
© IACR 2020. This article is a minor revision of the version which appears in the
proceedings of TCC 2020, published by Springer-Verlag.

Towards Defeating Backdoored Random Oracles:
Indifferentiability with Bounded Adaptivity

Yevgeniy Dodis1, Pooya Farshim2, Sogol Mazaheri3, and Stefano Tessaro4

1 New York University
dodis@cs.nyu.edu

2 University of York
pooya.farshim@gmail.com

3 Technische Universität Darmstadt
sogol.mazaheri@cryptoplexity.de

4 University of Washington
tessaro@cs.washington.edu

Abstract. In the backdoored random-oracle (BRO) model, besides ac-
cess to a random function H, adversaries are provided with a backdoor
oracle that can compute arbitrary leakage functions f of the function ta-
ble of H. Thus, an adversary would be able to invert points, find collisions,
test for membership in certain sets, and more. This model was introduced
in the work of Bauer, Farshim, and Mazaheri (Crypto 2018) and extends
the auxiliary-input idealized models of Unruh (Crypto 2007), Dodis, Guo,
and Katz (Eurocrypt 2017), Coretti et al. (Eurocrypt 2018), and Coretti,
Dodis, and Guo (Crypto 2018). It was shown that certain security prop-
erties, such as one-wayness, pseudorandomness, and collision resistance
can be re-established by combining two independent BROs, even if the
adversary has access to both backdoor oracles.
In this work we further develop the technique of combining two or more

independent BROs to render their backdoors useless in a more general
sense. More precisely, we study the question of building an indifferen-
tiable and backdoor-free random function by combining multiple BROs.
Achieving full indifferentiability in this model seems very challenging at
the moment. We however make progress by showing that the xor com-
biner goes well beyond security against preprocessing attacks and offers
indifferentiability as long as the adaptivity of queries to different back-
door oracles remains logarithmic in the input size of the BROs. We even
show that an extractor-based combiner of three BROs can achieve in-
differentiability with respect to a linear adaptivity of backdoor queries.
Furthermore, a natural restriction of our definition gives rise to a notion
of indifferentiability with auxiliary input, for which we give two positive
feasibility results.
To prove these results we build on and refine techniques by Göös et

al. (STOC 2015) and Kothari et al. (STOC 2017) for decomposing dis-
tributions with high entropy into distributions with more structure and
show how they can be applied in the more involved adaptive settings.

Keywords: Hash functions · Indifferentiability · Backdoors · Auxil-
iary input · Communication complexity

1 Introduction

Hash functions are one of the most fundamental building blocks in protocol de-
sign. For this reason, both the cryptanalysis and provable security of hash func-
tions have been active areas of research in recent years. The first known instances
of collisions and chosen-prefix collisions in SHA-1 were recently demonstrated
by Stevens et al. [26] and Leurent and Peyrin [20], respectively. Furthermore,
feasibility of built-in adversarial weaknesses (aka. backdoors) in efficient hash
functions have been demonstrated by Fischlin, Janson, and Mazaheri [13]. A
practical way to provide safeguards against similar failures of hash functions is
to combine a number of independent hash functions so that the resulting func-
tion is at least as secure as their strongest. Most works in this area have focused
attention on a setting where at least one of the hash functions is secure, although
positive results when all underlying hash functions have weaknesses have also
been demonstrated [22,15].

In this work we are interested in protecting hash functions against a variety
of attacks that may arise due to backdoors, cryptanalytic advances, or prepro-
cessing attacks. We carry out our study in the recent backdoored random-oracle
(BRO) model, which uniformly treats these settings and also permits strong
adversarial settings where all hash functions may be weak.

1.1 The BRO model

Bauer, Farshim, and Mazaheri (BFM) [3] at Crypto 2018 formulated a new
model for the analysis of hash functions that substantially weakens the tradi-
tional random-oracle (RO) model. Here an adversary, on top of direct access to
the random oracle, is able to obtain arbitrary functions of the function table of
the random oracle.1 The implications of this weakening are manifold. To start
with, positive results in this model imply positive results in the traditional set-
ting where all but one of the hash functions is weak. Second, this model captures
arbitrary preprocessing attacks on hash functions, another highly active area of
research [27,10,7,6]. Finally, it allows to model unrestricted adversarial capabili-
ties, which can adaptively depend on input instances, and thus captures built-in
as well as inadvertent weaknesses that may or may not be discovered in course
of time.

BFM studied three natural combiners in this setting: those of concatenation,
cascade, and xor combiners:

CH1,H2
| (x) := H1(x)|H2(x) CH1,H2

◦ (x) := H2(H1(x))

CH1,H2
⊕ (x) := H1(x)⊕ H2(x) .

They showed, using new types of reductions to problems with high communica-
tion complexity, that central cryptographic security properties, such as one-way
1 The model allows for a parameterization of the class of functions that can be com-
puted. Both BFM and we here work with respect to the full set of functions.

2

security, pseudorandomness, and collision resistance are indeed achievable by
these combiners.

The reductions to communication complexity problems are at times tedious
and very specific to the combiner. Moreover, the hardness of the communica-
tion complexity problem underlying collision resistance is conjectural and still
remains to be proven. Furthermore, a number of deployed protocols have only
been shown to be secure in the random-oracle model, and thus may rely on
properties beyond one-wayness, pseudorandomness, or collision resistance.

This raises the question whether or not other cryptographic properties ex-
pected from a good hash function are also met by these combiners. In other
words:

Can combining two or more backdoored random oracles render access to
independent but adaptive auxiliary information useless?

We formalize and study this question in the indifferentiability framework, which
has been immensely successful in justifying the soundness of hash-function de-
signs.

1.2 Indifferentiability

A common paradigm in the design of hash functions is to start with some under-
lying primitive, and through some construction build a more complex one. The
provable security of such constructions have been analyzed through two main
approaches. One formulates specific goals (such as collision resistance) and goes
on to show that the construction satisfies them if its underlying primitives sat-
isfy their own specific security properties. Another is a general approach, whose
goal is to show that a (wide) class of security goals are simultaneously met.

The latter has been formalized in a number of frameworks, notably in the
UC framework of Canetti [5], the reactive systems framework of Pfitzmann
and Waidner [24], and the indifferentiability framework of Maurer, Renner, and
Holenstein [23]. The latter is by now a standard methodology to study the sound-
ness of cryptographic constructions, particularly symmetric ones such as hash
functions [8,4] and block-ciphers [9,16,1,12] in idealized models of computation.

In the MRH framework, a public primitive H is available and the goal is to
build another primitive, say a random oracle RO, from H through a construc-
tion CH. Indifferentiability formalizes a set of necessary and sufficient conditions
for the construction CH to securely replace its ideal counterpart RO in a wide
range of environments: for a simulator Sim, the systems (CH,H) and (RO,SimRO)
should be indistinguishable. The composition theorem proved by MRH states
that, if CH is indifferentiable from RO, then CH can securely replace RO in ar-
bitrary single-stage contexts. A central corollary of this composition theorem
is that indifferentiability implies any single-stage security goal, which includes
among others, one-wayness, collision resistance, PRG/PRF security, and more.

3

1.3 Contributions

With the above terminology in hand, the central question tackled in this work is
whether or not combiners that are indifferentiable from a conventional (backdoor-
free) random oracle exist, when the underlying primitives are two (or more)
backdoored random oracles.

Let us consider the concatenation combiner H1(x)|H2(x), where H1 and H2
are both backdoored. This construction was shown to be one-way, collision re-
sistant, and PRG secure if both underlying functions are highly compressing.
Despite this, the concatenation combiner cannot be indifferentiable from a ran-
dom oracle: using the backdoor oracle for H1 an attacker can compute two inputs
x and x′ such that H1(x) = H1(x′), query them to the construction and return
1 iff the left sides of the outputs match. However, any simulator attempting to
find such a pair with respect to a backdoor-free random oracle must place an ex-
ponentially large number of queries. Attacks on the cascade combiner H2(H1(x))
were also given in [3, Section D.2] for a wider range of parameter regimes, leav-
ing only the expand-then-compress case as potentially indifferentiable. Finally,
the xor combiner H1(x)⊕H2(x), which is simpler, more efficient, and one of the
most common ways to combine hash functions, resists these.2

Decomposition of distributions. When proving results in the presence of
auxiliary input, Uhruh [27] observed that pre-computation (or leakage) on a
random oracle can reveal a significant amount of information only on restricted
parts of its support. The problem of dealing with auxiliary input was later re-
vised in a number of works [10,7,6]. In particular Coretti et al. [7], building on
work in communication complexity, employed a pre-sampling technique to prove
a number of positive results in the RO model with auxiliary input with tighter
bounds. At a high level, this method permits writing a high min-entropy dis-
tribution (here, over a set of functions) as the convex combination of a (large)
number of distributions which are fixed on a certain number (p) of points and
highly unpredictable on the rest, the so-called (p, 1−δ)-dense distributions. This
technique was originally introduced in the work of Göös et al. [14].

The simulator. Our simulator for the xor combiner builds on this technique
to decompose distributions into a convex combination of (p, 1− δ)-dense distri-
butions. Simulation of backdoor oracles is arguably quite natural and proceeds
as follows. Starting with uniform random oracles H1 and H2, on each backdoor
query f for H1 the simulator computes z = f(H1) and updates the distribution
of the random oracle H1 to be uniform conditioned on the output of f being z.
This distribution is then decomposed into a convex combination of (p, 1 − δ)-
dense distributions, from which one function is sampled. For all of the p fixed
points, the simulator sets the value of H2 consistently with the random oracle
and the distribution of H2 is updated accordingly. An analogous procedure is
implemented as the simulator for the second backdoored random oracle.

2 Further, an indifferentiability proof of the expand-then-compress cascade combiner
would closely follow that of the xor combiner and thus we focus on the latter here.

4

Technical analysis. The first technical contribution of our work is a refine-
ment of the decomposition technique which can be used to adaptively decompose
distributions after backdoor queries. We show that this refinement is sufficiently
powerful to allow proving indifferentiability up to a logarithmic (in the input
size of the BROs) number of switches between the backdoor queries. We prove
this via a sequence of games which are carefully designed so as to be compati-
ble with the decomposition technique. A key observation is that in contrast to
previous works in the AI-RO model, we do not replace the dense (intuitively,
unpredictable) part of the distribution of random oracles with uniform: backdoor
functions “see” the entire table of the random oracle and this replacement would
result in a noticeable change. Second, we modify the number of fixed points in
the (partially) dense distributions so that progressively smaller sets of points are
fixed. Even though each leakage corresponds to fixing a large number of points,
it is proportionally smaller than the previous number of fixed points. Thus the
overall bound remains small.

Simulator efficiency. Our simulator runs in doubly exponential time in the
bit-length of the random oracle and thus is of use in information-theoretic set-
tings. These include the vast majority of symmetric constructions. Protocols
based on computational assumptions (such as public-key encryption) escape
this treatment: the overall adversary obtained via the composition would run
the decomposition algorithm and hence will not be poly-time. This observation,
however, also applies to the BRO model as the backdoor oracles also allow for
non-polynomial time computation, trivially breaking any computational assump-
tion if unrestricted. Despite this, in a setting where the computational assump-
tion holds relative to the backdoor oracles, positive results may hold. We can
for example restrict the backdoor capability to achieve this. Another promising
avenue is to rely on an independent idealized model such as the generic-group
model (GGM) and for instance, prove IND-CCA security of Hashed ElGamal in
the BRO and (backdoor-free) GGM models. We leave exploring these solutions
to future work.

An extractor-based combiner with improved security. We apply the
above proof technique to the analysis of an alternative combiner for three inde-
pendent backdoored random oracles, which relies on 2-out-of-3-source extractors
that output good randomness as long as two out of the three of the inputs have
sufficient min-entropy. Given such an extractor Ext, our combiner is

CH1,H2,H3
3ext (x) := Ext

(
H1(x),H2(x),H3(x)

)
.

As mentioned above, our simulator for the xor combiner programs H2 on the
fixed points for H1 (and vice versa) using the random oracle. This results in a
loss since dense values are replaced with uniform values. In contrast, here the
extractor ensures that image values are closer to uniform and thus the overall
loss is lower. We show that a 2-out-of-3-source extractor can tolerate even a
number of switches between the backdoor oracles which is slightly sub-linear in
the size of the BRO inputs. This gives us more hope for unbounded adaptivity,
in case improved decomposition techniques are found.

5

Composition. Let c denote the number of times the adversary switches between
one backdoor oracle to the other. Regarding the query complexities of our sim-
ulators, each query to the backdoor oracle translates to roughly N1−2−c queries
to the random oracle for the xor combiner and roughly N1−3/(c+3) queries to the
random oracle for the extractor combiner. This in particular means that, for a
wide range of parameters, composition is only meaningful with respect to secu-
rity notions whereby the random oracle can tolerate a large number of queries.
This, for example, would be the case for one-way, PRG, and PRF security no-
tions where the security bounds are of the form O(q/N). However, with respect
to a smaller number of switches (as well as in the auxiliary-input setting with
no adaptivity), collision resistance can still be achieved.

Indifferentiability with auxiliary input. When our definition of indiffer-
entiability is restricted so that only a single backdoor query to each hash function
at the onset is allowed, we obtain a notion that formalizes indifferentiability with
auxiliary input. This definition is interesting as it is sufficiently strong to allow
for the generic replacement of random oracles with iterative constructions even
in the presence of preprocessing attacks. Accordingly, our positive results in the
BRO model when considered with no adaptivity translate to indifferentiability
with independent preprocessing attacks. To complement this picture, we also dis-
cuss the case of auxiliary-input indifferentiability with a single BRO and show,
as expected, that a salted indifferentiable construction is also indifferentiable
with auxiliary input.

Open problems. In order to overcome the bounded adaptivity restriction and
prove full indifferentiability, one would require an improved decomposition tech-
nique which fixes considerably less points after each leakage. This, at the mo-
ment, seems (very) challenging and is left as an open question. In particular,
such a result would simultaneously give new proofs of known communication
complexity lower bounds for a host of problems, such as set-disjointness and
intersection, potentially a proof of the conjecturally hard problem stated in [3],
and many others. (We note that improved decomposition techniques can poten-
tially also translate to improved bounds.) Indeed the xor combiner may achieve
security well beyond what we establish here (and indeed the original work of
BFM does so for specific games). Finally, as the extractor combiner suggests,
the form of the combiner and the number of underlying BROs can also affect
the overall bounds.

2 Preliminaries

Throughout the paper, when we write [N] for any uppercase letter N , we use
the convention that N is an integer and a power of two, i.e., N = 2n for some
n ∈ N. Let [N] := {0, . . . , N−1} denote the set of all n-bit strings. We use [M]N
to denote the set of all bit-strings of length N · logM , which corresponds to the
set of all functions F : [N] → [M]. We denote the uniform distribution over an
arbitrary finite set S by US .

6

For F ∈ [M]N and I ⊆ [N] we denote by FI the projection of F onto the
points in I. Let µ be a probability density function over [M]N . We define µ(D) :=
PrF∼µ[F ∈ D] as the probability that a sample randomly drawn from µ falls into
the domain D ⊆ [M]N . By µ|D we denote the density µ conditioned on the
domain D. For a function f : [M]N → {0, 1}` and z ∈ {0, 1}`, by µ|f(·)=z we
denote µ conditioned on f(F) = z for all F ∼ µ|f(·)=z.

For a set of assignments A ⊆ {(a, b) : (a, b) ∈ [N]× [M]}, by µ|A we denote
µ conditioned on F{a} = b for all (a, b) ∈ A and all F ∼ µ|A. We further let
A.1 ⊆ [N] (resp. A.2 ⊆ [M]) denote the set containing the first (resp. second)
coordinates of all elements in A.

For an algorithm Alg we denote by Alg[param](input) a call of the algorithm
with (constant) parameters param and variable inputs input. This is to increase
clarity among multiple calls to the algorithm about the main input, while the
parameters remain unchanged.

2.1 Backdoored random oracles

We recall the definition of the backdoored random-oracle model from [3]. The
BRO(N1,M1, . . . , Nk,Mk) model (for some k ∈ N) defines a setting where all
parties have access to k functions H1, . . . ,Hk, where Hi’s are chosen uniformly
and independently at random from [Mi]Ni , while the adversarial parties also
have access to the corresponding backdoor oracles Bdi’s. A backdoor oracle Bdi
can be queried on functions f and return f(Hi). If for all i ∈ [k] we have Ni = N
and Mi = M , we simply refer to this model as k-BRO(N,M) and when N and
M are clear from the context, we simply use k-BRO.

These models may be weakened by restricting the adversary to query Bdi
only on functions f in some capability class Fi. However our results as well as
those in [3] hold for arbitrary backdoor capabilities. In other words an adversary
can (adaptively) query arbitrary functions f to any of the backdoor oracles.

2.2 Indifferentiability in the BRO model

We follow the indifferentiability framework of Maurer, Renner, and Holenstein
(MRH) [23]. Here the underlying honest interfaces are k random oracles Hi
and respective adversarial interfaces Bdi. We define the advantage of a dif-
ferentiator D with respect to a construction CHi and a simulator SimRO :=
(SimHRO

i ,SimBDRO
i) as

Advindiff
CHi ,Sim(D) :=

∣∣∣Pr
[
DCHi ,Hi,Bdi

]
− Pr

[
DRO,SimHRO

i ,SimBDRO
i

] ∣∣∣ ,
where RO is a random oracle whose domain and co-domain match those of C.

We emphasize that the simulators do not get access to any backdoor oracles.
This ensures that any attack against a construction with backdoors translates
to one against the underlying random oracles without any backdoors.

7

2.3 Randomness extractors

Let X be a random variable. The min-entropy of X is defined as H∞(X) :=
− log maxx Pr[X = x]. The random variable X is called a (weak) k-source if
H∞(X) ≥ k, i.e., Pr[X = x] ≤ 2−k. The min-entropy of a distribution typically
determines how many bits can be extracted from it which are close to uniform.
The notion of closeness is formalized by the statistical distance. For two random
variables X and Y over a common support D, their statistical distance is defined
as SD(X,Y) := 1

2
∑
z∈D |Pr[X = z]− Pr[Y = z]|.

In this paper we are interested in extractors that do not require seeds but
rather rely on multiple weak sources.

Definition 1 (Multi-source extractors). An efficient function Ext : [N1] ×
. . . × [Nt] → [M] is a (k1, . . . , kt, ε)-extractor if for all weak ki-sources Xi over
domains [Ni], we have:

SD
(
Ext(X1, . . . , Xt),U[M]

)
≤ ε ,

where ε is usually defined as a function of k1, . . . , kt. We call Ext an s-out-of-t
(k1, . . . , kt, ε)-extractor if Ext(X1, . . . , Xt) is ε-close to uniform even if only s
sources fulfill the min-entropy condition.

Below we define useful classes of distributions, the so-called (partially) dense
distributions, resp. dense probability density functions. Intuitively, bit strings
from a dense distribution are unpredictable not only as a whole but also in any
of their substrings and any combination of those substrings.

Definition 2 (Dense distributions). Let µ be a probability density function
over [M]N . Then

– µ is called (1− δ)-dense if for F ∼ µ, it holds that for every subset I ⊆ [N]
we have H∞(FI) ≥ (1− δ) · |I| · logM .

– µ is called (p, 1 − δ)-dense if for F ∼ µ there exists a set I ⊆ [N] of size
|I| ≤ p such that H∞(FI) = 0, while for every subset J ⊆ [N] \ I we have
H∞(FJ) ≥ (1 − δ) · |J | · logM . That is, µ is fixed on at most p coordinates
and (1− δ)-dense on the rest.

We call a distribution dense, if the corresponding density function is dense.

3 Decomposition of High Min-Entropy Distributions

Any high min-entropy distribution can be written as a convex combination of
distributions that are fixed on a number of points and dense on the rest (i.e.,
(p, 1 − δ)-dense distributions for some p and δ > 0).3 The decomposition tech-
nique introduced by Göös et al. [14] has its origins in communication complexity
3 A convex combination of distributions µ1, . . . , µn is a distribution that can be written
as α1 · µ1 + . . .+ αn · µn, where α1, . . . , αn are non-negative real numbers that sum
up to 1.

8

theory. We generalize this technique, with a terminology closer to that of Kothari
et al. [18], in order to allow for adaptive leakage. The original lemma, also used
by Coretti et al. [7], can be easily derived as a special case of our lemma. For
this, one assumes that the starting distribution before the leakage was uniform,
in other words (0, 1)-dense.

When proving results in the auxiliary-input random-oracle (AI-RO) model,
Uhruh [27] observed that pre-computation (or leakage) on a random oracle can
cause a significant decrease of its min-entropy only on restricted parts of its sup-
port (i.e., on p points), causing that part to become practically fixed, while the
rest remains indistinguishable from random to a bounded-query distinguisher.
This means that after fixing p coordinates of the random oracle, the rest can
be lazily sampled from a uniform distribution. Coretti et al. [7] recently gave a
different and tighter proof consisting of two main steps. First, the decomposition
technique is used to show that the distribution of a random oracle given some
leakage is statistically close to a (p, 1− δ)-dense distribution. Second, they prove
that no bounded-query algorithm can distinguish a (p, 1 − δ)-dense distribution
from one that is fixed on the same p points and is otherwise uniform (a so-called
p-bit-fixing distribution), as suggested by Unruh [27].

Since in the BRO model adaptive queries are allowed, a function queried
to the backdoor oracle is able to “see” the entire random oracle, rather than a
restricted part of it. Hence, when analyzing the distribution of a random oracle
after adaptive leakage, it is crucial that we keep the distributions statistically
close. In other words we use (p, 1− δ)-dense distributions instead of p-bit-fixing.

In the k-BRO model, we are concerned with multiple queries to the back-
door oracles, i.e., continuous and adaptive leakage that can depend on previously
leaked information about both hash functions. Intuitively, since the leakage func-
tion can be arbitrary, it can in particular depend on the previously leaked val-
ues. We still need to argue that the distribution obtained after leakage about
a (pprv, 1 − δprv) distribution, which is not necessarily uniform, is also close to
a convex combination of (p, 1 − δ) distributions. Naturally, we have δ ≥ δprv,
since min-entropy decreases after new leakage, and p ≥ pprv, since additional
points are fixed. Looking ahead, in the indifferentiability proofs, this refined de-
composition lemma allows us to simply fix a new portion pfrsh of the simulated
hash function after each leakage (i.e., backdoor query) and not to worry about
the rest, which still has high entropy and can be lazily sampled (from a dense
distribution) upon receiving the next query.

Lemma 1 (Refined decomposition after leakage). Let µ be a (pprv, 1 −
δprv)-dense density function over [M]N for some pprv, δprv ≥ 0. Let f : [M]N →
{0, 1}` be an arbitrary function and z ∈ {0, 1}` be a bit string. Then for any
pfrsh, γ > 0, the density function conditioned on the leakage µ|f(·)=z is γ-close
to a convex combination of finitely many (p, 1 − δ)-dense density functions for
some p and δ such that

pprv ≤ p ≤ pprv+pfrsh and δprv ≤ δ ≤
δprv · logM · (N−pprv) + `z + log γ−1

pfrsh · logM ,

9

where `z := H∞(G) − H∞(F) is the min-entropy deficiency of F ∼ µ|f(·)=z
compared to G ∼ µ.

Proof. This refined decomposition lemma differs from the original lemma in that
the starting density function µ is (pprv, 1−δprv)-dense. As a first step, we modify
the original decomposition algorithm from [14,18] so that it additionally gets the
set of pprv indices Iprv ⊆ [N] that are already fixed in µ from the start.

Our refined decomposition algorithm RefinedDecomp, given below, recur-
sively decomposes the domain [M]N , according to the density function after
leakage µz := µ|f(·)=z, into d + 1 partitions D1, . . . , Dd, Derr ⊆ [M]N such that(⋃d

i=1Di

)
∪Derr = [M]N , where err stands for erroneous. For all i with 1 ≤ i ≤ d

the partition Di defines a (p, 1− δ)-dense density function µz|Di .
Each recursive call on a domain D to RefinedDecomp (other than the call

leading to Derr, which we will discuss shortly) returns a pair (Di, Ii), where Di

represents a subset of [M]N , where the images of all points in the set Ii ⊂ [N]
are fixed to the same values under all functions H ∈ Di. In other words, we
have HIi = αi for some αi ∈ [M]|Ii|. The algorithm finds such a pair (Di, Ii) by
considering the biggest set Ii (excluding those points fixed from the start, i.e.,
Iprv) such that the min-entropy of FIi (for F ∼ µz|D) is too small (as determined
by the rate δ) and then finding some αi which is a very likely value of FIi . Then
Ii is returned with some Di as the partition that contains all H with HIi = αi.
The next recursive call will exclude Di from the considered domain.

Decomposition halts either if the probability of a sample falling into the
current domain is smaller than γ (i.e., µz(D) ≤ γ) or the current distribution
is already (pprv, 1 − δ)-dense. In both cases the algorithm returns the current
domain D together with an empty set. In the former case the returned domain
is marked as an erroneous domain Derr := D, since it may not define a (p, 1 −
δ)-dense distribution. Let us without loss of generality assume that µz is not
(pprv + pfrsh, 1− δ)-dense, as otherwise the claim holds trivially.

The formal definition of the algorithm RefinedDecomp is given below. We
initialize the desired density rate as δ := δprv·logM ·(N−pprv)+`z+log γ−1

pfrsh·logM before
calling RefinedDecomp.

RefinedDecomp[µz, δ, γ, Iprv](D)

if µz(D) ≤ γ then return (Derr ← D, ∅)
if µz|D is (|Iprv|, 1− δ)-dense then return (D, ∅)
for F ∼ µz|D let I ⊆ [N] be a maximal set such that

H∞(FI) < (1− δ) · |I| · logM and I ∩ Iprv = ∅.

let α ∈ [M]|I| be such that Pr[FI = α] > 2−(1−δ)·|I|·logM .

Dα ← D ∩ {F ∈ [M]N | FI = α}

D 6=α ← D ∩ {F ∈ [M]N | FI 6= α}
return ((Dα, I),RefinedDecomp[µz, δ, γ, Iprv](D6=α))

10

Now we turn our attention to proving that every partition Di (other than
Derr) returned by the above decomposition algorithm defines a density function
µz|Di which is (p, 1− δ)-dense.

Claim 1. For all values of i with 1 ≤ i ≤ d it holds that the density function
µz|Di is (p, 1− δprv·logM ·(N−pprv)+`z+log γ−1

pfrsh·logM)-dense, where pprv ≤ p ≤ pprv+pfrsh.

Proof. Let δ := δprv·logM ·(N−pprv)+`z+log γ−1

pfrsh·logM . Let I be the set of freshly fixed
points in µz|Di and I ∪ Iprv := [N] \ (I ∪ Iprv). Let α∪ ∈ [N]|I∪Iprv| be such that
FI∪Iprv = α∪ for F ∼ µz|Di . We first argue for the (1 − δ)-density of µz|Di on
values projected to I ∪ Iprv and afterwards bound the size of I.

1. Suppose µz|Di is not (1−δ)-dense on I ∪ Iprv. Then there exists a non-empty
set which violates the density property. That is, there exists a non-empty
set J ⊆ I ∪ Iprv and some β ∈ [N]|J| such that, with the probability taken
over F ∼ µz|Di , we have:

Pr[FJ = β] > 2−(1−δ)·|J|·logM .

Now the union of the three sets I∗ := I ∪ Iprv ∪ J forms a new set such that
for some β∗ ∈ [N]|I∪Iprv∪J| we have

Pr[FI∗ = β∗] = Pr[FI∪Iprv = α∪ ∧ FJ = β]
= Pr[FI∪Iprv = α∪] · Pr[FJ = β|FI∪Iprv = α∪]
> 2−(1−δ)·|I∪Iprv|·logM · 2−(1−δ)·|J|·logM

= 2−(1−δ)·|I∪Iprv∪J|·logM .

Since J was assumed to be non-empty and disjoint from I ∪ Iprv (and in
particular with I), its existence violates the maximality of I. Therefore,
FI∪Iprv

is (1− δ) dense.

2. We now bound the size of I, given that δ = δprv·logM ·(N−pprv)+`z+log γ−1

pfrsh·logM .
Let F ∼ µz and G ∼ µ. We have H∞(F) = H∞(G) − `z ≥ (1 − δprv) · (N −
pprv). logM − `z, where the inequality holds, since µ is (1 − δprv)-dense in
N − pprv rows. Let β ∈ [M]|I|. Then we have:

Pr
µz|Di

[FI = β] ≤ Pr
µz

[FI = β]/µz(Di)

≤ Pr
µz

[FI = β]/γ

=
∑

β′∈[M]N−|I|−|Iprv|

Pr
µz

[FI = β ∧ F[N]\(I∪Iprv) = β′]/γ

≤ 2(N−|I|−pprv)·logM · 2−H∞(F)/γ

≤ 2(N−|I|−pprv)·logM · 2−((1−δprv)·(N−pprv)·logM−`z)/γ

= 2δprv·N ·logM−δprv·pprv·logM−|I|·logM+`z/γ

11

= 2δprv·logM ·(N−pprv)−|I|·logM+`z+log γ−1
.

Since by definition of the decomposition algorithm, there exists an α ∈ [M]I
such that Prµz|Di [FI = α] > 2−(1−δ)·|I|·logM , we obtain

|I| ≤ δprv · logM · (N − pprv) + `z + log γ−1

δ · logM .

Substituting δ by δprv·logM ·(N−pprv)+`z+log γ−1

pfrsh·logM , we obtain |I| ≤ pfrsh and
therefore, for the total number of fixed points p := |I ∪ Iprv| we get pprv ≤
p ≤ pprv + pfrsh , as stated in the claim.

Therefore, µz can be written as a convex combination of µz|D1 , . . . , µz|Dd
and µz|Derr , i.e., µz =

∑d
i=1 µz(Di) ·µz|Di +µz(Derr) ·µz|Derr . Since µz(Derr) ≤ γ

when the algorithm RefinedDecomp terminates, the distribution µz is γ-close to
a convex combination of (p, 1− δ) distributions.

A special case of the above lemma for a uniform (i.e., (0, 1)-dense) starting
distribution µ, where pprv = 0 and δprv = 0, implies the bound δ ≤ (`z +
log γ−1)/(pfrsh · logM) used by Coretti et al. [7].

Remark. Note that the coefficient of δprv in the right hand side of the inequality
established in the lemma is of the order O(N/pfrsh). Looking ahead (see discus-
sions on parameter estimation) this results in an increase in the number of points
that the simulator needs to set. Thus any improvement in the bound established
in this lemma would translate to tolerating a higher level of adaptivity and/or
obtaining an improved bound.

Below we show that the expected min-entropy deficiency after leaking ` bits
of information can be upper-bounded by ` bits.

Lemma 2. Let F be a random variable over [M]N and f : [M]N → {0, 1}` be
an arbitrary function. Let `z := H∞(F) −H∞(F|f(F) = z) be the min-entropy
deficiency of F|f(F)=z. Then, we have Ez∈f(supp(F))[`z] ≤ `.

Proof. Recall that H̃∞(A|B) := − log
(
Eb
[

maxa Pr[A= a|B = b]
])

defines the
average min-entropy of A, given B.

Ez∈f(supp(F))[`z] = H∞(F)− Ez∈f(supp(F))[H∞(F|f(F) = z)]

≤ H∞(F)− H̃∞(F|f(F) = z)
≤ H∞(F)−H∞(F) + log |f(supp(F))| ≤ ` ,

where for deriving the second line we have used Jensen’s inequality and for the
third line we have used [11, Lemma 2.2.b].4
4 The lemma is as follows. Let A,B be random variables. Then we have H̃∞(A|B) ≥

H∞(A,B)− n ≥ H∞(A)− n, where B has at most 2n possible values.

12

4 The xor Combiner

In this section, we study the indifferentiability of the xor combiner CH1,H2
⊕ (x) :=

H1(x) ⊕ H2(x) in the 2-BRO model from a random oracle RO. We show indif-
ferentiability against adversaries that switch between the two backdoor oracles
Bd1 and Bd2 only a logarithmic number of times, while arbitrarily interleaving
queries to the underlying BROs H1 and H2, as well as to the random oracle RO.

To prove indifferentiability we need to show that there exists a simulator
Sim := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2) such that no distinguisher plac-

ing a “reasonable” number of queries can distinguish

(CH1,H2
⊕ ,H1,H2,Bd1,Bd2) and (RO,SimHRO

1 ,SimHRO
2 ,SimBDRO

1 ,SimBDRO
2) .

Such a simulator is described in Figure 1. Simulating the evaluation queries
to H1 and H2 is straightforward. In simulating the backdoor queries, we take
advantage of the decomposition technique (discussed in Section 3) for trans-
forming high min-entropy distributions into distributions that have a number
of fixed points and are dense otherwise. The backdoor simulator SimBD1 (resp.
SimBD2) computes the queried function f on the truth table of H1 (resp. H2),
where H1 and H2 are initialized by picking two functions uniformly at random.
For the sake of simplicity, we consider an adversary that makes Q consecutive
queries, ignoring evaluation and RO-queries in between, to one backdoor ora-
cle before moving to the other. After the i-th sequence of Q queries to one of
the backdoor oracles, the leaked backdoor information is translated into fixing
pi rows of the hash function such that the rest is dense and the resulting dis-
tribution is statistically close to the true one. In other words, the distribution
conditioned on the leakage is γ-close (for some γ > 0) to a convex combination
of (p, 1− δ)-dense distributions obtained after decomposition.

Regarding the density rates δi’s, we use odd values of i for the distributions
obtained after backdoor queries on H1 and even values of i for distributions of
H2. Note that is crucial for the statistical distance of these two distributions on
the entire table to remain small, since the distinguisher can adaptively query a
backdoor oracle which sees and can depend on the entire hash function table (as
opposed to a limited number of rows).

Finding a distribution, which is partly fixed and partly dense, is performed
by the FixRows algorithm from 1. On input of a distribution µz, integer p ∈ N,
and a set Iprv ∈ [N], the algorithm FixRows returns a new distribution which is
fixed on points in a set I of size at most p+ |Iprv| and is for some δ, (1−δ)-dense
on the rest, together with a set of assignments A for elements in I according
to the output distribution. The FixRows algorithm internally calls the refined
decomposition algorithm, whose existence is guaranteed by Lemma 1 and its
output distribution is one of the distributions in the convex combination returned
by RefinedDecomp.

Upon fixing rows of one simulated BRO, the same rows in the other simulated
BRO have to be fixed in a way that consistency with RO is assured. More
precisely, for any x if H1(x) is fixed, the simulator SimBD1 will immediately

13

RO(x)

if ∃y ∈ [M] s.t. (x, y) ∈ hstRO then return y

y←←[M]
hstRO ← hstRO ∪ {(x, y)}
return y

SimHRO
1 (x)

y1 ← H1(x)
hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,RO(x)⊕ y1)}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

H2←←µ2

return y1

SimHRO
2 (x)

y2 ← H2(x)
hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,RO(x)⊕ y2)}
µ2 ← µ2|hst2 ; µ1 ← µ1|hst1

H1←←µ1

return y2

SimBDRO
1 [p̄, γ](f)

q ← q + 1
z ← f(H1)
µ1 ← µ1|f(·)=z

if q = Q do
(µ1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
H1←←µ1

hst1 ← hst1 ∪ A1

for (x, y1) ∈ A1 do
hst2 ← hst2 ∪ {(x,RO(x)⊕ y1)}

µ2 ← µ2|hst2

H2←←µ2

q ← 0
return z

SimBDRO
2 [p̄, γ](f)

q ← q + 1
z ← f(H2)
µ2 ← µ2|f(·)=z

if q = Q then
(µ2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
H2←←µ2

hst2 ← hst2 ∪ A2

for (x, y2) ∈ A2 do
hst1 ← hst1 ∪ {(x,RO(x)⊕ y2)}

µ1 ← µ1|hst1

H1←←µ1

q ← 0
s← s+ 1

return z

FixRows[γ](µz, p, Iprv)

((D1, I1), . . . , (Dd, Id), (Derr, Ierr))←←RefinedDecomp[µz, p, γ, Iprv]([M]N)

Derr ← [M]N

(Di, Ii)←←{(D1, I1), . . . , (Dd, Id), (Derr, Ierr)} with probability µz(Di), where i ∈ {1, . . . , d, err}
A← ∅; F←←Di

for x ∈ Ii do A← A ∪ {(x, F(x)}
return (µ|Di , A)

Fig. 1: Indifferentiability simulator for the xor combiner. We assume initial values
hst1 = hst2 = hstRO := ∅, µ1 = µ2 := U[M]N , H1,H2←←U[M]N , q := 0, and s := 0.

set H2(x) := RO(x)⊕ H1(x) (and, analogously, so does SimBD2). The simulator
specifies the number of points that it can afford to fix (since every such query
requires a call to RO) and the statistical distance that it wants. Such a strategy
to assure consistency with RO is also followed by evaluation simulators SimH1
and SimH2, where only one coordinate of each BRO is fixed.

14

Note that the simulator SimBD1 programs values of H2, which were supposed
to be dense (after a first SimBD2 query), to values that are uniform instead.
Hence, we need to argue later that the statistical distance between a uniform
and a dense distribution is small for the number of points that are being treated
this way. This is formalized in Claim 2, below. Looking ahead, the need to keep
the advantage of the differentiator small is the reason why the simulator adapts
the number of fixed points with a differentiator’s switch to the other backdoor
oracle. Finally, via a hybrid argument we can upper bound the total number of
random oracle queries by the simulator and the advantage of the differentiator.

Claim 2. Let U be the uniform distribution and V be a (1−δ)-dense distribution,
both over the domain [M]t. Then we have SD(U ,V) ≤ t · δ · logM .

Proof. This proof follows that of [7, Claim 3]. Let V+ be the set of all values
z ∈ [M]t for which Pr[V = z] > 0 holds. We can write the statistical distance
between U and V as:

SD(U ,V) =
∑

z∈[M]t
max

{
0,Pr[V = z]− Pr[U = z]

}
=
∑
z∈V+

max
{

0,Pr[V = z]− Pr[U = z]
}

=
∑
z∈V+

Pr[V = z] ·max
{

0, 1− Pr[U = z]
Pr[V = z]

}
.

Now, observe that for any value z ∈ [M]t, we have Pr[V = z] ≤ M−(1−δ)·t and
Pr[U = z] = M−t. Hence we have:

SD(U ,V) ≤ 1−M−δ·t ≤ t · δ · logM ,

where the last inequality uses the fact that for all x ≥ 0, it holds that 2−x ≥ 1−x
(and hence, x ≥ 1− 2−x).

The following theorem states our indifferentiability result for xor.

Theorem 1 (Indifferentiability of xor in 2-BRO with bounded adap-
tivity). Consider the xor combiner CH1,H2

⊕ (x) := H1(x) ⊕ H2(x) in the 2-BRO
model with backdoored hash functions H1,H2 ∈ [M]N . It holds that for any
p̄ := (p1, . . . , pc+1) ∈ Nc+1, 0 < γ < 1, and an integer c ≥ 0, there exists
a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,SimBDRO

1 [p̄, γ],SimBDRO
2 [p̄, γ]) such

that for any differentiator D that always makes Q queries to a backdoor oracle
(starting from Bd1 and always receiving an `-bit response) before switching to
the other, with a total number of c switches, while being allowed to arbitrarily
interleave up to qH primitive queries as well as qC construction queries, we have

Advindiff
CH1,H2
⊕ ,Sim[p̄,γ](D) ≤ (c+ 1) · γ

+ logM ·
(c∑
i=1

pi · δi−1 + qH · δc+1 + qC · (δc + δc+1)
)
,

15

where δ−1 := δ0 := 0 and the density rate after the i-th sequence of Q-many back-
door queries is δi :=

(
δi−2 · (N −

∑i−2
j=1 pj) · logM +Q · `+ log γ−1)/(pi · logM

)
.

The simulator places at most qSim ≤ qH +
∑c+1
i=1 pi queries to the random ora-

cle RO.

Proof. We prove indifferentiability by (1) defining a simulator, (2) upper bound-
ing the advantage of any differentiator in distinguishing the real and the simu-
lated worlds, and (3) upper bounding the number of queries that the simulator
makes to the random oracle.

Simulator. All four sub-algorithms of the simulator are described in Figure 1.
They share state, in particular, variables to keep track of the fixed history and
the current distribution of the hash functions. Two sets hst1, hst2 are used to
keep track of the fixed coordinates of the simulated hash functions H1 and H2,
respectively. The density functions, from which the simulated backdoored hash
functions will be sampled, are denoted by µ1 and µ2. Furthermore, the simula-
tor uses a counter s to recognize switches from one backdoor oracle to the other
in order to use the appropriate number of points to fix from the list p̄. It also
maintains a counter q for counting the number of consecutive queries to a back-
door oracle in order to decompose, i.e., substitute the current distribution with
a partially fixed and partially dense distribution, only when necessary which
is the case after each set of Q backdoor queries. We assume the initial values
µ1 = µ2 := U[M]N , H1,H2←←U[M]N , hst1 = hst2 = hstRO := ∅, q := 0, and s := 0.

Security analysis. Here we analyze the indifferentiability of the xor combiner
using a sequence of eight games Game0, . . . ,Game7, where Game0 and Game7
are the real and ideal indifferentiability games, respectively. In the following
we use the shorthand notation Pr[DGamei] := Pr[DGamei = 1], where DGamei

indicates the interaction of an adversary D with a game Gamei. We define the
intermediate games Game1 through Game6 by gradually modifying the oracles
and highlighting the changes in each step. Unchanged oracles are omitted in
games and correspond to those from their direct predecessor. We bound the
advantage of differentiators in distinguishing every two consecutive games.

Game0 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)
y ← y1 ⊕ y2

return y

Game0 : H1(x)
y1 ← H1(x)
return y1

Game0 : H2(x)
y2 ← H2(x)
return y2

Game0 : Bd1(f)
z ← f(H1)
return z

Game0 : Bd2(f)
z ← f(H2)
return z

Game1. We next update the distributions of hash functions based on past eval-
uation queries, backdoor queries, and the history of coordinates that are fixed

16

through construction queries. The distributions µi are conditioned on these up-
dates, but are never actually used (i.e., sampled from) in the game. Hence it is
easy to see that these two games are identical, i.e., SD(Game0,Game1) = 0.

Game1 : CH1,H2
⊕ (x)

y1 ← H1(x); y2 ← H2(x)
hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

return y

Game1 : H1(x)
y1 ← H1(x)
hst1 ← hst1 ∪ {(x, y1)}
µ1 ← µ1|hst1

return y1

Game1 : H2(x)
y2 ← H2(x)
hst2 ← hst2 ∪ {(x, y2)}
µ2 ← µ2|hst2

return y2

Game1 : Bd1(f)
z ← f(H1)
µ1 ← µ1|f(·)=z

return z

Game1 : Bd2(f)
z ← f(H2)
µ2 ← µ2|f(·)=z

return z

Game2. Here, after each sequence of Q queries to a backdoor oracle, i.e., right
before a switch, a (p, 1−δ)-dense distribution µ′i is obtained using the algorithm
FixRows by decomposing the distribution of the corresponding hash function
after responding to the last query (i.e., µi|f(·)=z). However, since the new distri-
butions µ′i are never actually used elsewhere, Game2 remains identical to Game1,
i.e., SD(Game1,Game2) = 0.

Game2 : Bd1(f)
q ← q + 1
z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ′1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
q ← 0

return z

Game2 : Bd2(f)
q ← q + 1
z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ′2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
q ← 0
s← s+ 1

return z

Game3. In this game, evaluation queries on a value x, fix the image of both
functions, i.e., to H1(x) and H2(x). Similarly, in backdoor simulation the rows in
the assignments A1 (resp. A2) are fixed for the other hash function H2 (resp. H1)
according to its current distribution. In both games, the oracles’ responses are
at all times consistent with their past responses (and the construction) and we
still do not sample from the updated distributions. Hence, it does not matter,
if more or less of the hash function tables are fixed in each query and therefore
the two games are identical, i.e., SD(Game2,Game3) = 0.

17

Game3 : H1(x)
y1 ← H1(x)
hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,H2(x)}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

return y1

Game3 : H2(x)
y2 ← H2(x)
hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,H1(x))}
µ2 ← µ2|hst2 ; µ1 ← µ1|hst1

return y2

Game3 : Bd1(f)
q ← q + 1
z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then

(µ′1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
for x ∈ A1.1 do

hst2 ← hst2 ∪ {(x,H2(x))}
µ2 ← µ2|hst2

q ← 0
return z

Game3 : Bd2(f)
q ← q + 1
z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then

(µ′2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
for x ∈ A2.1 do

hst1 ← hst1 ∪ {(x,H1(x))}
µ1 ← µ1|hst1

q ← 0
s← s+ 1

return z

Game4. In this game the distributions obtained by decomposition actually re-
place the distributions conditioned on leakage. Hence, the histories are also
updated and a new hash function Hi is later sampled for potential usage in
the construction. According to Lemma 1, there is a convex combination of
(p, 1 − δ)-dense distributions which is γ-close to the real distribution, one of
such distributions being the one returned by FixRows. Hence, the distinguish-
ing advantage can increase by γ for every Q sequence of backdoor queries. I.e.,∣∣Pr[DGame3]− Pr[DGame4]

∣∣ ≤ (c+ 1) · γ .

Game4 : Bd1(f)
q ← q + 1
z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then
(µ1 , A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
hst1 ← hst1 ∪ A1

H1←←µ1

for x ∈ A1.1 do
hst2 ← hst2 ∪ {(x,H2(x))}

µ2 ← µ2|hst2

q ← 0
return z

Game4 : Bd2(f)
q ← q + 1
z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then
(µ2 , A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
hst2 ← hst2 ∪ A2

H2←←µ2

for x ∈ A2.1 do
hst1 ← hst1 ∪ {(x,H1(x))}

µ1 ← µ1|hst1

q ← 0
s← s+ 1

return z

Game5. This game behaves exactly as Game4 except when fixing the same
rows for the distribution of the other BRO. It fixes those points by calling
C⊕ (rather than directly) and then redundantly updates the history with e.g.,

18

some (x,H1(x) ⊕ C⊕(x)) and samples a new BRO from the updated distri-
bution. However, since the construction C⊕ itself calls the BROs, Game5 is
only taking a detour and the two games are perfectly indistinguishable. Hence
SD(Game4,Game5) = 0.

Game5 : H1(x)
y1 ← H1(x)
hst1 ← hst1 ∪ {(x, y1)}
hst2 ← hst2 ∪ {(x,C⊕(x)⊕ y1}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

H2←←µ2

return y1

Game5 : H2(x)
y2 ← H2(x)
hst2 ← hst2 ∪ {(x, y2)}
hst1 ← hst1 ∪ {(x,C⊕(x)⊕ y2)}
µ2 ← µ2|hst2 ; µ1 ← µ1|hst1

H1←←µ1

return y2

Game5 : Bd1(f)
q ← q + 1
z ← f(H1); µ1 ← µ1|f(·)=z

if q = Q then
(µ1, A1)←← FixRows[γ](µ1, p2s+1, hst1.1)
hst1 ← hst1 ∪ A1

H1←←µ1

for (x, y1) ∈ A1 do
hst2 ← hst2 ∪ {(x,C⊕(x)⊕ y1)}

µ2 ← µ2|hst2

H2←←µ2

q ← 0
return z

Game5 : Bd2(f)
q ← q + 1
z ← f(H2); µ2 ← µ2|f(·)=z

if q = Q then
(µ2, A2)←← FixRows[γ](µ2, p2s+2, hst2.1)
hst2 ← hst2 ∪ A2

H2←←µ2

for (x, y2) ∈ A2 do
hst1 ← hst1 ∪ {(x,C⊕(x)⊕ y2)}

µ1 ← µ1|hst1

H1←←µ1

q ← 0
s← s+ 1

return z

Game6. We now modify C⊕ to start to resemble a lazily sampled random oracle.
In the new construction oracle, a query is stored together with its image in the
history hstRO. In case a query is repeated, its stored image is simply returned.
Otherwise, there are three cases to consider: the corresponding row to the current
query x is fixed in both hash functions, in one of them, or in neither one. In the
first case the output of the construction is computed by xoring the individual
images stored in hst1 and hst2. In the second case, a uniformly random value is
chosen (and later stored in hstRO). In the final case, Game6 behaves exactly as
Game5. So, the distinguishing advantage is bounded by distinguishing uniform
points (set to uniform when xoring with the returned uniform value of C⊕) from
dense points. In fact, according to Claim 2, for each evaluation query it adds at
most δc+1 · logM , since δi’s are increasing. Further, for all points that are fixed
upon a backdoor query this adds pi · δi−1 · logM , except for the last one, since
there will be no backdoor query after that which can see the entire pc+1 points.

∣∣Pr[DGame5]− Pr[DGame6]
∣∣ ≤ logM ·

(c∑
i=1

pi · δi−1 + qH · δc+1
)

19

Game6 : CH1,H2
⊕ (x)

if ∃y ∈ [M] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y′ ∈ [M] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 then
y←←[M]

else
y1 ← H1(x); y2 ← H2(x)
hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}
return y

Game7. The construction oracle in this game differs from Game6 in that it never
evaluates the individual hash functions anymore. Here, we can safely remove
the second case distinction, where x is in both hst1 and hst2, since this case is
covered by the first case where x has been queried to the construction itself. It
remains to bound the distinguisher’s advantage in distinguishing the two games
while making queries x to the construction that are prior to the query fixed for
neither hash function.

Claim. Let X and Y be two independent (1−δ) and (1−δ′)-dense distributions
over a domain [M]N . Then the xor distribution X ⊕ Y is (1 − (δ + δ′))-dense
over the same domain [M]N .

Proof. Let I ⊆ [N] and z ∈ [M]|I| be arbitrary. Then we have:

Pr[XI ⊕ YI = z] =
∑
x

Pr[XI =x ∧ YI =x⊕ z] =
∑
x

Pr[XI =x] · Pr[YI =x⊕ z]

≤ 2|I|·logM · 2−(1−δ)·|I|·logM · 2−(1−δ′)·|I|·logM

= 2−(1−(δ+δ′))·|I|·logM .

We can now bound the distinguisher’s advantage by computing the distance
between the sum of two dense distributions from uniform, given that only qC
queries to C⊕ are allowed. Below, in the second line, we use the fact that ac-
cording to Lemma 1, δ’s should increase.

∣∣Pr[DGame6]− Pr[DGame7]
∣∣ ≤ qC ·logM · max

0≤i≤c
{δi + δi+1} = qC ·logM ·(δc + δc+1) .

20

Game7 : CH1,H2
⊕ (x)

if ∃y ∈ [M] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2 ∈ [M] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 then return y1 ⊕ y2

if ∃y′ ∈ [M] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 then
y←←[M]

else
y1 ← H1(x); y2 ← H2(x)
hst1 ← hst1 ∪ {(x, y1)}; hst2 ← hst2 ∪ {(x, y2)}
µ1 ← µ1|hst1 ; µ2 ← µ2|hst2

y ← y1 ⊕ y2

hstRO ← hstRO ∪ {(x, y)}
return y

The last game Game7 is identical to the simulated world. Therefore, the
overall advantage of D is as stated in the theorem.

Query complexity. The queries made by the simulator to RO consist of those
made when simulating evaluation queries and those made when simulating back-
door queries. Responding to each evaluation query requires exactly one query to
RO, which makes a total of qH queries. Right after the Q-th consecutive back-
door query (i.e., right before a switch), the simulator fixes some rows of the other
BRO, where for each fixed row one query to the random oracle RO is made. The
maximum number of rows that should be fixed after each sequence of Q queries
to Bd1 (resp. Bd2) is predetermined by the simulator’s parameter p̄. Hence we
obtain the claimed query complexity qH +

∑c+1
i=1 pi.

We now provide estimates for the involved parameters.

Corollary 1. Let the number of switches be c ≥ 1. Then for any α1 > 1 −
1/Fc+1, where Fi are the Fibonacci numbers, there is an indifferentiability simu-
lator Sim for the C⊕ construction in the 2-BRO model which has query complexity
qH + (c+ 1) ·Nα1 for any distinguisher with qH queries to the underlying BROs.
Furthermore, any such distinguisher which places qC construction queries and Q
consecutive queries to the same backdoor oracle before switching has advantage
at most

(c+ 1) · γ + logM · (c2B + 2qH + 2qC) ·N (1−α1)·Fc+1/Fc+2−1/Fc+2 ,

against the simulator, where B := (Q` + log γ−1)/ logM . Asymptotically the
query complexity is qH + O(N1−1/Fc+2) and the advantage O((qH + qC) · Q ·
`/N0.38/Fc+2).

Proof. From Lemma 1 we have that

δi ≤ (δi−2 ·A+B)/pi ,

21

where A := N and B := (Q`+log γ−1)/ logM . Recursively applying the equation
we get for odd i

δi ≤
B

pi
+ AB

pipi−2
+ · · ·+ A(i−1)/2B

pipi−2 · · · p1

Using pi < A, the terms progressively get larger. Thus, in general

δi ≤
c ·N (i−2+imod 2)/2B

pipi−2 · · · p1+(i+1) mod 2
.

For the indifferentiability advantage to be small, we would need to minimize
c∑
i=1

pi · δi−1 + (qH + qC)(δc + δc+1).

Let’s assume pi = Nαi for some αi ∈ [0, 1). Then the i-th summand for i > 1 is

c ·B ·Nαi−αi−1−αi−3−···−α1+imod 2+(i−3+(i−1) mod 2)/2 .

To minimize, we set all terms equal to a common value c ·B ·Nθ. We obtain

αi − αi−1 − . . .− α1+imod 2 + (i− 3 + (i− 1) mod 2)/2 = θ ,

Solving this system of linear equations gives

αi = Fi · θ + Fi−1 · (α1 − 1) + 1 ,

where Fi are the Fibonacci numbers with F0 = 0 and F1 = 1.
We may arrange the terms so that (δc + δc+1) = 2 · Nθ (not including the

(qH + qC) factor). To this end, we set αc+2 = 0 so that δc+1 = Nθ/pc+2 = Nθ

and δc = Nθ/pc+1 ≤ Nθ/pc+2 = Nθ. Thus we set αc+2 = 0. This gives θ =
(1−α1)·Fc+1/Fc+2−1/Fc+2. Now for θ < 0 we would need that α1 > 1−1/Fc+1.
This means that the query complexity of the simulator is qH + (c+ 1) ·Nα1 and
its advantage is

(c+ 1) · γ + logM · (c2B + 2qH + 2qC) ·N (1−α1)·Fc+1/Fc+2−1/Fc+2 .

We obtain the bound stated in the asymptotic part of the corollary by setting
α1 := 1− 1/Fc+2 > 1− 1/Fc+1.

We note that in the special case where c = 1, we must have that α1 >
1−1/F2 = 0. In particular we can set α1 := 1/4 to obtain a simulator that places
Nα1 = N1/4 ≤

√
N queries. Thus in this case we obtain collision resistance.

Note, however, that as soon as c ≥ 2 we would need to have that α1 > 1−1/F3 =
1/2, which means the simulator places at least

√
N queries, and we do not get

collision resistance.
The above corollary shows that the xor combiner can only tolerate a logarith-

mic number of switches in logN , which we think of as the security parameter.
This is due to the fact that the simulator complexity needs to be less than N/2
for it to be non-trivial. Although our bounds are arguably weak, they are still
meaningful, and we conjecture that much better bounds in reality hold.

22

5 An Extractor-Based Combiner

In this section we study the indifferentiability of extractor-based combiners and
show that they can give better security parameters compared to the xor com-
biner of Section 4. Recall that in the k-BRO model one considers adversaries
that have access to all k backdoor oracles. A query to the backdoor oracle Bdi
reveals some information about the underlying BRO Hi. The resulting distri-
bution conditioned on the leakage can, using the decomposition technique, be
translated into a distribution with a number of fixed coordinates, while the dis-
tribution of the rest remains dense. An indifferentiability simulator then fixes
the same rows of the other BRO(s) in a way that consistency with the random
oracle (which is to be indistinguishable from the construction) is ensured.

We demonstrated this idea for the xor combiner, where, before a switch to
the other backdoor oracle, the simulator substituted p images of that BRO by
uniformly random values, i.e., the result of the random oracle values xored with
the ones just fixed. This causes a security loss of p · δ · logM per switch, which
corresponds to the advantage of an adversary distinguishing p uniform values
from (1− δ)-dense ones. Now consider a multi-source (k1, . . . , kt, ε)-extractor as
the combiner in t-BRO. The hope would be that as long as the images of the
BROs have high min-entropy, the output of the extractor is ε-close to uniform.
This makes it possible for us to express the loss described above in terms of a
negligible ε and forgo the requirement on δ to be negligible.

In this section we focus on 2-out-of-3-source extractors as combiners, i.e.,
extractors that only require a minimal amount of min-entropy from two of the
sources. More formally, let Ext : [M]3 → [2] be a 2-out-of-3-source (k1, k2, k3, ε)-
extractor. For three functions H1,H2,H3 : [N] → [M], the combiner CH1,H2,H3

3ext :
[N] → [2] is defined as CH1,H2,H3

3ext (x) := Ext
(
H1(x),H2(x),H3(x)

)
. Here we show

that in the 3-BRO model the construction CH1,H2,H3
3ext is indifferentiable from a

random oracle.
Why not a two-source extractor? Note that we cannot guarantee that
images which are being fixed by the simulator in some Hi as a result of a Bdi-
query have any min-entropy whatsoever. To understand why, simply consider an
adversary that makes a backdoor query to Bd1 requesting a preimage of the zero-
string y∗ := 0logM under H1. Suppose Bd1 responds to this query with x∗ ∈ [N].
In this case H1(x∗) has no min-entropy, since y∗ = H1(x∗) was chosen by the
adversary and is, therefore, completely predictable. Hence, H1(x∗) cannot be
used in a (k1, k2, ε)-two-source extractor, i.e., Ext(H1(x∗),H2(x∗)), which relies
on min-entropy from both sources for its output to be ε-close to uniform. Overall,
using a two-source extractor does not seem to have any advantage over the xor
combiner in the 2-BRO model. On the contrary, when using a 2-out-of-3-source
extractor, assuming that the rows under consideration are not already fixed in
the function tables of all three BROs due to some previous query, there will be
two images with high min-entropy, from which we can extract a value ε-close to
uniform.

23

Theorem 2 (Indifferentiability of 2-out-of-3-source extractors in the
3-BRO model with bounded adaptivity). Let Ext : [M]3 → [2] be a
(k1, k2, k3, ε)-2-out-of-3-source randomness extractor, where ε is a function of
k1, k2, k3. Consider the combiner CH1,H2,H3

3ext (x) := Ext(H1(x),H2(x),H3(x)) in the
3-BRO model with backdoored hash functions H1,H2,H3 ∈ [M]N . It holds that
for all values of p̄ := (p1, . . . , pc+1) ∈ Nc+1, 0 < γ < 1, and an integer c ≥ 0,
there exists a simulator Sim[p̄, γ] := (SimHRO

1 ,SimHRO
2 ,SimHRO

3 ,SimBDRO
1 [p̄, γ],

SimBDRO
2 [p̄, γ],SimBDRO

3 [p̄, γ]) such that for any differentiator D that always
makes Q queries to one backdoor oracle (always receiving an `-bit response)
before switching to the next, with a total number of c switches, while arbitrarily
interleaving up to qH primitive queries and qC construction queries, we have

Advindiff
CH1,H2,H3

3ext ,Sim[p̄,γ](D) ≤ (c+ 1) · γ

+
c∑
i=1

SD
(
E1| · · · |Epi ,U[2]pi

)
+ qH · SD

(
E1,U[2]

)
+qC ·ε

(
(1−δc−1)·logM, (1−δc)·logM, (1−δc+1)·logM

)
,

where for all n ∈ N, we define En := Ext(X,Y, Z) for some random variables
X,Y, Z over [M] such that at least 2 of them have min-entropy (1− δc) · logM .
Furthermore, we let δ−2 := δ−1 := δ0 := 0 and for other values of i ≤ c + 1 let
δi :=

(
δi−3 · (N−

∑i−3
j=1 pj) · logM +Q · `+ log γ−1)/(pi · logM

)
be the density

rate after the i-th sequence of Q-many backdoor queries. The simulator places at
most qSim ≤ qH +

∑c+1
i=1 pi queries to the random oracle RO.

Proof. The proof structure closely follows the proof of Theorem 1. We show
indifferentiability by (1) defining a simulator, (2) upper bounding the advantage
of any differentiator in distinguishing the real world from the simulated world,
and (3) upper-bounding the number RO-queries made by the given simulator.

Simulator. The simulator is described in Figure 2 by algorithms SimHi and
SimBDi (for i = 1, 2, 3). The simulator sub-algorithms share state and keep
track of the current distribution of the backdoored hash functions. The histories
hst1, hst2, hst3, initialized as empty sets, are used to keep track of the fixed
coordinates of the simulated BROs. The distributions, according to which the
simulated backdoored hash functions are sampled, are denoted by µ1, µ2, and
µ3 and initialized as U[M]N , since the hash functions without the backdoors are
supposed to behave like random oracles. The corresponding hash functions are
initialized as uniform random functions Hi←←U[M]N . Furthermore, the simulator
uses a counter q to keep track of the number of consecutive queries to a backdoor
oracle and use this information to substitute the current distribution with a
partially fixed and partially dense distribution, only when necessary (i.e., when
q = Q), as opposed to doing so upon every backdoor query. Each time images of
a simulated Hi are fixed by the simulator Bdi, images of the same rows must be
fixed for Hj and Hk (i.e., the other two functions) to provide consistency with
the random oracle RO. For this, images of Hj are fixed truthfully according to

24

the currently sampled function, while Hk is tweaked in a way that the extracted
values match images of RO. Note that the simulators need to re-sample Hi and
Hk if their distribution is modified in a non-trivial way, i.e., not just fixing more
values, but either through FixRows or to force consistency with RO.

SimHRO
i (x)

yi ← Hi(x); hsti ← hsti ∪ {(x, yi)}
µi ← µi|hsti

j ← (imod 3) + 1; k ← (jmod 3) + 1
y ← RO(x)
if i = 1 then Hk←←µk|Ext(yi,Hj(x),Hk(x))=y

elseif i = 2 then Hk←←µk|Ext(Hk(x),yi,Hj(x))=y

else Hk←←µk|Ext(Hj(x),Hk(x),yi)=y

hstj ← hstj ∪ {(x,Hj(x))}; hstk ← hstk ∪ {(x,Hk(x))}
µj ← µj |hstj ; µk ← µk|hstk

Hk←←µk

return yi

RO(x)

if ∃y ∈ [2] s.t. (x, y) ∈ hstRO then
return y

y←←[2]
hstRO ← hstRO ∪ {(x, y)}
return y

SimBDRO
i [p̄, γ](f)

q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1
if q = Q then

(µi, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
Hi←←µi

hsti ← hsti ∪ Ai
for x ∈ Ai.1 do rx ← RO(x)
if i = 1 then Hk←←µk|∀(x,yi)∈Ai. Ext(yi,Hj(x),Hk(x))=rx

elseif i = 2 then Hk←←µk|∀(x,yi)∈Ai. Ext(Hk(x),yi,Hj(x))=rx

else Hk←←µk|∀(x,yi)∈Ai. Ext(Hj(x),Hk(x),yi)=rx

for x ∈ Ai.1 do
hstj ← hstj ∪ {(x,Hj(x))}; hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

Hk←←µk

q ← 0
if i = 3 then s← s+ 1

return z

Fig. 2: Indifferentiability simulator for the 2-out-of-3-source extractor. We as-
sume for i = 1..3 initialization values hsti = hstRO := ∅, µi := U[M]N ,
Hi←←U[M]N , q := 0, and s := 0. The FixRows algorithm is identical to that
of Figure 1.

25

Security Analysis. We analyze indifferentiability of 3ext-combiner using a se-
quence of eight games Game0, . . . ,Game7, where Game0 and Game7 are the
real and the ideal indifferentiability games, respectively. The modified lines in
each game are highlighted. Oracles are omitted in some games if they have not
changed since the previous game.

Game0 : CH1,H2,H3
3ext (x)

for i = 1..3 do
yi ← Hi(x)

y ← Ext(y1, y2, y3)
return y

Game0 : Hi(x)
yi ← Hi(x)
return yi

Game0 : Bdi(f)
z ← f(Hi)
return z

We use the shorthand notation Pr[DGame] := Pr[DGame = 1], where DGame

indicates the interaction of an adversary D with a game Game. In each game hop,
we bound the adversary’s advantage in distinguishing any two consecutive games
from one another. The first game Game0 is the real game, where the adversary
interacts with the 3ext-combiner and the backdoor oracles of the underlying
BROs.

Game1 : CH1,H2,H3
3ext (x)

for i = 1..3 do
yi ← Hi(x); hsti ← hsti ∪ {(x, yi)}; µi ← µi|hsti

y ← Ext(y1, y2, y3)
return y

Game1 : Hi(x)
yi ← Hi(x)
hsti ← hsti ∪ {(x, yi)}
µi ← µi|hsti

return yi

Game1 : Bdi(f)
z ← f(Hi)
µi ← µi|f(·)=z

return z

Game1. Game Game1 updates the distribution of hash functions based on eval-
uation queries, backdoor queries, and the history of coordinates that are fixed
through construction queries. The distributions µi are conditioned on these val-
ues but are never actually sampled from in the game. Hence the two games are
identical, i.e., SD(Game0,Game1) = 0.

26

Game2 : Bdi(f)
q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

if q = Q then

(µ′i, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
q ← 0
if i = 3 then s← s+ 1

return z

Game2. In game Game2, after each sequence of Q queries to a backdoor oracle,
i.e., right before switching to a different one, a (p, 1− δ)-dense distribution µ′i is
obtained from the real distribution using the algorithm FixRows by decomposing
the distribution of the corresponding hash function after responding to the last
query (i.e., µi|f(·)=z). The number of fixed points p is a parameter determined
by the simulator and the density rate δ can be obtained by applying Lemma 1.
However, since the new distributions µ′i are never used elsewhere, Game2 remains
identical to the previous Game1, i.e., SD(Game1,Game2) = 0.

Game3 : Hi(x)
yi ← Hi(x)
hsti ← hsti ∪ {(x, yi)}
µi ← µi|hsti

j ← (imod 3) + 1; k ← (jmod 3) + 1
hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}
µj ← µj |hstj ; µk ← µk|hstk

return yi

Game3 : Bdi(f)
q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1
if q = Q then

(µ′i, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
for x ∈ Ai.1 do

hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

q ← 0
if i = 3 then s← s+ 1

return z

Game3. In this game, the fixed rows in one simulated BRO are also fixed for the
other two BROs. E.g., in backdoor simulation, the rows in the assignment Ai
are fixed for Hj and Hk. In both games, the oracles’ behaviors are at all times
consistent with their past responses as well as the construction. Hence, it does not
matter, if more or less of the hash function tables are fixed in each query. The two
games are again perfectly indistinguishable, i.e., we have SD(Game2,Game3) = 0.

27

Game4 : Bdi(f)
q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1
if q = Q then

(µi , Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
Hi←←µi

hsti ← hsti ∪ Ai
for x ∈ Ai.1 do

hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

q ← 0
if i = 3 then s← s+ 1

return z

Game5 : Hi(x)
yi ← Hi(x)
hsti ← hsti ∪ {(x, yi)}
µi ← µi|hsti

j ← (imod 3) + 1; k ← (jmod 3) + 1
y ← RO(x)
if i = 1 then Hk←←µk|Ext(yi,Hj(x),Hk(x))=y

elseif i = 2 then Hk←←µk|Ext(Hk(x),yi,Hj(x))=y

else Hk←←µk|Ext(Hj(x),Hk(x),yi)=y

hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}
µj ← µj |hstj ; µk ← µk|hstk

Hk←←µk

return yi

Game5 : Bdi(f)
q ← q + 1
z ← f(Hi)
µi ← µi|f(·)=z

j ← (imod 3) + 1; k ← (jmod 3) + 1
if q = Q then

(µi, Ai)←← FixRows[γ](µi, p3s+i, hsti.1)
Hi←←µi

hsti ← hsti ∪ Ai
for x ∈ Ai.1 do rx ← C3ext(x)
if i = 1 then

Hk←←µk|∀(x,yi)∈Ai. Ext(yi,Hj(x),Hk(x))=rx

elseif i = 2 then
Hk←←µk|∀(x,yi)∈Ai. Ext(Hk(x),yi,Hj(x))=rx

else Hk←←µk|∀(x,yi)∈Ai. Ext(Hj(x),Hk(x),yi)=rx

for x ∈ Ai.1 do
hstj ← hstj ∪ {(x,Hj(x))}
hstk ← hstk ∪ {(x,Hk(x))}

µj ← µj |hstj ; µk ← µk|hstk

Hk←←µk

q ← 0
if i = 3 then s← s+ 1

return z

Game4. In Game4 the distribution obtained by FixRows finally replaces the true
distribution, i.e., the one conditioned on the recent backdoor responses. Hence,
the history is updated. Notably, a new function Hi must be sampled for future
references, since its distribution has changed in a non-trivial way. According
to Lemma 1, there is a convex combination of (p, 1 − δ)-dense distributions

28

which is γ-close to the real distribution, one of such distributions being the one
returned by FixRows. Thus, the distinguishing advantage increases by γ after
each sequence of backdoor queries, i.e.,

∣∣Pr[DGame3]− Pr[DGame4]
∣∣ ≤ (c+ 1) · γ.

Game5. Contrary to Game4, the next game Game5 somewhat indirectly fixes
images of rows x in Ai (and x queries to SimHi) for the other functions Hj
and Hk. More precisely, the simulator calls the construction C3ext on freshly
fixed rows according to Ai and samples a Hk in such a way that it is consistent
with those construction images, and aligned Hi and Hk images. Notice that a
query to the construction already fixes the images for the underlying BROs and
therefore, sampling Hk in a consistent way and fixing coordinates of Hj and Hk
in the simulator is simply redundant. Hence SD(Game4,Game5) = 0.

Game6 : CH1,H2,H3
3ext (x)

if ∃y ∈ [M] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2, y3 ∈ [M] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 ∧ (x, y3) ∈ hst3 then return Ext(y1, y2, y3)

if ∃y′ ∈ [M] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 ∨ (x, y′) ∈ hst3 then
y←←[M]

else
for i = 1..3 do
yi ← Hi(x); hsti ← hsti ∪ {(x, yi)}; µi ← µi|hsti

y ← Ext(y1, y2, y3)
hstRO ← hstRO ∪ {(x, y)}
return y

Game6. In this game we modify C3ext so that it starts to resemble a lazily
sampled random oracle. Query-response pairs of the construction are kept in a
set hstRO and in case a query is repeated the stored image is simply returned.
Otherwise, we distinguish three cases: (a) the corresponding row to the current
query x is fixed in all hash functions, (b) in one of them, or (c) in none of them.
In case (a), Game6 computes the output of the construction by extracting from
the individual images stored in histories of the BROs. Note, however, that this
case is never reached, since if the current x is in all individual histories, then the
construction must have already been called on x in some previous evaluation or
backdoor query. Hence, x must also be in hstRO. In case (b), a uniformly random
value is chosen (and stored in hstRO). In the final case (c), Game6 behaves exactly
as Game5.

Overall, the distinguishing advantage is bounded by distinguishing p uniform
(chosen by the construction) points each time a backdoor query fixes p points
from values that were supposed to be extracted from three sources, from which
one is not guaranteed to have any min-entropy, as well as qH many times distin-
guishing a single extracted value from random. Let En := Ext

(
H1(xn),H2(xn),

29

H3(xn)
)
, where xn ∈ Ai.1 is a row being fixed. Then we have:

∣∣Pr[DGame5]− Pr[DGame6]
∣∣ ≤ c∑

i=1
SD
(
E1| · · · |Epi ,U[2]pi

)
+ qH · SD

(
E1,U[2]

)
,

Game7 : CH1,H2,H3
3ext (x)

if ∃y ∈ [M] s.t. (x, y) ∈ hstRO then return y

if ∃y1, y2, y3 ∈ [M] s.t. (x, y1) ∈ hst1 ∧ (x, y2) ∈ hst2 ∧ (x, y3) ∈ hst3 then return Ext(y1, y2, y3)

if ∃y′ ∈ [M] s.t. (x, y′) ∈ hst1 ∨ (x, y′) ∈ hst2 ∨ (x, y′) ∈ hst3 then
y←←[M]

else
for i = 1..3 do
yi ← Hi(x); hsti ← hsti ∪ {(x, yi)}; µi ← µi|hsti

y ← Ext(y1, y2, y3)
hstRO ← hstRO ∪ {(x, y)}
return y

Game7. The C3ext oracle in Game7 differs from Game6 in that it never evaluates
the underlying BROs any more and rather acts as a lazily sampled random
oracle. We can safely remove the case distinction (a), where x is included in all
histories hst1, hst2, and hst3, since this x would also be in hstRO. It remains to
bound the adversary’s advantage in distinguishing the two games while making
up to qC fresh queries x to the construction C3ext that are not fixed for any of the
BROs. While the outputs of the construction are uniformly random in Game7,
they are extracted from three dense images in Game6. The distinguisher can only
try to maximize the distance between qC uniform values vs. values extracted from
three dense images of BROs by querying the construction on values and at times
which it can choose freely.

∣∣Pr[DGame6]− Pr[DGame7]
∣∣ ≤ qC∑

t=1
max

xt,H1,H2,H3

(
SD
(
Ext(H1(xt),H2(xt),H3(xt)),U[2]

))
≤ qC · max

x,H1,H2,H3

(
SD
(
Ext(H1(x),H2(x),H3(x)),U[2]

))
≤ qC · ε

(
(1−δc−1)·logM, (1−δc)·logM,

(1−δc+1)·logM
)
,

where according to Lemma 1 we have δi as defined in the theorem statement with
`i being the min-entropy deficiency after the i-th sequence of Q-many backdoor
queries. Note that the maximum statistical distance corresponds to minimum
entropy of the BRO-images, which is in turn given for the last three (c−1, c, c+1)
values of the density rate.

Query complexity. The simulator makes queries to the random oracle RO to set
images of the other BROs each time one point of some BRO is fixed, either caused

30

by evaluation queries or by backdoor queries right after the Q-th consecutive
backdoor query (i.e., before a switch). Hence we obtain the bound qSim ≤ qH +∑c+1
i=1 pi on the number of queries that the simulator makes to the random oracle.

5.1 Instantiation with the pairwise inner-product extractor

Next we investigate a concrete instantiation of such a 2-out-of-3-source extractor.
General multi-source extractors such as those from [2,25,21] which require a
minimal amount of min-entropy from every source are inapplicable in our setting.
We can, however, use the pairwise inner-product extractor as introduced by Lee
et al. [19], which roughly speaking needs the sum of min-entropies to be sufficient.
Formally a pairwise inner-product extractor Extpip : [M]t → [2] is defined as:

Extpip(x1, . . . , xt) :=
∑

1≤i<j≤t
xi · xj .

This extractor is proven ([19], Corollary 1) to be a (k1, . . . , kt, ε)-extractor with
ε = 2−(k+k′−logM+1)/2, where k and k′ are the two largest values among k1, . . . , kt.
Hence, Extpip is also a 2-out-of-t extractor.

Corollary 2. Let Extpip : [M]t → [2] be a pairwise inner-product extractor.
Then the construction CH1,H2,H3

pip (x) := Extpip(H1(x),H2(x),H3(x)) in the 3-BRO
model is indifferentiable from a random oracle, where

Advindiff
CH1,H2,H3

3ext ,Sim[p,γ](D) ≤(c+ 1) · γ

+ c ·
√

(ep·M−(1−2δc) − 1)/2

+
(
qH + qC

)
· 2−((1−2δc+1)·logM+1)/2 ,

while the simulator makes up to qSim ≤ qH + (c+ 1) · p queries to RO.

Proof. The differentiator’s advantage stated in the corollary is easily obtained
by upper bounding the term SD

(
E1,U[2]

)
by 2−((1−2δc+1)·logM+1)/2 and upper

bounding the termSD
(
E1| · · · |Ep,U[2]p

)
from the advantage in Theorem 2, using

the following claim.

Claim. Let xi ∈ [N] and Ei := Extpip
(
H1(xi),H2(xi),H3(xi)

)
for i = 1..n. Sup-

pose that for all xi, at least two of the (distributions of the) functions H1, H2,
H3 are (1− δ)-dense. Then for all n ∈ N we have:

SD(E1| · · · |En,U[2]n) ≤
√

(en·M−(1−2δ) − 1)/2 .

Proof. In the proof below we use the parity lemma 5 (1) and the fact that the
pairwise inner product (in [L]) is linear, i.e.,

∑
n∈I En =

∑
n∈I Extpip(H1(xn),

5 Let X be a random variable over [2`]. Then we have

SD(X,U[2`]) ≤
√∑

0` 6=a∈[2`]

(
SD(X · a,U[2])

)2
.

31

H2(xn),H3(xn)) = Extpip(H1(x1)| · · · |H1(x|I|),H2(x1)| · · · |H2(x|I|),H3(x1)| · · · |
H3(x|I|)) = EI (2).

SD(E1| · · · |En,U[2]n) ≤
√ ∑

0n log 2 6=a∈[2]n

(
SD(E1| · · · |En · a,U[2])

)2 (1)

=

√√√√ ∑
∅6=I⊆{1,...,n}

(
SD
(∑
i∈I

Ei,U[2]
))2

=
√ ∑
∅6=I⊆{1,...,n}

(
SD(EI ,U[2])

)2 (2)

≤
√ ∑
∅6=I⊆{1,...,n}

2−(|I|·logM ·(1−2δ)+2−log 2)

=
√

2−2+log 2 ·
∑

∅6=I⊆{1,...,n}

2−|I|·logM ·(1−2δ)

=
√

2−1 ·
∑

∅6=I⊆{1,...,n}

(
M−(1−2δ)

)|I|
=
√((

1 +M−(1−2δ)
)n − 1

)
/2

≤
√

(en·M−(1−2δ) − 1)/2

Hence, the claim about the advantage holds. The query complexity of the
simulator is bounded by the sum of qH and (c+ 1) · p.

We now provide estimates for the involved parameters.

Corollary 3. Let the number of switches be c ≥ 1 and assume the range size
of the three random oracles are M ≥ N9. Then there is an indifferentiability
simulator Sim for the Cpip construction in the 3-BRO model that places at most

qH + (c+ 1) ·
(

6Q`
logM

)1/α(c)
·N1−1/α(c)

queries to RO, where α(c) :=
⌊
c
3
⌋

+ 1, against any distinguisher with qH queries
to the underlying BROs. Further, any such distinguisher with qC construction
queries and Q consecutive queries to the same backdoor oracle before switching,
has advantage at most (c+ 1) · γ + (c+ qH + qC)/N against this simulator.

Proof. The recurrence relations for δi in the statement of Theorem 2 can be
written as

δi ≤ A · δi−3 +B ,

32

where A := N/p and B := (Q` + log γ−1)/p logM . Solving this recurrence
relation we get

δi ≤
Ab

i−1
3 c+1 − 1
A− 1 ·B .

We set δc+1 ≤ 1/3 so that the term 1 − 2δc+1 is positive. To this end, it is
sufficient to have that

Ab
c
3c+1 − 1
A− 1 ·B ≤ 1

3 .

Substituting A and B and removing the −1 in the numerator we need to have
that(

N

p

)b c3c+1
≤ A− 1

3B = (N/p− 1)p logM
3Q` = N logM − p logM

3Q` ≤ N logM
6Q` ,

where for the last inequality we have assumed that p ≤ N/2. Thus,

p ≥
(

6Q`
logM

)1/α(c)
·N1−1/α(c) ,

where α(c) :=
⌊
c
3
⌋

+ 1. For sufficiently large c, the factor above is at most 2.
The advantage stated in Corollary 2 is

(c+ 1) · γ + c ·
√
p/M1−2δc + (qH + qC) ·

√
1/M1−2δc+1 .

Since 1− 2δc+1 ≤ 1− 2/3 = 1/3, δc ≤ δc+1, p ≤ N and M ≥ N9, the advantage
is upper-bounded by (c+ 1) · γ + (c+ qH + qC)/N .

Note that for c = 1, 2 the query complexity of the simulator does not involve
the N1−1/α(c) factor, and hence we obtain collision resistance. For c ≥ 3, however
there is a factor of at least N1/2.

The above corollary shows that the extractor combiner can tolerate a linear
number of switches in logN (which can be thought of as the security parameter)
for the simulator query complexity to be less than N/2. As for the xor combiner
we conjecture that (much) better bounds for the extractor combiner are possible.

6 Indifferentiability with Auxiliary Input

In this section we discuss indifferentiability in a setting where there is no adap-
tivity and the backdoor oracles are called only once at the onset. Although this
may seem overly restrictive, the resulting definition is sufficiently strong to model
indifferentiability in the presence of auxiliary input, whereby we would like to
securely replace random oracles in generic applications even in the presence of
auxiliary input.

In this setting we can view an indifferentiability simulator as operating in
two stages: An off-line stage which responds to the single backdoor queries for

33

each BRO, and an on-line stage which simulates direct evaluation calls to the
underlying BROs. As defined, the off-line phase of the simulator can pass an
arbitrary state to its on-line phase. Further, both stages have access to the
reference object oracles (although the query complexities of both stages need
to be small). More precisely, this definition in the 2-BRO requires that for any
(D0,1,D0,2,D1) in the real world with two BROs H1 and H2 with

z1←←D0,1(H1); z2←←D0,2(H2, z1); b←←DCH1,H2 ,H1,H2
1 (z1, z2) ,

there exists some (SimRO
0,1,SimRO

0,2,SimRO
1,1,SimRO

1,2) in the ideal (simulated) world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b←←DRO,SimRO
1,1[st],SimRO

1,2[st]
1 (z1, z2) ,

with indistinguishable outputs b. The on-line simulators can also share state.

Let us now take a step back and define indifferentiability with auxiliary input
driven by a composition theorem: for any game G and any attacker A1 in this
game against CH1,H2 which receives auxiliary input on H1 and H2, there is an
attacker B1 on RO in the same game G but now without auxiliary input. More
explicitly, the real world

z←←A0(H1,H2); b←←GCH1,H2 ,AH1,H2
1 (z)

and the ideal world

(z, st)←←BRO
0 (); b←←GRO,BRO

1 (z,st)

are indistinguishable. Once again the query complexity of B0 should be small (or
even zero) to obtain a definition which meaningfully formalizes indifferentiability
from random oracles without auxiliary input. This definition, however, turns out
to be unachievable: A0 can simply encode a pair of collisions for the construction,
which B0 will not be able to match (with respect to RO) without an exponentially
large number of queries to RO.6

There are two natural ways to overcome this: (1) restrict the interface of the
construction; or (2) restrict the form of preprocessing. The former is motivated by
use of salting as a means to defeat preprocessing, and the latter by independence
of preprocessing for BROs.

A final question arises here: is it possible to simplify this definition further by
removing the quantification over A1 (as done for standard indifferentiability)?
This could be done in the standard way by absorbing A1 into G to form a differ-
entiator D. However, this means that D must receive the auxiliary information z.
6 One can formulate an intermediate notion of indifferentiability from random oracle
with auxiliary input. Without salting, this notion would not be of great help. Con-
sider, for example, the case of domain extension via an iterative hashing mode. Due
to Joux’s multi-collision attack [17] one can encode exponentially many collisions for
the construction in a small auxiliary input, whereas this would not be possible for
the random oracle.

34

The resulting notion is stronger and models composition with respect to games
that also depend on preprocessing. Thus, due to its simplicity, strength, and the
fact that we can establish positive results for it, we focus on this definitional
approach. We now make the two definitions arising from (1) and (2) explicit.

Salted AI-indifferentiability. We call a construction CH salted if the con-
struction takes a salt hk ∈ {0, 1}k as input and prepends all calls to H with hk.
We define salted AI-indifferentiability from a random oracle by requiring that
for any (D0,D1) in the real world

z←←D0(H); hk←←{0, 1}k; b←←DCH(hk,·)(hk,·),H
1 (hk, z)

there is a simulator (SimRO
0 ,SimRO

1) in the ideal world

(z, st)←← SimRO
0 (); hk←←{0, 1}k; b←←DRO(hk,·),SimRO

1 [st]
1 (hk, z)

resulting in indistinguishable outputs b. We denote the advantage of D in the
salted AI-indifferentiability game with simulator Sim for a construction CH by
Advs-ai-indiff

CH,Sim (D). Notice that in the above definition, the distinguisher gets access
to a salted RO. A different definition arises when the distinguisher gets access
to an unsalted RO instead. However, since the simulated auxiliary information
is computed given access to an unsalted RO (which can be interpreted as having
implicit access to the salt), such a definition calls for the existence of a more
powerful simulator. In particular, such Sim0 and D1 can easily call RO on com-
mon points. The practical implications of such a definition are unclear to us, and
moreover, it is strictly weaker than our definition.

AI-indifferentiability with independent preprocessing. We define AI-
indifferentiability with independent preprocessing by requiring that for any ad-
versary (D0,1,D0,2,D1) in the real world

z1←←D0,1(H1); z2←←D0,2(H2); b←←DCH1,H2 ,H1,H2
1 (z1, z2)

there is a simulator (SimRO
0,1,SimRO

0,2,SimRO
1,1,SimRO

1,2) in the ideal world

(z1, st)←← SimRO
0,1(); (z2, st)←← SimRO

0,2(st); b←←DRO,SimRO
1,1[st],SimRO

1,2[st]
1 (z1, z2)

resulting in indistinguishable outputs b. Note that this is slightly weaker than
the definition of indifferentiability in 2-BRO since z2 is fully independent of
z1, whereas BRO indifferentiability allows for a limited amount of dependence.
We denote by Advai-indiff

CH,Sim (D) the advantage of D in the AI-indifferentiability
game with independent preprocessing with respect to a simulator Sim and a
construction CH1,H2 in the 2-BRO model.

We are now ready to prove our feasibility results for AI-indifferentiability.

Theorem 3 (AI-Indifferentiability). Any construction CH1,H2 that is indif-
ferentiable with backdoors from a random oracle with no adaptive backdoor queries

35

is also AI-indifferentiable from a random oracle with respect to independent pre-
processing attacks. More precisely, for any auxiliary-input differentiator D :=
(D0,1,D0,2,D1) with independent preprocessing for two random oracles there is
a 2-BRO differentiator D̃ with one-time non-adaptive access to each backdoor
oracle such that for any 2-BRO indifferentiability simulator ˜Sim there is an
auxiliary-input simulator Sim := (Sim0,1,Sim0,2,Sim1,1,Sim1,2) such that

Advai-indiff
CH1,H2 ,Sim(D) = Advindiff

CH1,H2 , ˜Sim(D̃) .

Further, any salted construction CH that is indifferentiable (in the standard
sense) from a random oracle is also salted AI-indifferentiable from a random
oracle. More precisely, for any auxiliary-input differentiator D := (D0,D1), with
an auxiliary input of size `, there is a (standard) differentiator D̃ such that
for any indifferentiability simulator ˜Sim there is an auxiliary-input simulator
Sim := (Sim0,Sim1) such that for any p ∈ N and any γ > 0

Advs-ai-indiff
CH,Sim (D) ≤ Advindiff

CH, ˜Sim(D̃) + `+ log γ−1

p
+ p

2k + γ .

Proof. The first part of the theorem follows directly from the discussion above
that indifferentiability with backdoors and no adaptivity is stronger than indif-
ferentiability with auxiliary input for independent preprocessing.

We now prove the second part of the theorem.

Game0:. We start with the real game in the salted AI-indifferentiability game:

z←←D0(H); hk←←{0, 1}k; b←←DCH(hk,·)(hk,·),H
1 (hk, z) .

Game1:. We now move to the bit-fixing RO model

(z,A)←←D̃0(); hk←←{0, 1}k; b←←DCH[A](hk,·)(hk,·),H[A]
1 (hk, z) .

Here D̃0 runs D0 by simulating an H for it and then runs the decomposition
algorithm to get a set of assignments A for p fixed points (for any p ∈ N). We
may now apply [7, Theorem 5] to deduce that for any γ > 0,

Pr[Game1]− Pr[Game0] ≤ `+ log γ−1

p
+ γ ,

where ` is the size of auxiliary information.

Game2:. We now move to a setting where C uses H rather than H[A]

(z,A)←←D̃0(); hk←←{0, 1}k; b←←DCH(hk,·)(hk,·),H[A]
1 (hk, z) .

This modification is justified by the fact that the probability that a uniform hk
is (the prefix of the first component of some point) in A is at most p/2k. We
have that Pr[Game2]− Pr[Game1] ≤ p/2k.

36

Game3:. We now move to a world where D1 is replaced by a differentiator D̃1
that gets the list A and does not query H on points in A:

(z,A)←←D̃0(); hk←←{0, 1}k; b←←D̃CH(hk,·)(hk,·),H
1 (hk, z, A) .

Here D̃1(hk, z, A) runs D1(hk, z) relaying its queries to the first oracle to its own
first oracle and the second oracle queries to its own second oracle except when a
queried point appears as a prefix of the first component of an entry in A in which
case D̃1 uses A to answer the query. We have that Pr[Game3]− Pr[Game2] = 0.

Game4:. We now absorb D̃0 and D̃1 into a single differentiator D̃:

b←←D̃CH(hk,·)(hk,·),H .

Here D̃ simply runs D̃0, followed by picking hk←←{0, 1}k, and then running D̃1.
We have that Pr[Game4]− Pr[Game3] = 0.

Game5:. We now use the standard indifferentiability of the construction to move
to the world

b←←D̃RO(hk,·), ˜SimRO
,

where ˜Sim is an indifferentiability simulator. We have that Pr[Game3]−Pr[Game2] ≤
Advindiff

CH, ˜Sim(D̃).

Game6:. We now syntactically unroll D̃ into (D̃0, D̃1):

(z,A)←←D̃0(); hk←←{0, 1}k; b←←D̃RO(hk,·), ˜SimRO

1 (hk, z, A) .

We have that Pr[Game6]− Pr[Game5] = 0.

Game7:. We further unroll D̃1 into D1 and define Sim1[A] to be ˜Sim except that
it uses A to answers queries in A:

(z,A)←←D̃0(); hk←←{0, 1}k; b←←DRO(hk,·),SimRO
1 [A]

1 (hk, z) .

We have that Pr[Game7]− Pr[Game6] = 0.

Game8:. Finally we define Sim0 := D̃0 and arrive at the simulated world

(z,A)←← Sim0(); hk←←{0, 1}k; b←←DRO(hk,·),SimRO
1 [A]

1 (hk, z) .

We have that Pr[Game8]− Pr[Game7] = 0.
The second part of theorem follows by summing the (in)equalities established

above; that is for any p ∈ N and any γ > 0 we get that

Advs-ai-indiff
CH,(Sim0,Sim1)(D0,D1) = Pr[Game0]− Pr[Game8]

≤ Advindiff
CH, ˜Sim(D̃) + `+ log γ−1

p
+ p

2k + γ .

37

We can instantiate the first part of the above theorem with the xor combiner,
which gives us the following corollary.
Corollary 4. The xor combiner CH1,H2

⊕ (x) := H1(x)⊕H2(x) is AI-indifferentiable
from a random oracle with respect to independent preprocessing attacks for hash
functions H1,H2 ∈ [M]N . More precisely, for any p ∈ N and 0 < γ < 1, there
exists a simulator Sim[p] := (Sim0,1[p],Sim0,2[p],Sim1,1,Sim1,2) with oracle ac-
cess to RO, such that for any auxiliary-input differentiator D := (D0,1,D0,2,D1)
with auxiliary input of size ` for each hash function, where D1 makes up to qH
evaluation queries to H1 and H2 as well as qC construction queries, we have

Advai-indiff
CH1,H2
⊕ ,Sim[p](D) ≤ 2γ + (qH + 2qC) · (`+ log γ−1)

p
,

while the simulator places at most qH + 2p queries to the random oracle RO.

Proof. The claim follows from the first part of Theorem 3 together with our
indifferentiability result for xor (given in Theorem 1). However, deriving the
concrete bounds using Corollary 1 results in somewhat suboptimal bounds with
simulator query complexity O(p) and advantage O(1/√p) with p = Nα1 .

Here we directly use Theorem 1 for a simulator which fixes p points while
simulating an `-bit response of Bd1 and the same number of points while simu-
lating an `-bit response of Bd2. Note that in the auxiliary-input setting we only
consider one query to each backdoor oracle and therefore we have Q = 1. Over-
all we will have a simulator Sim[p] for the above corollary, such that its off-line
phase (i.e., Sim0,1[p] and Sim0,2[p]) makes no queries to the RO and it simulates
the auxiliary inputs by randomly choosing the hash functions and computing the
output of the desired auxiliary-input functions (similar to a queried backdoor
function) on them. This off-line phase then can use the refined decomposition
algorithm of Lemma 1 for some small γ to come up with and (in addition to
the auxiliary input) output two sets of pre-set points, each of size p, as its state.
The state will be shared with the on-line phase of simulation, i.e., Sim1,1 and
Sim1,2. Now this on-line simulator is a simple xor indifferentiability simulator
which ensures consistency with the pre-set points. Note that our on-line simu-
lator fixes p points for H1 and again p points for H2. This results in simulator
query complexity of qH + 2p.

In this case, since δ−1 = δ0 = 0 we obtain that

δ1 = δ2 = `+ log γ−1

p logM .

Plugging these back into the advantage bound in Theorem 1 we obtain the bound
claimed above.

Note that for p = o(
√
N) we get a bound that is meaningful for collision

resistance. As a result, we get that the xor combiner is collision resistant in
the presence of independent auxiliary input (with no-salting). We note that the
xor construction comes with added advantage that its security goes beyond AI-
indifferentiability, and is also more domain efficient. Strictly speaking, however,
the two settings are incomparable as the form of auxiliary information changes.

38

Acknowledgments

Dodis was partially supported by gifts from VMware Labs, Facebook and Google,
and NSF grants 1314568, 1619158, 1815546. Mazaheri was supported by the Ger-
man Federal Ministry of Education and Research (BMBF) and by the Hessian
State Ministry for Higher Education, Research and the Arts, within ATHENE.
Tessaro was partially supported by NSF grants CNS-1930117 (CAREER), CNS-
1926324, CNS-2026774, a Sloan Research Fellowship, and a JP Morgan Faculty
Award.

References

1. E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, and J. P. Steinberger. On
the indifferentiability of key-alternating ciphers. In CRYPTO 2013, Part I, pages
531–550, 2013. (Cited on page 3.)

2. B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating
independence: new constructions of condensers, ramsey graphs, dispersers, and
extractors. In 37th ACM STOC, pages 1–10, 2005. (Cited on page 31.)

3. B. Bauer, P. Farshim, and S. Mazaheri. Combiners for backdoored random oracles.
In CRYPTO 2018, Part II, pages 272–302, 2018. (Cited on pages 2, 4, 6, and 7.)

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. On the indifferentiability
of the sponge construction. In EUROCRYPT 2008, pages 181–197, 2008. (Cited
on page 3.)

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145, 2001. (Cited on page 3.)

6. S. Coretti, Y. Dodis, and S. Guo. Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models. In CRYPTO 2018, Part I, pages 693–721,
2018. (Cited on pages 2 and 4.)

7. S. Coretti, Y. Dodis, S. Guo, and J. P. Steinberger. Random oracles and non-
uniformity. In EUROCRYPT 2018, Part I, pages 227–258, 2018. (Cited on pages 2,
4, 9, 12, 15, and 36.)

8. J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damgård revisited:
How to construct a hash function. In CRYPTO 2005, pages 430–448, 2005. (Cited
on page 3.)

9. J.-S. Coron, J. Patarin, and Y. Seurin. The random oracle model and the ideal
cipher model are equivalent. In CRYPTO 2008, pages 1–20, 2008. (Cited on
page 3.)

10. Y. Dodis, S. Guo, and J. Katz. Fixing cracks in the concrete: Random oracles with
auxiliary input, revisited. In EUROCRYPT 2017, Part II, pages 473–495, 2017.
(Cited on pages 2 and 4.)

11. Y. Dodis, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In EUROCRYPT 2004, pages 523–540,
2004. (Cited on page 12.)

12. Y. Dodis, M. Stam, J. P. Steinberger, and T. Liu. Indifferentiability of confusion-
diffusion networks. In EUROCRYPT 2016, Part II, pages 679–704, 2016. (Cited
on page 3.)

13. M. Fischlin, C. Janson, and S. Mazaheri. Backdoored hash functions: Immunizing
HMAC and HKDF. In CSF 2018, pages 105–118, 2018. (Cited on page 2.)

39

14. M. Göös, S. Lovett, R. Meka, T. Watson, and D. Zuckerman. Rectangles are
nonnegative juntas. In 47th ACM STOC, pages 257–266, 2015. (Cited on pages 4,
8, and 10.)

15. J. J. Hoch and A. Shamir. On the strength of the concatenated hash combiner
when all the hash functions are weak. In ICALP 2008, Part II, pages 616–630,
2008. (Cited on page 2.)

16. T. Holenstein, R. Künzler, and S. Tessaro. The equivalence of the random oracle
model and the ideal cipher model, revisited. In 43rd ACM STOC, pages 89–98,
2011. (Cited on page 3.)

17. A. Joux. Multicollisions in iterated hash functions. Application to cascaded con-
structions. In CRYPTO 2004, pages 306–316, 2004. (Cited on page 34.)

18. P. K. Kothari, R. Meka, and P. Raghavendra. Approximating rectangles by juntas
and weakly-exponential lower bounds for LP relaxations of CSPs. In 49th ACM
STOC, pages 590–603, 2017. (Cited on pages 9 and 10.)

19. C. Lee, C. Lu, S. Tsai, and W. Tzeng. Extracting randomness from multiple
independent sources. IEEE Trans. Information Theory, 51(6):2224–2227, 2005.
(Cited on page 31.)

20. G. Leurent and T. Peyrin. From collisions to chosen-prefix collisions application
to full SHA-1. In EUROCRYPT 2019, Part III, pages 527–555, 2019. (Cited on
page 2.)

21. X. Li. Three-source extractors for polylogarithmic min-entropy. In 56th FOCS,
pages 863–882, 2015. (Cited on page 31.)

22. M. Liskov. Constructing an ideal hash function from weak ideal compression func-
tions. In SAC 2006, pages 358–375, 2007. (Cited on page 2.)

23. U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In
TCC 2004, pages 21–39, 2004. (Cited on pages 3 and 7.)

24. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In 2001 IEEE Symposium on Security
and Privacy, pages 184–200, 2001. (Cited on page 3.)

25. R. Raz. Extractors with weak random seeds. In 37th ACM STOC, pages 11–20,
2005. (Cited on page 31.)

26. M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first
collision for full SHA-1. In CRYPTO 2017, Part I, pages 570–596, 2017. (Cited
on page 2.)

27. D. Unruh. Random oracles and auxiliary input. In CRYPTO 2007, pages 205–223,
2007. (Cited on pages 2, 4, and 9.)

40

	Towards Defeating Backdoored Random Oracles: Indifferentiability with Bounded Adaptivity
	Introduction
	The BRO model
	Indifferentiability
	Contributions

	Preliminaries
	Backdoored random oracles
	Indifferentiability in the BRO model
	Randomness extractors

	Decomposition of High Min-Entropy Distributions
	The xor Combiner
	An Extractor-Based Combiner
	Instantiation with the pairwise inner-product extractor

	Indifferentiability with Auxiliary Input

