and 2ST/P , respectively.

3. From bit fixing to auxiliary input: The above almost immediately implies that an appli-
cation that is ((S, T ), ε)-secure in the BF-ICM is ((S, T ), ε′)-secure in the AI-ICM for

ε′ ≈ ε+
ST

P

and even
ε′ ≈ 2ε

if it is an unpredictability application, by setting P ≈ ST . Observe that for the additive case,
the final security bound in the AI-ICM is obtained by choosing P in a way that minimizes
ε(P ) + ST/P .

For the generic-group model, the proof proceeds similarly, with two important observations:

(a) once the range is fixed, a random injection behaves like a random permutation, which is
covered by ideal ciphers as a special case;

(b) the group-operation oracle can be implemented by three (two inverse and one forward)
calls to the injection.

4 Non-Uniform Bounds for Hash Functions and Symmetric Primitives

This section derives non-uniform security bounds for a number of primitives commonly analyzed in
either the random-permutation model (RPM) or the ideal-cipher model (ICM). The primitives in
question can be grouped into basic, sponge-based, and Merkle-Damg̊ard-based applications.

In the following, for primitives in the RPM, π, π−1 : [N ]→ [N ] denote the permutation and its
inverse to which AI-RP(N) and BF-RP(P,N) offer access at interface main. Similarly, for primitives
in the ICM E,E−1 : [K]× [N ]→ [N ] denote the ideal cipher and its inverse to which AI-IC(K,N)
and BF-IC(P,K,N) offer access at interface main (cf. Section 2).
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Basic applications. The security of the following basic applications in the RPM resp. ICM is
considered:

� One-way permutation inversion (OWP): Given π(x) for an x ∈ [N ] chosen uniformly at
random, an attacker has to find x.

� Even-Mansour cipher (EM): The PRF security of the Even-Mansour cipher

EMπ,s(m) := π(m⊕ s2)⊕ s1

with key s = (s1, s2).

� Ideal cipher as block cipher (ICM): The PRF security of the ideal cipher used as a block
cipher directly.

� PRF security of Davies-Meyer (PRF-DM): The PRF security of the Davies-Meyer (DM)
compression function DME

DME(h,m) := E(m,h)⊕ h

when h is used as the key.

� A collision-resistant variant of Davies-Meyer (CRHF-DM): The collision-resistance
of a salted variant

DME,a,b(h,m) := E(m,h) + am+ bh

of the DM compression function, where the first-stage attacker A1 is unaware of the public
random salt value (a, b).

Sponge-based constructions. The sponge construction is a popular hash-function design paradigm
and underlies the SHA-3 hash-function standard. For N = 2n, r ≤ n, c = n−r, it hashes a message
m = m1 · · ·m` consisting of r-bit blocks mi to y := Spongeπ,IV(m) as follows, where IV ∈ {0, 1}c is
a c-bit initialization vector (IV):1

1. Set s0 ← 0r‖IV.

2. For i = 1, . . . , `: set si ← π(mi ⊕ s(1)
i−1‖s

(2)
i−1), where s

(1)
i−1 denotes the first r bits of si−1 and

s
(2)
i−1 the remaining c bits.

3. Output y := s
(1)
` .

This work considers the following applications based on the sponge paradigm:

� Collision-resistance: The collision resistance of the sponge construction for a randomly
chosen public IV unknown to the first-stage attacker A1.

� PRF security: The PRF security of the sponge construction with the IV serving as the key.

� MAC security: The MAC security of the sponge construction with the IV serving as the
key.

1To keep things simple, no padding is considered here.
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Merkle-Damg̊ard constructions with Davies-Meyer: Another widely used approach to the
design of hash functions is the well-known Merkle-Damg̊ard paradigm. For a compression function
f : [N ]× [K]→ [N ] and an IV IV ∈ [N ], a message m = m1 · · ·m` consisting of ` blocks mi ∈ [K],
is hashed to y := MDf,IV(m) as follows:2

1. Set h0 ← IV.
2. For i = 1, . . . , `: set hi ← f(hi−1,mi).
3. Output y := h`.

This work considers the Merkle-Damg̊ard construction with f instantiated by the Davies-Meyer
compression function

DME(h,m) := E(m,h)⊕ h ,

resulting in the Merkle-Damg̊ard-with-Davies-Meyer function (MD-DM)

MD-DME,IV(m) := MDDME ,IV(m) ,

which underlies the SHA-2 hashing standard. This work considers the following applications based
on the MD-DM hash function:

� Collision-resistance: The collision resistance of the MD-DM construction for a randomly
chosen public IV unknown to the first-stage attacker A1.

� PRF security: The PRF security of the NMAC/HMAC variants

NMACE,k(m) := DME(k1,MD-DME,k2(m))

of the MD-DM construction with key k = (k1, k2).

� MAC security: The MAC security of the NMAC/HMAC variant of the MD-DM construc-
tion.

Discussion. The asymptotic security bounds derived for the applications listed above are sum-
marized in Table 1. No non-uniform bounds were previously known for any of these primitives,
except for OWPs, for which the same bound was derived by De et al. [17] using an involved,
compression-based proof.

As can be seen from Table 1, a matching attack, derived by Hellman et al. [33], is known for
OWPs. Moreover, for CRHFs based on sponges and Merkle-Damg̊ard with Davies-Meyer, a variant
of a recent attack by Coretti et al. [15] closely matches the derived bounds.3 For the remaining
applications, significant gaps remain: For indistinguishability applications such as BI-IC and PRFs,
adapting an attack on PRGs by De et al. [17] results in an advantage of roughly

√
S/N . For the

MAC applications, the best attacks are based on rainbow tables for inverting functions [33].

All security bounds are derived by following the bit-fixing approach: the security of a partic-
ular application is assessed in the bit-fixing (BF) RPM/ICM, and then Theorem 1 is invoked to
obtain a corresponding bound in the auxiliary-input (AI) RPM/ICM and similarly for the random-
permutation model. Deriving security bounds in the BF-ICM/RPM turns out to be quite straight-
forward, and all of the proofs closely follow the corresponding proofs in the ICM/RPM without

2As with the sponge construction, for simplicity no padding is considered here.
3The original attack by [15] was devised for Merkle-Damg̊ard with a random compression function.
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auxiliary input; intuitively, the only difference is that one needs to take the list L of the at most P
input/output pairs where A1 fixes the random permutation or the ideal cipher.

The security proofs for one-way permutations, the ideal cipher as block cipher, the collision-
resistant variant of Davies-Meyer, collision-resistance of the sponge construction, and the PRF and
MAC security of NMAC/HMAC with Davies-Meyer are provided after the brief overview below.
The precise definitions of the remaining applications as well as the corresponding theorems and
proofs can be found in Sections B, C, and D of the appendix.

4.1 One-Way Permutations

The one-way-permutation inversion application GOWP is defined via the challenger COWP that ran-
domly and uniformly picks an x ∈ N , passes y := π(x) to the attacker, and outputs 1 if and only if
the attacker returns x.

Theorem 2 below provides an upper bound on the success probability of any attacker in inverting
π in the AI-RP′-model, which is defined as the AI-RP-model, except that no queries to π−1 are
allowed. The bound matches known attacks (up to logarithmic factors) and are also shown by De
et al. [17] via a more involved compression argument.

Theorem 2. The application GOWP is
(

(S, T ), Õ
(
ST
N

))
-secure in the AI-RP′(N)-model for N ≥ 16.

Proof. It suffices to show that GOWP is
(
(S, T ), O

(
P+T
N

))
-secure in the BF-RP′(P,N)-model. Then,

by observing that T comb
GOWP = T + 1, setting γ := 1/N and P = 2(S + logN)(T + 1) = Õ (ST ), and

applying Theorem 1, the desired conclusion follows.

Assume P + T < N/2 since, otherwise, the bound of O ((P + T )/N) holds trivially. Let A =
(A1,A2) be an (S, T )-attacker. Without loss of generality, assume A is deterministic and A2

makes distinct queries and always queries its output. Let L = {(x′1, y′1), . . . , (x′P , y
′
P )} be the list

submitted by A1. Recall that the challenger uniformly and randomly picks an x from [N ] and
outputs y := π(x). Let x1, . . . , xT denote the queries made by A2 and let yi := π(xi) for i ∈ [T ] be
the corresponding answers. Let E be the event that y appears in L namely x = x′i for some i ∈ [P ].
Note that

SuccG,BF-RP(A) ≤ P[E ] + P[∃i ∈ [T ], xi = x|¬E ]

≤ P[E ] +
T∑
i=1

P[xi = x|¬E , x1 6= x, . . . , xi−1 6= x] .

Observe that P[E ] ≤ P/N . Moreover, conditioned on y /∈ L and any fixed choice of (x1, y1), . . . , (xi−1, yi−1),
xi is a deterministic value while x is uniformly distributed over [N ]\{x1, . . . , xi−1, x

′
1, . . . , x

′
P }. Thus,

P[xi = x|¬E , x1 6= x, . . . , xi−1 6= x] ≤ 1/(N − P − T ) ≤ 2/N ,

where the second inequality uses P+T < N/2. Therefore, SuccG,BF-RP(A) ≤ P
N + 2T

N = O(P+T
N ).

4.2 The Ideal Cipher as a Block Cipher

The ideal cipher can be directly used as a block cipher even in the presence of leakage. The
corresponding application GBC-IC is defined via the following challenger CBC-IC: it initially chooses
random bit b← {0, 1}; if b = 0, it picks a key k∗ ← [K] uniformly at random, and answers forward
queries m ∈ [N ] made by A2 by the value E(k∗,m) and inverse queries c ∈ [N ] by E−1(k∗, c); if
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b = 1, forward queries m are answered by f(m) and inverse queries c by f−1(c), where f is an
independently chosen uniform random permutation; the attacker wins if and only if he correctly
guesses b.

Theorem 3. Application GBC-IC is
(

(S, T, q), Õ
(
T
K +

√
S(T + q)/K

))
-secure in the AI-IC(K,N)-

model for N ≥ 16.

Proof. It suffices to show that GBC-IC is ((S, T, q), O ((T + P )/K))-secure in the BF-IC(P,K,N)-
model since then the theorem follows by observing that T comb

GBC-IC = T + q, setting γ := 1/N and

P :=
√

(S + logN)(T + q)K = Θ̃
(√

S(T + q)K
)
,

and applying Theorem 1.

Clearly, A2 only has non-zero advantage in guessing bit b if it makes a (forward or inverse) query
involving the key k∗ chosen by the challenger or if k∗ appears in one of the prefixed query/answer
pairs. The latter occurs with probability at most P/K, whereas the former occurs with probability
at most T/(K − (T + P )) ≤ 2T/K, using that T + P ≤ K/2, an assumption one can always make
since, otherwise, GBC-IC is trivially O ((T + P )/K)-secure.

4.3 A Collision-Resistant Variant of Davies-Meyer

The plain Davies-Meyer (DM) compression function cannot be collision-resistant against non-
uniform attackers, which begs the question of if and how it can be salted to withstand non-uniform
attacks. To that end, let N = K = 2κ for some κ ∈ N and interpret [N ] as a finite field of size N .
For two values a, b ∈ [N ], let

DME,a,b(h,m) := E(m,h) + am+ bh .

Note that for a = 0 and b = 1, DME,a,b is the usual DM compression function.

The application GCRHF-DM of collision-resistance of the salted DM function is defined via the
following challenger CCRHF-DM: it picks two random values a, b ∈ [N ] and passes them to the attacker;
the attacker wins if and only if it returns two pairs (h,m) 6= (h′,m′) such that DME,a,b(h,m) =
DME,a,b(h

′,m′).

Theorem 4. GCRHF-DM is
(

(S, T ), Õ
(

(ST )2

N

))
-secure in the AI-IC(N,N)-model for N ≥ 16.

Proof. At the cost of at most 2 additional queries to E, assume that the pairs (h,m) and (h′,m′)
output by A2 are such that A2 has queried its oracle E on all points DME,a,b would query E when

evaluated on (h,m) and (h′,m′). It suffices to show that GCRHF-DM is
(

(S, T ), O
(
T 2

N + P (P+T )
N

))
-

secure in the BF-IC(P,N,N)-model. Then, by observing that T comb
GCRHF-DM = T + 2, setting γ := 1/N

and P = 2(S + logN)(T + 2) = Õ (ST ), and applying Theorem 1, the desired conclusion follows.

Set T ′ := T+2 and consider an interaction of A = (A1,A2) and CCRHF-DM in the BF-IC(P,N,N)-
model. Denote by ((k′i, x

′
i), y

′
i) for i = 1, . . . , P the query/answer pairs prefixed by A1 and by

((ki, xi), yi) for i = 1, . . . , T ′ the queries A2 makes to E. Let E be the event that there exists no
collision among the prefixed values, i.e., there exist no i 6= j such that

E(k′i, xi) + ak′i + bh′j = E(k′j , xj) + ak′j + bh′j (1)

and that b 6= 0. For any fixed i 6= j, consider two cases:
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1. ki 6= kj : in this case, the two pairs cause a collision if and only if

a =
(y′j − y′i)− b(x′i − x′j)

k′i − k′j
,

which happens with probability at most 1/N .
2. ki = kj : in this case, x′i 6= x′j , and the two pairs cause a collision if and only if b = (y′j −
y′i)/(x

′
i − x′j), which happens with probability at most 1/N as well.

Summarizing, P[¬E ] ≤ (P 2 + 1)/N = O
(
P 2/N

)
.

Moving to queries made by A2, let E ′i be the event that after the ith query made by A2, there
exists no collision between any query pair and a prefixed pair or among the query pairs themselves;
the corresponding conditions are analogous to (1). Consider the probability P[¬E ′i|E ′i−1, E ]. If the
ith query is a forward query, then a collision occurs only if yi = a(ki− kj) + b(xi−xj) + yj for some
j < i or if the analogous condition holds for a collision with a prefixed pair and some j ∈ {1, . . . , P};
if the ith query is a backward query, then a collision occurs only if

xi =
a(ki − kj)− (yj − yi)

b

for some j < i or if the analogous condition holds for a collision with a prefixed pair and some
j ∈ {1, . . . , P} (using that b 6= 0). In either case,

P[¬E ′i|E ′i−1, E ] ≤ (i− 1) + P

N − (T ′ + P )
≤ 2((i− 1) + P )

N
,

using that T ′ + P ≤ N/2, an assumption on may always make since, otherwise, the desired bound
holds trivially. Summarizing, setting E ′ := E ′T ′ ,

P[¬E ′|E ] = P[¬E ′T ′ |E ] ≤
T ′∑
i=1

P[¬E ′i|E ′i−1, E ]

≤
T ′∑
i=1

2((i− 1) + P )

N

= O

(
T 2

N
+
TP

N

)
.

Clearly, A2 only wins if E or E ′ occurs, and hence the overall security in the BF-IC(P,N,N)-

model is O
(
T 2

N + P (P+T )
N

)
.

4.4 CRHFs from Unkeyed Sponges

The applicationGCRHF-S of collision resistance for the sponge construction is defined via the following
challenger CCRHF-S: it picks an initialization vector IV ← {0, 1}c uniformly at random, passes it to
the attacker, and outputs 1 if and only if the attacker returns two messages m 6= m′ such that
Spongeπ,IV(m) = Spongeπ,IV(m′).

The following theorem provides an upper bound on the probability that an (S, T, `)-attacker
finds a collision of the sponge construction in the AI-RPM, where ` is an upper bound on the
lengths of the messages m and m′ the attacker submits to the challenger. The proof follows the
approach by Bertoni et al. [6].
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Theorem 5. Application GCRHF-S is
(

(S, T, `), Õ
(
S(T+`)2

2c + (T+`)2

2r

))
-secure in the AI-RP(N)-

model, for N = 2n = 2r+c ≥ 16.

Node graphs. A useful formalism for security proofs of sponge-based constructions is that of node
and supernode graphs, as introduced by Bertoni et al. [6]. For a permutation π : {0, 1}n → {0, 1}n,
consider the following (directed) node graph Gπ = (V,E) with V = {0, 1}r × {0, 1}c = {0, 1}n
and E = {(s, t) | π(s) = t}. Moreover, let G′π = (V ′, E′) be the (directed) supernode graph, with
V ′ = {0, 1}c and (s(2), t(2)) ∈ E′ iff ((s(1), s(2)), (t(1), t(2))) ∈ E for some s(1), t(1) ∈ {0, 1}r. Observe
that the value of Spongeπ,IV(m) for an `-block message m = m1 · · ·m` is obtained by starting at

s0 := (0r, IV) ∈ {0, 1}n in Gπ, moving to si ← π(mi ⊕ s(1)
i−1‖s

(2)
i−1) for i = 1, . . . , `, and outputting

s
(1)
` . In other words, in the supernode graph, m corresponds to a path of length ` starting at node

IV and ending at s
(2)
` , and s

(1)
1 , . . . , s

(1)
` ∈ {0, 1}

r are the values that appear on that path.

Proof. At the cost of at most 2` additional queries to π, assume that the messages m and m′ output
by A2 are such that A2 has queried its oracle π on all points Spongeπ,IV(·) would query π when
evaluated on m and m′.

It suffices to show thatGCRHF-S is
(

(S, T, `), O
(

(T+`)2

2r + (T+`)2+(T+`)P )
2c

))
-secure in the BF-RP(P,N)-

model. Then, by observing that T comb
GCRHF-S = T +2`, setting γ := 1/N and P := 2(S+logN)(T +`) =

Õ (S(T + `)), and applying Theorem 1, the desired conclusion follows.

Consider now an interaction of A2 with CCRHF-S and incrementally build the node and supernode
graphs (as defined above), adding edges whenA2 makes the corresponding (forward or inverse) query
to π, and starting with the edges that correspond to the at most P prefixed query/answer pairs.

Let Ecoll be the event that a (valid) collision occurs. Clearly, this happens if and only if there
exists a value s(1) ∈ {0, 1}r that appears as the last value on two different paths from IV. Let
Epath,i be the event that after the ith query to π, there is a unique path from IV to any node in the
supernode graph and that no prefixed supernode is reachable from IV.

Observe that when Epath := Epath,T+2` occurs, the values that appear on these paths are uniformly
random and independent since every node inside a supernode has the same probability of being
chosen. Hence,

P[Ecoll|Epath] ≤
(
T + 2`

2

)
· 2−r = O

(
(T + `)2

2r

)
.

Moreover,

P[¬Epath,i|Epath,i−1] ≤ (i+ P ) · 2r

2r+c − (i− 1 + P )
≤ i+ P

2c − (T + 2`+ P )/2r
≤ i+ P

2c−1

if the ith query is a forward query, and

P[¬Epath,i|Epath,i−1] ≤ i · 2r

2r+c − (i− 1 + P )
≤ i

2c−1

if the ith query is an inverse query, using that T + 2` + P ≤ N/2, an assumption one may always
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make since, otherwise, the lemma holds trivially. Letting T ′ := T + 2`,

P[¬Epath] = P[¬Epath,T′ ] ≤ P[¬Epath,T′ |Epath,T′−1] + P[¬Epath,T′−1]

≤
T ′∑
i=1

P[¬Epath,i|Epath,i−1] + P[Epath,0]

≤
T ′∑
i=0

(i+ P )

2c−1
= O

(
(T + `)(T + `+ P )

2−c

)
,

observing that P[Epath,0] ≤ P
2c , the probability that a node inside supernode IV is prefixed.

4.5 PRFs via NMAC with Davies-Meyer

For simplicity, let K = N . Recall that the NMAC construction using the Davies-Meyer compression
function is defined as

NMACE,k(m) := DME(k1,MD-DME,k2(m))

where k = (k1, k2).

The application GPRF-MD-N of PRF security for NMAC is defined via the following challenger
CPRF-MD-N: it picks a random bit b← {0, 1} and a key k ← [N ]; when the attacker queries a message
m = m1 · · ·m` consisting of blocks mi, if b = 0, the challenger answers by NMACE,k(m), and, if
b = 1, the challenger answers by a value chosen uniformly at random for each m. The attacker
wins, if and only if he correctly guesses the bit b.

The following theorem provides an upper bound on the advantage of an (S, T, q, `)-attacker in
distinguishing the sponge construction from a random function in the AI-ICM, where q is an upper
bound on the number of messages m the attacker submits to the challenger and ` is an upper bound
on the length of those messages.

Theorem 6. GPRF-MD-N is

(
(S, T, q, `), Õ

(
Tq2`
N +

√
S(T+`q)q2`

N

))
-secure in the AI-IC(N,N)-model,

for N ≥ 16.

Proof. Follows from Lemma 7 by observing that T comb
GPRF-MD-N = T + q`, setting γ := 1/N and P :=√

S(T+q`)N
q2`

, and applying Theorem 1.

Lemma 7. For any P,N ∈ N, GPRF-MD-N is
(
(S, T, q, `), O

(
q2`T+P

N

))
-secure in the BF-IC(P,N,N)-

model.

The proof of Lemma 7 uses the fact the Merkle-Damg̊ard construction with the DM function is
almost-universal in the BF-ICM; this property is captured by the application GAU-MD defined by
the following challenger CAU-MD: It expects A2 to submit two messages m and m′. Then, it picks a
random key k. The attacker wins if MD-DME,k(m) = MD-DME,k(m

′).

The proof of almost-universality uses Lemma 24, which states that the DM function is a PRF
when keyed by h .

Lemma 8. For any P,N ∈ N, GAU-MD is
(
(S, T, q, `), O

(
`T+P

N

))
-secure in the BF-IC(P,N,N)-

model.
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Proof (sketch). Consider a sequence of ` hybrid experiments, where in the ith hybrid, instead of
evaluating MD-DME,k(m) for m = m1 · · ·m`, the challenger computes MD-DME,k′(mi+1 · · ·m`),
where k′ ← f(m1 · · ·mi) for a uniformly random function f : [N ]i → N . By the PRF security
of the Davies-Meyer function (cf. Lemma 24), the distance between successive hybrids is at most
8(T + P )/N . Moreover, in the last hybrid, the success probability of A2 is at most 1/N .

Proof (of Lemma 7, sketch). Using the PRF security of the Davies-Meyer (DM) function (cf. Lemma 24),
it suffices to show security in the hybrid experiment in which the outer DM evaluation is replaced
by a uniform random function f . In this hybrid experiment, A2 only has non-zero advantage in
guessing bit b if two of its q queries to the challenger cause a collision right before f . Let ε be the
probability that this event occurs.

Consider the following attacker A′ := (A1,A′2) against the CAU-MD: A′2 runs A2 internally,
forwarding its oracle queries to and back from its own oracle, and answering every query A2 would
make to its challenger by a fresh uniformly random value. Once A2 terminates, A′2 picks a pair of
queries made by A2 uniformly at random and subits it to its own challenger. It is easily seen that the
advantage of A′2 is at least ε/q2. Therefore, the final PRF security of NMAC is q2`(T + P )/N .

4.6 MACs via NMAC with Davies-Meyer

The application GMAC-MD-N of MAC security of the NMAC construction is defined via the following
challenger CMAC-MD-N: it initially picks a random key k ← [N ]; when the attacker queries a message
m = m1 · · ·m` consisting of blocks mi, the challenger answers by MD-DMO,k(m). The attacker wins
if he submits a pair (m, y) with MD-DMO,k(m) = y for a previously unqueried m.

Theorem 9. GMAC-MD-N is
(

(S, T, q, `), Õ
(
q2`S(T+q`)

N

))
-secure in the AI-IC(N)-model, for N ≥ 16.

Proof. It suffices to show that GMAC-MD-N is
(
(S, T, q, `), O

(
q2`T+P

N

))
-secure in the BF-IC(P,N)-

model. Then, by observing that T comb
GMAC-MD-N = T + q`, setting γ := 1/N and P = 2(S + logN)(T +

q`) = Õ (S(T + q`)) and applying Theorem 1, the desired conclusion follows.

The bound in the BF-IC(P,N)-model follows immediately from Lemma 7 and the fact that
with a truly random function, the adversary’s success probability at breaking the MAC is at most
q/N .

4.7 Extensions to HMAC

Recall that, for simplicity, K = N . The HMAC construction using the Davies-Meyer compression
function is defined as

HMACE,k(m) := MD-DME,IV(k ⊕ opad,MD-DME,IV(k ⊕ ipad,m)) ,

where IV ∈ [N ] is some fixed initialization vector. As usual, results for NMAC carry over to HMAC,
even in the presence of leakage about the ideal cipher. More precisely, the HMAC construction can
be seen as a special case of the NMAC by observing that

HMACE,k(m) = NMACE,k1,k2(m)

for k1 = E(k ⊕ ipad, IV) ⊕ IV and k2 = E(k ⊕ opad, IV) ⊕ IV. Hence, in the BF-IC-model, unless
(k⊕ opad, IV) or (k⊕ ipad, IV) are prefixed by A1 or queried by A2, which happens with probability
O ((T + P )/N), the NMAC analysis applies.
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5 The Generic-Group Model with Preprocessing

This section analyzes the hardness of various problems in the generic-group model (GGM) with
preprocessing. Specifically, the following applications are considered, where N ∈ N is an arbitrary
prime and σ the random injection used in the GGM:

� Discrete-logarithm problem (DL): Given σ(x) for a uniformly random x ∈ [N ], find x.

� Multiple-discrete-logarithms problem (MDL): Given (σ(x1), . . . , σ(xt)) for uniformly
random and independent xi ∈ [N ], find (x1, . . . , xt).

� Computational Diffie-Hellman problem (CDH): Given (σ(x), σ(y)) for uniformly ran-
dom and independent x, y ∈ [N ], find xy.

� Decisional Diffie-Hellman problem (DDH): Distinguish (σ(x), σ(y), σ(xy)) from (σ(x), σ(y), σ(z))
for uniformly random and independent x, y, z ∈ [N ].

� Square decisional Diffie-Hellman problem (sqDDH): Distinguish (σ(x), σ(x2)) from
(σ(x), σ(y)) for uniformly random and independent x, y ∈ [N ].

� One-more-discrete-logarithm problem (OM-DL): Given access to an oracle creating
DL challenges σ(xi), for uniformly random and independent xi ∈ [N ], as well as a DL oracle,
make t queries to the challenge oracle and at most t − 1 queries to the DL oracle, and solve
all t challenges, i.e., find (x1, . . . , xt).

� Knowledge-of-exponent assumption (KEA): The KEA assumption states that if an
attacker A is given σ(x), for x ∈ [N ] chosen uniformly at random, and outputs A and Â with
A = σ(a) and Â = σ(ax), then it must know discrete logarithm a of A. This is formalized by
requiring that for every A there exist an extractor XA that is run on the same random coins
as A and must output the value a.

The asymptotic security bounds derived for the above applications are summarized in Table 2.
The bounds for DL, MDL, CDH, DDH, and sqDDH match previously known bounds from [16, 38, 5];
they are tight in that there is a matching attack, except for the DDH problem, for which, remarkably,
closing the gap remains an open problem. The bounds for OM-DL and KEA are new.

Note that all bounds with preprocessing are considerably worse than those without. For example,
in the classical GGM, DL is secure up to roughly N1/2 queries, whereas it becomes insecure for
S = T = N1/3 in the AI-GGM.

All security bounds are derived by following the bit-fixing approach: the security of a particular
application is assessed in the bit-fixing (BF) GGM, and then Theorem 1 is invoked to obtain a
corresponding bound in the auxiliary-input (AI) GGM. This approach features great simplicity
since deriving security bounds in the BF-GGM turns out to be remarkably straightforward, and all
of the proofs closely follow the original proofs in the classical GGM without preprocessing; the only
difference is that one needs to take the list L of the at most P input/output pairs where A1 fixes
σ into account.

Besides simplicity, another advantage of the bit-fixing methodology is applicability: using
bit-fixing, in addition to recovering all of the bounds obtained in [16] via much more involved
compression-based proofs, one also easily derives bounds for applications that may be challenging
to derive using compression-based proofs, such as, e.g., the knowledge-of-exponent assumption.
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As representative examples, the proofs for the DL problem and the KEA are provided below.
Readers familiar with the original proofs by Shoup [48] for DL and by Abe and Fehr [1] and
Dent [18] for the KEA may immediately observe the similarity. The precise definitions of the
remaining applications as well as the corresponding theorems and proofs can be found in Section E
of the appendix .

5.1 Discrete Logarithms

The discrete-logarithm application GDL is defined via the challenger CDL that randomly and uni-
formly picks an x ∈ [N ], passes σ(x) to the attacker, and outputs 1 if and only if the attacker
returns x.

Theorem 10 below provides an upper bound on the success probability of any attacker at com-
puting discrete logarithms in the AI-GGM. The bound is matched by the attack of Mihalcik [38]
and Bernstein and Lange [5]; a variation of said attack has recently also been presented by Corrigan-
Gibbs and Kogan [16].

Theorem 10. GDL is ((S, T ), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(
ST 2

N
+
T 2

N

)
.

Proof. It suffices to show that the application GDL is
(

(S, T ), O
(
TP+T 2

N

))
-secure in the BF-GG(P,

N,M)-model. Then, by observing that T comb
GDL = T + 1, setting γ := 1/N and P = 6(S+ logN)(T +

1) = Õ (ST ), and applying the second part of Theorem 1, the desired conclusion follows.

Consider now the interaction of A = (A1,A2) with CDL in the BF-GG-model. Recall that the
BF-GG-oracle outputs the range Y of the underlying random injection σ to A1 via interface pre.
Condition on a particular realization of this set for the remainder of the proof.

Define the following hybrid experiment involving A1 and A2:

� For each of the at most P query/answer pairs (a′, s′) where A1 fixes σ, define a (constant)
polynomial v(X) := a′ and store the pair (v, s′).

� To create the challenge, choose a value s∗ uniformly at random from all unused values in Y,
define the polynomial u∗(X) := X, and store (u∗, s∗).

� A forward query a by A2 to BF-GG is answered as follows: define the (constant) polynomial
u(X) := a, choose a value s uniformly at random from all unused values in Y, store the pair
(u, s), and return s.

� A group-operation query (s1, s2) by A2 is answered as follows:

– If s1 or s2 is not in Y, return ⊥.

– If s1 has not been recorded, choose a random unused a ∈ [N ], define the (constant)
polynomial u(X) := a, and store the pair (u, a). Proceed similarly if s2 has not been
recorded. Go to the next item.

– Let u1 and u2 be the polynomials recorded with s1 and s2, respectively. If, for u′ :=
u1+u2, a pair (u′, s′) has been recorded, return s′. Otherwise, choose a value s′ uniformly
at random from all unused values in Y, store the pair (u′, s′), and return s′.
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� When A2 outputs a value x′, pick a value x ∈ [N ] uniformly at random and output 1 if and
only if x′ = x.

Observe that the hybrid experiment only differs from the original one if for a group-operation query
(s1, s2), u′(x) = v(x) for some recorded v or u′(x) = u(x) for some recorded u—and similarly for the
polynomial u∗ corresponding to the challenge. Since in the hybrid experiment, x is chosen uniformly
at random at the end of the execution, the probability of this event is at most ((T+1)P+(T+1)2)/N
by the Schwartz-Zippel Lemma (cf. Lemma 37 in Section G of the appendix) and a union bound.
Moreover, in the hybrid experiment, the probability that x′ = x is 1/N . The theorem follows.

5.2 Knowledge-of-Exponent Assumption

Informally, the knowledge-of-exponent assumption (KEA) states that if an attacker A is given
(h, hx), for a generator h of a cyclic group of order N and x ∈ [N ] chosen uniformly at random,
and outputs group elements A and Â with Â = Ax, then it must know discrete logarithm a of A.
This is formalized by requiring that for every A there exist an extractor XA that is run on the same
random coins as A and must output the value a.

The above is captured in the GGM by considering the following experiment ExpOA,XA parameter-
ized by an attackerA = (A1,A2), an extractor XA, and an oracleO ∈ {AI-GG(N,M),BF-GG(N,M)}:

1. Run A1 to obtain z ← AO1 .

2. Choose x ∈ [N ] uniformly at random, let y ← σ(x), pick random coins ρ, and run

(a) A2 to get (A, Â)← A2(z, y; ρ), and

(b) XA to get a← XA(z, y; ρ).

3. Output 1 if and only if A = σ(a′) and Â = σ(a′x) for some a′, but a 6= a′.

The KEA says that for every attacker A there exists an extractor XA such that the probability
of the above experiment outputting 1 is negligible. The following theorem is equivalent to saying
that the KEA holds in the AI-GGM.

Theorem 11. For every attacker A = (A1,A2), there exists an extractor XA such that

P[ExpOA,XA = 1] ≤ Õ

(
ST 2

N

)
.

Sketch. The extractor XA internally runs A2 on the inputs received and keeps track of A2’s oracle
queries using polynomials as in the proof of Theorem 10. If at the end the polynomials uA and uÂ
corresponding to A2’s outputs (A, Â) have the form uA(X) = a and uÂ(X) = aX, then XA outputs
a and otherwise ⊥.

Observe that if the experiment outputs 1, then

� uÂ 6= X · uA since A2 only creates polynomials of degree at most 1, but

� uÂ(x) = x · uA(x) for the challenge x.

Hence, the extractor only fails if at least two of the polynomials involved (including uÂ and X ·uA)
collide on x, which is already analyzed in the proof of Theorem 10.

The experiment ExpOA,XA defining KEA does not exactly match the syntax of challenger and
attacker to which Theorem 1 caters, but it is easily checked that the corresponding proof can be
adapted to fit ExpOA,XA .
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6 Computationally Secure Applications

A main advantage of the pre-sampling methodology over other approaches (such as compression)
to dealing with auxiliary-input in idealized models is that it also applies to applications that rely
on computational hardness assumptions. To illustrate this fact, this section considers a public-
key encryption scheme based on trapdoor functions (cf. Section F for a definition)by Phan and
Pointcheval [43] in the auxiliary-input random-permutation model (AI-RPM). Other schemes in
the AI-RPM/ICM, e.g., [32, 34], can be analyzed similarly.

FDP encryption. Let F be a trapdoor family (TDF) generator. Full-domain permutation (FDP)
encryption in the random-permutation model with oracle O is defined as follows:

� Key generation: Run the TDF generator to obtain (f, f−1)← F , where f, f−1 : [N ]→ [N ].
Set the public key pk := f and the secret key sk := f−1.

� Encryption: To encrypt a message m with randomness r and public key pk = f , compute
ỹ ← f(y) for y ← O(m‖r)) and output c = ỹ.

� Decryption: To decrypt a ciphertext c = y with secret key sk = f−1, compute m‖r ←
O−1(f−1(y)) and output m.

The following theorem relates to the CPA security (cf. Section F for a definition) of FDP encryption
in the AI-RPM.

Theorem 12. Let Π be FDP encryption with F . If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure, then, for
any T ∈ N, GPKE,Π is ((S, T, t, s), ε)-secure in the AI-RP(N,N)-model, where

ε = Õ

(
ε′ +

√
ST

2ρ

)
and S = S′ − Õ (ST ), t = t′ − Õ (ttdf · T ), and s = s′ − Õ (ST ), where ttdf is the time required to
evaluate the TDF.

The straightforward approach to proving the security of FDP encryption in the AI-RPM would
be to analyze the scheme in the BF-RPM with list size P and then use the general part of Theorem 1
to obtain a bound in the AI-RPM. However, such an approach, due to the additive error in the
order of ST/P would require a very large list and therefore make the reduction to TDF security
extremely loose.

Instead, the actual proof, which is sketched in Appendix F, follows the same high-level structure
as that of TDF encryption in the AI-ROM, analyzed in [15]:

1. It first considers a hybrid experiment that is only distinguishable from the original CPA
experiment if the attacker queries a particular value to the random permutation. To bound
the probability of this event occurring, the proof moves to the BF-RPM and the analysis
there—which involves the reduction to TDF security—is carried back to the AI-RPM via the
unpredictability part of Theorem 1. This allows the list size to remain a moderate P ′ ≈ ST
and hence for a tight reduction.

2. To analyze the advantage of the attacker in the hybrid experiment, the BF-RPM is used again,
but using the general part of Theorem 1, which requires a larger list size P . However, since
this second step involves no reduction to TDF security and is purely information-theoretic,
this does not pose a problem.
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A Auxiliary Input vs. Bit Fixing: Proof

This section contains the proof of Theorem 1. To that end one first shows that any ideal cipher
(IC) about which an attacker may have a certain amount of auxiliary information can be replaced
by a suitably chosen convex combination of so-called dense ICs (cf. Definition 3 and Lemma 13
in Section A.1). In turn, dense ICs can be replaced by bit-fixing ICs; this substitution comes at
the price of either an additive term to the distinguishing advantage or a multiplicative one to the
probability that an attacker outputs 1 (cf. Lemma 16 in Section A.2).

With the above one can immediately prove Theorem 1 for ICs—and random permutations (RPs)
as a special case. To establish the theorem for the generic-group model (GGM), one observes that
a random injection essentially becomes a permutation once the range is fixed. Therefore, the bit-
fixing result for RPs can be reused for the GGM since a group-operation query corresponds to three
queries to the underlying injection: two inverse queries and one foreward query (cf. Section A.3).

A.1 Replacing Leaky Sources by Dense Sources

A (K,N)-cipher source X is a random variable that takes on as value function tables corresponding
to functions F : [K] × [N ] → [N ], where for each k ∈ [K], F [k, ·] is a permutation. Consider the
following definition of dense cipher sources.

Definition 3. A (K,N)-cipher source X is called (P̄ , 1− δ)-dense for P̄ = (P1, . . . , PK) ∈ [N ]K if
it is fixed on at most Pk coordinates (k, ·) for each k ∈ [K] and if for all families I = {Ik}k∈[K] of
subsets Ik of non-fixed coordinates (k, ·),

H∞(XI) ≥ (1− δ)
K∑
k=1

log(N − Pk)|Ik| ,

where ab := a!/(a− b)! and XI is X restricted to the coordinates in I. X is called (1− δ)-dense if
it is (0, 1− δ)-dense, and P̄ -fixed if it is (P̄ , 1)-dense.

It turns out that cipher sources with high min-entropy are close to dense cipher sources. The
following lemma is an adaptation of the corresponding lemma for random functions due to Göös
et al. [31], who used it in the area of communication complexity. The technique was also adopted
in a paper by Kothari et al. [36], who gave a simplified argument for decomposing high-entropy
sources into bit-fixing sources with constant density (cf. Definition 3). For self-containment, a proof
is provided here.

Lemma 13. For every δ > 0, a cipher source X is γ-close to a convex combination of finitely many
(P̄ ′, 1− δ)-dense sources for some P̄ = (P1, . . . , PK) satisfying

K∑
k=1

Pk ≤
S + log 1/γ

δ · log(N/e)
,

where S = K logN !−H∞(X) is the min-entropy deficiency of X.

Proof. For ease of notation, let S := Sz and X := Xz. Suppose X is not (1− δ)-dense, as otherwise
there is nothing to show. Let Y := X and I = {Ik}k∈[K] be a maximal family of subsets such that
there exists a yI with

P[YI = yI ] > 2−(1−δ)
∑K

k=1 logN
|Ik|
, (2)
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where “maximal” means that none of the sets Ik can be extended without violating property (2).
Let Y ′ be the distribution of Y conditioned on YI = yI .

Claim 14. Y ′ is a ((|I1|, . . . , |Ik|), 1− δ)-dense IC source.

Proof. Suppose Y ′ is not ((|I1|, . . . , |Ik|), 1 − δ)-dense. Then, there exists a family J = {Jk}k∈[K]

with at least one non-empty set Jk ⊆ Ik and yJ such that

P[Y ′J = yJ ] = P[YJ = yJ |YI = yI ] > 2−(1−δ)
∑K

k=1 log(N−|Ik|)
|Jk|
.

The set family I ∪ J defined by the component-wise union now satisfies

P[YI∪J = yI∪J ] = P[YI = yI ∧ YJ = yJ ]

= P[YI = yI ] · P[YJ = yJ |YI = yI ]

> 2−(1−δ)
∑K

k=1 logN
|Ik| · 2−(1−δ)

∑K
k=1 log(N−|Ik|)

|Jk|

= 2−(1−δ)
∑K

k=1 logN
|Ik∪Jk|

.

since Ik and Jk are disjoint for every k. This, however, contradicts the maximality of I.

Claim 15.
∑K

k=1 |Ik| ≤ S/(δ log(N/e)).

Proof. For a vector yI , let ByI be the set of vectors yĪ such that yI and yĪ are a valid IC. Then, on
the one hand, H∞(Y ) ≥ K logN !− S implies that for any yI ,

P[YI = yI ] =
∑

yĪ∈ByI

P[YI = yI ∧ YĪ = yĪ ]

≤ 2
∑K

k=1 log(N−|Ik|)! · 2−(K logN !−S)

= 2
−
(∑K

k=1 logN
|Ik|−S

)
,

and, hence, H∞(YI) ≥
∑K

k=1 logN |Ik| − S. On the other hand, because YI is not (1 − δ)-dense,

H∞(YI) < (1− δ)
∑K

k=1 logN |Ik|. Combining the above two inequalities, one obtains

K∑
k=1

logN |Ik| ≤ S/δ .

Using Proposition 38, the desired conclusion follows.

Set Y now to be Y conditioned on YI 6= yI and recursively decompose Y as long as

P[X ∈ supp(Y )] > γ. (3)

Observe that H∞(Y ) ≥ K logN !− (S + log 1/γ) at any point in this decomposition process since

P[Y = y] = P[X = y|X ∈ supp(Y )]

≤ P[X = y]

P[X ∈ supp(Y )]

≤ 2−(K logN !−S)

γ
= 2−(K logN !−(S+log 1/γ)).
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Note that |supp(Y )| decreases in every step, and since supp(X) is finite, after finitely many steps,
this process ends with a Yfinal with P[X ∈ supp(Yfinal)] ≤ γ. Hence, X is a convex combination of
finitely many (P̄ , 1− δ)-dense sources for P̄ = (P1, . . . , Pk) with

K∑
k=1

Pk ≤ (S + log 1/γ)/(δ log(N/e))

and Yfinal. This implies that X is γ-close to a convex combination of (P̄ , 1− δ)-dense sources (e.g.,
the convex combination obtained by replacing Yfinal by the uniform distribution).

A.2 Replacing Dense Sources by Bit-Fixing Sources

Lemma 16. Let X be an ideal (K,N)-cipher and f : (PN )K → {0, 1}S an arbitrary function.
For any γ > 0 and P ∈ N, there exists P̄ = (P1, . . . , PK) ∈ [N ]K with

∑K
k=1 Pk = P and a

family {Yz}z∈{0,1}S of convex combinations Yz of P -fixed (K,N)-cipher sources such that for any
distinguisher D taking an S-bit input and querying at most T coordinates of its oracle∣∣P[DX(f(X)) = 1

]
− P

[
DYf(X)(f(X)) = 1

]∣∣ ≤ 2(S + log 1/γ) · T
P

+ γ,

and
P
[
DX(f(X)) = 1

]
≤ 22(Sz+log 1/γ)T/P · P

[
DY

′
f(X)(f(X)) = 1

]
+ γ,

provided N ≥ 16.

Proof. Fix γ > 0 and an arbitrary z ∈ {0, 1}S and let Xz be the distribution of X conditioned on
f(X) = z. Let Sz = K logN !−H∞(Xz) be the min-entropy deficiency of Xz. The following claim
follows immediately from Lemma 13.

Claim 17. For every δ > 0, Xz is γ-close to a convex combination of finitely many (P̄ ′, 1−δ)-dense
sources for some P̄ ′ = (P ′1, . . . , P

′
K) satisfying

K∑
k=1

P ′k ≤
Sz + log 1/γ

δ · log(N/e)
.

Let X ′z be the convex combination of (P̄ ′, 1− δ)-dense sources that is γ-close to Xz for a δ = δz
to be determined later. For every (P̄ ′, 1 − δ) source X ′ in said convex combination, let Y ′ be the
corresponding P ′-fixed source Y ′, i.e., X ′ and Y ′ are fixed on the same coordinates to the same
values. The following claim bounds the distinguishing advantage between X ′ and Y ′ for any T -query
distinguisher.

Claim 18. For any (P̄ ′, 1− δ)-dense (K,N)-cipher source X ′ and its corresponding P ′-fixed source
Y ′, it holds that for any (adaptive) distinguisher D that makes at most, for each k, Tk forward or
inverse queries to its oracle,∣∣∣P[DX′ = 1

]
− P

[
DY ′ = 1

]∣∣∣ ≤ Tδ · logN ,

and
P
[
DX′ = 1

]
≤ NTδ · P

[
DY ′ = 1

]
,

where T =
∑K

k=1 Tk.
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Proof. Assume without loss of generality that D is deterministic and does not query any of the fixed
positions, make the same query twice, or make an inverse query after making the corresponding for-
ward query or vice-versa. Let TX′ and TY ′ be the random variables corresponding to the transcripts
containing the query/answer pairs resulting from D’s interaction with X ′ and Y ′, respectively. More
specifically, τ contains a pair ((k, x), y) whenever either (k, x) was queried and y was the answer
(forward query) or the other way around (inverse query); it will not matter which was the case,
however, for the probabilities computed below.

For a fixed transcript τ , denote by pX′(τ) and pY ′(τ) the probabilities that X ′ and Y ′, respec-
tively, produce the answers in τ if asked the queries in τ . Since D is deterministic, P[TX′ = τ ] ∈
{0, pX′(τ)}, and similarly, P[TY ′ = τ ] ∈ {0, pY ′(τ)}. Denote by TX the set of all transcripts τ for
which P[TX′ = τ ] > 0. For such τ , P[TX′ = τ ] = pX′(τ) and also P[TY ′ = τ ] = pY ′(τ).

For every of the K possible keys, in order to bound the probabilities pX′(τ) and pY ′(τ), consider
the complete bipartite graph KN,N . The fixed coordinates form a matching of size (at most) P ′ in
KN,N , and choosing a permutation according to either X ′ or Y ′ amounts to extending said matching
to a perfect matching. Similarly, the query/answer pairs in τ form a matching compatible with that
defined by the fixed coordinates. Therefore, pX′(τ) and pY ′(τ) are equal to the probabilities that
an extension according to X ′ and Y ′, respectively, contains the matching defined by τ . That is,

pX′(τ) ≤ 2−(1−δ)
∑K

k=1 log(N−P ′k)
Tk

and pY ′(τ) = 2−
∑K

k=1 log(N−P ′k)
Tk

(4)

as X ′ is (P̄ ′, 1− δ)-dense and Y ′ is P̄ ′-fixed.

Towards proving the first part of the lemma, observe that D’s output can be computed from the
transcript (including whether a query was a forward or an inverse query) by just running D and
providing the answers to its queries from the transcript. Hence,∣∣∣P[DX′ = 1

]
− P

[
DY ′ = 1

]∣∣∣ ≤ SD(TX′ , TY ′)

=
∑
τ

max {0,P[TX′ = τ ]− P[TY ′ = τ ]}

=
∑
τ∈TX

max {0, pX′(τ)− pY ′(τ)}

=
∑
τ∈TX

pX′(τ) ·max

{
0, 1− pY ′(τ)

pX′(τ)

}
≤ 1− 2−δ

∑K
k=1 log(N−P ′k)

Tk

≤ 1− 2−δT logN ≤ Tδ · logN ,

where the first sum is over all possible transcripts and where the last inequality uses 2−x ≥ 1 − x
for x ≥ 0 and ab ≤ ab for a, b ∈ N.

As for the second part of the lemma, observe that due to (4) and the support of TX′ being a
subset of TY ′ ,

P[TX′ = τ ] ≤ 2δ
∑K

k=1 log(N−P ′k)T · P[TY ′ = τ ] = 2Tδ logN · P[TY ′ = τ ]
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for any transcript τ . Let TD be the set of transcripts where D outputs 1. Then,

P[DX′ = 1] =
∑
τ∈TD

P[TX′ = τ ]

≤ 2Tδ logN ·
∑
τ∈TD

P[TY ′ = τ ]

= 2Tδ logN · P[DY ′ = 1] .

Let Y ′z be obtained by replacing X ′ by Y ′ in X ′z. Setting

δz =
Sz + log 1/γ

P · log(N/e)
,

The above claims imply∣∣∣P[DXz(z) = 1
]
− P

[
DY ′z (z) = 1

]∣∣∣ ≤ 2
(Sz + log 1/γ) · T

P
+ γ , (5)

as well as
P
[
DXz(z) = 1

]
≤ 22(Sz+log 1/γ)T/P · P

[
DY ′z (z) = 1

]
+ γ , (6)

using that log(N)/ log(N/e) ≤ 2 for N ≥ 16. Moreover, note that for the above choice of δz,
Lemma 13 implies

∑K
k=1 P

′
k ≤ P , i.e., the sources Y ′ are fixed on at most P coordinates in total.

Claim 19. Ez[Sz] ≤ S and Ez[2
SzT/P ] ≤ 2ST/P .

Proof. Observe that H∞(Xz) = H∞(X|Z = z) = H(X|Z = z) since, conditioned on Z = z, X is
distributed uniformly over all values x with f(x) = z. Therefore,

Ez[Sz] = K logN !−Ez[H∞(X|Z = z)] = K logN !−Ez[H(X|Z = z)]

= K logN !−H(X|Z) ≤ S.

Again due to the uniformity of X, P[f(X) = z] = 2−Sz . Hence,

Ez[2
Sz/S ] =

∑
z

2−Sz · 2SzT/P =
∑
z

2−Sz(1−T/P ).

Because T < P , one can use Hölder’s inequality and obtain

∑
z

2−Sz(1−T/P ) ≤

(∑
z

(
2−Sz(1−T/P )

)1/(1−T/P )
)1−T/P

·

(∑
z

1P/T

)T/P
= 11−T/P · 2ST/P = 2ST/P .

The lemma now follows (using Yz := Y ′z ) by taking expectations over z of (5) and (6) and applying
the above claim.

For injections, consider the following definition and an analog of Lemma 20.
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Definition 4. An (N,M)-injection source X is a random variable that takes on as value function
tables corresponding to injections F : [N ] → [M ]. An (N,M)-injection source X is called (P,Y)-
fixed for Y ⊆ [M ] if its range is Y and it is fixed on at most P coordinates.

Lemma 20. Let X be a uniform random (N,M)-injection and f : FN,M → {0, 1}S an arbitrary
function. For any γ > 0 and P ∈ N, there exists a family {Yz,Y}z,Y , indexed by values z ∈ {0, 1}S
and size-N subsets Y of [M ], of convex combinations Yz,Y of (P,Y)-fixed injection sources such that
for any distinguisher D taking an S-bit input and making at most T forward or backward queries
to its oracle∣∣P[DX(f(X)) = 1

]
− P

[
DYf(X),im(X)(f(X)) = 1

]∣∣ ≤ 2(S + log 1/γ) · T
P

+ γ ,

and
P
[
DX(f(X)) = 1

]
≤ 22(Sz+log 1/γ)T/P · P

[
DY

′
f(X)(f(X)) = 1

]
+ γ ,

provided N ≥ 16.

Proof. The lemma is proved by conditioning on the range im(X) of X, which turns X into a
bijection, and then proceeding as in the proof of Lemma 16.

A.3 From Bit-Fixing to Auxiliary-Input

For convenience, Theorem 1 is restated here.

Theorem 1. Let P,K,N,M ∈ N, N ≥ 16, and γ > 0. Moreover, let

(AI,BF) ∈ {(AI-IC(K,N),BF-IC(P,K,N)), (AI-GG(N,M),BF-GG(P,N,M))} .

Then,

1. if an application G is ((S, T, p), ε′)-secure in the BF-model, it is ((S, T, p), ε)-secure in the
AI-model, where

ε ≤ ε′ +
6(S + log γ−1) · T comb

G

P
+ γ ;

2. if an unpredictability application G is ((S, T, p), ε′)-secure in the BF-model for

P ≥ 6(S + log γ−1) · T comb
G ,

it is ((S, T, p), ε)-secure in the AI-model for

ε ≤ 2ε′ + γ ,

where T comb
G is the combined query complexity corresponding to G.

Proof. The proof is split into two parts, where the first part deals with the ideal-cipher (and, hence,
the random-permutation model) and the second part with the generic group model.

� Ideal cipher model: Fix P as well as γ. Set BF-IC := BF-IC(P ) and let G be an arbitrary ap-
plication and C the corresponding challenger. Moreover, fix an (S, T )-attacker A = (A1,A2),
and let {Yz}z∈{0,1}S be the family of distributions guaranteed to exist by Lemma 16, where the
function f is defined by A1. Consider the following (S, T )-attacker A′ = (A′1,A′2) (expecting
to interact with BF-IC):
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– A′1 internally simulates A1 to compute z ← AAI-IC.pre
1 . Then, it samples one of the P -bit-

fixing sources Y ′ making up Yz and presets BF-IC to match Y ′ on the at most P points
where Y ′ is fixed. The output of A′1 is z.

– A′2 works exactly as A2.

Let D be the combination of A2 = A′2 and C. Hence, D is a distinguisher taking an S-bit input
and making at most T comb

G queries to its oracle. Therefore, by the first part of Lemma 16,

SuccG,AI-IC(A) ≤ SuccG,BF-IC(A′) +
2(S + log γ−1) · T comb

G

P
+ γ .

Since there is only an additive term between the two success probabilities, the above inequality
implies

AdvG,AI-IC(A) ≤ AdvG,BF-IC(A′) +
2(S + log γ−1) · T comb

G

P
+ γ

for both indistinguishability and unpredictability applications.

Using the same attacker A′ as above and applying the second part of Lemma 16, one obtains,
for any P ≥ 2(S + log γ−1) · T comb

G ,

SuccG,AI-IC(A) ≤ 22(S+log 1/γ)T comb
G /P · SuccG,BF-IC(A′) + γ

≤ 2 · SuccG,BF-IC(A′) + γ ,

which translates into
AdvG,AI-IC(A) ≤ 2 ·AdvG,BF-IC(A′) + γ

for unpredictability applications.

� Fix P as well as γ. Set BF-GG := BF-GG(P ) and let G be an arbitrary application and C the
corresponding challenger. Moreover, fix an (S, T )-attacker A = (A1,A2), and let {Yz,Y}z,Y be
the family of distributions guaranteed to exist by Lemma 20, where the function f is defined by
A1. Consider the following (S, T )-attacker A′ = (A′1,A′2) (expecting to interact with BF-GG):

– A′1 obtains the set Y from BF-GG.pre and internally simulates A1 on a uniform random

injection X with range Y to obtain z ← AAI-GG.pre
1 . Then, it samples one of the P -bit-

fixing sources Y ′ making up Yz,Y and presets BF-GG to match Y ′ on the at most P points
where Y ′ is fixed. The output of A′1 is z.

– A′2 works exactly as A2.

Let D be a distinguisher—making forward and backward queries to an injection source—that
internally runs the combination of A2 = A′2 and C and answers their queries as follows: (1)
It passes forward queries to and back from its own oracle. (2) It answers group-operation
queries (s, s′) by making two backward queries to its own oracle for s and s′, obtaining i and
j, respectively, making a forward query i + j, and passing the answer to back to A2 or C
(unless one of the answers to the backward queries was ⊥, in which case ⊥ is returned).

Note thatDX(f(X)) is identical toAAI-GG.main
2 (AAI-GG.pre

1 )↔ CAI-GG.main, andDYf(X),im(X)(f(X))

is identical to A′BF-GG.main
2 (A′BF-GG.pre

1 ) ↔ CBF-GG.main. Furthermore, D is a distinguisher tak-
ing an S-bit input and making at most 3T comb

G queries to its oracle. Therefore, by the first
part of Lemma 20,

SuccG,AI-GG(A) ≤ SuccG,BF-GG(A′) +
6(S + log γ−1) · T comb

G

P
+ γ .
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Since there is only an additive term between the two success probabilities, the above inequality
implies

AdvG,AI-GG(A) ≤ AdvG,BF-GG(A′) +
6(S + log γ−1) · T comb

G

P
+ γ

for both indistinguishability and unpredictability applications.

Using the same attacker A′ and distinguisher D as above and applying the second part of
Lemma 16, one obtains, for any P ≥ 6(S + log γ−1) · T comb

G ,

SuccG,AI-GG(A) ≤ 26(S+log 1/γ)T comb
G /P · SuccG,BF-GG(A′) + γ

≤ 2 · SuccG,BF-GG(A′) + γ ,

which translates into
AdvG,AI-GG(A) ≤ 2 ·AdvG,BF-GG(A′) + γ

for unpredictability applications.

B Basic Applications: Security Proofs

This section contains the deferred definitions as well security bounds and the corresponding proofs
for the basic applications presented in Section 4.

In the following, E,E−1 : [K] × [N ] → [N ] denote the ideal cipher and its inverse to which
AI-IC(K,N) and BF-IC(P,K,N) offer access at interface main (cf. Section 2).

B.1 Even-Mansour Cipher

Even and Mansour [23, 24] considered the following simple block-cipher construction:

EMπ,s1,s2(m) := π(m⊕ s2)⊕ s1 .

Dunkelman et al. [22] observed that the construction can be simplified to use a single key s = s1 = s2.

The application GBC-EM is defined via the challenger CBC-EM: it picks a random bit b ← {0, 1}
and a key s ← [N ]; when the attacker A2 makes a sequence of q queries, if b = 0, the challenger
answers forward queries m by EMπ,s(m) and inverse queries c ∈ [N ] by EM−1

π,s(c); if b = 1, forward
queries m are answered by f(m) and inverse queries c by f−1(c), where f is an independently chosen
uniform random permutation; the attacker wins if and only if he correctly guesses the bit b.

Theorem 21. Application GBC-EM is

(
(S, T, q), Õ

(
Tq
N +

√
S(T+q)q

N

))
-secure in the AI-RP(N)-

model for N ≥ 16.

Proof. It suffices to show that GBC-EM is
(

(S, T, q), O
(
q(T+P )

N

))
-secure in the BF-RP(P,N)-model.

Then, by observing that T comb
GBC-EM = T + q, setting γ := 1/N and P =

√
S(T + q)N/q, and applying

Theorem 1, the desired conclusion follows.

Consider a slightly modified challenger: let π1 = π if b = 0 and an independently chosen uniform
random permutation if b = 1; the modified challenger answers forward queries m by f(m) := s ⊕
π1(s⊕m) and inverse queries by f−1. It is easily seen that the two challengers are indistinguishable.
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Let L0 = {(x1, π(x1)), . . . , (xP , π(xP )), (xP+1, π(xP+1)), . . . , (xP+T , π(xP+T ))} be the set of the
presampled pairs by A1 and T pairs queried by A2 to π (or π−1). Let Q = {(m1, c1), . . . , (mq, cq)}
denote the set of pre-image and image pairs queried by A2 when interacts with the challenger and
b = 1. Let L1 = {(m1 ⊕ s, c1 ⊕ s), . . . , (mq ⊕ s, cq ⊕ s)} be the set of corresponding pre-image and
image pairs under π1. We say π and π1 are not separated if there exists i ∈ [P +T ] and j ∈ [q] such
that xi = mj + s or π(xi) = cj + s.

The following lemma bounds the successful probability of A by the separation faliure probability
of π and π1.

Lemma 22 (Separation Lemma). SuccG,q(A) ≤ P[Z] where P[Z] denotes the separation faliure
probability of π and π1.

For every i ∈ [P + T ], j ∈ [q], because s is completely indepdent of the adversary’s view,

xi = mj+s or π(xi) = cj+s happens with probability at most 2
N . By a union bound, P[Z] ≤ 2(P+T )q

N .

Therefore, given this lemma, SuccG,q(A) ≤ 2(P+T )q
N and the desired conclusion follows.

The proof of separation lemma is standard via considering two games. Here we sketch the
proof. In both games, the challenger maintains two sets Π0,Π1 of pairs (x, y) ∈ [N ]2. Each of
them presents a function which can be extended to a permuation on [N ]. Initially, Π0 = L is the
set of presampled pairs by A1 and Π1 = ∅. For i ∈ {0, 1}, let Domain(Πi) := {x : (x, y) ∈ Πi},
Range(Πi) := {y : (x, y) ∈ Πi} and Π−1

i = {(y, x) : (x, y) ∈ Πi}. To simplify the notation, we
denote π as π0.

The first game Game0 proceeds as application GBC-EM except that queries to πi is proceeded as
follows: on forward query x,

1. if x ∈ Domain(Πi), return Πb(x).

2. (*) if x ∈ Domain(Π1−i), return Π1−i(x).

3. Sample y ← [N ] \ Range(Πi),

4. (*) if y ∈ Range(Πb) := {y : (x, y) ∈ Πi}, sample y ← [N ] \ (Range(Πi) ∪ Range(Π1−i)),

5. return y and add (x, y) into πi.

The inverse query is proceeded in the same way by replacing Πi by Π−1
i . In the second game Game1,

we simply remove the lines marked with (∗) in Game0.

Clearly, in Game1, π0 distributes the same as a random permutation which agrees with L
and π1 distributes as a random permutation. Therefore Game1 simulates GBC-EM perfectly when
b = 1. In Game0, π1 agrees with π0 which is a random permutation conditioning on L. So Game0

simulates GBC-EM perfectly when b = 0. Game1 proceeds identically as Game0 unless Z holds so
that SuccG,q(A) ≤ P[Z].

B.2 PRF Security of Davies-Meyer

The Davies-Meyer (DM) compression function DME is defined as

DME(h,m) := E(m,h)⊕ h .

The DM function is a PRF when keyed by h. The corresponding application GPRF-DM is defined
via the following challenger CPRF-DM: it picks a random bit b ← {0, 1} and a key h ← [N ]; when
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the attacker queries a message m if b = 0, the challenger answers by DME(h,m), and, if b = 1, the
challenger answers by a value chosen uniformly at random for each m. The attacker wins, if and
only if he correctly guesses the bit b. Let q denote the number of queries A2 makes to CPRF-DM.

Theorem 23. The application GPRF-DM is
(

(S, T, q), O
(
T/N +

√
S(T + q)/N

))
-secure in the

AI-IC(K,N)-model for N ≥ 16.

Proof. Follows immediately from Lemma 24, by observing that T comb
GPRF-DM = T + q, setting γ := 1/N

and P :=
√
S(T + q)N , and applying Theorem 1.

Lemma 24. For any P,N ∈ N, GPRF-DM is
(
(S, T, q, `), O

(
T+P
N

))
-secure in the BF-IC(P,K,N)-

model.

Proof. Consider an interaction between A2 and the challenger GPRF-MD-N and define the hybrid
experiment where—after the fixing of up to P positions by A1—the ideal cipher E is modified to
Ê as follows:

1. For each m = 1, . . . ,K, a random value y∗m is chosen uniformly at random and independently.

2. Let h∗ be the PRF key chosen by the challenger. Forward and inverse queries to Ê are
answered by

Ê(m,h) :=

{
y∗m if h = h∗,

E(m,h) otherwise,
and Ê−1(m, y) :=

{
h∗ if y = y∗m,

E−1(m, y) otherwise.

For each m, let y′m be the value h∗ originally mapped to under E(m, ·), and let h′m be the
value that maps to y∗m. Observe that this hybrid experiment behaves differently from the original
experiment only if

� the pairs ((m,h∗), y′m) or ((m,h′m), y∗m) for some m are prefixed by A1, or

� A2 queries h′m to E(m, ·) or y′m to E−1(m, ·); call such queries bad queries.

The probability of bad prefixing is at most 2P/N . Moreover, denote by Ei the event that the first
i queries are not bad. Note that

P[¬Ei|Ei−1] ≤ 2

N − (P + i− 1)
≤ 2

N − (P + T )
≤ 4

N
,

using that P +T ≤ N/2, an assumption one may always make since, otherwise, the lemma trivially
holds. Moreover, note that the above argument holds even if h∗ and y∗m for all m are known.
Summarizing, P[ET ] ≤ 4T/N .

In the hybrid experiment, let E ′i be the event that in the first i queries, A2 queries neither h∗ to
Ê nor y∗m to Ê−1 for any m. Since the uniformly random values y∗m perfectly hide h∗ in the answers

DMÊ(h∗,m) = Ê(m,h∗)⊕ h∗ = y∗m ⊕ h∗ ,

one obtains that

P[¬E ′i|E ′i−1] ≤ 2

N − (P + i− 1)
≤ 2

N − (P + T )
≤ 4

N
,

and, hence, P[E ′T ] ≤ 4T/N . However, unless E ′T is violated, the advantage of A2 in guessing b is
zero.
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C Sponge-Based Applications: Security Proofs

This section contains the deferred definitions as well security bounds and the corresponding proofs
for the sponge-based applications presented in Section 4.

In the following, π, π−1 : [N ]→ [N ] denote the permutation and its inverse to which AI-RP(N)
and BF-RP(P,N) offer access at interface main (cf. Section 2).

C.1 Definitions

The sponge construction. Assume N is a power of two and let n = logN , r ≤ n, c = n − r.
Let m = m1 · · ·m` be a message consisting of r-bit blocks mi,

4 and IV ∈ {0, 1}c an initialization
vector. The sponge construction Spongeπ,IV(m) works as follows:

1. Set s0 ← 0r‖IV.

2. For i = 1, . . . , `: set si ← π(mi ⊕ s(1)
i−1‖s

(2)
i−1), where s

(1)
i−1 denotes the first r bits of si−1 and

s
(2)
i−1 the remaining c bits.

3. Output s
(1)
` .

Node graphs. A useful formalism for security proofs of sponge-based constructions is that of node
and supernode graphs, as introduced by Bertoni et al. [6]. For a permutation π : {0, 1}n → {0, 1}n,
consider the following (directed) node graph Gπ = (V,E) with V = {0, 1}r × {0, 1}c = {0, 1}n
and E = {(s, t) | π(s) = t}. Moreover, let G′π = (V ′, E′) be the (directed) supernode graph, with
V ′ = {0, 1}c and (s(2), t(2)) ∈ E′ iff ((s(1), s(2)), (t(1), t(2))) ∈ E for some s(1), t(1) ∈ {0, 1}r. Observe
that the value of Spongeπ,IV(m) for an `-block message m = m1 · · ·m` is obtained by starting at

s0 := (0r, IV) ∈ {0, 1}n in Gπ, moving to si ← π(mi ⊕ s(1)
i−1‖s

(2)
i−1) for i = 1, . . . , `, and outputting

s
(1)
` . In other words, in the supernode graph, m corresponds to a path of length ` starting at node

IV and ending at s
(2)
` , and s

(1)
1 , . . . , s

(1)
` ∈ {0, 1}

r are the values that appear on that path.

C.2 PRFs from Keyed Sponges

The application GPRF-S of PRF security of the sponge construction is defined via the following
challenger CPRF-S: it picks a random bit b ← {0, 1} and a key k ← {0, 1}c; when the attacker
queries a message m = m1 · · ·m` consisting of r-bit blocks mi, if b = 0, the challenger answers by
Spongeπ,k(m), and, if b = 1, the challenger answers by a value chosen uniformly at random for each
m. The attacker wins, if and only if he correctly guesses the bit b.

The following theorem provides an upper bound on the advantage of an (S, T, q, `)-attacker in
distinguishing the sponge construction from a random function in the BF-RPM, where q is an upper
bound on the number of messages m the attacker submits to the challenger and ` is an upper bound
on the length of those messages. The proof follows mostly the approach by [7].

Theorem 25. GPRF-S is

(
(S, T, q, `), Õ

(
(T+q`)2

2c +

√
S(T+q`)2

2c

))
-secure in the AI-RP(N)-model,

where N = 2n = 2r+c ≥ 16.

4To keep things simple, no padding is considered here.
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Proof. Follows from Lemma 26 by observing that T comb
GPRF-S = T + q`, setting γ := 1/N and P :=√

(S+logN)(T+q`)·2c
T+q` = Θ̃

(√
S(T+q`)·2c

T+q`

)
, and applying Theorem 1.

Lemma 26. For any P ∈ N, GPRF-S is
(

(S, T, q, `), O
(

(T+q`)2+(T+q`)P )
2c

))
-secure in the BF-RP(P,N)-

model, where N = 2n = 2r+c.

Proof. In the following, queries by A2 to the sponge construction (i.e., to the challenger) are referred
to as construction queries and (forward or inverse) queries to π as primitive queries. Moreover,
queries the challenger makes to π as a result of construction queries are called indirect queries.

Consider an interaction of A2 with CPRF-S and incrementally build the node and supernode
graphs (as defined above), adding edges corresponding to primitive and indirect queries and starting
with the edges that correspond to the at most P prefixed query/answer pairs. Denote by F (resp.
R) the set of supernodes to which edges were added as a result of a primitive or a prefixed (resp.
an indirect) query (defining the node corresponding to the key k to be contained in R from the
beginning).

Let Epath,i be the event that there is a unique path from supernode k to any other supernode
reachable from it after the ith edge is added. Similarly, let Eclash,i be the event that R∩F = ∅ after
the ith edge is added. Moreover, let Ei := Epath,i ∩ Eclash,i.

Observe that when E := ET+q` occurs, the values that appear on the paths starting at k are
uniformly random and independent since every node inside a supernode has the same probability
of being chosen, and the distinguishing advantage is zero in this case.

Via a calculation similar to that in the proof of Theorem 5,

P[¬Epath,i|Ei−1] ≤ i+ P

2c−1
and P[¬Eclash,i|Ei−1] ≤ i+ P

2c−1
,

and, therefore, once again,

P[¬E ] = P[¬ET+q`] = O

(
(T + q`)2 + (T + q`)P

2c

)
.

C.3 MACs from Keyed Sponges

The application GMAC-S of MAC security of the sponge construction is defined via the following
challenger CMAC-S: it initially picks a random key k ← {0, 1}c; when the attacker queries a message
m = m1 · · ·m` consisting of r-bit blocks mi, the challenger answers by Spongeπ,k(m). The attacker
wins if he submits a pair (m, y) with Spongeπ,k(m) = y for a previously unqueried m.

Theorem 27. Application GMAC-S is
(

(S, T, q, `), Õ
(
q
2r + S(T+q`)2

2c

))
-secure in the AI-RP(N)-model,

where N = 2n = 2r+c ≥ 16.

Proof. One shows thatGMAC-S is
(

(S, T, q, `), O
(
q
2r + (T+q`)2+(T+q`)P

2c

))
-secure in the BF-RP(P,N)-

model. Then, by observing that T comb
GPRF-S = T + q`, setting γ := 1/N and P = 2(S+ logN)(T + q`) =

Õ (S(T + q`)) and applying Theorem 1, the desired conclusion follows.

The bound in the BF-RP(P,N)-model follows immediately from Lemma 26 and the fact that
with a truly random function, the adversary’s success probability at breaking the MAC is at most
q/2r.
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D Applications Based on Merkle-Damg̊ard with Davies-Meyer: Security Proofs

This section contains the deferred definitions as well security bounds and the corresponding proofs
for the applications based on the Merkle-Damg̊ard paradigm with the Davies-Meyers compression
function presented in Section 4.

In the following, E,E−1 : [K] × [N ] → [N ] denote the ideal cipher and its inverse to which
AI-IC(K,N) and BF-IC(P,K,N) offer access at interface main (cf. Section 2).

D.1 Definitions

Let f : [N ] × [K] → [N ] be a compression function, m = m1 · · ·m` be a message consisting of `
blocks mi ∈ [K],5 and IV ∈ [N ]. The Merkle-Damg̊ard (MD) transform MDf,IV(m) works as follows:

1. Set h0 ← IV.
2. For i = 1, . . . , `: set hi ← f(hi−1,mi).
3. Output h`.

Recall that the Davies-Meyer compression function DME is defined as

DME(h,m) := E(m,h)⊕ h .

Finally, define the MD transform with the Davies-Meyer compression function (MD-DM) as

MD-DME,IV(m) := MDDME ,IV(m) .

D.2 CRHFs from Merkle-Damg̊ard with Davies-Meyer

The application GCRHF-MD of collision-resistance for the MD-DM construction is defined via the
following challenger CCRHF-MD: it picks an initialization vector IV ← [N ] uniformly at random,
passes it to the attacker, and outputs 1 if and only if the attacker returns two messages m 6= m′

such that MD-DME,IV(m) = MD-DME,IV(m′).

The following theorem provides an upper bound on the probability that an (S, T, `)-attacker
finds a collision of the Merkle-Damg̊ard construction in the AI-ICM, where ` is an upper bound on
the lengths of the messages m and m′ the attacker submits to the challenger. The proof follows the
approach by [10].

Theorem 28. Application GCRHF-MD is ((S, T, `), ε)-secure in the AI-IC(K,N)-model for N ≥ 16
and

ε = Õ

(
S(T + `)2

N
+

(T + `)2

N

)
.

Proof. At the cost of at most 2` additional queries to E, assume that the messages m and m′

output by A2 are such that A2 has queried its oracle O on all points MD-DME,IV(·) would query
E when evaluated on m and m′. In the following, let T ′ := T + 2`. It suffices to show that

GCRHF-MD is
(

(S, T, `), O
(

(T+`)2+(T+`)P
N

))
-secure in the BF-IC(P,K,N)-model. Then, by observing

that T comb
GCRHF-MD = T+2`, setting γ := 1/N and P = 2(S+logN)(T+2`) = Õ (S(T + `)) and applying

Theorem 1, the desired conclusion follows.

5To keep things simple, no padding is considered here.
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Call h reachable if A2’s query/answer list contains values

((m0, h0), y0), . . . , ((mj−1, hj−1), yj−1)

such that

� h0 = IV,
� hj = yj−1 ⊕ hj−1 for i = 1, . . . , j − 1, and
� yj−1 ⊕ hj−1 = h.

Furthermore, h is said to be fresh if there exists no prefixed query/answer pair ((·, h), ·). Let Efresh,i

be the event that after the ith query by A2, all reachable h are fresh, and set Efresh := Efresh,T′ .
Observe that

P[¬Efresh,i|Efresh,i−1] ≤ max(P, i)

N − (P + (i− 1))
≤ max(P, i)

N − (P + T ′)
≤ 2 max(P, i)

N
,

where the numerator is P for forward queries and i for inverse queries, and using P +T ′ ≤ N/2, an
assumption one may always make since, otherwise, the lemma holds trivially. Therefore,

P[¬Efresh] =

T ′∑
i=1

P[¬Efresh,i|Efresh,i−1]

≤ 2(T ′2 + T ′P )

N

≤ O

(
(T + `)2 + (T + `)P

N

)
.

Let EDM-coll,i be the event that the first i queries by A2 include

1. (m,h) and (m′, h′) such that

E(m,h)⊕ h = E(m′, h′)⊕ h′

and h and h′ are fresh, or

2. (m,h) such that E(m,h)⊕ h = IV and h is fresh.

Let EDM-coll := EDM-coll,q. Observe that, conditioned on Efresh, if A2 finds a collision, then EDM-coll

happens. Hence, it remains to bound

P[EDM-coll|Efresh] = P[EDM-coll,T′ |Efresh] ≤
T ′∑
i=1

P[EDM-coll,i|¬EDM-coll,i−1, Efresh]

≤
T ′∑
i=1

i− 1

N − (P + i− 1)

≤
T ′∑
i=1

i

N − (P + T ′)

≤ O

(
(T + `)2

N

)
.
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E GGM Applications: Security Proofs

While Section 5 discusses the DL problem in the AI-GGM in detail, it defers the precise definitions of
the remaining applications presented there as well as the theorems with the corresponding security
bounds and their proofs. These are provided here. The proofs make use of the well-known Schwartz-
Zippel Lemma (cf. Lemma 37 in Section G of the appendix).

E.1 The Computational Diffie-Hellman Problem

The application GCDH corresponding to the computational Diffie-Hellman (CDH) problem is defined
via the challenger CCDH that picks x, y ∈ [N ] uniformly at random and independently, passes
σ(x), σ(y) to the attacker, and outputs 1 if and only if the attacker returns s = σ(xy).

Theorem 29 below provides an upper bound on the success probability of any attacker at solving
the CDH problem in the AI-GG-model.

Theorem 29. GCDH is ((S, T ), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(
ST 2

N
+
T 2

N

)
.

Proof. It suffices to show that the application GCDH is
(

(S, T ), O
(
TP+T 2

N

))
-secure in the BF-GG(P,

N,M)-model. Then, by observing that T comb
GCDH = T + 3, setting γ := 1/N and P = 6(S+ logN)(T +

3) = Õ (ST ), and applying the second part of Theorem 1, the desired conclusion follows. One may
assume that P + T ≤ N/2 since otherwise the statement in the BF-GG model holds trivially.

Consider now the interaction of A = (A1,A2) with CCDH in the BF-GG-model. Recall that the
BF-GG-oracle outputs the range Y of the underlying random injection σ to A1 via interface pre.
Condition on a particular realization of this set for the remainder of the proof.

Define the following hybrid experiment involving A1 and A2:

� For each of the at most P query/answer pairs (a′, s′) where A1 fixes σ, define a (constant)
polynomial v(X,Y ) := a′ and store the pair (v, s′).

� To create the challenge, choose values s∗1, s∗2, and s∗3 uniformly at random and independently
from all unused values in Y, define the polynomials u∗1(X,Y ) := X, u∗2(X,Y ) := Y , and
u∗3(X,Y ) := XY , and store the pairs (u∗1, s

∗
1), (u∗2, s

∗
2), and (u∗3, s

∗
3).

� A forward query a by A2 to BF-GG is answered as follows: define the (constant) polynomial
u(X,Y ) := a, choose a value s uniformly at random from all unused values in Y, store the
pair (u, s), and return s.

� A group-operation query (s1, s2) by A2 is answered as follows:

– If s1 or s2 is not in Y, return ⊥.

– If s1 has not been recorded, choose a random unused a ∈ [N ], define the (constant)
polynomial u(X,Y ) := a, and store the pair (u, a). Proceed similarly if s2 has not been
recorded. Go to the next item.

– Let u1 and u2 be the polynomials recorded with s1 and s2, respectively. If, for u′ :=
u1+u2, a pair (u′, s′) has been recorded, return s′. Otherwise, choose a value s′ uniformly
at random from all unused values in Y, store the pair (u′, s′), and return s′.
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� When A2 outputs a value s′, pick values x, y ∈ [N ] uniformly at random and independently
and output 1 if and only if s′ = s∗3.

Observe that the hybrid experiment only differs from the original one if for a group-operation
query (s1, s2), u′(x, y) = v(x, y) for some recorded v or u′(x, y) = u(x, y) for some recorded u—and
similarly for the polynomials u∗1, u∗2, and u∗3 corresponding to the challenge. Since in the hybrid
experiment, x and y are chosen uniformly at random at the end of the execution, the probability
of this event is at most 2((T + 3)P + (T + 3)2)/N by the Schwartz-Zippel lemma and a union
bound. Since in the hybrid experiment, in the view of A, s∗3 is distributed uniformly over the value
not in the presampled encodings or seen as a reply by the oracle, the probability that s′ = s∗3 is
1/(N − (P + T )). The theorem follows.

E.2 The Decisional Diffie-Hellman Problem

The application GDDH corresponding to the decisional Diffie-Hellman (DDH) problem is defined
via the challenger CDDH that picks x, y, z ∈ [N ] and a bit b ∈ {0, 1} uniformly at random and
independently, passes σ(x), σ(y), σ(xy) or σ(x), σ(y), σ(z) to the attacker if b = 0 or if b = 1,
respectively, and outputs 1 if and only if the attacker returns b′ = b.

Theorem 30 below provides an upper bound on the advantage of any attacker for the DDH
problem in the AI-GG-model.

Theorem 30. GDDH is ((S, T ), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(√
ST 2

N
+
T 2

N

)
.

Proof. It suffices to show that the application GDDH is
(

(S, T ), O
(
TP+T 2

N

))
-secure in the BF-GG(P,

N,M)-model. Then, by observing that T comb
GDDH = T + 4, setting γ := 1/N and P =

√
SN , and

applying the first part of Theorem 1, the desired conclusion follows.

In the following, one may assume that P +T ≤ N/2 since otherwise the statement in the BF-GG
model holds trivially. Consider now the interaction of A = (A1,A2) with CDDH in the BF-GG-model.
Recall that the BF-GG-oracle outputs the range Y of the underlying random injection σ to A1 via
interface pre. Condition on a particular realization of this set for the remainder of the proof.

Define the following hybrid experiment involving A1 and A2:

� For each of the at most P query/answer pairs (a′, s′) where A1 fixes σ, define a (constant)
polynomial v(X,Y, Z) := a′ and store the pair (v, s′).

� To create the challenge, choose b ∈ {0, 1} and values s∗1, s∗2, s∗3, and s∗4 uniformly at random
and independently from all unused values in Y, define the polynomials u∗1(X,Y, Z) := X,
u∗2(X,Y, Z) := Y , u∗3(X,Y, Z) := XY , and u∗4(X,Y, Z) := Z, and store the pairs (u∗1, s

∗
1),

(u∗2, s
∗
2), (u∗3, s

∗
3), and (u∗4, s

∗
4).

� A forward query a by A2 to BF-GG is answered as follows: define the (constant) polynomial
u(X,Y, Z) := a, choose a value s uniformly at random from all unused values in Y, store the
pair (u, s), and return s.

� A group-operation query (s1, s2) by A2 is answered as follows:
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– If s1 or s2 is not in Y, return ⊥.

– If s1 has not been recorded, choose a random unused a ∈ [N ], define the (constant)
polynomial u(X,Y, Z) := a, and store the pair (u, a). Proceed similarly if s2 has not
been recorded. Go to the next item.

– Let u1 and u2 be the polynomials recorded with s1 and s2, respectively. If, for u′ :=
u1+u2, a pair (u′, s′) has been recorded, return s′. Otherwise, choose a value s′ uniformly
at random from all unused values in Y, store the pair (u′, s′), and return s′.

� When A2 outputs a bit b′, pick values x, y, z ∈ [N ] uniformly at random and independently
and output 1 if and only if b′ = b.6

Observe that the hybrid experiment only differs from the original one if for a group-operation query
(s1, s2), u′(x, y, z) = v(x, y, z) for some recorded v or u′(x, y, z) = u(x, y, z) for some recorded
u—and similarly for the polynomials u∗1, u∗2, u∗3, and u∗4 corresponding to the challenge. Since in
the hybrid experiment, x and y are chosen uniformly at random at the end of the execution, the
probability of this event is at most 2((T + 4)P + (T + 4)2)/N by the Schwartz-Zippel lemma and a
union bound.

All polynomials created by A during the attack are linear in x, y, and xy respectively z,
depending on the value of b. Since, therefore, xy can be substituted by a variable z′ without
affecting the view of A, A obtains no information about b, and its advantage is zero.

E.3 The Square Decisional Diffie-Hellman Problem

The application Gsq-DDH corresponding to the square decisional Diffie-Hellman (sqDDH) problem is
defined via the challenger Csq-DDH that picks x, y, z ∈ [N ] and a bit b ∈ {0, 1} uniformly at random
and independently, passes σ(x), σ(y), σ(xy) or σ(x), σ(y), σ(z) to the attacker if b = 0 or if b = 1,
respectively, and outputs 1 if and only if the attacker returns b′ = b.

Theorem 31 below provides an upper bound on the advantage of any attacker for the sqDDH
problem in the AI-GG-model.

Theorem 31. Gsq-DDH is ((S, T ), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(√
ST 2

N
+
T 2

N

)
.

The proof is very similar to that of the DDH problem and is therefore omitted.

E.4 The One-More-Discrete-Logarithm Problem

The application GOM-DL corresponding to the one-more-discrete-logarithm (OM-DL) problem is
defined via the following challenger COM-DL: The attacker A2 is allowed to make queries to a
challenge oracle; COM-DL answers the ith query to this oracle by choosing a value xi ∈ [N ] uniformly
at random and outputting σ(xi) to A2. Moreover, A2 is given access to a discrete-logarithm oracle.
At the end of the interaction, COM-DL outputs 1 if and only if the attacker makes t queries to the
challenge oracle, at most t− 1 queries to the discrete-logarithm oracle, and outputs (x′1, . . . , x

′
t) =

(x1, . . . , xt).

6The values x, y, and z chosen at the end of the game are only used for the analysis.
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Theorem 32 below provides an upper bound on the success probability of any attacker for the
OM-DL problem in the AI-GG-model. The number t queries to the discrete-logarithm oracle is
captured as an additional parameter of A1.

Theorem 32. GOM-DL is ((S, T, t), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(
S(T + t)2

N
+

(T + t)2

N

)
.

Proof. It suffices to show thatGOM-DL is
(

(S, T ), O
(

(T+t)P+(T+t)2

N

))
-secure in the BF-GG(P,N,M)-

model. Then, by observing that T comb
GOM-DL = T + t, setting γ := 1/N and P = 6(S + logN)(T + t) =

Õ (S(T + t)), and applying the second part of Theorem 1, the desired conclusion follows. One may
assume that P + T ≤ N/2 since otherwise the statement in the BF-GG model holds trivially.

Consider now the interaction of A = (A1,A2) with COM-DL in the BF-GG-model. Recall that
the BF-GG-oracle outputs the range Y of the underlying random injection σ to A1 via interface pre.
Condition on a particular realization of this set for the remainder of the proof.

Let X = (X1, . . . , Xt) be variables and define the following hybrid experiment involving A1 and
A2:

� For each of the at most P query/answer pairs (a′, s′) where A1 fixes σ, define a (constant)
polynomial v(X) := a′ and store the pair (v, s′).

� The ith request for a challenge is answered as follows: choose s∗i uniformly at random and
independently from all unused values in Y, define the polynomial u∗i (X) := Xi, and store the
pair (u∗i , s

∗
i ).

� A forward query a by A2 to BF-GG is answered as follows: define the (constant) polynomial
u(X) := a, choose a value s uniformly at random from all unused values in Y, store the pair
(u, s), and return s.

� A discrete-logarithm query s by A2 is answered as follows:

– If s is not in Y, return ⊥.

– If s has not been recorded, choose a random unused a ∈ [N ], define the (constant)
polynomial u(X) := a, store the pair (u, a), and return a.

– Otherwise, let u be the polynomial recorded with s. Choose a random unused a ∈ [N ],
record (u, a), and return a.

� A group-operation query (s1, s2) by A2 is answered as follows:

– If s1 or s2 is not in Y, return ⊥.

– If s1 has not been recorded, choose a random unused a ∈ [N ], define the (constant)
polynomial u(X) := a, and store the pair (u, a). Proceed similarly if s2 has not been
recorded. Go to the next item.

– Let u1 and u2 be the polynomials recorded with s1 and s2, respectively. If, for u′ :=
u1+u2, a pair (u′, s′) has been recorded, return s′. Otherwise, choose a value s′ uniformly
at random from all unused values in Y, store the pair (u′, s′), and return s′.
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� When A2 outputs a vector x′ = (x′1, . . . , x
′
t), pick a vector uniformly at random from the set

of (x1, . . . , xt) ∈ [N ]t satisfying the at most t − 1 linear equations defined by the pairs (u, a)
recorded when answering discrete-logarithm queries, and output 1 if and only if (x′1, . . . , x

′
t) =

(x1, . . . , xt).

Observe that the hybrid experiment only differs from the original one if for a group-operation query
(s1, s2), u′(x) = v(x) for some recorded v or u′(x) = u(x) for some recorded u—and similarly for
the polynomials u∗i corresponding to the challenges. Since in the hybrid experiment, the vector x is
chosen uniformly at random from a set of size at least N at the end of the execution, the probability
of this event is at most 2((T + t)P +(T + t)2)/N by the Schwartz-Zippel lemma and a union bound.
Moreover, in the hybrid experiment, the probability of x′ = x is at most 1/N .

E.5 Multiple Discrete Logarithms

The multiple-discrete-logarithms application GMDL
N,t is defined via the challenger CMDL

N,t that randomly
and uniformly picks a vector x = (x1, . . . , xt) ∈ [N ], passes σ(x1), . . . , σ(xt) to the attacker, and
outputs 1 if and only if the attacker returns x.

Theorem 33 below provides an upper bound on the success probability of any attacker solving
the multiple-discrete-logarithms problem in the AI-GG-model.

Theorem 33. GMDL
N,t is ((S, T ), ε)-secure in the AI-GG(N,M)-model for any prime N ≥ 16 and

ε = Õ

(
S(T + t)2

tN
+

(T + t)2

tN

)t
.

The proof of Theorem 33 follows the corresponding proof by Yun [53] in the GGM without
preprocessing. The generic hardness of computing many discrete logarithms is derived from the
hardness of the so-called search-by-hyperplane-queries (SHQ) application GSHQ

N,t , which is defined via

the following challenger CSHQ
N,t in the standard model : CSHQ

N,t initially chooses α = (α1, . . . , αt) ∈ [N ]t

uniformly at random. Thereafter, the attacker B is allowed to make up to q hyperplane queries
by submitting the description of a hyperplane H and receiving the answer 1 if α is on H and 0
otherwise. CSHQ

N,t outputs 1 in the end if and only if B submits α′ with α′ = α. Yun established the

following theorem:7

Theorem 34 ([53]). Application GSHQ
N,t is (q, ε)-secure in the standard model for

ε =
1

N t
+
( eq
tN

)t
.

At the heart of the proof of Theorem 33 is a generalization of Yun’s reduction from SHQ to
MDL. It accommodates attackers in the BF-ROM and is captured by the following lemma:

Lemma 35. For any (S, T )-attacker A = (A1,A2) in the BF-GG := BF-GG(P,N,M)-model, there
exists a q-attacker B such that

Adv
GSHQ

N,t

(B) ≥ Adv
GMDL

N,t ,BF-GG
(A)

and q ≤ (T + t)P + (T + t)2.
7Since SHQ is a standard-model application, S and T are omitted, and the only parameter considered for SHQ

attackers is q. For the same reason, SHQ attacker only have a single phase B.
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Proof. The proof is similar in spirit to that of the DL application and uses polynomials u(X) in
variables X = (X1, . . . , Xt) to track the expressions computed by A2 using the group-operation
oracle. However, instead of relying on the collision probability of each pair of polynomials on the
actual values x1, . . . , xt, the idea here is to query the SHQ oracle to determine collisions, where the
values α = (α1, . . . , αt) play the role of x = (x1, . . . , xt).

Based on A = (A1,A2), consider the following attacker B:

1. Choose a size-N subset Y of [M ] uniformly at random and pass it to A1. Obtain a list L from
A1 of P prefixed input/output pairs compatible with Y. For each pair (a′, s′) ∈ L, define the
polynomial v(X) := a′ and store the pair (v, s′).

2. For i = 1, . . . , t, create each element s∗i of the challenge (s∗1, . . . , s
∗
t ) for A2 as follows: Define

the polynomial u∗i (X) := Xi and query the SHQ oracle on the hyperplane u∗i = u for every
polynomial u previously recored as (u, s) for some s. If the answer is 1, set s∗i := s; otherwise,
choose a random unused value s∗i from Y. Record the pair (u∗i , s

∗
i ).

3. When A2 makes a forward query a, proceed as follows: Define the polynomial u(X) := a.
For each (non-constant) polynomial previously recorded as (u′, s′) for some s′, query the SHQ
oracle on the hyperplane u = u′. If the answer is 1, record the pair (u, s′), return s′; otherwise,
choose a random unused value s from Y, record the pair (u, s), and return s.

4. When A2 makes a group operation query (s1, s2), proceed as follows:

� If s1 or s2 is not in Y, return ⊥.

� If s1 has not been recorded, choose a random unused a ∈ [N ] such that, for u(X) := a,
u = u′ returns 0 for all previously recorded (non-constant) polynomials. Record (u, a).
Proceed similarly if s2 has not been recorded. Go to the next item.

� Let u1 and u2 be the polynomials recorded with s1 and s2, respectively. If, for u := u1+u2

query the SHQ oracle on the hyperplane u = u′ for all polynomials previously recorded
as (u′, s′) for some s′. If the answer is 1, record (u, s′), and return s′; otherwise, choose
a random unused value s from Y, record the pair (u, s), and return s.

5. When A2 outputs a value α′, return α′ to CSHQ
N,t .

It is readily verified that B perfectly simulates the experiment with CMDL
N,t for A2.

Proof of Theorem 10. Lemma 35 implies that applicationGMDL
N,t is ((S, T ), ε′)-secure in the BF-GG(P,

N,M)-model for

ε′ =
1

N t
+

(
e(T + t)P + (T + t)2

tN

)t
.

Then, by observing that T comb
GMDL

N,t
= T+t, setting γ := 1/N and P = 6(S+logN)(T+t) = Õ (S(T + t)),

and applying the second part of Theorem 1, the desired conclusion follows.

E.6 Knowledge-of-Exponent Assumption

Informally, the knowledge-of-exponent assumption (KEA) states that if an attacker A is given
(h, hx), for a generator h of a cyclic group of order N and x ∈ [N ] chosen uniformly at random,
and outputs group elements A and Â with Â = Ax, then it must know discrete logarithm a of A.
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This is formalized by requiring that for every A there exist an extractor XA that is run on the same
random coins as A and must output the value a.

The above is captured in the GGM by considering the following experiment ExpOA,XA parameter-
ized by an attackerA = (A1,A2), an extractor XA, and an oracleO ∈ {AI-GG(N,M),BF-GG(N,M)}:

1. Run A1 to obtain z ← AO1 .

2. Choose x ∈ [N ] uniformly at random, let y ← σ(x), pick random coins ρ, and run

(a) A2 to get (A, Â)← A2(z, y; ρ), and

(b) XA to get a← XA(z, y; ρ).

3. Output 1 if and only if A = σ(a′) and Â = σ(a′x) for some a′, but a 6= a′.

The KEA says that for every attacker A there exists an extractor XA such that the probability
of the above experiment outputting 1 is negligible. The following theorem is equivalent to saying
that the KEA holds in the AI-GGM.

Theorem 36. For every attacker A = (A1,A2), there exists an extractor XA such that

P[ExpOA,XA = 1] ≤ Õ

(
ST 2

N

)
.

Sketch. The extractor XA internally runs A2 on the inputs received and keeps track of A2’s oracle
queries using polynomials as in the proof of Theorem 10. If at the end the polynomials uA and uÂ
corresponding to A2’s outputs (A, Â) have the form uA(X) = a and uÂ(X) = aX, then XA outputs
a and otherwise ⊥.

Observe that if the experiment outputs 1, then

� uÂ 6= X · uA since A2 only creates polynomials of degree at most 1, but

� uÂ(x) = x · uA(x) for the challenge x.

Hence, the extractor only fails if at least two of the polynomials involved (including uÂ and X ·uA)
collide on x, which is already analyzed in the proof of Theorem 10.

The experiment ExpOA,XA defining KEA does not exactly match the syntax of challenger and
attacker to which Theorem 1 caters, but it is easily checked that the corresponding proof can be
adapted to fit ExpOA,XA .

F Computational Applications: Security Proofs

Trapdoor functions. The inversion problem for a trapdoor function generator F can be phrased
as an application GTDF,F , defined via the challenger CTDF,F that generates (f, f−1) ← F , picks
a random x, passes y := f(x) to the attacker, and outputs 1 if and only if the attacker finds x.
Observe that GTDF,F is a standard-model application.
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Public-key encryption schemes. A public-key encryption (PKE) scheme is a triple of algo-
rithms Π = (Gen,Enc,Dec), where Gen generates a public key pk and a secret key sk, Enc takes a
public key pk and a message m and outputs a ciphertext c, and Dec takes a secret key sk and a
ciphertext c and outputs a message m. In the O-oracle model, all three algorithms may make calls
to O.main.

The application of public-key encryption GPKE,Π is defined via the following challenger CPKE,Π,
which captures the (standard) CPA security of a public-key encryption scheme: Initially, CPKE,Π

generates a key pair (pk, sk)← Gen and passes pk to the attacker. Then, the attacker submits two
messages m0 and m1 tho the challenger, who answers by choosing a random bit b and returning the
challenge c∗ ← Encpk(mb). In the end, the challenger outputs 1 if and only if the attacker submits
a bit b′ with b′ = b.

FDP encryption. Let F be a trapdoor family (TDF) generator. Full-domain permutation (FDP)
encryption in the random-permutation model with oracle O is defined as follows:

� Key generation: Run the TDF generator to obtain (f, f−1)← F , where f, f−1 : [N ]→ [N ].
Set the public key pk := f and the secret key sk := f−1.

� Encryption: To encrypt a message m with randomness r and public key pk = f , compute
ỹ ← f(y) for y ← O(m‖r)) and output c = ỹ.

� Decryption: To decrypt a ciphertext c = y with secret key sk = f−1, compute m‖r ←
O−1(f−1(y)) and output m.

Theorem 12. Let Π be FDP encryption with F . If GTDF,F is ((S′, ∗, t′, s′), ε′)-secure, then, for
any T ∈ N, GPKE,Π is ((S, T, t, s), ε)-secure in the AI-RP(N,N)-model, where

ε = Õ

(
ε′ +

√
ST

2ρ

)

and S = S′ − Õ (ST ), t = t′ − Õ (ttdf · T ), and s = s′ − Õ (ST ), where ttdf is the time required to
evaluate the TDF.

Sketch. Let π, π−1 be the permutation and its inverse AI-RP(N) offers access to. Moreover, let ρ
be the length of r. Consider the interaction of A and CPKE,Π in the AI-RP(N)-model and consider
a hybrid experiment in which an inverse query y to π−1 is answered by ⊥ instead of m‖r.

Clearly, the original experiment and the hybrid behave identically unless A2 queries y to π−1.
Using the unpredictability pre-sampling, an upper bound ν on the probability of this event in the
BF-RP(P ′, N)-model for P ′ ≈ ST yields a bound of roughly 2ν in the AI-RP(N)-model.

To obtain ν, there is a straight-forward reduction to the security of F that fails with probability
O(P ′(2−ρ+N−1)), namely if m‖r or y as generated by the TDF challenger fall into the prefixed list
L or if m‖r is queried by the attacker. The reduction must handle L, and hence requires additional
space in the order of O(ST ). Hence, ν = O(P ′ · 2−ρ + ε′).

The advantage of A in the hybrid experiment can again be analyzed in the BF-RP(P,N)-model,
where it is easily seen to be O(P · 2−ρ). Translating this back into the AI-RP(N)-model, incurs an
error of roughly ST/P . Choosing P = Θ(

√
ST · 2ρ)) results in final security O(

√
ST/2ρ).
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G Miscellaneous

Lemma 37 (Schwartz-Zippel). Let u ∈ F[X1, . . . , Xt] be a polynomial of total degree d ≥ 0 over a
field F. Moreover, let S be a finite subset of F, and let x1, . . . , xt be chosen from S uniformly at
random and independently. Then,

P[F (x1, . . . , xt) = 0] ≤ d

|S|
.

Proposition 38. N j ≥ (N/e)j, where ab := a!/(a− b)!.

Proof. By Stirlings approximation, for any positive integer n,

√
2π · nn+1/2 · e−n < n! <

√
2π · nn+1/2 · e−n · e

1
12n .

The cases N = 1 or j = N or j = 0 are trivial. Suppose N ≥ 2 and 1 ≤ j ≤ N − 1. Then,

N j >

√
2π√
2π
· NN+1/2

(N − j)N−j+1/2
· e−N

e−(N−j) · e
− 1

12(N−j) . (7)

The right-hand side of (7) can be simplied to(
N

N − j

)N−|I|+1/2

·
(
N

e

)j
· e−

1
12(N−j) .

Note that, for j ≤ N − 1,

ln

(
N

N − j

)
= − ln

(
1− j

N

)
=

∞∑
i=1

(
j

N

)i
· 1

i!
≥ j

N
,

so that (
N − j +

1

2

)
ln

(
N

N − j

)
≥
(
N − |I|+ 1

2

)
· j
N

≥ (N − j) · |I|
N

≥ 1− 1

N
≥ 1

12
.

Hence, the RHS of (7) is lower bounded by(
N

N − j

)N−|I|+1/2

·
(
N

e

)j
· e−

1
12(N−j) ≥ e

1
12
− 1

12(N−j) ·
(
N

e

)j
≥
(
N

e

)j
.

The desired conclusion follows.
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