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Abstract— In this paper, we present a convex formulation
of H∞-optimal control problem for coupled linear ODE-PDE
systems with one spatial dimension. First, we reformulate the
coupled ODE-PDE system as a Partial Integral Equation (PIE)
system and show that stability and H∞ performance of the
PIE system implies that of the ODE-PDE system. We then
construct a dual PIE system and show that asymptotic stability
and H∞ performance of the dual system is equivalent to
that of the primal PIE system. Next, we pose a convex dual
formulation of the stability and H∞-performance problems
using the Linear PI Inequality (LPI) framework. Next, we
use our duality results to formulate the stabilization and H∞-
optimal state-feedback control problems as LPIs. LPIs are a
generalization of LMIs to Partial Integral (PI) operators and
can be solved using PIETOOLS, a MATLAB toolbox. Finally,
we illustrate the accuracy and scalability of the algorithms by
constructing controllers for several numerical examples.

I. INTRODUCTION

In this paper, we consider the problem of H∞-optimal
state-feedback controller synthesis for Partial Integral Equa-
tion (PIE) systems of the form
T ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Rm × Ln2
z(t) = Cx(t) +Du(t) (1)

where T ,A,B, C,D are Partial Integral (PI) operators and
u(t) ∈ Rp. The dual (or adjoint) PIE system is then defined
to be
T ∗ ˙̄x(t) = A∗x̄(t) + C∗ū(t), x̄(0) = x̄0 ∈ Rm × Ln2

z̄(t) = B∗x̄(t) +D∗ū(t) (2)
where ∗ denotes the adjoint with respect to L2-inner product.
Recently, it has been shown that almost any PDE system in a
single spatial dimension coupled with an ODE at the bound-
ary has an equivalent PIE system representation [11] (see
Sec. IV). It should be noted, however, that the formulation
in Eqn. (1) does not allow for inputs directly at the boundary
- rather these must enter through the ODE or into the domain
of the PDE. Use of the PIE system representation, defined
by the algebra of Partial Integral (PI) operators, allows us to
generalize LMIs developed for ODEs to infinite-dimensional
systems. These generalizations are referred to as Linear PI
Inequalities (LPIs) and can be solved efficiently using the
Matlab toolbox PIETOOLS [13]. In previous work, LPIs
have been proposed for stability [10], H∞-gain [12] and
H∞-optimal estimation [3] of PIE systems. However, until
now the stabilization and H∞-optimal controller synthesis
problems have remained unresolved. In this paper, we resolve
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the problems of stabilizing and H∞ state-feedback controller
synthesis by proving the following results.

(A) Dual Stability Theorem: We show that the PIE system
(1) is stable for u = 0 and any initial condition x(0) ∈ L2

if and only if the dual PIE system (2) is stable for any
initial conditions x̄(0) ∈ L2 and ū = 0.

(B) Dual L2-gain Theorem: For u ∈ L2([0,∞)) and x(0) =
0, any solution of the PIE system (1) satisfies ‖z‖L2

≤
γ ‖u‖L2

if and only if any solution to the dual PIE system
Eq. (2) satisfies ‖z̄‖L2

≤ γ ‖ū‖L2
for x̄(0) = 0 and ū ∈

L2([0,∞)).
(C)H∞-optimal Control of PIEs: The stabilization and H∞-

optimal state-feedback controller synthesis problem for
PIE systems (1) may be formulated as an LPI.

Previous work on controller synthesis for coupled ODE-
PDE systems includes the well-established method of back-
stepping (See e.g. [6]) and discretization-based methods (See
e.g. [4], [5], [1]). In the former case, backstepping methods
allow for inputs at the boundary and are guaranteed to find
a stabilizing controller if one exists. However, the resulting
controllers are not optimal in any sense. In the latter case,
H∞-optimal controllers are designed for an ODE approxima-
tion of the coupled ODE-PDE system. However, these con-
trollers do not have provable performance properties when
applied to the actual ODE-PDE, i.e. the H∞-norm of the
ODE-PDE system is not same as the H∞-norm of the ODE
approximation and indeed, the resulting closed-loop system
is often unstable. Frequency-domain approaches, for example
[14], [7], design optimal control using transfer function of
the system. However, the concept of transfer function is not
extendable to systems with multiple inputs/outputs.

The fundamental issue in controller synthesis for both
finite-dimensional and infinite-dimensional systems is one of
non-convexity. In simple terms, for either a finite or infinite-
dimensional system of the form

ẋ(t) = Ax(t) + Bu(t),
finding a stabilizing control u(t) = Kx(t) and a correspond-
ing Lyapunov functional V (t) = 〈x(t),Px(t)〉X with nega-
tive time-derivative leads to a bilinear problem in variables
K and P of the form (A+ BK)∗P + P(A+ BK) ≤ 0.

In case of finite-dimensional linear systems, the linear
operators P,K,A and B are just matrices P , K, A and
B. In absence of a controller, the Lyapunov stability test
(referred to as primal stability test) can be written as an
LMI in positive matrix variable P > 0 such that ATP +
PA ≤ 0. In finite-dimensions, the eigenvalues of A and
A∗ are the same and hence there is an equivalent dual
Lyapunov inequality of the form AP + PAT ≤ 0. Then
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the test for existence of a stabilizing controller K and a
Lyapunov functional P which proves the stability of the
closed-loop system can now be written as: find P > 0
such that (A + BK)P + P (A + BK)T ≤ 0. The key
difference, however, is the bilinearity can now be eliminated
by introducing new variable Z = KP which leads to the
LMI constraint AP +BZ + (AP +BZ)T ≤ 0.

For infinite-dimensional systems, Theorem 5.1.3 of [2] is
analogous to primal stability test for ODEs. The result is
similar in the sense that matrices in the constraints of primal
stability test for ODE are replaced by linear operators for
infinite-dimensional systems, i.e. a test for existence of a
positive operator P > 0 that satisfies the operator-valued
constraint A∗P + PA ≤ 0. However, there does not exist
a dual form of the stability test for infinite-dimensional
systems. In [9], a dual Lyapunov criterion for stability in
infinite-dimensional systems was presented. However, the
result was restricted to infinite-dimensional systems of the
form

ẋ(t) = Ax(t) + Bu(t)

and included constraints on the image of the operator P of
the form P(X) = X where X = D(A) is the domain of
the infinitesimal generator A. Furthermore, because A for
PDEs is a differential operator, this approach provides no
way of enforcing negativity of the dual stability condition.
These difficulties in analysis and controller synthesis for PDE
systems led to the development of the PIE formulation of
the problem - wherein both system parameters A,B, C,D, T
and the Lyapunov parameter P lie in the algebra of bounded
linear PI operators.

In this work, we adopt the PIE formulation of the ODE-
PDE system and propose dual stability and performance tests
wherein all operators lie in the PI algebra and do not include
additional constraints such as P(X) = X . Specifically, the
results (A) and (B) lead to LPIs which, by allowing for
the variable change trick used in finite-dimensional systems,
allows us to propose convex and testable formulations of
the stabilization and optimal control problems - resulting in
stabilizing or H∞ optimal controllers for coupled PDE-ODE
systems where the inputs enter through the ODE or in the
domain. More specifically, these methods apply for linear
ODE-PDE systems in 1 spatial variable with a very general
set of boundary conditions including Dirichlet, Neumann,
Robin, Sturm-Lioville etc. The resulting LPIs are solved
numerically using PIETOOLS [13], an open-source MAT-
LAB toolbox to handle PI variables and setup PI operator-
valued optimization problems. Finally, we note that this is
the first result to achieve H∞-optimal control of coupled
ODE-PDE systems without discretizing the PDE. Although
we are currently restricted to inputs using an ODE filter or
in-domain, we believe the duality results presented here can
ultimately be extended to cover inputs applied directly at the
boundary.

The paper is organized as follows. After introducing
preliminary notations in Section II, in Section III and IV,
we present the general form of PIE and ODE-PDE under

consideration. In Section V, we define the conditions under
which PIE and ODE-PDE as equivalent followed by equiv-
alence in stability and H∞-gain in Section VI. Section VII
discusses the properties of adjoint PIE systems. In Section
VIII and IX, we derive the dual stability theorem and dual
H∞-gain theorem for PIEs. Sections XI through XIV present
the LPIs developed using dual stability theorem and dual
H∞-gain theorem. Examples are illustrated in Section XV
and followed by conclusions in Section XVI.

II. NOTATION

The calligraphic font, for example A, is used to represent
linear operators on Hilbert spaces and the bold font, x, is
used to denote functions in Ln2 [a, b] which is the set of all
square-integrable functions on the domain [a, b] ⊂ R. The
Sobolev space W2,k[a, b] is defined as

W2,k[a, b] := {f ∈ L2[a, b] | ∂
nf

∂sn
∈ L2[a, b] for all n ≤ k}.

Zm,n[a, b] denotes the space Rm×Ln2 [a, b] that is equipped
with the inner-product〈[

x1
x2

]
,

[
y1
y2

]〉
Z

= xT1 y1 + 〈x2,y2〉L2
,

[
x1
x2

]
,

[
y1
y2

]
∈ Zm,n.

We use xs to denote partial derivative of ∂x
∂s where the

number of repetitions of the subscript s corresponds to the
order of the partial derivative and ẋ to denote the partial
derivative ∂x

∂t .

III. PARTIAL INTEGRAL EQUATIONS

In this section, we will define a PIE system with inputs
and disturbances of the form
T ẋ(t) = Ax(t) + B1w(t) + B2u(t), x(0) ∈ Zm,n[a, b]

z(t) = Cx(t) +D11w(t) +D12u(t), (3)
where the T ,A : Zm,n[a, b] → Zm,n[a, b], B1 : Rq →
Zm,n[a, b], B2 : Rp → Zm,n[a, b], C : Zm,n[a, b] → Rr,
D11 ∈ Rr×q and D12 ∈ Rr×p are Partial Integral (PI)
operators, defined as follows.

Definition 1. (PI Operators:) A 4-PI operator is a bounded
linear operator between Zm,n[a, b] and Zp,q[a, b] of the form

P
[

P, Q1
Q2,

{
Ri
}] [x

y

]
(s) =

[
Px+

∫ b
a
Q1(s)y(s)ds

Q2(s)x+ P{Ri}y(s)

]
(4)

where P ∈ Rp×m is a matrix, Q1 : [a, b] → Rp×n, Q2 :
[a, b]→ Rq×m are bounded integrable functions and P{Ri} :
Ln2 [a, b]→ Lq2[a, b] is a 3-PI operator of the form(
P{Ri}x

)
(s) :=

R0(s)x(s) +

∫ s

a

R1(s, θ)x(θ)dθ +

∫ b

s

R2(s, θ)x(θ)dθ.

Definition 2. For given u ∈ L2([0,∞);Rp), w ∈
L2([0,∞);Rq) and initial conditions x0 ∈ Zm,n[a, b], we
say that x : [0,∞) → Zm,n[a, b] and z : [0,∞) → Rr
satisfy the PIE (1) defined by {T ,A,B, C,D} if x is Fréchet
differentiable almost everywhere on [0,∞), x(0) = x0 and
the equations (3) are satisfied for almost all t ≥ 0.

IV. A GENERAL CLASS OF LINEAR ODE-PDE SYSTEMS

In this paper, we consider control of the following class of
coupled linear ODE-PDE systems in a single spatial variable
s ∈ [a, b].
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[
ẋ(t)
ẋ(s, t)

]
=

[
Ax(t) + (Ex) (t)

E(s)x(t) + (Apx) (s, t)

]
+

[
B11 B12

B21(s) B22(s)

] [
w(t)
u(t)

]
,

z(t) =

(
C
[
x
x

])
(t) +D11w(t) +D12u(t),

B

[
xc(a, t)
xc(b, t)

]
= Bxx(t),

[
x(0)
x(·, 0)

]
= x0 ∈ D(Ad)

x(s, t) =

x1(s, t)
x2(s, t)
x3(s, t)

 , xc(s, t) =

 x2(s, t)
x3(s, t)
x3s(s, t)

 (5)

where the operators Ap, C and E are defined as
(Apx) (s, t) :=

A0(s)

x1(s, t)
x2(s, t)
x3(s, t)

+A1(s)

[
x2s(s, t)
x3s(s, t)

]
+A2(s)x3ss(s, t),

(Ex) (t) := E10

[
xc(a, t)
xc(b, t)

]
+

∫ b

a

Ea(s)

x1(s, t)
x2(s, t)
x3(s, t)

 ds
+

∫ b

a

Eb(s)

[
x2s(s, t)
x3s(s, t)

]
ds,(

C
[
x
x

])
(t) := Cx(t) + C10

[
xc(a, t)
xc(b, t)

]

+

∫ b

a

Ca(s)

x1(s, t)
x2(s, t)
x3(s, t)

 ds+

∫ b

a

Cb(s)

[
x2s(s, t)
x3s(s, t)

]
ds,

and the domain is given by
D(Ad) :=

 xx1

x2

x3

 ∈ Rno × Ln1
2 [a, b]×Wn2

2,1[a, b]×Wn3
2,2[a, b] :

B

[
xc(a)
xc(b)

]
= Bxx, where xc(s) =

 x2(s)
x3(s)
x3s(s)




(6)

The ODE states are x(t) ∈ Rno , while the PDE states
are xi(s, t) ∈ Rni . The total number of PDE is defined to
be np = n1 + n2 + n3. The ODE-PDE system is defined
by the parameters A0 : [a, b] → Rnp×np , A1 : [a, b] →
Rnp×(n2+n3), A2 : [a, b] → Rnp×n3 , E : [a, b] → Rnp×no ,
Ea : [a, b] → Rno×np , Eb : [a, b] → Rno×(n2+n3), Ca :
[a, b] → Rnz×np , Cb : [a, b] → Rnz×(n2+n3) and B2j are
bounded integrable functions. A ∈ Rno×no , E10 ∈ Rno×2nr ,
C10 ∈ Rnz×2nr , B1j , Dij and B ∈ Rnr×2nr are matrices.
B has row rank nr := n2 + 2n3 and Bx ∈ Rnr×no . This
class of systems includes almost all coupled linear ODE-PDE
systems with the constraint that the input does not directly
act at the boundary, but rather through the ODE or in the
domain of the PDE.

Illustrative Example To illustrate how this representation
is applied to a typical ODE-PDE model, we consider a wave
equation coupled with an ODE as shown below.
ẋ(t) = ax(t) + dw(1, t), (7)
ẅ(s, t) = cwss(s, t), w(0, t) = kx(t), ws(1, t) = 0,

where w(s, t) is the PDE state and x is the ODE state. These
equations may be rewritten in the form (5)

ẋ(t) = ax(t) + dx3(1, t),[
ẋ1

ẋ3

]
(s, t) =

[
0 0
1 0

] [
x1

x3

]
(s, t) +

[
c
0

]
x3ss(s, t)

x3(0, t) = kx(t),x3s(1, t) = 0
where x1 = ẇ and x3 = w. The parameters that define the
ODE-PDE (5) are

A = a,A0 =

[
0 0
1 0

]
, A2 =

[
c
0

]
, E10 =

[
0 0 d 0

]
,

B =

[
1 0 0 0
0 0 0 1

]
, Bx =

[
k
0

]
,

and the rest of the system parameters are zero.

Definition 3. For given u ∈ L2([0,∞);Rnu) and initial
conditions x0 ∈ D(Ad) as defined in (6), we say that
x : [0,∞) → Rno , x : [0,∞) →

∏2
i=0W

ni+1

2,i [a, b]
and z : [0,∞) → Rnz satisfy the ODE-PDE (5) defined
by {A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb} if x is
differentiable and x is Fréchet differentiable almost every-

where on [0,∞),
[
x
x

]
(0) = x0,

[
x
x

]
(t) ∈ D(Ad) and

Equations (5) hold for almost all t ≥ 0.

V. PIE REPRESENTATION OF THE ODE-PDE SYSTEM

A coupled ODE-PDE of the form Eq. (5) can be written
as a PIE Eq. (3). Furthermore, the solutions of the PIE define
solutions of the ODE-PDE and vice-versa.

Theorem 4. For given u ∈ L2([0,∞);Rnu) and ini-

tial conditions
[
x0
x0

]
∈ D(Ad) as defined in (6), sup-

pose x, x and z satisfy the ODE-PDE defined by
{A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb}. Then z
also satisfies the PIE

T v̇(t) = Av(t) + Bu(t), v(0) = v0

z(t) = Cv(t) +Du(t),
with

v0 =


x0
x01

x02,s

x03,ss

 , v(t) :=


x(t)
x1(t)
x2,s(t)
x3,ss(t)

 ,
where the 4-PI operators T , A, B, C and D are
as defined in Eqns. (19). Conversely, for given u ∈
L2([0,∞);Rnu) and initial conditions v0 ∈ Zno,np [a, b],
suppose v and z satisfy the PIE defined by the 4-PI
operators T , A, B, C and D as defined in Equations
(19). Then, z also satisfies the ODE-PDE defined by
{A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb} with

x0 = T v0,

[
x(t)
x(t)

]
:= T v(t).

Proof. Refer Lemma 3.3 and 3.4 in [11] for proof.

PIE representations differ from typical ODE-PDE form
in several ways. First, while PDEs rely on a differential
operator in Ad, the a PIE system is parameterized by PI
operators which are bounded on L2 and form an algebra.
Second, the PIE eliminates boundary conditions by incor-
porating the effect of boundary conditions directly into the
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dynamics. Finally, solutions of the PIE system are defined on
Zn0,np [a, b], which is a Hilbert space with respect to Z-inner
product, whereas D(Ad) is not a Hilbert space.

VI. EQUIVALENCE IN STABILITY

In this section, we show that stability in Z and L2-gain
of the ODE-PDE system is same as that of the PIE system.
First, we define asymptotic stability of PIEs and of ODE-
PDEs.

Definition 5. For w = u = 0, the PIE (3) defined by
{T ,A,Bi, C,Dij} is said to be asymptotically stable if for
any initial condition x0 ∈ Zm,n[a, b], if x and z satisfy the
PIE, we have limt→∞ ‖T x(t)‖Z = 0.

Definition 6. For w = u = 0, the ODE-PDE (5) de-
fined by {A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb}
is said to be asymptotically stable if for initial condition
x0 ∈ D(Ad), if x, x and z satisfy the ODE-PDE , then

lim
t→∞

∥∥∥∥[x(t)
x(t)

]∥∥∥∥
Z

= 0.

Lemma 7. Suppose {T ,A,Bi, C,Dij} and
{A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb}
satisfy Eqns. (19). Then the ODE-PDE defined by
{A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb} is
asymptotically stable if the PIE defined by {T ,A,Bi, C,Dij}
is asymptotically stable.

Proof. From Theorem 4, x and x satisfy the ODE-PDE for
the given x0, x0 if and only if v satisfies the PIE for v0

where [
x(t)
x(t)

]
= T v(t),

[
x0
x0

]
= T v0.

If the PIE is stable, then limt→0 ‖v(t)‖Z = 0. Since T is a
bounded linear operator, this implies

lim
t→0

∥∥∥∥[x(t)
x(t)

]∥∥∥∥
Z

= lim
t→0
‖T v(t)‖Z = 0.

Lemma 8. Suppose {T ,A,Bi, C,Dij} and
{A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb} satisfy
Eqns. (19). For w ∈ L2([0,∞)), u = 0 and x(0) = 0, any
solution x, z of the PIE system satisfies ‖z‖L2

≤ γ ‖w‖L2

if and only if any solution to the ODE-PDE system, x,x, z
satisfies ‖z‖L2

≤ γ ‖w‖L2
for x(0) = 0, x(t) = 0, u = 0

and w̄ ∈ L2([0,∞)).

Proof. From Theorem 4, x, x, and z satisfy the ODE-PDE
for a given w if and only if v and z satisfy the PIE for the
given w where [

x(t)
x(t)

]
= T v(t).

VII. THE DUAL PIE

For a PIE system of the form Eq. (1) we may associate
the following dual (adjoint) PIE.

T ∗ ˙̄x(t) = A∗x̄(t) + C∗w̄(t)

z̄(t) = B∗x̄(t) +D∗w̄(t)

where T ∗,A∗ : Zm,n[a, b]→ Zm,n[a, b], B∗ : Zm,n[a, b]→
Rnw , C∗ : Rnz → Zm,n[a, b] and D∗ ∈ Rnw×nz are 4-PI
operators.

When the PIE system Eq. (1) is constructed from a PDE
system, then the dual PIE system Eq. (2) may also be
constructed from a PDE system.

Example 9. Consider the transport equation
v̇(s, t) + vs(s, t) = 0, s ∈ [0, 1], t > 0,

v(0, t) = 0, v(s, 0) ∈ L2[0, 1]. (8)
The PIE form Eq.(8) is

(P{0,1,0}ẋ)(t) = (P{−1,0,0}x)(t), t > 0.
The corresponding dual PIE is

(P{0,0,1}ẏ)(t) = (P{−1,0,0}y)(t), t > 0.
The dual PIE may be constructed from the following PDE

ż(s, t)− zs(s, t) = 0, s ∈ [0, 1], t > 0,

z(1, t) = 0, z(s, 0) ∈ L2[0, 1].

VIII. DUAL STABILITY THEOREM

In this section, show that dual PIE is stable if and only if
the primal PIE is stable.

Theorem 10. (Dual Stability of PIEs:) Suppose T and A are
4-PI operators. Then the following statements are equivalent.
1) lim
t→∞

T x(t) → 0 for any x that satisfies T ẋ(t) = Ax(t)

with initial condition x(0) ∈ Zm,n[a, b].
2) lim
t→∞

T ∗x(t) → 0 for any x that satisfies T ∗ẋ(t) =

A∗x(t) with initial condition x(0) ∈ Zm,n[a, b].

Proof. Suppose x satisfies T ẋ(t) = Ax(t) with initial
condition x(0) ∈ Zm,n[a, b] and limt→∞ T x(t) → 0. Let
x̄ satisfy T ∗ẋ(t) = A∗x(t) with initial condition x̄(0) ∈
Zm,n[a, b]. In the following, we use 〈·, ·〉 = 〈·, ·〉Z . Then for
any finite t > 0, by IBP and a variable change,∫ t

0

〈x̄(t− s), T ẋ(s)〉 ds

= 〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉 −
∫ t

0

〈∂sx̄(t− s), T x(s)〉 ds

= 〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉 −
∫ 0

t

〈
˙̄x(θ), T x(t− θ)

〉
dθ

= 〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉+

∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ

where θ = t− s. Furthermore, using a variable change,∫ t

0

〈x̄(t− s), T ẋ(s)〉 ds =

∫ t

0

〈x̄(t− s),Ax(s)〉 ds

=

∫ t

0

〈x̄(θ),Ax(t− θ)〉 dθ =

∫ t

0

〈A∗x̄(θ),x(t− θ)〉 dθ.
Therefore,∫ t

0

〈A∗x̄(θ),x(t− θ)〉 dθ

= 〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉+

∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ.

However, A∗x̄(θ) = T ∗ ˙̄x(θ) for all θ ∈ [0, t] and so we
have

〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉 = 0 ∀t > 0.
If limt→∞ T x(t) = 0, then

lim
t→∞

〈T ∗x̄(t),x(0)〉 = lim
t→∞

〈x̄(t), T x(0)〉 = 0
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for any x(0) ∈ Zm,n[a, b]. We conclude that
limt→∞ T ∗x̄(t) = 0. Since the dual and primal systems are
interchangeable, necessity follows from sufficiency.

IX. DUAL L2-GAIN THEOREM

We proved that stability of a PIE system and its dual are
equivalent. Now, we show that for x0 = 0, input-output
performance of primal and dual PIE in the L2-gain metric
is equivalent.

Theorem 11. (Duality on L2-gain bound of PIEs:) Suppose
T , A, B, C and D are 4-PI operators. Then the following
statements are equivalent.

1) For any w ∈ L2([0,∞);Rq) and x(0) = 0 any solution
x(t) ∈ Zm,n and z(t) ∈ Rp of the PIE system

T ẋ(t) = Ax(t) + Bw(t), x(0) = 0

z(t) = Cx(t) +Dw(t) (9)
satisfies ‖z‖L2

≤ γ ‖w‖L2
.

2) For any w̄ ∈ L2([0,∞);Rp) and x̄(0) = 0, any x̄(t) ∈
Zm,n and z̄(t) ∈ Rq of the dual PIE system

T ∗ ˙̄x(t) = A∗x̄(t) + C∗w̄(t), x̄(0) = 0

z̄(t) = B∗x̄(t) +D∗w̄(t) (10)
satisfies ‖z̄‖L2

≤ γ ‖w̄‖L2
.

Proof. Suppose that for any w ∈ L2([0,∞);Rq) and x(0) =
0 any solution x(t) ∈ Zm,n and z(t) ∈ Rp of the PIE system
satisfies ‖z‖L2

≤ γ ‖w‖L2
. For w̄ ∈ L2([0,∞);Rp) and

x̄(0) = 0, let x̄(t) ∈ Zm,n and z̄(t) ∈ Rq satisfy the dual PIE
system. Then for any finite t ≥ 0, since x(0) = x̄(0) = 0,
we have∫ t

0

〈x̄(t− s), T ẋ(s)〉 ds

= 〈x̄(0), T x(t)〉 − 〈x̄(t), T x(0)〉+

∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ

=

∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ

where θ = t−s. Furthermore, by the change variable change,∫ t

0

〈x̄(t− s), T ẋ(s)〉 ds

=

∫ t

0

〈x̄(t− s),Ax(s)〉 ds+

∫ t

0

〈x̄(t− s),Bw(s)〉 ds

=

∫ t

0

〈A∗x̄(θ),x(t− θ)〉 dθ +

∫ t

0

〈B∗x̄(θ), w(t− θ)〉 dθ.
Combining the two equalities, we obtain∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ

=

∫ t

0

〈A∗x̄(θ),x(t− θ)〉 dθ +

∫ t

0

〈B∗x̄(θ), w(t− θ)〉 dθ.
By the definition of z̄, we obtain∫ t

0

〈z̄(θ), w(t− θ)〉 dθ −
∫ t

0

〈D∗w̄(θ), w(t− θ)〉 dθ

=

∫ t

0

〈B∗x̄(θ), w(t− θ)〉 dθ

=

∫ t

0

〈
T ∗ ˙̄x(θ),x(t− θ)

〉
dθ −

∫ t

0

〈A∗x̄(θ),x(t− θ)〉 dθ

=

∫ t

0

〈C∗w̄(θ),x(t− θ)〉 dθ =

∫ t

0

〈w̄(θ), Cx(t− θ)〉 dθ

=

∫ t

0

〈w̄(θ), z(t− θ)〉 dθ −
∫ t

0

〈w̄(θ),Dw(t− θ)〉 dθ.
We conclude that for any t > 0, if z and w satisfy the primal
PIE and z̄ and w̄ satisfy the dual PIE, then∫ t

0

〈z̄(θ), w(t− θ)〉 dθ =

∫ t

0

〈w̄(θ), z(t− θ)〉 dθ.
Now, for any w̄ ∈ Lp2, suppose z̄ solves the dual PIE for
some x̄. For any fixed T > 0, define w(t) = z̄(T − t) for
t ≤ T and w(t) = 0 for t > T . Then w ∈ Lq2 and for this
input, let z solve the primal PIE for some x. Then if we
define the truncation operator PT , we have

‖PT z̄‖2L2
=

∫ T

0

〈z̄(s), z̄(s)〉 ds =

∫ T

0

〈z̄(s), w(T − s)〉 ds

=

∫ T

0

〈w̄(s), z(T − s)〉 ds ≤ ‖PT w̄‖L2
‖PT z‖L2

≤ γ ‖w̄‖L2
‖w‖L2

= γ ‖w̄‖L2
‖z̄‖L2

.

‖PT z̄‖2L2
=

∫ T

0

〈z̄(s), z̄(s)〉 ds =

∫ T

0

〈z̄(s), w(T − s)〉 ds

=

∫ T

0

〈w̄(s), z(T − s)〉 ds ≤ ‖PT w̄‖L2
‖PT z‖L2

≤ ‖PT w̄‖L2
‖z‖L2

≤ γ ‖PT w̄‖L2
‖w‖L2

= γ ‖PT w̄‖L2
‖PTw‖L2

= γ ‖PT w̄‖L2
‖PT z̄‖L2

.
Therefore, we have that ‖PT z̄‖L2

≤ γ ‖PT w̄‖L2
for all T ≥

0. Hence, we conclude that ‖z̄‖L2
≤ γ ‖w̄‖L2

. Since the dual
and primal systems are interchangeable, necessity follows
from sufficiency.

X. LINEAR PARTIAL INTEGRAL INEQUALITIES

Optimization problems with PI operator decision variables
and Linear PI Inequality constraints are called Linear PI
Inequalities (LPIs) and take the form

P
[

P0, Q0
QT

0 ,
{
R0i

}]+

N∑
k=1

xjP
[

Pk, Qk
QT

k ,
{
Rki

}] < 0, (11)

where x ∈ RN is the decision variable and P
[

Pk, Qk
QT

k ,
{
Rki

}] :

Zm,n[a, b] → Zm,n[a, b] are known self-adjoint 4-PI op-
erators. LPI optimization problems can be solved using
the MATLAB software package PIETOOLS [13]. In the
following sections, we present applications of Theorems 10
and 11 in the form of LPI tests for dual stability, dual L2-
gain, stabilization, and H∞-optimal control of PIE systems,
each with associated code snippets using the PIETOOLS
implementation.

XI. A DUAL LPI FOR STABILITY

Using Theorem 10, we give primal and dual LPIs for
stability of a PIE system.

Theorem 12. (Primal LPI for Stability:) Suppose there
exists a self-adjoint bounded and coercive operator P :
Zm,n[a, b]→ Zm,n[a, b] such that

T ∗PA+A∗PT 4 −εT ∗T (12)
for some ε > 0. Then any x ∈ Zm,n[a, b] that satisfies the
system

T ẋ(t) = Ax(t), x(0) = x0 ∈ Zm,n[a, b]
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satisfies limt→∞ ‖T x(t)‖Z = 0.

Proof. The proof can be found in the [8].

Theorem 13. (Dual LPI for Stability:) Suppose there ex-
ists a self-adjoint bounded and coercive operator P :
Zm,n[a, b]→ Zm,n[a, b] such that

T PA∗ +APT ∗ 4 −εT T ∗ (13)
for some ε > 0. Then any x ∈ Zm,n[a, b] that satisfies the
system

T ẋ(t) = Ax(t), x(0) = x0 ∈ Zm,n[a, b]
satisfies limt→∞ ‖T x(t)‖Z = 0.

Proof. The proof can be found in the Appendix.

Pseudo Code 1.
prog = sosprogram([s,t]);

[prog,P] = sos posopvar(prog,dim,I,s,t);

D=T*P*A’+A*P*T’+eps*T*T’;

prog = sos opineq(prog, -D);

prog = sossolve(prog);

XII. DUAL KYP LEMMA

Using Theorem 11, we present the following dual LPI
for L2-gain of PIE in the form Eq. (1) where T ,A :
Zm,n[a, b] → Zm,n[a, b], Bi : Rq → Zm,n[a, b], C :
Zm,n[a, b]→ Rr and D1i : Rq → Rr.

Theorem 14. (LPI for L2-gain:) Suppose there exist ε >
0, γ > 0, bounded linear operators P : Zm,n[a, b] →
Zm,n[a, b], such that P is self-adjoint, coercive and−γI D CPT ∗

(·)∗ −γI B∗
(·)∗ (·)∗ (·)∗ + T (AP)∗

 4 0. (14)

Then, for w ∈ L2, any x and z that satisfy the PIE (1) also
satisfies ‖z‖L2

≤ γ ‖w‖L2
.

Proof. The proof is same as the proof for Theorem 16 with
B1 = B, B2 = 0, D11 = D and D12 = 0.

Pseudo Code 2.
prog = sosprogram([s,t], gam);

[prog,P] = sos posopvar(prog,dim,I,s,t);

D = [-gam*I+eps*I D C*P*T’;

D -gam*I+eps*I B’;

(P*C’)’ B’ (·)’+T*(A*P)’+eps*T*T’];
prog = sos opineq(prog, -D);

prog = sossetobj(prog,gam);

prog = sossolve(prog);

XIII. STABILIZING CONTROLLER SYNTHESIS

For PIEs with inputs,
T ẋ(t) = Ax(t) + Bu(t)

the following LPI can be used to find a stabilizing state-
feedback controller of the form u(t) = Kx(t) where K :
Zm,n[a, b]→ Rp is a 4-PI operator.

Corollary 15. (LPI for Stabilizing Controller Synthe-
sis:) Suppose there exist bounded linear operators P :

Zm,n[a, b] → Zm,n[a, b] and Z : Zm,n[a, b] → Rp, such
that P is self-adjoint, coercive and

(AP + BZ)T ∗ + T (AP + BZ)∗ ≤ −εT T ∗. (15)
Then, for u(t) = Kx(t), where K = ZP−1, any x ∈
Zm,n[a, b] that satisfies the system
T ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ Zm,n[a, b]

also satisfies limt→∞ ‖T x(t)‖Z = 0.

Proof. The proof is same as the proof for Theorem 13.
Replace A by A+ BK and substitute Z = KP .

Pseudo Code 3.
prog = sosprogram([s,t]);

[prog,Z] = sos opvar(prog,dim,I,s,t,deg);

[prog,P] = sos posopvar(prog,dim,I,s,t);

D=T*(A*P+B*Z)’+(A*P+B*Z)*T’+eps*T*T’;

prog = sos opineq(prog, -D);

prog = sossolve(prog);

XIV. H∞-OPTIMAL CONTROLLER SYNTHESIS

Now we use Theorem 11 to pose the H∞-optimal con-
troller synthesis problem as an LPI. Specifically, we formu-
late the following LPI for finding the H∞-optimal controller
for a PIE in the form Eq. (3) where T ,A : Zm,n[a, b] →
Zm,n[a, b], B1 : Rq → Zm,n[a, b], B2 : Rp → Zm,n[a, b],
C : Zm,n[a, b]→ Rr, D11 : Rq → Rr and D12 : Rp → Rr.

Theorem 16. (LPI for H∞ Optimal Controller Synthesis:)
Suppose there exist γ > 0, bounded linear operators P :
Zm,n[a, b] → Zm,n[a, b] and Z : Zm,n[a, b] → Rp, such
that P is self-adjoint, coercive and−γI D11 (CP +D12Z)T ∗

(·)∗ −γI B∗1
(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

 4 0. (16)

Then, for any w ∈ L2, for u(t) = Kx(t) where K = ZP−1,
any x and z that satisfy the PIE (3) also satisfy ‖z‖L2

≤
γ ‖w‖L2

.

Proof. The proof can be found in the appendix.

Pseudo Code 4.
prog = sosprogram([s,t], gam);

[prog,P] = sos posopvar(prog,dim,I,s,t);

[prog,Z] = sos opvar(prog,dim,I,s,t,deg);

D = [-gam*I+eps*I D11’ (C*P+D12*Z)*T’;

(·)’ -gam*I+eps*I B1’;

(·)’ (·)’ (·)’+T*(A*P + B2*Z)’+eps*T*T’];

prog = sos opineq(prog, -D);

prog = sossetobj(prog,gam);

prog = sossolve(prog);

XV. NUMERICAL EXAMPLES

In this section, use numerical examples to demonstrate
the application of the LPIs presented in this paper. First, we
verify the stability of PDEs, where the stability holds for
certain values of the system parameters (referred to as a sta-
bility parameter). We test for the stability of the system using
the dual stability criterion and change the stability parameter
continuously to identify the point at which the stability of the
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system changes. The second set of examples will focus on
finding in-domain controllers to stabilize an unstable system.
Finally, we also present a numerical example of systems with
inputs and outputs to find H∞-optimal controllers.

A. Stability Tests Using Dual Stability Criterion

Example 17. Consider the scalar diffusion-reaction equa-
tion with fixed boundary conditions.

ut(s, t) = λu(s, t) + uss(s, t), s ∈ [0, 1], t > 0,

u(0, t) = u(1, t) = 0, u(s, 0) = u0
This system is stable for λ ≤ π2. Using LPIs, we find the
maximum value for which the system is stable by varying
λ continuously and testing the feasibility of dual LPI for
stability. From our tests, we find that the system is stable for
λ ≤ (1 + 1e−5)π2.

Example 18. Using the same PDE from the previous
example, with different boundary conditions, the stability
parameter changes to λ ≤ 2.467.

ut(s, t) = λu(s, t) + uss(s, t), s ∈ [0, 1], t > 0,

u(0, t) = us(1, t) = 0, u(s, 0) = u0
Testing the stability using the dual LPI for stability, we find
that the system is stable for λ ≤ 2.467 + 5e−4.

B. Finding Stabilizing Controller For Unstable PDE Systems

Example 19. In the Example 17, suppose λ = 10. Then the
system is unstable. To stabilize the system, we introduce an
in-domain control input as

ut(s, t) = λu(s, t) + uss(s, t) + d(t)

where d(t) =
∫ b
a
K(s)uss(s, t)ds is the control input. Solv-

ing the LPI in Theorem 15 we find a stabilizing controller
K(s) =0.29s5 − 1.01s4 + 0.95s3 + 0.16s2 − 0.51s+ 0.98.

C. H∞-optimal Controller Synthesis
Example 20. Consider the following cascade of diffusion-
reaction equations with a dynamic controller acting at the
boundary.

ẋi(s, t) = λxi(s, t) +

N∑
k=i

xk,ss(s, t) + w(t), i ∈ {1...N}

ẋ0(t) = u(t), x0(0) = 0,xi(s, 0) = 0, s ∈ [0, 1]

z(t) = x0(t),

xi(0, t) = 0, xi(1, t) = 0 ∀ i ∈ {1...N − 1},
xN (0, t) = 0, xN (1, t) = x0(t),

where x0 is the state of the dynamic boundary controller,
xi are distributed states, z is the output and w is the
input disturbances. The control input, u(t) = K0x0(t) +∫ 1

0
K(s)x(s, t)ds where K : [a, b] → R1×N , enters the

system through the ODE and acts at the boundary of the PDE
state xN . For λ = 10, N = 3 the H∞-optimal controller
has a norm bound of 6.5095. In Figure 1, we plot the system
response for a disturbance w(t) = sin(5t)

3t with zero initial
conditions.

XVI. CONCLUSIONS
In this article, we have proven the equivalence, in stability

and H∞-norm, between a PIE and its dual. Coupled ODE-
PDE have equivalent PIE representations and properties

0 1 2 3 4 5 6 7 8 9 10
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, w
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 K
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Output, Disturbance, Control Input vs time

z(t)
w(t)
Control Input

Fig. 1. The plot shows variation of output z and control input u with time
when a bounded disturbance w is applied to system in Example 20 with
zero initial conditions.

of the ODE-PDE are inherited from the PIE. Our duality
results allow can be used with LPIs to find stabilizing and
H∞-optimal state-feedback controllers for PIEs and these
controllers can then be used to regulate the associated ODE-
PDEs. We have demonstrated the accuracy and scalability
of the resulting algorithms by applying the results to several
illustrative examples. While the scope of the paper is limited
to inputs entering through the ODE or in-domain, we believe
the results can be extended to inputs at the boundary.
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APPENDIX

A. Proof of Theorem 13

Theorem 13. Suppose there exists a self-adjoint bounded
and coercive operator P : Zm,n[a, b] → Zm,n[a, b] such
that

T PA∗ +APT ∗ 4 −εT T ∗
for some ε > 0. Then any x ∈ Zm,n[a, b] that satisfies the
system

T ẋ(t) = Ax(t), x(0) = x0 ∈ Zm,n[a, b]
satisfies limt→∞ ‖T x(t)‖Z = 0.

Proof. Define a Lyapunov candidate as V (y) =
〈T ∗y,PT ∗y〉Z . Then there exists an α > 0 and β > 0 such
that

α ‖T ∗y‖Z ≤ V (y) ≤ β ‖T ∗y‖Z .
The time derivative of V (y) along the solutions of the PIE

T ∗ẏ(t) = A∗y(t), y(0) ∈ Zm,n[a, b]
is given by
V̇ (y(t)) = 〈T ∗y(t),PT ∗ẏ(t)〉Z + 〈T ∗ẏ(t),PT ∗y(t)〉Z

= 〈T ∗y(t),PA∗y(t)〉Z + 〈A∗y(t),PT ∗y(t)〉Z
= 〈y(t), T PA∗y(t)〉Z + 〈y(t),APT ∗y(t)〉Z
≤ −ε ‖T ∗y(t)‖Z ≤ −

ε

β
V (y(t)).

Then, by using Gronwall-Bellman Inequality, there exists
constants M and k such that

V (y(t)) ≤ V (y(0))Me(−kt).
As t → ∞, V (y(t)) → 0 which implies ‖T ∗y(t)‖Z → 0.
Then, from Theorem 10, ‖T x(t)‖Z → 0.

B. Proof of Theorem 16

Theorem 16. Suppose there exist γ > 0, bounded linear op-
erators P : Zm,n[a, b] → Zm,n[a, b] and Z : Zm,n[a, b] →
Rp, such that P is self-adjoint, coercive and−γI D11 (CP +D12Z)T ∗

(·)∗ −γI B∗1
(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

 4 0. (17)

Then, for any w ∈ L2, for u(t) = Kx(t) where K = ZP−1,
any x and z that satisfy the PIE (3) also satisfy ‖z‖L2

≤
γ ‖w‖L2

.

Proof. Define a Lyapunov candidate function V (x) =
〈T ∗x,PT ∗x〉Z . Since P is coercive and bounded, there
exists α > 0 and β > 0 such that

α ‖T ∗x‖Z ≤ V (x) ≤ β ‖T ∗x‖Z .
The time derivative of V (x) along the solutions of

T ∗ẋ(t) = (A+ B2K)∗x(t) + (C +D12K)∗w(t),

z(t) = B∗1x(t) +D∗11w(t), x(0) = 0 (18)
is given by
V̇ (x(t)) = 〈T ∗x(t),PT ∗ẋ(t)〉Z + 〈T ∗ẋ(t),PT ∗x(t)〉Z

= 〈T ∗x(t),P(A+ B2K)∗x(t)〉Z
+ 〈(A+ B2K)∗x(t),PT ∗x(t)〉Z

+ 〈T ∗x(t),P(C +D12K)∗w(t)〉Z

+ 〈(C +D12K)∗w(t),PT ∗x(t)〉Z .
For any w(t) ∈ Rp and x(t) ∈ Z that satisfies Eq. (18),〈[

v(t)
w(t)
x(t)

]
,

[
−γI D11 (CP +D12Z)T ∗
(·)∗ −γI B∗1
(·)∗ (·)∗ (·)∗ + T (AP + B2Z)∗

][
v(t)
w(t)
x(t)

]〉

=

〈[
w(t)
x(t)

]
,

[
0 (CP +D12Z)T ∗

(·)∗ (·)∗ + T (AP + B2Z)∗

] [
w(t)
x(t)

]〉
− γ ‖w(t)‖2 − γ ‖v(t)‖2 + 〈v(t),B∗1x(t) +D∗11w(t)〉
+ 〈B∗1x(t) +D∗11w(t), v(t)〉

= V̇ (x(t))− γ ‖w(t)‖2 − γ ‖v(t)‖2 + 〈v(t), z(t)〉
+ 〈z(t), v(t)〉 ≤ 0

for any v(t) ∈ Rp and t ≥ 0. Let v(t) = 1
γ z(t). Then

V̇ (x(t)) ≤ γ ‖w(t)‖2 +
1

γ
‖z(t)‖2 − 2

γ
‖z(t)‖2 − ε ‖x(t)‖2

≤ γ ‖w(t)‖2 − 1

γ
‖z(t)‖2 .

Integrating forward in time with the initial condition x(0) =
0, we get

1

γ
‖z(t)‖2 ≤ γ ‖w(t)‖2 .

Using Theorem 11, the adjoint PIE system of Eq.(18) has
the same bound on L2-gain from input to output. In other
words, for w ∈ L2, any x and z that satisfy equations
T ẋ(t) = Ax(t) + B1w(t) + B2u(t), x(0) = 0

z(t) = Cx(t) +D11w(t) +D12u(t)
with u = Kx and K = ZP−1, we have ‖z‖L2

≤ γ ‖w‖L2
.

C. PI operator definitions in Theorem 4

Given {A,Ai, Bi, B,Bx, C10, Ca, Cb, D,E,E10, Ea, Eb},
we define the following functions and 4-PI operators.

H0(s) = K(s)(BT )
−1
Bx, H1(s) = V (s)(BT )

−1
Bx,

T1 = T (BT )
−1
Bx, T2(s) = T (BT )

−1
BQ(0, s) +Q(0, s)

G0 =

I 0 0
0 0 0
0 0 0

 , L0 =

[
0 I 0
0 0 0

]
,

G2(s, θ) = −K(s)(BT )
−1
BQ(s, θ),

G1(s, θ) =

0 0 0
0 I 0
0 0 (s− θ)I

+G2(s, θ),

L2(s, θ) = −V (s)(BT )
−1
BQ(s, θ), L1(s, θ) =

[
0 0 0
0 0 I

]
+ L2(s, θ),

K(s) =

0 0 0
I 0 0
0 I (s− a)I

 , V (s) =

[
0 0 0
0 0 I

]

T =


I 0 0
0 I 0
0 0 I
I 0 0
0 I (b− a)I
0 0 I

 , Q(s, θ) =


0 0 0
0 0 0
0 0 0
0 I 0
0 0 (b− θ)I
0 0 I


T = P

[
I, 0
H0, {Gi}

]
,B = P

[
B1, 0
B2, {0}

]
,D = P

[
D, 0
0, {0}

]
A = P

[
A+ E10T1, E10T2

E,
{[

0 0 A2

]
, 0, 0

}]
+ P

[
0, Ea

0, {A0, 0, 0}

]
P
[

0, 0
H0, {Gi}

]
+ P

[
0, Eb

0, {A1, 0, 0}

]
P
[

0, 0
H1, {Li}

]
C = P

[
C + C10T1, C10T2

0, {0}

]
+ P

[
0, Ca

0, {0}

]
P
[

0, 0
H0, {Gi}

]
+ P

[
0, Cb

0, {0}

]
P
[

0, 0
H1, {Li}

]
. (19)
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