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Abstract. In the backdoored random-oracle (BRO) model, besides ac-
cess to a random function H, adversaries are provided with a backdoor
oracle that can compute arbitrary leakage functions f of the function ta-
ble of H. Thus, an adversary would be able to invert points, find collisions,
test for membership in certain sets, and more. This model was introduced
in the work of Bauer, Farshim, and Mazaheri (Crypto 2018) and extends
the auxiliary-input idealized models of Unruh (Crypto 2007), Dodis, Guo,
and Katz (Eurocrypt 2017), Coretti et al. (Eurocrypt 2018), and Coretti,
Dodis, and Guo (Crypto 2018). It was shown that certain security prop-
erties, such as one-wayness, pseudorandomness, and collision resistance
can be re-established by combining two independent BROs, even if the
adversary has access to both backdoor oracles.

In this work we further develop the technique of combining two or more
independent BROs to render their backdoors useless in a more general
sense. More precisely, we study the question of building an indifferen-
tiable and backdoor-free random function by combining multiple BROs.
Achieving full indifferentiability in this model seems very challenging at
the moment. We however make progress by showing that the xor com-
biner goes well beyond security against preprocessing attacks and offers
indifferentiability as long as the adaptivity of queries to different back-
door oracles remains logarithmic in the input size of the BROs. We even
show that an extractor-based combiner of three BROs can achieve in-
differentiability with respect to a linear adaptivity of backdoor queries.
Furthermore, a natural restriction of our definition gives rise to a notion
of indifferentiability with auxiliary input, for which we give two positive
feasibility results.

To prove these results we build on and refine techniques by G66s et
al. (STOC 2015) and Kothari et al. (STOC 2017) for decomposing dis-
tributions with high entropy into distributions with more structure and
show how they can be applied in the more involved adaptive settings.
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1 Introduction

Hash functions are one of the most fundamental building blocks in protocol de-
sign. For this reason, both the cryptanalysis and provable security of hash func-
tions have been active areas of research in recent years. The first known instances
of collisions and chosen-prefix collisions in SHA-1 were recently demonstrated
by Stevens et al. [26] and Leurent and Peyrin [20], respectively. Furthermore,
feasibility of built-in adversarial weaknesses (aka. backdoors) in efficient hash
functions have been demonstrated by Fischlin, Janson, and Mazaheri [13]. A
practical way to provide safeguards against similar failures of hash functions is
to combine a number of independent hash functions so that the resulting func-
tion is at least as secure as their strongest. Most works in this area have focused
attention on a setting where at least one of the hash functions is secure, although
positive results when all underlying hash functions have weaknesses have also
been demonstrated [22,15].

In this work we are interested in protecting hash functions against a variety
of attacks that may arise due to backdoors, cryptanalytic advances, or prepro-
cessing attacks. We carry out our study in the recent backdoored random-oracle
(BRO) model, which uniformly treats these settings and also permits strong
adversarial settings where all hash functions may be weak.

1.1 The BRO model

Bauer, Farshim, and Mazaheri (BFM) [3] at Crypto 2018 formulated a new
model for the analysis of hash functions that substantially weakens the tradi-
tional random-oracle (RO) model. Here an adversary, on top of direct access to
the random oracle, is able to obtain arbitrary functions of the function table of
the random oracle.! The implications of this weakening are manifold. To start
with, positive results in this model imply positive results in the traditional set-
ting where all but one of the hash functions is weak. Second, this model captures
arbitrary preprocessing attacks on hash functions, another highly active area of
research [27,10,7,6]. Finally, it allows to model unrestricted adversarial capabili-
ties, which can adaptively depend on input instances, and thus captures built-in
as well as inadvertent weaknesses that may or may not be discovered in course
of time.

BFM studied three natural combiners in this setting: those of concatenation,
cascade, and xor combiners:

Ci1 () 1= H (@) Ha(e) CE 2 ) 1= Hy(H (x)

CEV™ () := Hi(2) @ Ha(z)

They showed, using new types of reductions to problems with high communica-
tion complexity, that central cryptographic security properties, such as one-way

! The model allows for a parameterization of the class of functions that can be com-
puted. Both BFM and we here work with respect to the full set of functions.



security, pseudorandomness, and collision resistance are indeed achievable by
these combiners.

The reductions to communication complexity problems are at times tedious
and very specific to the combiner. Moreover, the hardness of the communica-
tion complexity problem underlying collision resistance is conjectural and still
remains to be proven. Furthermore, a number of deployed protocols have only
been shown to be secure in the random-oracle model, and thus may rely on
properties beyond one-wayness, pseudorandomness, or collision resistance.

This raises the question whether or not other cryptographic properties ex-
pected from a good hash function are also met by these combiners. In other
words:

Can combining two or more backdoored random oracles render access to
independent but adaptive auziliary information useless?

We formalize and study this question in the indifferentiability framework, which
has been immensely successful in justifying the soundness of hash-function de-
signs.

1.2 Indifferentiability

A common paradigm in the design of hash functions is to start with some under-
lying primitive, and through some construction build a more complex one. The
provable security of such constructions have been analyzed through two main
approaches. One formulates specific goals (such as collision resistance) and goes
on to show that the construction satisfies them if its underlying primitives sat-
isfy their own specific security properties. Another is a general approach, whose
goal is to show that a (wide) class of security goals are simultaneously met.
The latter has been formalized in a number of frameworks, notably in the
UC framework of Canetti [5], the reactive systems framework of Pfitzmann
and Waidner [24], and the indifferentiability framework of Maurer, Renner, and
Holenstein [23]. The latter is by now a standard methodology to study the sound-
ness of cryptographic constructions, particularly symmetric ones such as hash
functions [8,4] and block-ciphers [9,16,1,12] in idealized models of computation.
In the MRH framework, a public primitive H is available and the goal is to
build another primitive, say a random oracle RO, from H through a construc-
tion CH. Indifferentiability formalizes a set of necessary and sufficient conditions
for the construction C" to securely replace its ideal counterpart RO in a wide
range of environments: for a simulator Sim, the systems (C", H) and (RO, Sim®©)
should be indistinguishable. The composition theorem proved by MRH states
that, if CH is indifferentiable from RO, then CM can securely replace RO in ar-
bitrary single-stage contexts. A central corollary of this composition theorem
is that indifferentiability implies any single-stage security goal, which includes
among others, one-wayness, collision resistance, PRG/PRF security, and more.



1.3 Contributions

With the above terminology in hand, the central question tackled in this work is
whether or not combiners that are indifferentiable from a conventional (backdoor-
free) random oracle exist, when the underlying primitives are two (or more)
backdoored random oracles.

Let us consider the concatenation combiner H;(x)|Hz2(x), where Hy and Ho
are both backdoored. This construction was shown to be one-way, collision re-
sistant, and PRG secure if both underlying functions are highly compressing.
Despite this, the concatenation combiner cannot be indifferentiable from a ran-
dom oracle: using the backdoor oracle for H; an attacker can compute two inputs
x and 2’ such that Hy(z) = Hy(2'), query them to the construction and return
1 iff the left sides of the outputs match. However, any simulator attempting to
find such a pair with respect to a backdoor-free random oracle must place an ex-
ponentially large number of queries. Attacks on the cascade combiner Ho(Hq(2))
were also given in [3, Section D.2] for a wider range of parameter regimes, leav-
ing only the expand-then-compress case as potentially indifferentiable. Finally,
the xor combiner H;(z) @ Ha(z), which is simpler, more efficient, and one of the
most common ways to combine hash functions, resists these.?

DECOMPOSITION OF DISTRIBUTIONS. When proving results in the presence of
auxiliary input, Uhruh [27] observed that pre-computation (or leakage) on a
random oracle can reveal a significant amount of information only on restricted
parts of its support. The problem of dealing with auxiliary input was later re-
vised in a number of works [10,7,6]. In particular Coretti et al. [7], building on
work in communication complexity, employed a pre-sampling technique to prove
a number of positive results in the RO model with auxiliary input with tighter
bounds. At a high level, this method permits writing a high min-entropy dis-
tribution (here, over a set of functions) as the convex combination of a (large)
number of distributions which are fixed on a certain number (p) of points and
highly unpredictable on the rest, the so-called (p, 1 —0)-dense distributions. This
technique was originally introduced in the work of G66s et al. [14].

THE SIMULATOR. Our simulator for the xor combiner builds on this technique
to decompose distributions into a convex combination of (p, 1 — §)-dense distri-
butions. Simulation of backdoor oracles is arguably quite natural and proceeds
as follows. Starting with uniform random oracles H; and Hs, on each backdoor
query f for H; the simulator computes z = f(H;) and updates the distribution
of the random oracle H; to be uniform conditioned on the output of f being z.
This distribution is then decomposed into a convex combination of (p,1 — J)-
dense distributions, from which one function is sampled. For all of the p fixed
points, the simulator sets the value of Hs consistently with the random oracle
and the distribution of Hy is updated accordingly. An analogous procedure is
implemented as the simulator for the second backdoored random oracle.

2 Further, an indifferentiability proof of the expand-then-compress cascade combiner
would closely follow that of the xor combiner and thus we focus on the latter here.



TECHNICAL ANALYSIS. The first technical contribution of our work is a refine-
ment of the decomposition technique which can be used to adaptively decompose
distributions after backdoor queries. We show that this refinement is sufficiently
powerful to allow proving indifferentiability up to a logarithmic (in the input
size of the BROs) number of switches between the backdoor queries. We prove
this via a sequence of games which are carefully designed so as to be compati-
ble with the decomposition technique. A key observation is that in contrast to
previous works in the AI-RO model, we do not replace the dense (intuitively,
unpredictable) part of the distribution of random oracles with uniform: backdoor
functions “see” the entire table of the random oracle and this replacement would
result in a noticeable change. Second, we modify the number of fixed points in
the (partially) dense distributions so that progressively smaller sets of points are
fixed. Even though each leakage corresponds to fixing a large number of points,
it is proportionally smaller than the previous number of fixed points. Thus the
overall bound remains small.

SIMULATOR EFFICIENCY. Our simulator runs in doubly exponential time in the
bit-length of the random oracle and thus is of use in information-theoretic set-
tings. These include the vast majority of symmetric constructions. Protocols
based on computational assumptions (such as public-key encryption) escape
this treatment: the overall adversary obtained via the composition would run
the decomposition algorithm and hence will not be poly-time. This observation,
however, also applies to the BRO model as the backdoor oracles also allow for
non-polynomial time computation, trivially breaking any computational assump-
tion if unrestricted. Despite this, in a setting where the computational assump-
tion holds relative to the backdoor oracles, positive results may hold. We can
for example restrict the backdoor capability to achieve this. Another promising
avenue is to rely on an independent idealized model such as the generic-group
model (GGM) and for instance, prove IND-CCA security of Hashed ElGamal in
the BRO and (backdoor-free) GGM models. We leave exploring these solutions
to future work.

AN EXTRACTOR-BASED COMBINER WITH IMPROVED SECURITY. We apply the
above proof technique to the analysis of an alternative combiner for three inde-
pendent backdoored random oracles, which relies on 2-out-of-3-source extractors
that output good randomness as long as two out of the three of the inputs have
sufficient min-entropy. Given such an extractor Ext, our combiner is

ChLHMs (1) := Ext(Hy (2), Ha(x), Ha())

As mentioned above, our simulator for the xor combiner programs Hs on the
fixed points for H; (and vice versa) using the random oracle. This results in a
loss since dense values are replaced with uniform values. In contrast, here the
extractor ensures that image values are closer to uniform and thus the overall
loss is lower. We show that a 2-out-of-3-source extractor can tolerate even a
number of switches between the backdoor oracles which is slightly sub-linear in
the size of the BRO inputs. This gives us more hope for unbounded adaptivity,
in case improved decomposition techniques are found.



COMPOSITION. Let ¢ denote the number of times the adversary switches between
one backdoor oracle to the other. Regarding the query complexities of our sim-
ulators, each query to the backdoor oracle translates to roughly N'=2° queries
to the random oracle for the xor combiner and roughly N'1—3/(¢+3) queries to the
random oracle for the extractor combiner. This in particular means that, for a
wide range of parameters, composition is only meaningful with respect to secu-
rity notions whereby the random oracle can tolerate a large number of queries.
This, for example, would be the case for one-way, PRG, and PRF security no-
tions where the security bounds are of the form O(q/N). However, with respect
to a smaller number of switches (as well as in the auxiliary-input setting with
no adaptivity), collision resistance can still be achieved.

INDIFFERENTIABILITY WITH AUXILIARY INPUT. When our definition of indiffer-
entiability is restricted so that only a single backdoor query to each hash function
at the onset is allowed, we obtain a notion that formalizes indifferentiability with
auxiliary input. This definition is interesting as it is sufficiently strong to allow
for the generic replacement of random oracles with iterative constructions even
in the presence of preprocessing attacks. Accordingly, our positive results in the
BRO model when considered with no adaptivity translate to indifferentiability
with independent preprocessing attacks. To complement this picture, we also dis-
cuss the case of auxiliary-input indifferentiability with a single BRO and show,
as expected, that a salted indifferentiable construction is also indifferentiable
with auxiliary input.

OPEN PROBLEMS. In order to overcome the bounded adaptivity restriction and
prove full indifferentiability, one would require an improved decomposition tech-
nique which fixes considerably less points after each leakage. This, at the mo-
ment, seems (very) challenging and is left as an open question. In particular,
such a result would simultaneously give new proofs of known communication
complexity lower bounds for a host of problems, such as set-disjointness and
intersection, potentially a proof of the conjecturally hard problem stated in [3],
and many others. (We note that improved decomposition techniques can poten-
tially also translate to improved bounds.) Indeed the xor combiner may achieve
security well beyond what we establish here (and indeed the original work of
BFM does so for specific games). Finally, as the extractor combiner suggests,
the form of the combiner and the number of underlying BROs can also affect
the overall bounds.

2 Preliminaries

Throughout the paper, when we write [N] for any uppercase letter N, we use
the convention that N is an integer and a power of two, i.e., N = 2™ for some
n € N. Let [N] :={0,..., N —1} denote the set of all n-bit strings. We use [M]
to denote the set of all bit-strings of length N - log M, which corresponds to the
set of all functions F : [N] — [M]. We denote the uniform distribution over an
arbitrary finite set S by Us.



For F € [M]" and I C [N] we denote by F; the projection of F onto the
points in I. Let u be a probability density function over [M]~. We define u(D) :=
Pre~,[F € D] as the probability that a sample randomly drawn from g falls into
the domain D C [M]N. By u|p we denote the density p conditioned on the
domain D. For a function f : [M]N — {0,1}¢ and z € {0,1}", by pls()=. we
denote p conditioned on f(F) = z for all F ~ pu|)—..

For a set of assignments A C {(a,b) : (a,b) € [N] x [M]}, by p|a we denote
p conditioned on Fy,y = b for all (a,b) € A and all F ~ pu|4. We further let
A1 C [N] (resp. Ao C [M]) denote the set containing the first (resp. second)
coordinates of all elements in A.

For an algorithm Alg we denote by Alg[param](input) a call of the algorithm
with (constant) parameters param and variable inputs input. This is to increase
clarity among multiple calls to the algorithm about the main input, while the
parameters remain unchanged.

2.1 Backdoored random oracles

We recall the definition of the backdoored random-oracle model from [3]. The
BRO(Ny, My, ..., Ni, My) model (for some k € N) defines a setting where all
parties have access to k functions Hy, ..., Hy, where H;’s are chosen uniformly
and independently at random from [M;]"¢, while the adversarial parties also
have access to the corresponding backdoor oracles BD;’s. A backdoor oracle BD;
can be queried on functions f and return f(H;). If for all ¢ € [k] we have N; = N
and M; = M, we simply refer to this model as k-BRO(NN, M) and when N and
M are clear from the context, we simply use k-BRO.

These models may be weakened by restricting the adversary to query BD;
only on functions f in some capability class F;. However our results as well as
those in [3] hold for arbitrary backdoor capabilities. In other words an adversary
can (adaptively) query arbitrary functions f to any of the backdoor oracles.

2.2 Indifferentiability in the BRO model

We follow the indifferentiability framework of Maurer, Renner, and Holenstein
(MRH) [23]. Here the underlying honest interfaces are k random oracles H;
and respective adversarial interfaces BD;. We define the advantage of a dif-
ferentiator D with respect to a construction CHi and a simulator SimRO =

(SimHR®, SimBDR®) as

)

S Hi . 1. - LRO e RO
Advgile, (D) = ‘Pr [DC ’”wBDZ} _Pr {DROvS'mHi SimBD’ }

where RO is a random oracle whose domain and co-domain match those of C.

We emphasize that the simulators do not get access to any backdoor oracles.
This ensures that any attack against a construction with backdoors translates
to one against the underlying random oracles without any backdoors.



2.3 Randomness extractors

Let X be a random variable. The min-entropy of X is defined as Hy(X) :=
—logmax, Pr[X = z]. The random variable X is called a (weak) k-source if
H. (X) >k, ie., Pr[X = 2] < 27%. The min-entropy of a distribution typically
determines how many bits can be extracted from it which are close to uniform.
The notion of closeness is formalized by the statistical distance. For two random

variables X and Y over a common support D, their statistical distance is defined
as SD(X,Y) == 3> p | Pr[X = 2] — Pr[Y = z]|.

In this paper we are interested in extractors that do not require seeds but
rather rely on multiple weak sources.

Definition 1 (Multi-source extractors). An efficient function Ext : [N1] x
X [Ny = [M] ds a (K, ..., ke, €)-extractor if for all weak k;-sources X; over
domains [N;], we have:

SD(EXt(Xl, . ,Xt),Z/f[M]) <e,

where € is usually defined as a function of ki,...,k:. We call Ext an s-out-of-t
(k1, ..., ke, e)-extractor if Ext(Xy,...,X:) is e-close to uniform even if only s
sources fulfill the min-entropy condition.

Below we define useful classes of distributions, the so-called (partially) dense
distributions, resp. dense probability density functions. Intuitively, bit strings
from a dense distribution are unpredictable not only as a whole but also in any
of their substrings and any combination of those substrings.

Definition 2 (Dense distributions). Let u be a probability density function
over [M|N. Then

— p is called (1 — 0)-dense if for F ~ p, it holds that for every subset I C [N]
we have Hoo (Fr) > (1 —9) - |I] - log M.

— u is called (p,1 — §)-dense if for F ~ p there exists a set I C [N] of size
|I| < p such that Heo(Fr) = 0, while for every subset J C [N]\ I we have
Ho(Fj) > (1 =0)-|J|-log M. That is, u is fized on at most p coordinates
and (1 — §)-dense on the rest.

We call a distribution dense, if the corresponding density function is dense.

3 Decomposition of High Min-Entropy Distributions

Any high min-entropy distribution can be written as a convex combination of
distributions that are fixed on a number of points and dense on the rest (i.e.,
(p,1 — 6)-dense distributions for some p and § > 0).> The decomposition tech-
nique introduced by Go6s et al. [14] has its origins in communication complexity

3 A convex combination of distributions W1y, n is a distribution that can be written
as a1 - 1+ ...+ an - pn, where aq, ..., o, are non-negative real numbers that sum
up to 1.



theory. We generalize this technique, with a terminology closer to that of Kothari
et al. [18], in order to allow for adaptive leakage. The original lemma, also used
by Coretti et al. [7], can be easily derived as a special case of our lemma. For
this, one assumes that the starting distribution before the leakage was uniform,
in other words (0, 1)-dense.

When proving results in the auxiliary-input random-oracle (AI-RO) model,
Uhruh [27] observed that pre-computation (or leakage) on a random oracle can
cause a significant decrease of its min-entropy only on restricted parts of its sup-
port (i.e., on p points), causing that part to become practically fixed, while the
rest remains indistinguishable from random to a bounded-query distinguisher.
This means that after fixing p coordinates of the random oracle, the rest can
be lazily sampled from a uniform distribution. Coretti et al. [7] recently gave a
different and tighter proof consisting of two main steps. First, the decomposition
technique is used to show that the distribution of a random oracle given some
leakage is statistically close to a (p,1— §)-dense distribution. Second, they prove
that no bounded-query algorithm can distinguish a (p, 1 — §)-dense distribution
from one that is fixed on the same p points and is otherwise uniform (a so-called
p-bit-fixing distribution), as suggested by Unruh [27].

Since in the BRO model adaptive queries are allowed, a function queried
to the backdoor oracle is able to “see” the entire random oracle, rather than a
restricted part of it. Hence, when analyzing the distribution of a random oracle
after adaptive leakage, it is crucial that we keep the distributions statistically
close. In other words we use (p, 1 — §)-dense distributions instead of p-bit-fixing.

In the k-BRO model, we are concerned with multiple queries to the back-
door oracles, i.e., continuous and adaptive leakage that can depend on previously
leaked information about both hash functions. Intuitively, since the leakage func-
tion can be arbitrary, it can in particular depend on the previously leaked val-
ues. We still need to argue that the distribution obtained after leakage about
a (Pprvs 1 — dpry) distribution, which is not necessarily uniform, is also close to
a convex combination of (p,1 — ¢) distributions. Naturally, we have § > dpv,
since min-entropy decreases after new leakage, and p > pp.v, since additional
points are fixed. Looking ahead, in the indifferentiability proofs, this refined de-
composition lemma allows us to simply fix a new portion pg.sy of the simulated
hash function after each leakage (i.e., backdoor query) and not to worry about
the rest, which still has high entropy and can be lazily sampled (from a dense
distribution) upon receiving the next query.

Lemma 1 (Refined decomposition after leakage). Let p be a (pprv,1 —
Sprv)-dense density function over [M|N for some ppry,dpry > 0. Let f: [M]N —
{0,1}¢ be an arbitrary function and z € {0,1}¢ be a bit string. Then for any
Prsh, Y > 0, the density function conditioned on the leakage p|y(.y—. is y-close
to a convex combination of finitely many (p,1 — 0)-dense density functions for
some p and § such that

Spry - 1log M+ (N —ppyy) + £, + logy~!
Ptrsh * 10g M

DPprv < p < pprv+pfrsh and 6prv < 0 <

)



where £, = Hy(G) — Hoo(F) is the min-entropy deficiency of F ~ )=
compared to G ~ p.

Proof. This refined decomposition lemma differs from the original lemma in that
the starting density function p is (pprv, 1 — Opry)-dense. As a first step, we modify
the original decomposition algorithm from [14,18] so that it additionally gets the
set of ppry indices I,y C [N] that are already fixed in p from the start.

Our refined decomposition algorithm RefinedDecomp, given below, recur-
sively decomposes the domain [M]V, according to the density function after
leakage ji. := p|f(.)=z, into d + 1 partitions Dy,..., Dg, Der C [M]N such that
(Ugl:1 Di) UDer = [M]¥, where err stands for erroneous. For all i with 1 <i < d
the partition D; defines a (p,1 — §)-dense density function pu.|p,.

Each recursive call on a domain D to RefinedDecomp (other than the call
leading t0 Deyr, which we will discuss shortly) returns a pair (D;, I;), where D;
represents a subset of [M]Y, where the images of all points in the set I; C [N]
are fixed to the same values under all functions H € D;. In other words, we
have Hy, = «; for some a; € [M]!%il. The algorithm finds such a pair (D;, I;) by
considering the biggest set I; (excluding those points fixed from the start, i.e.,
Irv) such that the min-entropy of Fy, (for F ~ p,|p) is too small (as determined
by the rate §) and then finding some «; which is a very likely value of Fy,. Then
I; is returned with some D, as the partition that contains all H with H;, = a;.
The next recursive call will exclude D; from the considered domain.

Decomposition halts either if the probability of a sample falling into the
current domain is smaller than v (i.e., p,(D) < ) or the current distribution
is already (pprv,1 — d)-dense. In both cases the algorithm returns the current
domain D together with an empty set. In the former case the returned domain
is marked as an erroneous domain De,, := D, since it may not define a (p,1 —
0)-dense distribution. Let us without loss of generality assume that u. is not
(Pprv + Presh, 1 — d)-dense, as otherwise the claim holds trivially.

The formal definition of the algorithm RefinedDecomp is given below. We

Spry-log M- (N —ppry)+L. +logy !
Ptrsh-log M

initialize the desired density rate as § := before

calling RefinedDecomp.

RefinedDecomp)z, 9, v, Iprv] (D)

if 4. (D) <~ then return (De < D,0)

if p.|p is (|Iprv], 1 — 6)-dense then return (D, ()

for F ~ p.|p let I C [N] be a maximal set such that
Ho(F1) <1 —=90)-|I|-logM and 1INy =0.

let o € [M]'"! be such that Pr[F; = o > 27 (179 les M

Do + DN{Fc [M" |Fr=a}

Dyo < DN{Fe [M" |Fr#a}

return ((Da, I), RefinedDecomp|iz, 8, v, Iprv](Dxa))

10



Now we turn our attention to proving that every partition D; (other than
De,) returned by the above decomposition algorithm defines a density function
tz|p, which is (p,1 — d)-dense.

Claim 1. For all values of i with 1 < i < d it holds that the density function

. Spryv-log M-(N—p. r‘,)+lz—&-log’y*1
Mz ‘Di 5 (p7 1--= pfrsh~1r<))gM )'dense; where Pprv <p< DPprv + Ptrsh -

Proof. Let § := Jp”'bgM'(pljjﬁi’;gg\yﬁlogvil. Let I be the set of freshly fixed
points in p1;|p, and TU Iy := [N]\ (I U Iy ). Let ay € [N]V%er] be such that
Frur,,, = ay for F ~ p.|p,. We first argue for the (1 — §)-density of yu.|p, on

values projected to I U I, and afterwards bound the size of I.

1. Suppose fi;|p, is not (1—4)-dense on I U I,,,. Then there exists a non-empty
set which violates the density property. That is, there exists a non-empty
set J C IU Iy, and some € [N ]I7I such that, with the probability taken
over F ~ p,|p,, we have:

Pr[F; = (] > 2~ (=0 Jl1eg M

Now the union of the three sets I* := I U I, U J forms a new set such that
for some * € [NV eVl we have

PI‘[FI* = ﬂ*] = Pr[FIUIPW =auNF;= ﬂ}
= Pr[Frur,,, = aul - Pr[F; = BIFrug,,., = au
> 2—(1—6)'\Iulpw\~logM . 2—(1—6)~|J|<logM

— 9—(1=8)| UL UT|-log M

Since J was assumed to be non-empty and disjoint from I U I, (and in
particular with I), its existence violates the maximality of I. Therefore,

Fror— is (1 — ) dense.

2. We now bound the size of I, given that § = 6"”'logM'gj;ﬂ‘ggg\yﬁlogfl.
Let F ~ p, and G ~ p. We have Hoo(F) = Hoo(G) — £, > (1 — dppy) - (N —
Pprv)-10g M — £, where the inequality holds, since p is (1 — dpyy)-dense in
N — ppry Tows. Let 8 € [M]I]. Then we have:

Pr [F; = B] < Pr[F; = B]/p=(Di)

Mz ‘Di Mz

< Pr[Fr = 8]/»

B

= Z Pr[F; = B A Fivp o) = 81/
ﬁ/E[M]N*‘”*“prv‘ H=
< 9(N—|I|=pprv)-log M| 2—H<,C(F)/,y

< 9(NATFpprv)log M 9= ((1=0prv)- (N =Pprv ) log M—=L2) /.,

— 26prv-N-log M —0prv-Pprv-log M —|I|-log M+L. /'Y
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— 90prv-log M+(N —ppry) || log M40, +logy~?!

Since by definition of the decomposition algorithm, there exists an o € [M]!

such that Pr, |, [F; = o] > 2~ (1=0) 1o M e obtain

prv ° IOgM : (N - pprv) + ez + IOg’)’il
§-log M '

<?

. ev-log M- (N—poey)+€,+logy ™" .
Substituting J by Ipry-log (pf vhﬁ‘;gz\y +1og% we obtain lI| < pgsh and

therefore, for the total number of fixed points p := |I U Ippy| we get ppry <
D < Pprv + Prrsh » as stated in the claim.

O

Therefore, p, can be written as a convex combination of u.|p,,..., t:|p,

. d .
and #z|Dem Le., Uy = Zizl 1= (D) 'NZ|D1: + 2 (Derr) - ILI’Z|Derr' Since p1z(Derr) <7y
when the algorithm RefinedDecomp terminates, the distribution p, is y-close to
a convex combination of (p, 1 — ¢§) distributions. O

A special case of the above lemma for a uniform (i.e., (0, 1)-dense) starting
distribution p, where pp., = 0 and &,y = 0, implies the bound § < (¢, +
log v~ 1) /(pesh - log M) used by Coretti et al. [7].

REMARK. Note that the coefficient of d,, in the right hand side of the inequality
established in the lemma is of the order O(N/pgsn). Looking ahead (see discus-
sions on parameter estimation) this results in an increase in the number of points
that the simulator needs to set. Thus any improvement in the bound established
in this lemma would translate to tolerating a higher level of adaptivity and/or
obtaining an improved bound.

Below we show that the expected min-entropy deficiency after leaking ¢ bits
of information can be upper-bounded by ¢ bits.

Lemma 2. Let F be a random variable over [M|™ and f : [M]N — {0,1}* be
an arbitrary function. Let £, := Hy(F) — Hoo (F|f(F) = 2) be the min-entropy
deficiency of F|f(F)=z. Then, we have E ¢ ¢supp(F))[£=] < L.

Proof. Recall that Ho(A|B) := — log (E, [ max, Pr[A = a|B =b]]) defines the
average min-entropy of A, given B.
]Ezef(supp(F)) wz] = HOO(F) - IEzef(supp(F)) [Hoo(Flf(F) = Z)}
< Huo(F) — Hoo (FIf(F) = 2)
< Hoo(F) — Hoo(F) + log | f(supp(F))[ < €,

where for deriving the second line we have used Jensen’s inequality and for the
third line we have used [11, Lemma 2.2.b].* O

* The lemma is as follows. Let A, B be random variables. Then we have Ho, (A|B) >
H. (A, B) —n > Hu(A) — n, where B has at most 2" possible values.
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4 The xor Combiner

In this section, we study the indifferentiability of the xor combiner C?BI’HZ (x) :=
Hi(z) @ Ha(z) in the 2-BRO model from a random oracle RO. We show indif-
ferentiability against adversaries that switch between the two backdoor oracles
BD; and BDs only a logarithmic number of times, while arbitrarily interleaving
queries to the underlying BROs H; and Hs, as well as to the random oracle RO.

To prove indifferentiability we need to show that there exists a simulator
Sim := (SimHT®, SimHY°, SimBDR°, SimBDE®) such that no distinguisher plac-
ing a “reasonable” number of queries can distinguish

(CE"2 Hi, Ha, BDy,BDy)  and (RO, SimHEO, SimH5C, SimBDFC, SimBDS?) .

Such a simulator is described in Figure 1. Simulating the evaluation queries
to Hy and Hs is straightforward. In simulating the backdoor queries, we take
advantage of the decomposition technique (discussed in Section 3) for trans-
forming high min-entropy distributions into distributions that have a number
of fixed points and are dense otherwise. The backdoor simulator SimBD; (resp.
SimBD32) computes the queried function f on the truth table of Hy (resp. Hs),
where H; and Hsq are initialized by picking two functions uniformly at random.
For the sake of simplicity, we consider an adversary that makes ) consecutive
queries, ignoring evaluation and RO-queries in between, to one backdoor ora-
cle before moving to the other. After the i-th sequence of () queries to one of
the backdoor oracles, the leaked backdoor information is translated into fixing
p; rows of the hash function such that the rest is dense and the resulting dis-
tribution is statistically close to the true one. In other words, the distribution
conditioned on the leakage is vy-close (for some v > 0) to a convex combination
of (p,1 — d)-dense distributions obtained after decomposition.

Regarding the density rates J;’s, we use odd values of i for the distributions
obtained after backdoor queries on H; and even values of ¢ for distributions of
Hs. Note that is crucial for the statistical distance of these two distributions on
the entire table to remain small, since the distinguisher can adaptively query a
backdoor oracle which sees and can depend on the entire hash function table (as
opposed to a limited number of rows).

Finding a distribution, which is partly fixed and partly dense, is performed
by the FixRows algorithm from 1. On input of a distribution pu,, integer p € N,
and a set I, € [N], the algorithm FixRows returns a new distribution which is
fixed on points in a set I of size at most p+ | Iy | and is for some 6, (1 —J)-dense
on the rest, together with a set of assignments A for elements in I according
to the output distribution. The FixRows algorithm internally calls the refined
decomposition algorithm, whose existence is guaranteed by Lemma 1 and its
output distribution is one of the distributions in the convex combination returned
by RefinedDecomp.

Upon fixing rows of one simulated BRO, the same rows in the other simulated
BRO have to be fixed in a way that consistency with RO is assured. More
precisely, for any x if Hy(x) is fixed, the simulator SimBD; will immediately
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RO(z)

if Jy € [M] s.t. (z,y) € hstro then return y

y «—[M]
hstro < hstro U {(z, )}

return y

SimHRC ()

y1 + Hi(z)

hst; < hsty U {(z,y1)}

hsty < hsto U {(z,RO(z) ® y1)}
H1 4= plhsty; M2 = p2]hsty

Ho «— o

return y;

SimBDR[p,7](f)

SimHR° ()

y2 < Ha(z)

hsty < hsto U {(z,y2)}

hst; < hst; U {(z,RO(z) ® y2)}
H2 = p2lhst; M1 <= 11 |hsty

Hi «— p1

return y»

SimBD5° [, 7](f)

g+—q+1
z + f(H1)
B1 < Halp)=2
if ¢ = Q do
(p1, A1) «— FixRows[y] (1, p2s+1, hsti.1)
Hy « p1
hst; < hst; U Ay
for (z,y1) € A1 do
hsty < hsta U {(z, RO(z) ® y1)}
M2 I—L2|hst2
Ha «— po
g« 0

return z

FixRows[] (1=, p, Iprv)

qg+—q+1
z + f(H2)
w2 p2lpy=z
if ¢ = Q then
(pz2, A2) 4 FixRows[] (2, p2s+2, hsta.1)
Ho «— po
hsta <— hsto U Ao
for (z,y2) € A2 do
hst1 < hsty U {(z,RO(z) & y2)}
M1 Ml\hstl
Hi «— 1
g+ 0
s+ s+1

return z

((Dy, I), -
Derr  [M]
(Di, I;) «{(D1,11), ...
A+ 0; F«D;

for x € I; do A + AU {(z,F(x)}
return (;L\Di»A)

N

..y (Da,I4), (Derr, Ier)) «— RefinedDecomp|puz, p, 7, Iprv]([M]N)

, (Da,Ia), (Derr, Ierr)} with probability p,(D;), where ¢ € {1,...,d,err}

Fig. 1: Indifferentiability simulator for the xor combiner. We assume initial values
hst; = hsty = hstrg := 0, H1 = Ug = Z/[[M]N, Hi, Ho «—U[M]N, q:=0,and s:=0.

set Ha(z) := RO(x) @ Hi(x) (and, analogously, so does SimBD3). The simulator
specifies the number of points that it can afford to fix (since every such query
requires a call to RO) and the statistical distance that it wants. Such a strategy
to assure consistency with RO is also followed by evaluation simulators SimH;
and SimHsy, where only one coordinate of each BRO is fixed.
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Note that the simulator SimBD; programs values of Hy, which were supposed
to be dense (after a first SimBDy query), to values that are uniform instead.
Hence, we need to argue later that the statistical distance between a uniform
and a dense distribution is small for the number of points that are being treated
this way. This is formalized in Claim 2, below. Looking ahead, the need to keep
the advantage of the differentiator small is the reason why the simulator adapts
the number of fixed points with a differentiator’s switch to the other backdoor
oracle. Finally, via a hybrid argument we can upper bound the total number of
random oracle queries by the simulator and the advantage of the differentiator.

Claim 2. LetU be the uniform distribution andV be a (1—79)-dense distribution,
both over the domain [M]t. Then we have SD(U,V) <t-§-log M.

Proof. This proof follows that of [7, Claim 3]. Let V. be the set of all values
z € [M]* for which Pr[V = z] > 0 holds. We can write the statistical distance
between U and V as:

SDU,V) = Z max {0, Pr[V = z] — Prlf = 2]}

z€[M]*
= Z max {0, Pr[V = 2] - PrlU = Z}}

ZEV+
B B Prid = 2]
‘zezvfrw‘z]'m{“’lw} '

Now, observe that for any value z € [M]*, we have Pr[V = 2] < M~(1=9)* and
PrlU = z] = M. Hence we have:

SDU,V)<1—M"t<t-§-logM ,

where the last inequality uses the fact that for all x > 0, it holds that 27% > 1—«
(and hence, x > 1 —277%). O

The following theorem states our indifferentiability result for xor.

Theorem 1 (Indifferentiability of xor in 2-BRO with bounded adap-
tivity). Consider the zor combiner C?Bl’HQ (z) := Hi(x) ® Ha(z) in the 2-BRO
model with backdoored hash functions Hi,Hy € [M|N. It holds that for any
P = (p1,.--,per1) € N°FL 0 < v < 1, and an integer ¢ > 0, there emists
a simulator Sim[p,~] := (SimHRC, SimHRC, SimBDRC[,~], SimBD®[p, 7)) such
that for any differentiator D that always makes Q) queries to a backdoor oracle
(starting from BDy and always receiving an £-bit response) before switching to
the other, with a total number of ¢ switches, while being allowed to arbitrarily
interleave up to qq primitive queries as well as qc construction queries, we have

indiff
AdVCE?’Hz,Sim[ﬁ,'y] (D)< (c+1) v

+ log M - (sz “Gim1 4 qH - Oes1 + qc - (6c 4 0ey1))
i=1
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where 6_1 := 6y := 0 and the density rate after the i-th sequence of Q-many back-
door queries is 6; := (J;—2 - (N — 22;21 p;) -log M + Q- £ +1logy™")/(pi-log M).
The simulator places at most qsim < qu + Zf:ll p; queries to the random ora-
cle RO.

Proof. We prove indifferentiability by (1) defining a simulator, (2) upper bound-
ing the advantage of any differentiator in distinguishing the real and the simu-
lated worlds, and (3) upper bounding the number of queries that the simulator
makes to the random oracle.

Simulator. All four sub-algorithms of the simulator are described in Figure 1.
They share state, in particular, variables to keep track of the fixed history and
the current distribution of the hash functions. Two sets hsty, hsty are used to
keep track of the fixed coordinates of the simulated hash functions H; and Hs,
respectively. The density functions, from which the simulated backdoored hash
functions will be sampled, are denoted by p; and po. Furthermore, the simula-
tor uses a counter s to recognize switches from one backdoor oracle to the other
in order to use the appropriate number of points to fix from the list p. It also
maintains a counter ¢ for counting the number of consecutive queries to a back-
door oracle in order to decompose, i.e., substitute the current distribution with
a partially fixed and partially dense distribution, only when necessary which
is the case after each set of @@ backdoor queries. We assume the initial values
p1 = p2 := Uppgv, Hi, Ha &= U, hsty = hsty = hstro := 0, ¢ := 0, and s := 0.

Security analysis. Here we analyze the indifferentiability of the xor combiner

using a sequence of eight games Gamey, ..., Game;, where Gamey and Game;
are the real and ideal indifferentiability games, respectively. In the following
we use the shorthand notation Pr[D®mei] := Pr[D%mei = 1], where D%me:

indicates the interaction of an adversary D with a game Game;. We define the
intermediate games Game; through Gameg by gradually modifying the oracles
and highlighting the changes in each step. Unchanged oracles are omitted in
games and correspond to those from their direct predecessor. We bound the
advantage of differentiators in distinguishing every two consecutive games.

Gamey : Cg“m (z)

y1 + Hi(x); y2 < Ha(x)

Y Y1 D y2

return y

Gamey : Hy(z) Gameg : Ha () Gameg : BDy(f) Gameg : BDo(f)
y1 < Hi(z) y2 « Ha(x) z + f(Hy) z + f(H2)

return y; return ys return z return z

Game;. We next update the distributions of hash functions based on past eval-
uation queries, backdoor queries, and the history of coordinates that are fixed
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through construction queries. The distributions u; are conditioned on these up-
dates, but are never actually used (i.e., sampled from) in the game. Hence it is
easy to see that these two games are identical, i.e., SD(Gameg, Game;) = 0.

Game; : Cgl’H2 (x)

y1 = Hi(2); y2 < Ha(z)
hst; < hst; U {(w,yl)}; hsty < hsty U {(Z,yg)}
p1 < palhsty; B2 < H2]hsty

Y = y1 Dy2

return y

Game; : Hi(x) Game; : Hy(z) Game; : BD1(f) Game; : BDo(f)
y1 + Hi(x) y2 < Ha(z) z + f(H1) z < f(H2)

hsty < hst; U {(z,v1)} hsty < hsto U {(z, y2)} H1 — ,u1|f(‘)=z o — [l.z|f(.)=z

M1 H1|hst1 M2 H2|hst2 return z return z

return y; return y»>

Gamey. Here, after each sequence of @) queries to a backdoor oracle, i.e., right
before a switch, a (p, 1 —§)-dense distribution y) is obtained using the algorithm
FixRows by decomposing the distribution of the corresponding hash function
after responding to the last query (i.e., pi| ()= ). However, since the new distri-
butions p are never actually used elsewhere, Gamey remains identical to Gamey,
i.e., SD(Game;, Gamey) = 0.

Game2 : BDl(f) Gamez : BDQ(f)
g+ q+1 g<q+1
z e f(H); e palyo)=- 24 J(H2)i 2 = pizl sy
if ¢ = Q then if ¢ = Q then
(;4’17 Ay) « FixRows[v] (11, p2s+1, hst1.1) (,U,;, Az) % FixRows[v](p2, 2542, hsta.1)
g+ 0 U
return z s+ s+1
return z

Games. In this game, evaluation queries on a value z, fix the image of both
functions, i.e., to Hy(z) and Hy(z). Similarly, in backdoor simulation the rows in
the assignments Ay (resp. As) are fixed for the other hash function Hy (resp. Hy)
according to its current distribution. In both games, the oracles’ responses are
at all times consistent with their past responses (and the construction) and we
still do not sample from the updated distributions. Hence, it does not matter,
if more or less of the hash function tables are fixed in each query and therefore
the two games are identical, i.e., SD(Gamesy, Games) = 0.
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Game3 : H1($L')

y1 < Hi()

hst; < hst; U {(z,91)}
hsty < hsta U {(z, H2(z)}
p1 4= plhsty s 2 & p2lhsty

return y;

Games : BDy(f)

Game3 : HQ({)S)

y2 < Ha(x)

hsty < hsto U {(z,y2)}
hsty < hsty U {(z, H1(z))}
M2 #2|hst2; M1 ,ul|hst1

return y;

Games : BDy(f)

qg—q+1
z 4 f(H1); p1 < pilpy=z
if ¢ = Q then
(/L/17 Aq) % FixRows[v] (11, p2s+1, hst1.1)
for z € A1, do
hsty <+ hst U {(z,H2(z))}
H2 4 p2lhsty
g+ 0

return z

g q+1
2+ f(H2); p2 < polry=z
if ¢ = Q then
(p,;,, As) «— FixRows[v](p2, p2s+2, hsta.1)
for z € As; do
hsty < hsty U {(z, H1(z))}
H1 = #1|hst1
g« 0
s+ s+1

return z

Gamey. In this game the distributions obtained by decomposition actually re-
place the distributions conditioned on leakage. Hence, the histories are also
updated and a new hash function H; is later sampled for potential usage in
the construction. According to Lemma 1, there is a convex combination of
(p,1 — 0)-dense distributions which is «-close to the real distribution, one of
such distributions being the one returned by FixRows. Hence, the distinguish-
ing advantage can increase by ~ for every ) sequence of backdoor queries. I.e.,

‘Pr[DGameg} _ Pr[DGam&;” < (C+ 1) .

Gamey : BD1(f)

Gamey : BDo(f)

g q+1
z 4+ f(H1); p1 < palyey==
if ¢ = Q then
(m1, A1) «— FixRows[v] (11, p2s41, hst1.1)
hst; < hst; U Ay
Hy «— p1
for x € A1 do
hsty < hsto U {(z, H2(z))}
B2 4 2 ]hsty
g« 0

return z

g q+1
2+ f(H2); p2 < polfy=z
if ¢ = Q then
(pa, A2) «— FixRows[v](p2, p2st2, hsta.1)
hsta < hsto U Aa
Ha «— po
for x € As 1 do
hsty < hst; U {(z,H1(z))}
M1 4= o1 fhsty
g+ 0
s+ s+1

return z

Games. This game behaves exactly as Gamey except when fixing the same
rows for the distribution of the other BRO. It fixes those points by calling
Cg (rather than directly) and then redundantly updates the history with e.g.,



some (z,Hi(z) ® Cg(x)) and samples a new BRO from the updated distri-
bution. However, since the construction Cg itself calls the BROs, Games is
only taking a detour and the two games are perfectly indistinguishable. Hence
SD(Gamey, Games) = 0.

Gamey : Hy(z) Gamey : Ha(z)
y1 < Hi(z) y2 + Ha(z)
hst; < hst; U {(z,y1)} hsty < hsto U {(z,y2)}
hsty < hsto U {(z, Cq(z) B y1} hst; < hsty U {(z,Cq(z) ® y2)}
M1 4= plhstys M2 4 H2]hsto M2 4= p2lhsto; 1 4 11 ]hsty
Ho & o Hi «— p1
return y; return yo
Games : BDy(f) Games : BDy(f)
qg—q+1 g q+1
z 4= f(H1); p1 = palpy== 2+ f(H2); p2 < polry=z
if ¢ = Q then if ¢ = Q then
(p1, A1) «— FixRows[y] (11, p2s+1, hsti.1) (p2, Az) «— FixRows[y](p2, p2s+2, hsta.1)
hst; < hst; U Ay hsty < hsty U Ao
Hi «— p1 Ho «— po
for (z,y1) € A1 do for (z,y2) € Az do
hsto  hstz U {(z, Ca (z) ® y1)} hst; « hst; U {(z, Cq (2) ® y2)}
H2 = 12 ]hsty B1 4= H sty
Ha «— po Hi «— p1
g« 0 g« 0
return z s+ s+1
return z

Gameg. We now modify Cg to start to resemble a lazily sampled random oracle.
In the new construction oracle, a query is stored together with its image in the
history hstro. In case a query is repeated, its stored image is simply returned.
Otherwise, there are three cases to consider: the corresponding row to the current
query x is fixed in both hash functions, in one of them, or in neither one. In the
first case the output of the construction is computed by xoring the individual
images stored in hst; and hsty. In the second case, a uniformly random value is
chosen (and later stored in hstrp). In the final case, Gameg behaves exactly as
Games. So, the distinguishing advantage is bounded by distinguishing uniform
points (set to uniform when xoring with the returned uniform value of Cg) from
dense points. In fact, according to Claim 2, for each evaluation query it adds at
most 0.1 - log M, since §;’s are increasing. Further, for all points that are fixed
upon a backdoor query this adds p; - d;_1 - log M, except for the last one, since
there will be no backdoor query after that which can see the entire p.y; points.

} PI‘[’DGameE’} _ PI‘[DGame6]| < IOgM . (sz . 57:_1 +qy - 6c+1)

i=1
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Gameg : Cgl’Hz (x)

if 3y € [M] s.t. (z,y) € hstro then return y
if 3y1,y2 € [M] s.t. (z,y1) € hsty A (z,y2) € hstz then return y; @ ya

if 3y’ € [M] s.t. (z,y') € hsty V (z,y’) € hsty then
y «=[M]

else
y1 + Hi(z); y2 « Ha(z)
hsty < hst; U {(z,y1)}; hsta < hsto U {(z,y2)}
H1 Hl\hstl; M2 IJ42|hst2
Y = y1 Dy2

hstro < hstro U {(w,y)}

return y

Gamey;. The construction oracle in this game differs from Gameg in that it never
evaluates the individual hash functions anymore. Here, we can safely remove
the second case distinction, where x is in both hst; and hsts, since this case is
covered by the first case where z has been queried to the construction itself. It
remains to bound the distinguisher’s advantage in distinguishing the two games
while making queries x to the construction that are prior to the query fixed for
neither hash function.

Claim. Let X and Y be two independent (1 —4) and (1 —¢’)-dense distributions
over a domain [M]"™. Then the xor distribution X @Y is (1 — (6 + ¢’))-dense
over the same domain [M]"N.

Proof. Let I C [N] and z € [M]!l be arbitrary. Then we have:

PriX;®oY =z = ZPr[XIZx/\YI:x@z] = ZPr[Xlzx] -Pr[Yi=2® 2]

< 2|I|~logM . 2—(1—6)-\I\~10gM . 2—(1—5’)-\]\~10g1\/]

— 9= (1=(6+8")|I]log M | 0

We can now bound the distinguisher’s advantage by computing the distance
between the sum of two dense distributions from uniform, given that only q¢c
queries to Cq are allowed. Below, in the second line, we use the fact that ac-
cording to Lemma 1, §’s should increase.

| Pr[DSmee] — Pr[DS"7]| < gc-log M- max {8 + 61} = gc-log M- (3 + 5cr1) -
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Gamey : Cgl’Hz (x)

if 3y € [M] s.t. (z,y) € hstro then return y

B 55 B 3

’ / /
) I ) 2

y «—[M]

else-
yr+—Hr{z)yz—Ha(z)
TR et
Yy Sy

hstro < hstro U {(CD, y)}

return y

The last game Game; is identical to the simulated world. Therefore, the
overall advantage of D is as stated in the theorem.

Query complexity. The queries made by the simulator to RO consist of those
made when simulating evaluation queries and those made when simulating back-
door queries. Responding to each evaluation query requires exactly one query to
RO, which makes a total of gy queries. Right after the Q-th consecutive back-
door query (i.e., right before a switch), the simulator fixes some rows of the other
BRO, where for each fixed row one query to the random oracle RO is made. The
maximum number of rows that should be fixed after each sequence of () queries
to BD; (resp. BD2) is predetermined by the simulator’s parameter p. Hence we
obtain the claimed query complexity gu + Zf;l Di. O

We now provide estimates for the involved parameters.

Corollary 1. Let the number of switches be ¢ > 1. Then for any o > 1 —
1/F.11, where F; are the Fibonacci numbers, there is an indifferentiability simu-
lator Sim for the Cg construction in the 2-BRO model which has query complexity
gn+ (c+1)- N* for any distinguisher with qu queries to the underlying BROs.
Furthermore, any such distinguisher which places qc construction queries and @
consecutive queries to the same backdoor oracle before switching has advantage
at most

(c4+1) -y +logM - (B +2qn + 2qc) - NU =) Ferr/Fega=1/Fegz
against the simulator, where B := (Qf + logy~1)/log M. Asymptotically the
query complexity is qq + O(N'"YFe+2) and the advantage O((qn + qc) - Q -
g/N0~38/Fc+2)_

Proof. From Lemma 1 we have that

0; < (0i—2- A+ B)/p; ,
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where A := N and B := (Q/+logy~!)/log M. Recursively applying the equation
we get for odd

B  AB AG-1/2p
0 < —+ +oitr —
bi  DiPi—2 PiPi—2 - P1
Using p; < A, the terms progressively get larger. Thus, in general

c- N(i72+i mod 2)/23

' pipi—2 “Plt(i+1)mod2

For the indifferentiability advantage to be small, we would need to minimize

Zpi “0i—1 + (qn + qc)(0c + Ocg1)-
i=1

Let’s assume p; = N for some «; € [0,1). Then the i-th summand for ¢ > 1 is

c-B. N% ®i-1=&-3—"=Qltimod 24+(i—34+(i—1) mod 2) /2 )

To minimize, we set all terms equal to a common value ¢ - B - N?. We obtain
Qg — Qi1 — ... — Qiyimod2 + (i =3+ (i —1)mod2)/2 =10,
Solving this system of linear equations gives
o, =F -0+ F,_1-(acn—1)+1,

where F; are the Fibonacci numbers with £y = 0 and F; = 1.

We may arrange the terms so that (6. + 6.41) = 2+ N? (not including the
(qu + qc) factor). To this end, we set aero = 0 so that .11 = N?/p.yo = N
and 6. = N%/p.y1 < N?/peya = NP Thus we set a.ro = 0. This gives § =
(1—aq) Fey1/Fera—1/F.to. Now for § < 0 we would need that oy > 1—1/F. 4.
This means that the query complexity of the simulator is gy + (¢ + 1) - N®* and
its advantage is

(c+1)-y4log M- (c*B +2qn + 2qc) - NU=e1) Fepa/Fey2=1/Fetz

We obtain the bound stated in the asymptotic part of the corollary by setting
a1 121—1/F0+2>1—1/FC+1. ]

We note that in the special case where ¢ = 1, we must have that a; >
1—1/F5 = 0. In particular we can set a1 := 1/4 to obtain a simulator that places
Ne = N4 < /N queries. Thus in this case we obtain collision resistance.
Note, however, that as soon as ¢ > 2 we would need to have that oy > 1—1/F3 =
1/2, which means the simulator places at least VN queries, and we do not get
collision resistance.

The above corollary shows that the xor combiner can only tolerate a logarith-
mic number of switches in log IV, which we think of as the security parameter.
This is due to the fact that the simulator complexity needs to be less than N/2
for it to be non-trivial. Although our bounds are arguably weak, they are still
meaningful, and we conjecture that much better bounds in reality hold.
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5 An Extractor-Based Combiner

In this section we study the indifferentiability of extractor-based combiners and
show that they can give better security parameters compared to the xor com-
biner of Section 4. Recall that in the k~-BRO model one considers adversaries
that have access to all k& backdoor oracles. A query to the backdoor oracle Bp;
reveals some information about the underlying BRO H;. The resulting distri-
bution conditioned on the leakage can, using the decomposition technique, be
translated into a distribution with a number of fixed coordinates, while the dis-
tribution of the rest remains dense. An indifferentiability simulator then fixes
the same rows of the other BRO(s) in a way that consistency with the random
oracle (which is to be indistinguishable from the construction) is ensured.

We demonstrated this idea for the xor combiner, where, before a switch to
the other backdoor oracle, the simulator substituted p images of that BRO by
uniformly random values, i.e., the result of the random oracle values xored with
the ones just fixed. This causes a security loss of p - § - log M per switch, which
corresponds to the advantage of an adversary distinguishing p uniform values
from (1 — §)-dense ones. Now consider a multi-source (ky, ..., k¢, €)-extractor as
the combiner in t-BRO. The hope would be that as long as the images of the
BROs have high min-entropy, the output of the extractor is e-close to uniform.
This makes it possible for us to express the loss described above in terms of a
negligible ¢ and forgo the requirement on ¢ to be negligible.

In this section we focus on 2-out-of-3-source extractors as combiners, i.e.,
extractors that only require a minimal amount of min-entropy from two of the
sources. More formally, let Ext : [M]3 — [2] be a 2-out-of-3-source (ky, k2, k3, €)-
extractor. For three functions Hy, Hy, Hs : [N] — [M], the combiner CH1H2Hs .
[N] — [2] is defined as CHLH2Ms (2) .= Ext(Hi(z), Ha(x), H(z)). Here we show
that in the 3-BRO model the construction C;';x:' 2M3 s indifferentiable from a
random oracle.

WHY NOT A TWO-SOURCE EXTRACTOR? Note that we cannot guarantee that
images which are being fixed by the simulator in some H; as a result of a BD;-
query have any min-entropy whatsoever. To understand why, simply consider an
adversary that makes a backdoor query to BD; requesting a preimage of the zero-
string y* := 0™ under H;. Suppose BD; responds to this query with z* € [N].
In this case Hi(2*) has no min-entropy, since y* = H;(z*) was chosen by the
adversary and is, therefore, completely predictable. Hence, H;(z*) cannot be
used in a (kq, k2, €)-two-source extractor, i.e., Ext(Hy(x*), Ha(2*)), which relies
on min-entropy from both sources for its output to be e-close to uniform. Overall,
using a two-source extractor does not seem to have any advantage over the xor
combiner in the 2-BRO model. On the contrary, when using a 2-out-of-3-source
extractor, assuming that the rows under consideration are not already fixed in
the function tables of all three BROs due to some previous query, there will be
two images with high min-entropy, from which we can extract a value e-close to
uniform.
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Theorem 2 (Indifferentiability of 2-out-of-3-source extractors in the
3-BRO model with bounded adaptivity). Let Ext : [M]?> — [2] be a
(k1, ka, ks, €)-2-out-of-3-source randomness extractor, where € is a function of
ki, ko, ks. Consider the combiner Ci-HM3 (1) .= Ext(H, (z), Hy(2), Hs(z)) in the
3-BRO model with backdoored hash functions Hy,Ha, Hg € [M]N. It holds that
for all values of p := (p1,...,per1) € N°tL 0 < v < 1, and an integer ¢ > 0,
there exists a simulator Sim[p,~] := (SimHY®, SimHE®, SimHEC, SimBDRC [, 4],
SimBDgo[ﬁ 7]7SimBD§O[ﬁ, v]) such that for any differentiator D that always
makes @ queries to one backdoor oracle (always receiving an £-bit response)
before switching to the next, with a total number of ¢ switches, while arbitrarily
interleaving up to qu primitive queries and qc construction queries, we have

indiff
At (D) (041

+ Z SD(E1| cee |Epi’u[2]Pi) +qH - SD(E17U[2]>
1=1
+qc-e((1=0c—1)-log M, (1—6.)-log M, (1—6041)-log M)

where for all m € N, we define E, := Ext(X,Y,Z) for some random variables
X.,Y,Z over [M] such that at least 2 of them have min-entropy (1 —6.) - log M.
Furthermore, we let d_og := d_1 := dp := 0 and for other values of i < c+1 let
6; = (6i—3 - (N*Z;ji p;) -log M + Q- £ +1logy™')/(pi -log M) be the density
rate after the i-th sequence of Q-many backdoor queries. The simulator places at
most qsim < qu + Ef:ll pi queries to the random oracle RO.

Proof. The proof structure closely follows the proof of Theorem 1. We show
indifferentiability by (1) defining a simulator, (2) upper bounding the advantage
of any differentiator in distinguishing the real world from the simulated world,
and (3) upper-bounding the number RO-queries made by the given simulator.

Simulator. The simulator is described in Figure 2 by algorithms SimH; and
SimBD; (for i« = 1,2,3). The simulator sub-algorithms share state and keep
track of the current distribution of the backdoored hash functions. The histories
hsty, hsto, hst3, initialized as empty sets, are used to keep track of the fixed
coordinates of the simulated BROs. The distributions, according to which the
simulated backdoored hash functions are sampled, are denoted by p1, o, and
ps and initialized as Ujps v, since the hash functions without the backdoors are
supposed to behave like random oracles. The corresponding hash functions are
initialized as uniform random functions H; «— U5~ . Furthermore, the simulator
uses a counter q to keep track of the number of consecutive queries to a backdoor
oracle and use this information to substitute the current distribution with a
partially fixed and partially dense distribution, only when necessary (i.e., when
q = @), as opposed to doing so upon every backdoor query. Each time images of
a simulated H; are fixed by the simulator BD;, images of the same rows must be
fixed for H; and Hj (i.e., the other two functions) to provide consistency with
the random oracle RO. For this, images of H; are fixed truthfully according to
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the currently sampled function, while Hy, is tweaked in a way that the extracted
values match images of RO. Note that the simulators need to re-sample H; and
H;, if their distribution is modified in a non-trivial way, i.e., not just fixing more
values, but either through FixRows or to force consistency with RO.

SimHRO () RO(z)

yi < Hi(z); hst; « hst; U {(z,y:)} if 3y € [2] s.t. (z,y) € hstro then
Hi ,ui‘hsti return y

j <+ (imod3) +1; k + (jmod3) + 1 y«[2]

y < RO(z) hstro < hstro U {(z,y)}

if i =1 then Hy «— pik[ex(y; H, (2),Hg (2)=y return y

elseif ¢ = 2 then Hjg éhMk|EXt(Hk(m),3/inj(m)):?/

else Hy «— piklExt(H; (o) Hy, (2),u5)=y

hst; < hst; U {(z,H;(x))}; hsty < hsty U {(z, Hp(z))}
M — Mj\hstj§ M Nk\hsck

Hi «— pk

return y;

SimBD{°[p,7](f)

g q+1
z < f(Hi)
wi 4= il py==
j 4 (imod3) +1; k+ (jmod3) +1
if ¢ = Q then
(w4, Ay) «— FixRows[v](pi, P3s+4, hst; 1)
Hi % p;
hst; < hst; U A;
for z € A; 1 do r, + RO(z)

if i =1 then Hi ¢« kilv(a,y)ea,. Baly; @) Hy(2)=ra

elseif i = 2 then H, é&ukw(z,yi)ef;r Ext(Hy, (2) .y, Hj () =ra
else Hi 4= pklv(e,y;)ea;. Ba(Hy (@) Hy (2),y;)=ra
for z € A; ;1 do
hst; < hst; U {(z,H;(x))}; hsty < hstp U {(z,Hp(x))}
s Bglnstys Bk < B lhsty,
Hi «— bk
g« 0
if i=3then s+ s+ 1

return z

Fig. 2: Indifferentiability simulator for the 2-out-of-3-source extractor. We as-
sume for ¢ = 1.3 initialization values hst; = hstro = 0, p;i = Upgw,
H; «~Ujpv, g :== 0, and s := 0. The FixRows algorithm is identical to that
of Figure 1.
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Security Analysis. We analyze indifferentiability of 3ext-combiner using a se-
quence of eight games Gamey,...,Game;, where Gamey and Game; are the
real and the ideal indifferentiability games, respectively. The modified lines in
each game are highlighted. Oracles are omitted in some games if they have not
changed since the previous game.

Gameg : CHuH»Hs ()

for i = 1..3 do

yi < Hi(z)
y < Ext(y1,y2,v3)
return y

Gameo : HZ(.’E) Gameo : BDZ(f)

yi < Hi(z) z + f(H;)

return y; return z

We use the shorthand notation Pr[D®M¢] := Pr[D%M¢ = 1], where Dme
indicates the interaction of an adversary D with a game Game. In each game hop,
we bound the adversary’s advantage in distinguishing any two consecutive games
from one another. The first game Gameg is the real game, where the adversary

interacts with the 3ext-combiner and the backdoor oracles of the underlying
BROs.

Game, : CiuH=Hs ()

for i = 1..3 do
yi < Hi(2); hst; <= hst; U{(z,yi)}; mi < pilhst;
y + Ext(y1,y2,y3)

return y

Game; : H;(z) Game; : BD;(f)
hst; < hst; U {(z,v:)} Wi & pil (==

Mg = Hi'hsti return z

return y;

Game;. Game Game; updates the distribution of hash functions based on eval-
uation queries, backdoor queries, and the history of coordinates that are fixed
through construction queries. The distributions u; are conditioned on these val-
ues but are never actually sampled from in the game. Hence the two games are
identical, i.e., SD(Gamegy, Game;) = 0.
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Game2 : BDZ(f)

g<q+1

z + f(Hq)

i = il g (o)==

if ¢ = Q then
(,u;, A;) «— FixRows[v] (i, P3s+i, hsti.1)
g« 0
if i =3 then s + s+ 1

return z

Games. In game Games, after each sequence of ) queries to a backdoor oracle,
i.e., right before switching to a different one, a (p,1 — §)-dense distribution u; is
obtained from the real distribution using the algorithm FixRows by decomposing
the distribution of the corresponding hash function after responding to the last
query (i.e., ii]f(.)=-). The number of fixed points p is a parameter determined
by the simulator and the density rate § can be obtained by applying Lemma 1.
However, since the new distributions ) are never used elsewhere, Game, remains
identical to the previous Gamey, i.e., SD(Game;, Games) = 0.

Game; : H;(z) Games : BD;(f)
yi < Hi(x) g q+1
hst; < hst; U {(z,y:)} z < f(Hi)
i #z‘|hsti Hi < ,ui|f(.):z
j <+ (tmod3)+1; k< (jmod3)+1 j+ (imod3)+1; k< (jmod3) +1
hst; < hst; U {(z, H;(x))} if ¢ = Q then
hsty, « hsty, U {(z, Hx(z))} (uf, A;) «— FixRows[y] (147, P3s+i, hsti.1)
B Hglhseys pr < flhsty, for z € A; 1 do
return y; hst; < hst; U {(z,H;(x))}
hstg, < hsty U {(z, Hx(z))}
tg <= Bglhsty s Kk < Rk lhsty,
g+ 0
if i =3 then s + s+ 1
return z

Games. In this game, the fixed rows in one simulated BRO are also fixed for the
other two BROs. E.g., in backdoor simulation, the rows in the assignment A;
are fixed for H; and Hy. In both games, the oracles’ behaviors are at all times
consistent with their past responses as well as the construction. Hence, it does not
matter, if more or less of the hash function tables are fixed in each query. The two
games are again perfectly indistinguishable, i.e., we have SD(Games, Gamesz) = 0.
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Game4 : BDZ(f)

g<q+1
z < f(Hq)
i = il g (o)==
j 4+ (imod3)+1; k+ (jmod3) +1
if ¢ = Q then
(i, A;) «— FixRows[v] (i, p3s+i, hsti.1)
Hi «— i
hst; < hst; U A;
for x € A; 1 do
hst; < hst; U {(z, H;(z))}
hsty, < hsty U {(z, Hi(z))}

B Hglhsey s B 4 Hilnsty,

q+ 0
if i=3 then s < s+ 1
return z

Game; : H;(z) Games : Bp;(f)
yi « Hi(z) g q+1
hst; < hst; U {(a:,yl)} Z f(HI)
i 4 fi st i = il p (==
j 4 (tmod3)+1; k + (jmod3) +1 j <+ (imod3) +1; k< (jmod3) +1
y < RO(z) if ¢ = Q then
if ¢ = 1 then Hyg «_“klEXt(yi,Hj(w),Hk(w)):y (pi, Ai) «— FixRows[v] (1, P3s+i, hsti.1)

Hi «— pi

hst; < hst; U A;

for © € A; 1 do ry + Caext ()
hst; < hst; U {(z,H;(2))} if i = 1 then

hsty, < hsty, U {(z, Hi (2))}

By 4 Hglnseys B 4 B lhsty,

elseif i = 2 then Hy «—Mk'Ext(Hk(w)vyiij(z))=U

else Hi «— pik[exe(H; () Hp (@),v3) =y

Hi 4= 1k [v(a,y;) €4, Ext(y; H (2) Hp, (@) =ra
elseif i = 2 then

H
k% Bk Hk«—uk\v(z,yi)eAi.Ext(Hk(z),yi,Hj@)):rm

return y;
else Hy «_Hklv(myyi)eAi.Ext(Hj(w),Hk(m),yi)=rz

for z € A; 1 do
hst; < hst; U {(z,H;(2))}
hsty « hsty, U {(z, Hy(x))}
By pglhsts Bk 4 plhsty,
Hi «— bk
q<+ 0
if i=3 then s < s+ 1

return z

Gamey. In Gamey the distribution obtained by FixRows finally replaces the true
distribution, i.e., the one conditioned on the recent backdoor responses. Hence,
the history is updated. Notably, a new function H; must be sampled for future
references, since its distribution has changed in a non-trivial way. According
to Lemma 1, there is a convex combination of (p,1 — §)-dense distributions
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which is v-close to the real distribution, one of such distributions being the one
returned by FixRows. Thus, the distinguishing advantage increases by ~ after
each sequence of backdoor queries, i.e., | Pr[D®me] — Pr[DSmes]| < (¢ + 1) - .

Games. Contrary to Gamey, the next game Games; somewhat indirectly fixes
images of rows z in A; (and z queries to SimH;) for the other functions H;
and Hjy. More precisely, the simulator calls the construction Csey; on freshly
fixed rows according to A; and samples a Hy in such a way that it is consistent
with those construction images, and aligned H; and Hj images. Notice that a
query to the construction already fixes the images for the underlying BROs and
therefore, sampling H;, in a consistent way and fixing coordinates of H; and Hy,
in the simulator is simply redundant. Hence SD(Gamey, Games) = 0.

Gameg : ChuH=Hs ()

if 3y € [M] s.t. (z,y) € hstro then return y
if 3y1,y2,y3 € [M] s.t. (z,y1) € hsty A (z,y2) € hsta A (z,y3) € hstg then return Ext(yi1, y2, y3)
if 3y’ € [M] s.t. (z,y') € hst1 V (x,y") € hsta V (z,y") € hstz then

y «—[M]
else

for i = 1..3 do

yi < Hi(2); hst; < hst; U{(z,y:)}; pi < pilnsy;

y < Ext(y1,y2,v3)

hstro + hstro U {(:22, y)}

return y

Gameg. In this game we modify Csexy SO that it starts to resemble a lazily
sampled random oracle. Query-response pairs of the construction are kept in a
set hstro and in case a query is repeated the stored image is simply returned.
Otherwise, we distinguish three cases: (a) the corresponding row to the current
query z is fixed in all hash functions, (b) in one of them, or (c¢) in none of them.
In case (a), Gameg computes the output of the construction by extracting from
the individual images stored in histories of the BROs. Note, however, that this
case is never reached, since if the current z is in all individual histories, then the
construction must have already been called on = in some previous evaluation or
backdoor query. Hence, x must also be in hstro. In case (b), a uniformly random
value is chosen (and stored in hstgro). In the final case (c¢), Gameg behaves exactly
as Games.

Overall, the distinguishing advantage is bounded by distinguishing p uniform
(chosen by the construction) points each time a backdoor query fixes p points
from values that were supposed to be extracted from three sources, from which
one is not guaranteed to have any min-entropy, as well as gy many times distin-
guishing a single extracted value from random. Let E, := Ext(Hy(zy), Ha(z),
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Hg(l‘n)), where x,, € A; 1 is a row being fixed. Then we have:

| Pr[DCmes] — Pr[D%me]| <> "SD(Ey| - | By, Uppri) + qn - SD(Ey, Upzy)
i=1

Gamey : CiLH=Hs ()

if Jy € [M] s.t. (z,y) € hstro then return y

B ) oS ) B B B B

’ ’ ’ ’

hstro < hstro U {(z,y)}

return y

Gamey. The Czqy oracle in Gamey; differs from Gameg in that it never evaluates
the underlying BROs any more and rather acts as a lazily sampled random
oracle. We can safely remove the case distinction (a), where z is included in all
histories hsty, hsty, and hsts, since this z would also be in hstgp. It remains to
bound the adversary’s advantage in distinguishing the two games while making
up to gc fresh queries x to the construction Cseyt that are not fixed for any of the
BROs. While the outputs of the construction are uniformly random in Gamey,
they are extracted from three dense images in Gameg. The distinguisher can only
try to maximize the distance between gc uniform values vs. values extracted from
three dense images of BROs by querying the construction on values and at times
which it can choose freely.

qc

| Pr[DS2mes] — pr[DSmer]| < max (SD(EX‘E(H1($t)» Ha(z4), HS(ift))aU[z]))

o Py x+,H1,H2,Hs
<qc- max, (SD(Ext(Hi(x), Ha(a). Hale)).Upy))

< qc - e((1=0c—1)-log M, (1—6,)-log M,
(1—=6c41)-log M) ,

where according to Lemma 1 we have §; as defined in the theorem statement with
/; being the min-entropy deficiency after the i-th sequence of Q-many backdoor
queries. Note that the maximum statistical distance corresponds to minimum
entropy of the BRO-images, which is in turn given for the last three (c—1, ¢, c+1)
values of the density rate.

Query complexity. The simulator makes queries to the random oracle RO to set
images of the other BROs each time one point of some BRO is fixed, either caused
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by evaluation queries or by backdoor queries right after the @-th consecutive
backdoor query (i.e., before a switch). Hence we obtain the bound gsim < gn +

el p; on the number of queries that the simulator makes to the random oracle.
=1
O

5.1 Instantiation with the pairwise inner-product extractor

Next we investigate a concrete instantiation of such a 2-out-of-3-source extractor.
General multi-source extractors such as those from [2,25,21] which require a
minimal amount of min-entropy from every source are inapplicable in our setting.
We can, however, use the pairwise inner-product extractor as introduced by Lee
et al. [19], which roughly speaking needs the sum of min-entropies to be sufficient.
Formally a pairwise inner-product extractor Extpip : [M]" — [2] is defined as:

Extpip(21,..., @) := Z T T .

1<i<j<t
This extractor is proven ([19], Corollary 1) to be a (k1, ..., k¢, £)-extractor with
g = 2~ (kK —log M+1)/2 "here k and &’ are the two largest values among ki, . . ., ky.

Hence, Extp;, is also a 2-out-of-¢ extractor.

Corollary 2. Let Extp, : [M]' — [2] be a pairwise inner-product extractor.
Then the construction C;;HQ’HS(:E) = Extpip(Hi(2), Ha(z), Hs(x)) in the 3-BRO
model is indifferentiable from a random oracle, where

Advdit (D) <(c+1)-v

Codae 2" Simlp A\ =

3ext
+c- \/(ep-M*U*?Jc) o 1)/2
+ (g1 + qc) 9= ((1=26c41)log M+1)/2

while the simulator makes up to gsim < qu + (c+ 1) - p queries to RO.

Proof. The differentiator’s advantage stated in the corollary is easily obtained
by upper bounding the term SD (El,Z/{[Q]) by 27 ((1=20c41)-log M+1)/2 a1 upper
bounding the termSD (E1| e |Ep,bl[2]p) from the advantage in Theorem 2, using
the following claim.

Claim. Let x; € [N] and E; := Extpip(Hl(xi), Ha(x;), Hg(l'i)) for ¢ = 1..n. Sup-

pose that for all z;, at least two of the (distributions of the) functions Hy, Ha,
Hs are (1 — 0)-dense. Then for all n € N we have:

SD(E1| - |En,U[2]n) < \/(en-M*(l—zé) _ 1)/2 .

Proof. In the proof below we use the parity lemma ° (1) and the fact that the
pairwise inner product (in [L]) is linear, i.e., > ., E, = > ; Extpip(Hi(2n),

® Let X be a random variable over [2¢]. Then we have
2
SD(X,Ujpe) < \/Zo%em (SD(X - a,Upz)))".
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Ha (), H3(2n)) = Extpip(Hi(z1)|-- - [Hi(zr)), Ha(z1)[ - - [Ha(21)), Ha(21)] - |
Hs(x7)) = E1 (2).

2
SD(E1| -+ |Ep,Upgpn) < > (SD(E1| -+ |Ey, - a,Upy)) (1)
Qn log 2#&6[2]”

(SD(ZEivU[z]))Q

(]

0AIC{1,...,n} iel
2
= Z (SD(Er, Upa)) (2)
0AIC{1,...,n}
< Z 2—(|I]-log M-(1-26)+2~log 2)
0#IC{1,...,n}
— [2—2+log2. Z 92—|1I|-log M-(1-26)
0£IC{1,...,n}
— Jo-1. Z (M_u_za))\f\
O£IC(L,...;n}

- \/((1 + M2 1) /2
< e M0 1) O

Hence, the claim about the advantage holds. The query complexity of the
simulator is bounded by the sum of g4 and (¢+ 1) - p. O

We now provide estimates for the involved parameters.

Corollary 3. Let the number of switches be ¢ > 1 and assume the range size
of the three random oracles are M > N°. Then there is an indifferentiability
simulator Sim for the Cpip construction in the 3-BRO model that places at most

60/ 1/a(c) B
o) (S20)

queries to RO, where a(c) := L%J + 1, against any distinguisher with qy queries
to the underlying BROs. Further, any such distinguisher with qc construction
queries and @ consecutive queries to the same backdoor oracle before switching,
has advantage at most (¢ + 1) -v+ (¢4 qu + gc)/N against this simulator.

Proof. The recurrence relations for ¢; in the statement of Theorem 2 can be
written as

0; <A 4 3+B,
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where A := N/p and B := (Qf + logy~1)/plog M. Solving this recurrence
relation we get ‘
AlFH+H
< ———-B.
- A-1
We set 0,41 < 1/3 so that the term 1 — 2,41 is positive. To this end, it is
sufficient to have that B
ALY 1
—  B< -
A-1 -3
Substituting A and B and removing the —1 in the numerator we need to have
that

(N> [5]+1 _A-1_(N/p—lplogM _NlogM —plogM _ Nlog M

» 3B 3Q/¢ - 3Q/ 6QC

where for the last inequality we have assumed that p < N/2. Thus,

1/a(c)
p> (16Q]€[> L NL-Vate)
0g

(4

where a(c) := |£| + 1. For sufficiently large c, the factor above is at most 2.
The advantage stated in Corollary 2 is

(c+1)-v+c-\/p/M*=2% + (gn+qc) - \/ 1/ M1 =21,

Since 1 — 26,41 <1-2/3=1/3,8. <6cr1,p < N and M > N?, the advantage
is upper-bounded by (¢+ 1) - v+ (¢ + gu + gc)/N. O

Note that for ¢ = 1,2 the query complexity of the simulator does not involve
the N1=1/2(¢) factor, and hence we obtain collision resistance. For ¢ > 3, however
there is a factor of at least N'/2.

The above corollary shows that the extractor combiner can tolerate a linear
number of switches in log N (which can be thought of as the security parameter)
for the simulator query complexity to be less than N/2. As for the xor combiner
we conjecture that (much) better bounds for the extractor combiner are possible.

6 Indifferentiability with Auxiliary Input

In this section we discuss indifferentiability in a setting where there is no adap-
tivity and the backdoor oracles are called only once at the onset. Although this
may seem overly restrictive, the resulting definition is sufficiently strong to model
indifferentiability in the presence of auxiliary input, whereby we would like to
securely replace random oracles in generic applications even in the presence of
auxiliary input.

In this setting we can view an indifferentiability simulator as operating in
two stages: An off-line stage which responds to the single backdoor queries for
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each BRO, and an on-line stage which simulates direct evaluation calls to the
underlying BROs. As defined, the off-line phase of the simulator can pass an
arbitrary state to its on-line phase. Further, both stages have access to the
reference object oracles (although the query complexities of both stages need
to be small). More precisely, this definition in the 2-BRO requires that for any
(Do,1,Do,2,D1) in the real world with two BROs Hy and Hs with

CM2 Hy Hy
z1 4= Do,1(H1); 22 = Do,2(H2, 21); b« Dy (21,22) ,
there exists some (Sim&?7 Simgg, Simle7 Simle) in the ideal (simulated) world

RO,SimfC [st],Sim{% [s
(21, 5t) % SIMRS(); (2, 5t) «— SIMEY(st); b Dy malthsmzlt e, oy,

with indistinguishable outputs b. The on-line simulators can also share state.

Let us now take a step back and define indifferentiability with auxiliary input
driven by a composition theorem: for any game G and any attacker 4; in this
game against CM-H2 which receives auxiliary input on H; and Hs, there is an
attacker B; on RO in the same game G but now without auxiliary input. More
explicitly, the real world

24 Ag(Hy, Hy); b gE™ AT ()
and the ideal world
(2, 5t) 4= BEO(); b4 GROBT 20

are indistinguishable. Once again the query complexity of By should be small (or
even zero) to obtain a definition which meaningfully formalizes indifferentiability
from random oracles without auxiliary input. This definition, however, turns out
to be unachievable: Ag can simply encode a pair of collisions for the construction,
which By will not be able to match (with respect to RO) without an exponentially
large number of queries to RO.%

There are two natural ways to overcome this: (1) restrict the interface of the
construction; or (2) restrict the form of preprocessing. The former is motivated by
use of salting as a means to defeat preprocessing, and the latter by independence
of preprocessing for BROs.

A final question arises here: is it possible to simplify this definition further by
removing the quantification over A; (as done for standard indifferentiability)?
This could be done in the standard way by absorbing .4; into G to form a differ-
entiator D. However, this means that D must receive the auxiliary information z.

5 One can formulate an intermediate notion of indifferentiability from random oracle
with auxiliary input. Without salting, this notion would not be of great help. Con-
sider, for example, the case of domain extension via an iterative hashing mode. Due
to Joux’s multi-collision attack [17] one can encode exponentially many collisions for
the construction in a small auxiliary input, whereas this would not be possible for
the random oracle.
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The resulting notion is stronger and models composition with respect to games
that also depend on preprocessing. Thus, due to its simplicity, strength, and the
fact that we can establish positive results for it, we focus on this definitional
approach. We now make the two definitions arising from (1) and (2) explicit.

SALTED AI-INDIFFERENTIABILITY. We call a construction CH salted if the con-
struction takes a salt hk € {0,1}* as input and prepends all calls to H with hk.
We define salted Al-indifferentiability from a random oracle by requiring that
for any (Dy, D7) in the real world

24 Dy(H); bk «—{0, 1}5; b DE PRIH ()
there is a simulator (Sim}°, Simf°) in the ideal world

(2, 5t) 4= SIMRO(); hk 4—{0, 1}*; b« DROGBISEClot]

resulting in indistinguishable outputs b. We denote the advantage of D in the
salted Al-indifferentiability game with simulator Sim for a construction C" by
AdvETIndT (D) Notice that in the above definition, the distinguisher gets access
to a salted RO. A different definition arises when the distinguisher gets access
to an unsalted RO instead. However, since the simulated auxiliary information
is computed given access to an unsalted RO (which can be interpreted as having
implicit access to the salt), such a definition calls for the existence of a more
powerful simulator. In particular, such Simg and D; can easily call RO on com-
mon points. The practical implications of such a definition are unclear to us, and
moreover, it is strictly weaker than our definition.

AI-INDIFFERENTIABILITY WITH INDEPENDENT PREPROCESSING. We define Al-
indifferentiability with independent preprocessing by requiring that for any ad-
versary (Dg 1, Dg 2, D1) in the real world

D H-): D, H-): DCHI’H27H17H2
21 4= Do,1(H1); 20 = Do 2(H2); b«—Dy (21, 22)
there is a simulator (Sim&?, Simg’o27 Sim*icl), Simﬁg) in the ideal world

RO S RO S RO
(21, 5t) 4= SImEQ(); (29, 5t) «— SIMEQ(st); b Dy > PHhSimis st

(21, 22)

resulting in indistinguishable outputs b. Note that this is slightly weaker than
the definition of indifferentiability in 2-BRO since 25 is fully independent of
z1, whereas BRO indifferentiability allows for a limited amount of dependence.
We denote by Advgigm (D) the advantage of D in the Al-indifferentiability
game with independent preprocessing with respect to a simulator Sim and a
construction CM:H2 in the 2-BRO model.

We are now ready to prove our feasibility results for Al-indifferentiability.

Theorem 3 (Al-Indifferentiability). Any construction CHvH2 that is indif-
ferentiable with backdoors from a random oracle with no adaptive backdoor queries
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is also Al-indifferentiable from a random oracle with respect to independent pre-

processing attacks. More precisely, for any auxiliary-input differentiator D =

(Do,1,Do,2, D1) with independent preprocessing for two random oracles there is

a 2-BRO differentiator D with one-time non-adaptive access to each backdoor

oracle such that for any 2-BRO indifferentiability simulator Sim there is an

auziliary-input simulator Sim := (Simg 1, Simg 2, Simy 1, Simy 2) such that
AdvEL G (D) = Advial, 6 (D)

Further, any salted construction CH that is indifferentiable (in the standard
sense) from a random oracle is also salted Al-indifferentiable from a random
oracle. More precisely, for any auxiliary-input differentiator D := (Do, Dy), with
an auxiliary input of size £, there is a (standard) differentiator D such that
for any indifferentiability simulator Sim there is an auziliary-input simulator
Sim := (Simg, Simy) such that for any p € N and any v > 0

Ltlogy™ |, p

AdvERS" (D) < AdvEigh, (D) + —— o

CH Sim

Proof. The first part of the theorem follows directly from the discussion above
that indifferentiability with backdoors and no adaptivity is stronger than indif-
ferentiability with auxiliary input for independent preprocessing.

We now prove the second part of the theorem.

Gameg:. We start with the real game in the salted Al-indifferentiability game:

2 4 Do(H); hk «-{0,11%; b & DRI H (b oy

Game;:. We now move to the bit-fixing RO model

2, A) 4= Do (); bk «={0, 1}F; haeDC T (DRI oy
1

Here Dy runs Dy by simulating an H for it and then runs the decomposition
algorithm to get a set of assignments A for p fixed points (for any p € N). We
may now apply [7, Theorem 5] to deduce that for any v > 0,
-1
| < £+ log~y

Pr[Game;] — Pr[Gamey] < ———— + 7,
p

where /¢ is the size of auxiliary information.

Gamey:. We now move to a setting where C uses H rather than H[A]

cH(hk,-)
1

(2, A) 4Dy (); hk«—{0,1}*; DS M 2AAL G oy

This modification is justified by the fact that the probability that a uniform hk
is (the prefix of the first component of some point) in A is at most p/2%. We
have that Pr[Gamey] — Pr[Game;] < p/2F.
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Games:. We now move to a world where D; is replaced by a differentiator Dy
that gets the list A and does not query H on points in A:

2, A) &= Do(); bk «={0,1}%; ba D PEIH g o) |
1

Here Dy (hk, z, A) runs D; (hk, z) relaying its queries to the first oracle to its own
first oracle and the second oracle queries to its own second oracle except when a
queried point appears as a prefix of the first component of an entry in A in which
case D; uses A to answer the query. We have that Pr[Games] — Pr[Gamey] = 0.

Gamey:. We now absorb 750 and T)l into a single differentiator D:
b« D (hk) H

Here D simply runs Dy, followed by picking hk 4—{0,1}*, and then running D;.
We have that Pr[Gamey] — Pr[Games] = 0.

Games:. We now use the standard indifferentiability of the construction to move

to the world
@RO(hk,.),smeo

b «— )
where Sfm is an indifferentiability simulator. We have that Pr[Games]—Pr[Games] <
Advii (D).

Gameg:. We now syntactically unroll D into (Do, D;):

~ - ~ RO
(2, A) 4= Do(); bk 4—{0, 1}%; b4 DROPEISM T g o A)
We have that Pr[Gameg] — Pr[Games] = 0.
Gamey;:. We further unroll D; into D; and define Simy[A] to be Sim except that
it uses A to answers queries in A:

(2, A) &= Do (); hk 4—{0, 1}*; b DROGEDSMEMAL oy

We have that Pr[Game;] — Pr[Gameg] = 0.

Gameg:. Finally we define Simg := Dy and arrive at the simulated world

(2, A) 4= Simo(); hk 4—{0, 1}*; b4 DROMR)SmElA]

hk, z) .
We have that Pr[Gameg] — Pr[Game;] = 0.

The second part of theorem follows by summing the (in)equalities established
above; that is for any p € N and any v > 0 we get that

AdVE e (Do, D1) = Pr[Gameg] — Pr[Games]

indiff o~ L+ logyTt
< AL (D) + =t
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We can instantiate the first part of the above theorem with the xor combiner,
which gives us the following corollary.

Corollary 4. The zor combiner Cthz (z) := Hi(2)®Ha(z) is Al-indifferentiable
from a random oracle with respect to independent preprocessing attacks for hash
functions Hy,Hy € [M]N. More precisely, for any p € N and 0 < v < 1, there
exists a simulator Sim[p] := (Simg 1[p], Simg 2[p], Simy 1, Sim1 2) with oracle ac-
cess to RO, such that for any auziliary-input differentiator D = (Do 1, Do,2, D1)
with auxiliary input of size £ for each hash function, where D1 makes up to qy
evaluation queries to Hy and Hy as well as qc construction queries, we have
(an +2qc) - (¢ +logy 1)

ai-indiff
AdVC?el’H2,Sim[p] (D) < 2")/ + D )

while the simulator places at most gy + 2p queries to the random oracle RO.

Proof. The claim follows from the first part of Theorem 3 together with our
indifferentiability result for xor (given in Theorem 1). However, deriving the
concrete bounds using Corollary 1 results in somewhat suboptimal bounds with
simulator query complexity O(p) and advantage O(1/,/p) with p = N*1.

Here we directly use Theorem 1 for a simulator which fixes p points while
simulating an /-bit response of BD; and the same number of points while simu-
lating an ¢-bit response of BDs. Note that in the auxiliary-input setting we only
consider one query to each backdoor oracle and therefore we have Q = 1. Over-
all we will have a simulator Sim[p] for the above corollary, such that its off-line
phase (i.e., Simg 1[p] and Simg 2[p]) makes no queries to the RO and it simulates
the auxiliary inputs by randomly choosing the hash functions and computing the
output of the desired auxiliary-input functions (similar to a queried backdoor
function) on them. This off-line phase then can use the refined decomposition
algorithm of Lemma 1 for some small v to come up with and (in addition to
the auxiliary input) output two sets of pre-set points, each of size p, as its state.
The state will be shared with the on-line phase of simulation, i.e., Sim;; and
Simy 2. Now this on-line simulator is a simple xor indifferentiability simulator
which ensures consistency with the pre-set points. Note that our on-line simu-
lator fixes p points for H; and again p points for Hs. This results in simulator
query complexity of qy + 2p.

In this case, since §_; = §p = 0 we obtain that

{+logy~!
5y =0y = trlogy
plog M
Plugging these back into the advantage bound in Theorem 1 we obtain the bound
claimed above. O

Note that for p = o(v/N) we get a bound that is meaningful for collision
resistance. As a result, we get that the xor combiner is collision resistant in
the presence of independent auxiliary input (with no-salting). We note that the
xor construction comes with added advantage that its security goes beyond Al-
indifferentiability, and is also more domain efficient. Strictly speaking, however,
the two settings are incomparable as the form of auxiliary information changes.
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