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Abstract— Delay-Differential Equations (DDEs) are often
used to represent control of and over large networks. How-
ever, the presence of delay makes the problems of analysis
and control of such networks challenging. Recently, Differ-
ential Difference Equations (DDFs) have been proposed as
a modelling framework which allows us to more efficiently
represent the low-dimensional nature of delayed channels
in a network or large-scale delayed system. Unfortunately,
however, the standard conversion formulae from DDE to
DDF do not account for this low-dimensional structure -
hence any efficient DDF representation of a large delayed
network or system must be hand-crafted. In this paper, we
propose an algorithm for constructing DDF realizations of
both DDE and DDF systems wherein the dimension of the
delayed channels has been minimized. Furthermore, we
provide a convenient PIETOOLS implementation of these
algorithms and show that the algorithm significantly re-
duces the complexity of the model for several illustrative
examples, including Neutral Delay Systems (NDSs).

Index Terms— Computational methods, Delay systems,
Distributed parameter systems, Modeling, Network analysis
and control

I. INTRODUCTION

ACCURATE models of control of and over networks in-
variably include communication delay. Sources of delay

include: state delay; input delay; process delay; and output
delay. Furthermore, as the number of agents in the network
increases, the number of delays increases proportionally. Un-
fortunately, the presence of delay complicates the problems of
analysis and control of these networks. Furthermore, although
delay is generally considered undesirable, and network designs
often minimize the number of delayed channels, the low-
dimensional delay structure of the network is typically lost
when solving analysis and control problems. For example,
even using such simple tools as a Padé reduction of the delayed
system to an ODE, unless the structure of the delayed channels
is exploited efficiently, optimal control of a simple network of
5 states and 10 delays will become intractable. This is because
standard Delay-Differential Equation (DDE) models (Eqn. (2))
and tools do not account for the low-dimensional structure of
the delay channels.

For example, consider a relatively simple model of network
control with delay, such as might be used to represent a fleet
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of UAVs:

ẋi(t) = aixi(t) +
∑N

j=1
aijxj(t− τ̂ij)

+ b1iw(t− τ̄i) + b2iu(t− hi)
z(t) = C1x(t) +D12u(t)

yi(t) = c2ixi(t− τ̃i) + d21iw(t− τ̃i). (1)

In this model, there are N2 + 2N delayed channels, each of
dimension RNni+p+m. Thus for a simple 5 agent network,
each with 1 input, 1 output, and 4 states, there are 35·22 = 770
infinite-dimensional states. Even assuming we use a 6th order
Pade approximation, that yields 4620 ODE states - too large
for many linear optimal control algorithms.

By contrast, if we are able to represent the network as a
Differential-Difference (DDF) Equation (See Eqn. (3)), then
there are still N2+2N delayed states, however, the dimensions
of these states are heterogeneous, meaning the total number
of infinite-dimensional states is 25 · 4 + 10 = 110 - a number
which significantly reduces the complexity of the problem.
Note, however, that this DDF realization was hand-crafted and
may not be minimal in any sense.

In addition to the problem of minimal DDF realization
of DDEs, we are occasionally confronted with the prob-
lem of minimal DDF realization of DDFs. Inefficient DDF
representations often arise from naive conversion of DDEs
(as presented in Subsection II-C) and and Neutral Delay
Systems (NDSs) (as presented in Subsection II-D) to DDFs.
Specifically, if the DDF representation of these DDE and NDS
systems is not chosen carefully, such a representation may
contain unnecessary infinite-dimensional channels - creating
the complexity problems described above.

In this paper, we propose an algorithm for constructing
minimal DDF realizations of DDE systems. As illustrated in
the Examples in Section VI, the existence of such minimal
realizations can dramatically reduce the computational com-
plexity of analysis and control problems for delayed networks.
In addition, we extend this result to an algorithm for minimal
DDF realizations of DDFs - thus also solving the problem of
inefficient DDF representation of NDSs.

a) Overview: Having motivated the problem of minimal
DDF realization of both DDEs and DDFs, we provide some
background on the use of DDFs in analysis and control of
systems with delay.

We first note that the DDF is not new. DDF models
have been proposed in, e.g. [1]–[7], and equivalence between
certain DDE/DDF representations have been studied in [8], [9].
More recently, a comprehensive treatment of the relationships
between the solutions of DDEs, DDFs, NDSs, ODE-PDEs and



PIEs was published in [10], which considered a large class of
input-output systems and provided naive conversion formulae
between representations (some of which are referenced in this
paper). However, use of the naive conversion formulae in [10]
often results in high-dimensional delay channels - significantly
complicating analysis and control problems based on this
representation. The goal of this paper, then, is to improve the
results in [10] by providing algorithms for the efficient con-
struction of minimal DDF representations - thereby allowing
for more efficient representation in the DDF framework and
hence more effective use of the analysis and control algorithms
designed for the DDF class of systems.

At this point, we should probably define more carefully
what we mean by minimal DDF representations. We mostly
use the equivalent term “minimal realization” (as opposed to
representation) and this usage is intended to reflect a gener-
alization of the concept of minimal realization of state-space
ODE systems, wherein unobservable and uncontrollable states
can be eliminated without changing the input-output properties
of the system. A survey of minimal realization of state-space
ODEs can be found in [11]. In this context, the purpose
of this paper is to show how unobservable/uncontrollable
infinite-dimensional channels can be eliminated from the DDE
and DDF representations without altering the input-output
properties of the system in any way. Note that this formulation
of the problem is distinct from the field of model reduction,
wherein the reduced states affect the input-output properties -
but are deemed to be insignificant in some sense.

Having concluded the introduction, we now briefly overview
the organization of the paper. In Section II we define the DDE
and DDF representations and recall some naive conversion
formulae previously proposed in [10]. In Section III we use
the Singular Value Decomposition (SVD) to identify unused
infinite-dimensional subspaces in the DDE and propose a
new, equivalent DDF realization which does not include these
subspaces. In Section IV, we extend this result to eliminate
unused subspaces in DDF representations. Next, in Section V,
we present a user-friendly PIETOOLS implementation of
these algorithms. In Sections VI and VII we then apply the
algorithms to network problems and illustrative examples -
demonstrating dramatic reductions in computational complex-
ity.

A. Notation
Shorthand notation includes the Hilbert spaces Lm2 [X] :=

L2(X;Rm) and Wm
2 [X] := W 1,2(X;Rm) = H1(X;Rm) =

{x : x, ẋ ∈ Lm2 [X]}. We use Lm2 and Wm
2 when domains

are clear from context. In ∈ Sn denotes the identity matrix.
0n×m ∈ Rn×m is the matrix of zeros. In both cases, n and
m are omitted when dimensions are clear from context. For a
natural number, K ∈ N, we adopt the index shorthand notation
where i ∈ [K] denotes i = 1, · · · ,K.

II. THE DDE AND DDF REPRESENTATIONS
In this section, we recall the form of a DDE and DDF.

We then briefly restate a prior result showing how a DDE
may be formulated as a DDF. We also recall the formulae for
conversion of a Neutral Delay System (NDS) to a DDF.

A. The Delay Differential Equation (DDE) Model

The general form of a DDE is modeled asẋ(t)
z(t)
y(t)

 =

A0 B1 B2

C10 D11 D12

C20 D21 D22

x(t)
w(t)
u(t)

 (2)

+
K∑
i=1

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

x(t− τi)
w(t− τi)
u(t− τi)


+

K∑
i=1

0∫
−τi

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)

x(t+ s)
w(t+ s)
u(t+ s)

 ds
where 0 < τ1 < · · · < τK . For given u ∈ W 1,2[0,∞]p,
w ∈ W 1,2[0,∞]m (with u(s) = 0 and w(s) = 0 for
s ≤ 0) and initial condition x0 ∈W 1,2[−τK , 0]n, we say that
x : [−τK ,∞] → Rn, z : [0,∞] → Rq , and y : [0,∞] → Rr
satisfy the DDE defined by {Ai, Bi, Ci, Dij , · · · } if x is
differentiable on [0,∞] (from the right at t = 0), x(s) = x0(s)
for s ∈ [−τK , 0], and Eqns. (2) are satisfied for all t ≥ 0.
Note that under these conditions, existence of a continuously
differentiable solution x is guaranteed as in, e.g. Thm. 3.3 of
Chapter 3 in [12] (See also Thm. 1.1 of Chapter 6 in [13]).

B. The Differential Difference (DDF) Model

The general form of a DDF is given as follows.
ẋ(t)
z(t)
y(t)
ri(t)

 =


A0 B1 B2

C1 D11 D12

C2 D21 D22

Cri Br1i Br2i


x(t)
w(t)
u(t)

+


Bv
D1v

D2v

Drvi

 v(t) (3)

v(t) =

K∑
i=1

Cviri(t− τi) +

K∑
i=1

∫ 0

−τi
Cvdi(s)ri(t+ s)ds.

For given u ∈W 1,2[0,∞]p, w ∈W 1,2[0,∞]m (with u(s) = 0
and w(s) = 0 for s ≤ 0) and initial conditions x0 ∈ Rn,
ri0 ∈W 1,2[−τi, 0]pi satisfying the “sewing condition”

ri0(0) = Crix0

+Drvi

(
K∑
i=1

Cviri0(−τi) +
K∑
i=1

∫ 0

−τi
Cvdi(s)ri0(s)ds

)
for i ∈ [K], we say that x : [0,∞] → Rn, z : [0,∞] →
Rq , y : [0,∞] → Rr, ri : [−τi,∞] → Rpi for i ∈
[K], and v : [0,∞] → Rnv satisfy the DDF defined by
{Ai, Bi, Ci, Dij , · · · } if x is differentiable on [0,∞], ri(s) =
ri0(s) for s ∈ [−τi, 0], ri(t + ·) ∈ W 1,2[−τi, 0] for i ∈ [K],
and Eqns. (3) are satisfied for all t ≥ 0. In this manuscript,
we assume the Cvdi are bounded. Under these conditions and
definitions, existence of a solution x, ri, v with ri continuously
differentiable follows from [14] p. 226; or [12], Thms. 3.1 and
5.4.

C. A Naive Conversion from DDE to DDF

Although Eqns. (3) are more compact, they are more general
than the DDEs in Eqns. (2). Specifically, if we define the



conversion formula BvD1v

D2v

 = I, Cvi =

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

 ,
Cvdi(s) =

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)

 , Drvi = 0,

[
Cri Br1i Br2i

]
= I, (4)

then the solution to the DDF is also a solution to the DDE
and vice-versa.

Lemma 1: Suppose that Cvi, Cvdi, Cri, Br1i , Br1i, Drvi,
Bv , D1v , and D2v are as defined in Eqns. (4). Given u, w,
x0, the functions x, y, and z satisfy the DDE defined by
{Ai, Bi, Ci, Dij , · · · } if and only if x, y, z, and ri satisfy
the DDF defined by {Ai, Bi, Ci, Dij , · · · } where

ri(t) =

x(t)
w(t)
u(t)

, ri0 =

x00
0

 i ∈ [K].

See [10] for a proof.

D. A Naive Conversion from NDS to DDF

Like DDEs, Neutral Delay Systems (NDSs) can also be re-
formulated in the DDF representation. Consider the following
general form of NDS.

ẋ(t)
z(t)
y(t)

 =

A0 B1 B2
C10 D11 D12
C20 D21 D22

x(t)
w(t)
u(t)

 (5)

+

K∑
i=1

Ai B1i B2i Ei
C1i D11i D12i E1i
C2i D21i D22i E2i


x(t− τi)
w(t− τi)
u(t− τi)
ẋ(t− τi)



+

K∑
i=1

0∫
−τi

Adi(s) B1di(s) B2di(s) Edi(s)
C1di(s) D11di(s) D12di(s) E1di(s)
C2di(s) D21di(s) D22di(s) E2di(s)


x(t+ s)
w(t+ s)
u(t+ s)
ẋ(t+ s)

ds
The definition of solution can be found in [10] and imposes

a continuity constraint on the initial condition to ensure the
solution is continuously differentiable. Similar to the process
for a DDE, a NDS can be represented as a DDF using the
following definitions.

Drvi =


0 0 0
0 0 0
0 0 0
I 0 0

 , Cvi =

Ai B1i B2i Ei
C1i D11i D12i E1i

C2i D21i D22i E2i

 ,
Cvdi(s) =

Adi(s) B1di(s) B2di(s) Edi(s)
C1di(s) D11di(s) D12di(s) E1di(s)
C2di(s) D21di(s) D22di(s) E2di(s)

 ,
 BvD1v

D2v

 = I,
[
Cri Br1i Br2i

]
=


I 0 0
0 I 0
0 0 I
A0 B1 B2

 (6)

Lemma 2: Suppose that Cvi, Cvdi, Cri, Br1i , Br2i, Drvi,
Bv , D1v , and D2v are as defined in Eqns. (6). Given u, w,

x0, the functions x, y, and z satisfy the NDS defined by
{Ai, Bi, Ci, Dij , · · · } if and only if x, y, z, v and ri satisfy
the DDF defined by {Ai, Bi, Ci, Dij , · · · } where

ri(t) =


x(t)
w(t)
u(t)
ẋ(t)

, ri0 =


x0
0
0
0

 i = 1, · · · ,K.

See [10] for a proof.

III. MINIMAL DDF REALIZATIONS OF DDES

The conversion formulae in Eqns. (4) yield a representation
wherein all states are delayed and hence this representation
does not account for the fact that in many large-scale DDEs
only relatively low-dimensional subsets of the state experience
delay. For such systems, therefore, the conversion from DDE
to DDF must be carefully selected by the modeler to account
for this structure. In the following theorem we provide a
class of equivalent DDF realizations of the DDE which can
be combined with a Singular Value Decomposition (SVD) to
eliminate unused delay channels.

Theorem 3: Define

Pi :=

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i

 ,
Pdi(s) :=

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)


and let P̂di satisfy Pdi(s) = Z(s)P̂di for s ∈ [−τi, 0], i ∈
[K] and for some Z(s). Suppose Ui ∈ R2(n+q+r)×pi , Vi ∈
R(n+m+p)×pi satisfy

UiV
T
i :=

[
Pi
P̂di

]
i ∈ [K].

Let (for i ∈ [K])[
Cri Br1i Br2i

]
= V Ti ,

[
Cvi
Cvdi

]
=

[
I 0
0 Z(s)

]
Ui, BvD1v

D2v

 = I, and Drvi = 0.

Then, given u, w, x0, the functions x, y, and z satisfy the DDE
defined by {Ai, Bi, Ci, Dij , · · · } if and only if x, y, z, v and
ri satisfy the DDF defined by {Ai, Bi, Ci, Dij , Cri, Cvi, Cvdi}
where

ri(t) = V Ti

x(t)
w(t)
u(t)

, ri0 = V Ti

x00
0

 i ∈ [K].

Note that if Z(s) is a monomial basis then P̂di is uniquely
defined.

Proof: To simplify the proof, we define the Dirac oper-
ators ∆i : W 1,2[−τi, 0]n → Rn by ∆ix := x(−τi) and the
integral operators IZ,i : L2[−τi]n → Rn by

IZ,ix(s) :=

∫ 0

−τi
Z(s)x(s)ds.

Now suppose that x, y, and z satisfy the DDE defined by
{Ai, Bi, Ci, Dij , · · · }. For any t ≥ 0, denote the functions:
xt,i(s) := x(t+s); wt,i(s) := w(t+s); and ut,i(s) := u(t+s)



for s ∈ [−τi, 0], i ∈ [K]. Then by definition of solution, we
have xt,iwt,i

ut,i

 ∈W 1,2[−τi, 0]n+m+p.

Now, if the ri are as defined above, we have for i ∈ [K]

ri(t) = V Ti

x(t)
w(t)
u(t)

 =
[
Cri Br1i Br2i

] x(t)
w(t)
u(t)

+Drviv(t)

and hence

ri(t+ ·) = V Ti

xt,iwt,i
ut,i

 ∈W 1,2[−τi, 0]pi .

Furthermore,ẋ(t)
z(t)
y(t)

 = P0

x(t)
w(t)
u(t)

+
K∑
i=1

Pi

x(t− τi)
w(t− τi)
u(t− τi)


+

K∑
i=1

∫ 0

−τi
Pdi(s)

x(t+ s)
w(t+ s)
u(t+ s)

 ds
= P0

x(t)
w(t)
u(t)

+
K∑
i=1

∆iPi

xt,iwt,i
ut,i

+
K∑
i=1

IZ,iP̂di

xt,iwt,i
ut,i


= P0

x(t)
w(t)
u(t)

+
K∑
i=1

(
∆iPi + IZ,iP̂di

)xt,iwt,i
ut,i


= P0

x(t)
w(t)
u(t)

+

K∑
i=1

[
∆i IZ,i

] [ Pi
P̂di

]xt,iwt,i
ut,i


= P0

x(t)
w(t)
u(t)

+
K∑
i=1

[
∆i IZ,i

]
UiV

T
i

xt,iwt,i
ut,i


= P0

x(t)
w(t)
u(t)

+
K∑
i=1

Cviri(t− τi) +
K∑
i=1

0∫
−τi

Cvdi(s)ri(t+ s)ds

= P0

x(t)
w(t)
u(t)

+ v(t) = P0

x(t)
w(t)
u(t)

+

 BvD1v

D2v

 v(t)

as desired. The sewing condition is satisfied since Drvi = 0.
Thus we conclude the that x, y, z, v and ri satisfy the DDF
defined by {Ai, Bi, Ci, Dij , Cri, Cvi, Cvdi}. The steps can be
reversed to prove the converse - as illustrated in the proof of
Theorem 4.
The matrices Ui and Vi parameterize the set of equivalent
DDF realizations. In the following subsection, we show how
Ui and Vi may be selected to minimize the dimension of ri -
the infinite-dimensional delayed channels.

A. Eliminating Unused DDE Channels via the SVD

The matrices Pi and P̂di(s) represent all possible ways in
which a delayed channel can be used. However, these matrices

are not full column rank and the nullspace of
[
Pi
P̂di

]
represents

the subspace of unused information in each delay channel. To

remove such unused subspaces, therefore, for each delay, i,
we may perform an SVD of the form[

Pi
P̂di

]
= UΣV T

where U ∈ R2(n+q+r)×2(n+q+r) and V ∈
R(n+p+m)×(n+p+m) are unitary, Σ ∈ R2(n+q+r)×n+p+m

is rectangular and diagonal. If Σ has pi non-zero singular
values, we may therefore construct an equivalent realization[

Pi
P̂di

]
= UiV

T
i

where Ui ∈ R2(n+q+r)×pi is the first pi columns of UΣ and
Vi ∈ R(n+p+m)×pi is the first pi columns of V . Clearly, by
Theorem 3, the resulting dimension of the infinite-dimensional
channel i will be pi.

IV. MINIMAL DDF REALIZATION OF DDFS

As illustrated using the naive conversion of NDS to DDF
in Subsection II-D, there may be cases where we would like
to identify a minimal DDF realization of a given DDF. In this
case, we may extend the result in Theorem 3 to minimal DDF
realization of a given DDF.

Theorem 4: Define

Ti := Cvi
[
Cri Br1i Br2i Drvi

]
Tdi(s) := Cvdi(s)

[
Cri Br1i Br2i Drvi

]
and let T̂di satisfy Tdi(s) = Z(s)T̂di for s ∈ [−τi, 0], i ∈
[K] and for some Z(s). Suppose Ui ∈ R2nv×p̃i and Vi ∈
Rn+m+p+nv×p̃i satisfy

UiV
T
i :=

[
Ti
T̂di

]
i ∈ [K].

Let, for i ∈ [K],[
C̃ri B̃r1i B̃r2i D̃rvi

]
= V Ti ,[

C̃vi
C̃vdi(s)

]
=

[
I 0
0 Z(s)

]
Ui.

Then, given u, w, x0, the functions x,
y, z, ri, v satisfy the DDF defined by
{A0, Bi, Ci, Dij , Bv, Div, Br1i, Br2i, Cri, Cvi, Cvdi, Drvi}
if and only if x, y, z, v and r̃i satisfy the DDF defined by
{A0, Bi, Ci, Dij , Bv, Div, B̃r1i, B̃r2i, C̃ri, C̃vi, C̃vdi, D̃rvi}
where

r̃i(t) = V Ti


x(t)
w(t)
u(t)
v(t)

, ri0 = V Ti

x00
0

 i ∈ [K].

Proof: Let us prove necessity. Suppose that
x, y, z, v and r̃i satisfy the DDF defined by
{A0, Bi, Ci, Dij , Bv, Div, B̃r1i, B̃r2i, C̃ri, C̃vi, C̃vdi, D̃rvi}.
Let

ri(t) =
[
Cri Br1i Br2i Drvi

] 
x(t)
w(t)
u(t)
v(t)

 i ∈ [K].

Then



v(t) =

K∑
i=1

C̃vir̃i(t− τi) +

K∑
i=1

∫ 0

−τi
C̃vdi(s)r̃i(t+ s)ds.

=

K∑
i=1

C̃vi
[
C̃ri B̃r1i B̃r2i D̃rvi

] x(t− τi)
w(t− τi)
u(t− τi)
v(t− τi)



+

K∑
i=1

∫ 0

−τi
C̃vdi(s)

[
C̃ri B̃r1i B̃r2i D̃rvi

] x(t+ s)
w(t+ s)
u(t+ s)
v(t+ s)

 ds.

=

K∑
i=1

C̃viV
T
i

x(t− τi)
w(t− τi)
u(t− τi)
v(t− τi)

+

K∑
i=1

∫ 0

−τi
C̃vdi(s)V

T
i

x(t+ s)
w(t+ s)
u(t+ s)
v(t+ s)

 ds.

=

K∑
i=1

[
∆i IZ,i

]
UiV

T
i

xt,iwt,i
ut,i
vt,i



=

K∑
i=1

[
∆i IZ,i

] [ Ti
T̂di

]xt,iwt,i
ut,i
vt,i

 =

K∑
i=1

(
∆iTi + IZ,iT̂di

)xt,iwt,i
ut,i
vt,i



=

K∑
i=1

Cvi
[
Cri Br1i Br2i Drvi

] x(t− τi)
w(t− τi)
u(t− τi)
v(t− τi)



+

K∑
i=1

∫ 0

−τi
Cvdi(s)

[
Cri Br1i Br2i Drvi

] x(t+ s)
w(t+ s)
u(t+ s)
v(t+ s)

 ds
=

K∑
i=1

Cviri(t− τi) +

K∑
i=1

∫ 0

−τi
Cvdi(s)ri(t+ s)ds.

Thus we conclude
ẋ(t)
z(t)
y(t)
ri(t)

 =


A0 B1 B2

C1 D11 D12

C2 D21 D22

Cri Br1i Br2i


x(t)
w(t)
u(t)

+


Bv
D1v

D2v

Drvi

 v(t)

v(t) =
K∑
i=1

Cviri(t− τi) +
K∑
i=1

∫ 0

−τi
Cvdi(s)ri(t+ s)ds

as desired. Furthermore, the sewing constraint is satisfied.
These steps can be reversed to obtain sufficiency, as in the
proof of Theorem 3.

A. Eliminating Unused DDF Channels via the SVD
As in Subsection III-A, the matrices Ti and T̂di(s) represent

the ways a delayed channel can be used. To remove unused
subspaces from the DDF, therefore, for each delay, i, we again
perform an SVD [

Ti
T̂di

]
= UΣV T

If Σ has p̃i non-zero singular values, we again construct the
equivalent DDF realization[

Ti
T̂di

]
= UiV

T
i

where Ui is the first p̃i columns of UΣ and Vi is the first p̃i
columns of V . From Theorem 4, the resulting dimension of
the infinite-dimensional channel i is p̃i.

V. PIETOOLS IMPLEMENTATION
PIETOOLS is a robust and easy-to-use toolbox for convert-

ing DDEs, DDFs, and ODE-PDEs into Partial Integral Equa-
tions (PIEs). The toolbox also includes an algorithm and inter-
face for solving Linear Partial Integral Inequalities (LPIs). For
systems in PIE format, LPIs have been proposed to solve vari-
ous analysis and optimal control problems - e.g. [15]–[17]. For
our purposes, however, we focus on the interface for input of
DDE and DDF systems. Specifically, the PIETOOLS DDE.m
and PIETOOLS DDF.m interfaces. These interfaces do not
require the user to declare all elements of the DDE or DDF
representations - only those parts which are non-zero. Exploit-
ing these interfaces, we have created an additional function-
ality in PIETOOLS 2020a which allows the user to convert
an existing DDE or DDF representation to an equivalent
minimal DDF representation. This functionality may be ac-
cessed from the PIETOOLS DDE.m and PIETOOLS DDF.m
interfaces after declaring and initializing the DDE or
DDF using the command minimize PIETOOLS DDE or
minimize PIETOOLS DDF. These commands convert the
given DDE or DDF to a minimal DDF realization, which
can then be accessed directly or converted to a PIE for
interface with one of the LPI tools. For convenience, we
also include a NDS to DDF converter, which can be called
using convert PIETOOLS NDS2DDF. Documentation for
PIETOOLS 2020a can be found in [18] and in the PIETOOLS
user manual, available at [19], or in the headers of the
converter scripts.

VI. APPLICATION TO DDE NETWORK EXAMPLES
In this section, we apply the DDE to minimal DDF re-

alization algorithm (as defined in Section III) to 2 network
examples and determine the associated total dimension of the
infinite-dimensional state as compared with the naive conver-
sion formulae in Subsection II-C. The total is defined as the
sum of the dimensions of every delayed channel: d =

∑
i pi.

The PIETOOLS functionality is used for implementation of
the algorithm, as described in Section V. Computation times
(IPM step in Sedumi) for solving the H∞-optimal control
problem are also listed for minimal realizations. For the non-
minimal realizations, memory requirements exceed 128GB
RAM and hence no computation times are available.

a) Example 1: In this example, we propose a UAV equiva-
lent of a chain of n masses connected by springs and dampers,
where the spring and damping action is delayed. In addition,
the first mass is connected to a static leader and control inputs
occur only at the first mass. The sensed output is the position
of the final mass and the regulated output is the position of
the final mass with a weighted control effort.

ẋ1(t) =

[
0 1
−k −b

]
(x1(t) + x1(t− τ1)) +

[
0 0
k b

]
x2(t− τ2) + u(t)

ẋn(t) =

[
0 1
−k −b

]
+

[
0 0
k b

]
xn−1(t− τn) + w(t)

ẋi(t) =

[
0 1

−2k −2b

]
+

[
0 0
k b

]
(xi−1(t− τi) + xi+1(t− τi+1))

y(t) = xn(t), z(t) = xn(t) + .1u(t)

where k = 1, b = .2, and τi = h · i with h = .2. Note for
n = 5, the system is unstable for h > .09. The total dimension



of the delayed channels with and without minimal realizations
are listed in Table I. We also include associated computation
times for solving the H∞-optimal state feedback problem.

b) Example 2: Example 2 is a network of showering users.
For brevity we refer to [10] for the definition of this model.
As for Example 1, the results are listed in Table I.

VII. APPLICATION TO NDS EXAMPLES
We now repeat the analysis in Section VI, but applied to

minimal DDF realizations of NDSs. Specifically, we first con-
struct the naive DDF representation proposed in Subsection II-
D and then apply the algorithm defined in Section IV to find a
minimal DDF representation of this DDF. We apply this to 2
NDSs found in the literature and again compare the associated
total dimension of the infinite-dimensional state with the
dimension of the DDF from the naive conversion formulae in
Subsection II-D. Again, the PIETOOLS functionality is used,
as described in Section V and computation times for solving
the stability analysis problem are also listed for both minimal
and non-minimal realizations.

a) Example 3: This example is taken from [20]. Total
dimensions and computation times (stable for τ1 < 2.04,
τ2 = 3τ1) are listed in Table I.

ẋ(t) =
[
−2 0
0 −.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− τ2) +

[
.1 0
0 .1

]
ẋ(t− τ1)

b) Example 4: This example problem recently appeared
in [21]. Total dimensions and computation times (stable for
τ1 < .603) are listed in Table I.

ẋ(t) =


−2 .2 −.3 0 −.4
.2 −3.8 0 .7 0
.8 0 −1.6 0 0
0 .8 −.6 −2 .3

−1 −.1 −1.5 0 −1.8

 x(t)

+


−2.2 0 0 1 0
1.6 −2.2 1.6 0 0

−0.2 −0.2 −0.2 −0.2 −0.2
0 0.4 −1.4 −3.4 1

−0.2 0.4 −0.1 −1.1 −3.3

 x(t − τ)

+


0.40888 0.00888 0.20888 −0.09112 −0.29112

0 0.2 0 0 0.6
−0.1 −0.4 0 −0.8 0

0 0 −0.1 0 0
0 0 0 −0.2 −0.1

 ẋ(t − τ)

Dimension Size CPU seconds
Ex. nominal minimal nominal minimal

Ex. 1 (n=5) 60 9 N/A 220.6
Ex. 1 (n=10) 220 19 N/A 9,350
Ex. 2 (n=5) 100 5 N/A 2.42

Ex. 2 (n=10) 400 10 N/A 94.7
Ex. 3 8 2 22.56 .332
Ex. 4 10 5 147.3 4.915

TABLE I
THE TOTAL DIMENSION OF DELAYED CHANNELS

∑
i pi AND

COMPUTATION TIMES FOR NOMINAL AND MINIMAL REALIZATIONS.
COMPUTATION TIMES ARE H∞-CONTROL FOR EXS. 1 AND 2 AND

STABILITY ANALYSIS FOR EXS. 3 AND 4.

VIII. CONCLUSION
In this paper, we have presented an algorithm for con-

structing minimal DDF realizations of both DDFs and DDEs,
along with an efficient PIETOOLS implementation of these
algorithms. The significance of these results lies in the ability
to rapidly generate efficient representations of large networks
and delayed systems without the hand-crafting associated with
application-specific identification of low-dimensional delayed
channels. These efficient representations often result in dra-
matic reductions of the computational complexity of algo-
rithms for simulation, analysis and control of DDEs and DDFs.

Specifically, the minimal DDF realizations may ultimately be
used for reduction to lower-dimensional ODEs using, e.g. Padé
type approximation, or may be used directly for analysis and
control via such infinite-dimensional techniques as the Partial
Integral Equation (PIE) framework.
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