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A B S T R A C T

The inland waterways in the United States (U.S.) transport approximately 20% of coal, 22% of

petroleum products, and 60% of farm exports making these waterways a significant contributor

to the U.S. multimodal transportation system. In this study, data of extreme natural events

affecting the U.S. inland waterways are collected and used to predict possible occurrences

of such events using a spatio-temporal statistical model. A simulation tool incorporating this

model is developed to investigate the impact of waterway disruptions on the interconnected

multimodal transportation systems. A case study on the lower Mississippi River and the

McClellan–Kerr Arkansas River Navigation System along with the related highways is provided

to illustrate the use of the simulation tool for operation simulation and interdependence

modeling of the multimodal transportation network. This tool provides a flexible means for

quickly evaluating the performance of such Interdependent Critical Infrastructures (ICIs) and

assisting in decision making.

1. Introduction

1.1. Background and motivation

The physical distribution infrastructure is critical to national security, economic well-being, global competitiveness, and quality

of life in the United States (U.S.) [1]. The distribution infrastructure, referred to as the transportation network, includes but is

not limited to the interconnected network of ports, inland waterways, highways, and railroads. The U.S. transportation network

comprises almost 4 million miles (6.43 million kilometers) of public roads and highways, more than 360,000 interstate trucking

companies and 20 million trucks for business, and 1900 seaports and 1700 inland river terminals on 11,000 miles of inland

waterways carrying grain, chemicals, petroleum products, and import and export goods [2–4].

Many industries rely on the U.S. transportation network; thus, the economic impacts of disruptions affecting the network are

expected to be substantial. Such interruptions can cause a cascading effect that can become widespread due to the spatial and

temporal distributions of commodity flows [5]. Even without large-scale disruptions, the Federal Highway Administration (FHWA)

estimated the trucking industry losses to be around $8 billion a year due to highway congestion [5,6]. Such losses are expected

to increase in the future due to forecasted increases in the U.S. domestic freight tonnages by approximately 50% in the next

fifteen years [4,7,8]. In addition to highway network impacts, railways are expected to experience more significant congestions

and breakdowns due to increased demand for Class I railroads [9].

The U.S. Maritime Administration, an agency of the U.S. Department of Transportation, has called for investment in the domestic

waterways for freight movement [10], recognizing the need to reduce road and rail congestion. The increased use of 25,000 miles
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of inland waterway freight transport could result in less congestion on U.S. roads and a reduction in the risk of road and rail

transport accidents and possibly even reduce emissions of air pollution [5]. Barge transport is frequently cheaper than rail and truck

alternatives, and there are many products which are too large for other transport methods. In 2017, the U.S. inland waterways were

used to transport approximately 20% of America’s coal, 22% of U.S. petroleum products, and 60% of farm exports between 38 states

summing up the annual weight transported to around 630 million tons [3,4].

Although general freight movements via the inland waterways are expected to increase in the upcoming years due to economic

and logistic drivers, research investigating the impacts of disruptions on waterway operations, multimodal commodity flow,

and economic analysis are limited. Indeed, one reason for the limited number of studies may be the lack of tools that could

facilitate research in this area by providing data-driven models. There is an urgent need to protect and coordinate U.S. multimodal

transportation infrastructure to support strong economic growth and national security. Inland waterways and road and rail transport

have a significant impact on various business operations in the U.S., especially in middle America along hundreds of miles of the

Mississippi River. However, inland water transportation is significantly affected by weather, current and future waterway conditions,

and operation strategies at different locks, dams, and ports [11]. For example, in the case of flooding or drought, inland water

transport will be constrained by the water levels of dams and ports, and the effects will propagate downstream. In response to such

emergencies, goods on cargo vessels need to be offloaded and re-routed through the available ground transportation system. Since

these infrastructures are managed by different governing agencies [3], multiple stakeholders need to understand the characteristics

of these Interdependent Critical Infrastructures (ICIs), such as ports, lock and dam systems, and ground transportation that cross

administrative boundaries. Considering the large potential impact and lack of actual data availability, this research will generate

simulated data to represent a multimodal transportation systems.

1.2. Related work

There are various simulation models discussed in the literature that focus on inland waterway operations with different problems

to solve and goals to achieve. However, the literature that studies the simulation of traffic flow in inland waterways can be broadly

divided into three categories: (1) literature that focuses primarily on lock operation simulation models to analyze lock delays and

travel times, and optimize waterway investment projects and other aspects of locks operations [12–14], (2) literature that discusses

barge dispatching and vessel assignment scheduling problems in inland waterways [15–17], and (3) literature with a broader scope

that considers ICI resilience, disruption management strategies and economic studies with a focus on inland waterways as the leading

network of commodity flow [18–20].

There are multiple simulation models that were developed to analyze the different aspects of lock operations [12]; the earliest

model can be found in 1969 [21] which was developed jointly by Resources for the Future Inc. and Pennsylvania State University.

The model (referred to as RFF by [13]) was programmed to simulate the movement of shallow draft barge tows through a linear

waterway having up to ten locks with one or two chambers, twenty ports, and ten delay points (channel restrictions). Model inputs

include tow characteristics, tow itineraries, and attributes of the waterway system; model outputs include a variety of statistics

including tows processed, transit and delay times, queue lengths, and tonnages [13,21]. Carroll and Bronzini [13] developed

an enhanced two-part model of the RFF; the first part processes information concerning commodity flows and waterway fleet

characteristics to derive a list of tows that will move on the Illinois waterway and upper Mississippi River, where the second part

of the model simulates the movement of these tows through the ports, locks, pools, and channel delay areas that comprise the

waterway system. Moreover, Dai [22] developed a waterway simulation model that estimates tow delays at a series of locks, tow

travel time along waterways, and the means and variances of interarrival and interdeparture times at each lock; and was validated

by comparing it to the well-established M/G/1 queue system. Additionally, Ting and Schonfeld [23] applied the simultaneous

perturbation stochastic approximation (SPSA) technique with simulation models to optimize the size and timing of investment

projects in a waterway system with five locks. The discussed lock operation simulation studies rely on site-specific simulation

models without network generality and comprehensive functionality, making it difficult to extend the developed simulation models

to any other waterway networks [12]. To address the lack of generalized modeling, Wang and Schonfeld [12] developed a general

waterway simulation model that is independent of network geometry to evaluate a waterway system over a multi-year planning

horizon. Recently, Triska et al. [14] developed a robust Monte Carlo simulation-based method to assess port capacity and expansion

plans. Their method helps to identify optimal resource configurations for expected throughputs.

A second category of waterway simulation studies uses simulation as an optimization tool to solve the barge dispatching and

assignment problem, which is generally solved using classical optimization approaches [17]. Larson et al. [15] developed a Barge

Operations Systems Simulator (BOSS) to assist in the task of fleet sizing when transporting refuse from New York City to Fresh

Kills Landfill on Staten Island. Moreover, Swedish [16] developed a discrete event simulation model as a decision support tool for

logistical management within a marine-based distribution system to determine fleet size and resource allocation to meet delivery

requirements in a timely manner. Taylor et al. [17] presented a simulation-based scheduling system designed to assist in barge

dispatching and boat assignment problems for inland waterways.

Regarding the third category of literature, many studies have investigated the modeling and simulation of ICIs through

empirical approaches, agent-based approaches, network-based approaches, and other approaches [20,24]. However, only few

articles addressed simulation of inland waterways transportation [4]. Bush et al. [25] developed an iterative technique between

optimization and simulation models to check the feasibility of barge routings suggested by the optimization model based on a

sampled dataset. Biles et al. [26] presented a simulation model of traffic flow in inland waterways with the incorporation of the

Geographic Information System (GIS) to improve vessel scheduling. Recently, Oztanriseven and Nachtmann [18] used a Monte
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Carlo simulation model to estimate the potential economic impacts of inland waterway disruptions. Moreover, several studies

investigated the economic impact of disruptions on different transportation systems [27–29]. Furthermore, Desquesnes et al. [19]

created a simulation architecture of inland waterways based on Markov Decision Process (MDP) and climate projections under

uncertainty. Bipasha et al. [4] developed an agent-based multimodal simulation tool, which is the initial study of the model presented

in this article. With the exception of [4], all the studies in this third category do not consider predicting disruptions in advance based

on statistical models, simulating multimodal transportation, modeling the interdependency between waterway transportation and

ground transportation, and allowing different scenario generation by controlling lock and dam systems.

1.3. Overview and research contributions

The ultimate goal of this work is to provide research methods and application opportunities from which the U.S. economic growth

and homeland security can significantly benefit. A thorough understanding of multimodal freight movement processes that combine

different data sources can provide open-sourced, multi-regional, multi-industry, data-driven statistical models, and simulation tools

to benefit decision-makers, researchers, and other stakeholders. Thus, various data elements from historical events of natural inland

waterway disruptions such as floods and droughts along the Mississippi River and the McClellan–Kerr Arkansas River Navigation

System (MKARNS) were used to develop a spatio-temporal statistical model [30,31]. This model predicts disruptions at different

locations on both rivers, which guide the movement of multi-industry cargo vessels, operation of the lock-and-dam system in the

area, and decisions regarding other modes of transportation for products shipped to and from inland waterway terminals.

The simulated data are derived from actual data on ICIs. The ICIs related data includes: (1) inland waterway and ground

transportation networks (e.g., road type and capacity of road network) [32]; (2) locations of dams and locks [2,33,34]; (3) locations

of major ports and their top commodities [2,3]; (4) historical hydrological observation data at ports and locks including water depth,

changes in waterways, and the normal capacity of inland water transport [35]; (5) major types of cargo vessels and barges classified

by their capacity and usual transport speed; and (6) weather data covering the studied regions [36]. Moreover, the Maritime

Transportation Research and Education Center (MarTREC) at the University of Arkansas [37] provides the Transportation Resource

Data Bank [38] that compiles rich information, such as freight commodity flow and ports. It is worth pointing out that, although

the proposed simulation methods are centered on multimodal transportation networks, they can be used broadly in modeling other

local, regional, and national infrastructures after proper modifications. Especially, the access to the most recent version of the open-

sourced simulation tool addressed in this article is currently available for researchers, decision-makers, and other stakeholders to

advance research on multimodal transportation systems [39].

The remainder of this article is organized as follows. Section 2 describes the development of the spatio-temporal statistical model

used in this study and the basic features of the model. Section 3 introduces the simulation tool developed on an open-source platform.

Section 4 presents a case study to illustrate the capabilities of the tool. Section 5 provides concluding remarks and future research

directions.

2. Methodology

A hybrid methodology combining statistical analysis and simulation is applied. The statistical modeling is employed with two

primary purposes: (1) to map the spatial fluctuations of gage height on a given river across sites, to interpolate spatially unobserved

points on a river and (2) to forecast the gage height measurements on the sites of interest and anticipate possible interruptions in

the flow of vessels. The simulation-based modeling is used to create scenarios for vessel and truck flow, utilizing the results from the

statistical models. The dynamic interaction between different input parameters and simulation controls allows for the estimation of

various metrics.

2.1. Geo-spatial model

Environmental variables are among the factors affecting the reliability of ICIs. To represent the waterway transportation network,

modeling relevant variables of the corresponding water bodies, e.g., rivers, becomes central in understanding the processes that affect

the availability of the infrastructures of interest. The selected statistical modeling approach must make accurate predictions and

estimate the confidence intervals for relevant variables on the selected sites. To this end, developing a model capable of capturing the

underlying relationship between the selected variables, the spatial correlation among the selected measuring sites and the associated

variations in time is one of the key tasks in this stage. The chosen framework is spTimer [40], a spatio-temporal Bayesian modeling

package using the R language for statistics. The main variable of interest is the Gage Height (GH), a measure of the water’s depth

filling the waterways on the measurement sites. The main purpose of this model is to generate data to estimate the GH on unobserved

sites of interest. In this context, unobserved sites are selected locations with no available measurements, and it is necessary to infer

the missing GH data from those from the observed sites. The model will learn a spatio-temporal mapping for the GH data from the

observed sites and generate interpolations for new coordinates of interest along the same rivers.

The proposed model captures the seasonal variation for each site’s time series of gage height measurements along with the

spatial correlation in such measurements, driven by spatial location and their relation to each river. Although historical data over

a long time interval is used to showcase the model’s performance, the model is potentially useful for stakeholders to predict future

conditions, even under changes in spatial or temporal structure. A potential approach, beneficial for planning and control, is to repeat

the model fit as soon as more data is available and limit the prediction horizon to a short but useful time interval. For example, the

model could be readjusted every week using a sliding window of two years of historical data with a one-week prediction horizon.

This would guarantee that the model is up to date with the environmental conditions and that the predictions are current and

informative.
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Table 1

Summary of GH statistics.

Min Q1 Median Mean Q3 Max

0.00 7.45 11.83 14.04 19.43 44.63

Fig. 1. Measurement sites by rivers.

2.2. Data

The data used corresponds to GH’s hourly measurements and lock availability data in eighteen different sites, equivalent to

eighteen geo-related time series, with 17,542 observations each (more than 315 million in total). From these, 22,961 are missing

measurements, representing 7.3% of the total observations. A statistical summary of the GH measurements is shown in Table 1. The

time window begins on February 22, 2016, and finishes on February 21, 2018. The observed sites are shown in Fig. 1. The sites

are classified as connected to the MKARNS (red) or the Mississippi River (green). The selected unobserved locations of interest are

marked with ‘‘X’’.

2.3. Theoretical background

To model the GH data, a hierarchical autoregressive model specifying distributions for data, process, and parameters in three

stages is presented. The data is modeled by a Gaussian Process with spatio-temporal random effects. Model parameter estimation

is conducted using Bayesian computation methods [40] implemented through Gibbs sampling with the spTimer package in R. A

summary of the nomenclature is presented.
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Nomenclature

𝑖 Index for sites

𝑙 Index for longer time unit (e.g., months)

𝑡 Index for shorter time unit (e.g., hours)

𝑟 Total number of longer units

𝑇𝑙 Total number of shorter units

𝑛 Number of sites

𝑁 Total number of observations

𝑠𝑖 The 𝑖th site

𝑍𝑙(𝑠𝑖, 𝑡) Observation at site i on time 𝑡

𝑂𝑙(𝑠𝑖, 𝑡) True value of observation at site i and time 𝑡

𝜖𝑙(𝑠𝑖, 𝑡) Error term at site i and time 𝑡

𝜂𝑙(𝑠𝑖, 𝑡) Spatial random effect at site i and time 𝑡

𝐙𝑙𝑡 Vector of observations

𝐎𝑙𝑡 Vector of true values

𝐗𝑙𝑡 Matrix of covariates

𝝐𝑙𝑡 Vector of error terms

𝜼𝑙𝑡 Vector of spatial random effects

𝛴𝜂 Covariance matrix of spatial random effects

𝑆𝜂 Spatial correlation matrix

𝜅
(
𝐬𝐢, 𝐬𝑗 ;𝜙, 𝜈

)
Correlation matrix entry for sites 𝑖 and 𝑗

𝐳 Matrix of observations

𝐳∗ Matrix of missing observations

𝜽 Vector of parameters

𝜌 Temporal correlation parameter

𝜷 Vector of covariate coefficients

𝜎2
𝜖

Pure error variance

𝜎2
𝜂

Spatial random effects variance

𝜙 Rate of decay of the spatial correlation

𝜈 Smoothness of the correlation function

𝝁𝑙 Mean of the autoregressive component on the 𝑙th time unit

𝜎2
𝑙

Variance of the autoregressive term on the 𝑙th time unit

Let 𝑍𝑙(𝑠𝑖, 𝑡) be the observed point-referenced data and 𝑂𝑙(𝑠𝑖, 𝑡) be the true value corresponding to 𝑍𝑙(𝑠𝑖, 𝑡) at site 𝑠𝑖, 𝑖 = 1,… , 𝑛 at

time denoted by the two indices 𝑙 and 𝑡, where 𝑙 and 𝑡 represent two units of time, for which 𝑙 denotes the longer unit (e.g., months),

𝑙 = 1,… , 𝑟, and 𝑡 denotes the shorter unit (e.g., hours), 𝑡 = 1,… , 𝑇𝑙. Note that 𝑟 and 𝑇𝑙 are the total numbers of the two time units,

respectively. Define two vectors 𝐙𝑙𝑡 =
(
𝑍𝑙

(
𝑠1, 𝑡

)
, … , 𝑍𝑙

(
𝑠𝑛, 𝑡

))𝑇
and 𝐎𝐥𝐭 = (𝑂𝑙(𝑠1, 𝑡), ..., 𝑂𝑙(𝑠𝑛, 𝑡))𝑇 . Let 𝑁 = 𝑛

∑𝑟

𝑙=1 𝑇𝑙 be

the total number of observations to be modeled. The observed data is represented by 𝐳 and the missing data is denoted by 𝐳∗. The
hierarchical model used is expressed as follows with a description of variables and inputs, as presented in [40]:

𝐙𝑙𝑡 =𝐎𝑙𝑡 + 𝝐𝑙𝑡

𝐎𝑙𝑡 =𝜌𝐎𝑙𝑡−1 + 𝐗𝑙𝑡𝜷 + 𝜼𝑙𝑡
(1)

where 𝝐𝑙𝑡 = (𝜖𝑙(𝑠1, 𝑡),… , 𝜖𝑙(𝑠𝑛, 𝑡))𝑇 denotes the nugget effect (i.e., the pure error term) and is assumed to follow 𝑁(𝟎, 𝜎𝜖𝑰𝑛), 𝜌 is
the temporal correlation parameter, and 𝜷 = (𝛽1,… , 𝛽𝑝) represents the regression coefficients of the 𝐗 fixed effects or covariates.

The spatio-temporal random effects are modeled by 𝜼𝑙𝑡 = (𝜂𝑙(𝑠1, 𝑡),… , 𝜂𝑙(𝑠𝑛, 𝑡))𝑇 , which is assumed to follow 𝑁(𝟎, 𝛴𝜂) and to be
independent in time. Specially, 𝛴𝜂 = 𝜎2

𝜂
𝑆𝜂 , where 𝜎2

𝜂
is the spatial variance assumed to be equal for all sites, and 𝑆𝜂 is the spatial

correlation matrix. In this article, 𝑆𝜂 is obtained from the general Matérn correlation function [41], which is well suited to model

a smooth process:

𝜅
(
𝐬𝐢, 𝐬𝑗 ;𝜙, 𝜈

)
= 1

2𝜈−1𝛤 (𝜈)
(2
√
𝜈‖𝑠𝑖 − 𝑠𝑗‖𝜙)𝜈𝐾𝜈 (2

√
𝜈‖𝑠𝑖 − 𝑠𝑗‖𝜙), 𝜙 > 0, 𝜈 > 0 (2)

where Γ(𝜈) is the standard gamma function, 𝐾𝜈 is the modified Bessel function of second kind with order 𝜈, ‖𝑠𝑖 − 𝑠𝑗‖ is the distance
between sites 𝑠𝑖 and 𝑠𝑗 , 𝜙 is the rate of decay of the spatial correlation, and 𝜈 is the smoothness parameter. Note that for the

autoregressive component, 𝜌, it requires the specification of 𝐎𝑙0, the initial term, for each 𝑙. For this purpose, an additional mean

parameter 𝝁𝑙 and covariance matrix 𝜎2
𝑙
𝑆0 must be estimated, with 𝑆0 following the same structure as in Eq. (2).

Let 𝜽 = (𝛽, 𝜌, 𝜎2
𝜖
, 𝜎2

𝜂
, 𝜙, 𝜈,𝝁𝑙 , 𝜎

2
𝑙
) be the vector containing all the parameters of this model and 𝜋(𝜽) be the prior distribution of

𝜽. The logarithm of the joint posterior distribution of the parameters and the observed and missing data for this model is given
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by [40]:

ln𝜋
(
𝜽,𝐎, 𝐳∗ ∣ 𝐳

)
∝ − 𝑁

2
ln 𝜎2

𝜖
− 1

2𝜎2
𝜖

𝑟∑
𝑙=1

𝑇𝑙∑
𝑡=1

(
𝐙𝑙𝑡 −𝐎𝑙𝑡

)𝑇 (
𝐙𝑙𝑡 −𝐎𝑙𝑡

)
−

∑𝑟

𝑙=1 𝑇𝑙

2
ln |||𝜎2𝜂𝑆𝜂

|||

− 1
2𝜎2

𝜂

𝑟∑
𝑙=1

𝑇𝑙∑
𝑡=1

(
𝐎𝑙𝑡 − 𝜌𝐎𝑙𝑡−1 − 𝐗𝑙𝑡𝜷

)𝑇
𝑆−1
𝜂

(
𝐎𝑙𝑡 − 𝜌𝐎𝑙𝑡−1 − 𝐗𝑙𝑡𝜷

)

− 1
2

𝑟∑
𝑙=1

ln |||𝜎2𝑙 𝑆0
||| −

1
2

𝑟∑
𝑙=1

1
𝜎2
𝑙

(
𝐎𝑙0 − 𝝁𝑙

)𝑇
𝑆−1
0

(
𝐎𝑙0 − 𝝁𝑙

)

+ ln (𝜋 (𝜽))

(3)

Using this posterior distribution and full conditionals as presented in [40], the estimation is carried out using Gibbs sampling. Then,

the spatial interpolation or temporal extrapolation can be achieved using the predictive posterior for 𝑍𝑙(𝑠0, 𝑡′) for any unobserved
location 𝑠0 and unobserved time point 𝑡

′:

𝜋
(
𝑍𝑙(𝑠0, 𝑡′)|𝐳

)
=∫ 𝜋

(
𝑍𝑙(𝑠0, 𝑡′)|𝑂𝑙(𝑠0, 𝑡′), 𝜎2𝜖

)
× 𝜋

(
𝑂𝑙(𝑠0, 𝑡′)|𝜽,𝐎, 𝐳∗

)

× 𝜋
(
𝜽,𝐎, 𝐳∗|𝐳) 𝑑𝑂𝑙(𝑠0, 𝑡′)𝑑𝐎𝑑𝜽𝑑𝐳∗

(4)

3. Hybrid simulation model

This simulation model is developed using NetLogo, an agent-based programming language and simulation platform offered as

freeware [42]. NetLogo is also a cross-platform and integrated environment for modeling both simple and complex systems that

evolve dynamically. In NetLogo, ‘‘Agents’’ (turtle, link, patch, and observer) are the integral part of the NetLogo world and can

follow instructions given by the designers. Turtles move around in the two-dimensional world, whereas the world contains a grid

of patches. Every patch represents a square piece of land. All these agents can operate simultaneously without interfering with one

another. NetLogo permits users to run the simulation in a browser or desktop application, interact with the software, and analyze

its behavior under various settings [43].

3.1. Overview of the simulation model

The developed model was built on four extensions of NetLogo: GIS (Geographic Information System), R (R Language for

Statistics), NW (Networks), and CSV (Comma Separated Values). GIS extension provides the ability to load vector GIS data in the

form of ESRI shapefiles. The GIS extension is used to import several maps in the simulation model. Initially, a map of the U.S. is

loaded as the base of NetLogo environment. Then, maps of inland waterways and highways are imported and drawn on top of the

base map. Here, our simulation focus is primarily on the MKARNS and lower Mississippi River, representing the case study in this

article (see Section 4). Fig. 2 shows NetLogo’s user interface after opening and setting the basic environment of the model. The

graphic window makes the two-dimensional ‘‘world’’ of the model visible. It is divided up into a grid of patches that have pxcor

and pycor coordinates. The basic idea here is to create a NetLogo graph (nodes and links) by importing the GIS maps and creating

vessel and truck ‘‘agents’’ that travel along with the links. The main components of the program are:

• A map of the United States, drawn on NetLogo in a simplified form. Each state border is drawn for reference. Figs. 3–4, provide

a zoomed version of the interface.

• Maps of navigable waterways and highways. Both maps are made of nodes, turtles with own properties, connected by links.

While the waterways/highways are only figurative, the nodes play an active role in the simulation because they facilitate the

simulation understanding of waterways/highways maps.

• Vessels. These are turtles with their own variables such as current location, destination, distance-traveled, speed, vessel

category (1 for large-sized, 2 for medium-sized, and 3 for small-sized), product weight, product type, extreme events, total

delay, and others related to the control of the travel logic.

• Trucks. These are also turtles with properties such as current location, destination, distance-traveled, speed, product-weight,

product-type, and others related to the control of the travel logic.

• Ports along the waterways. Eight ports are considered and modeled as a type of turtle. These are located in Tulsa, Fort Smith,

Little Rock, Greenville (Mississippi), Baton Rouge, Helena, Memphis, and St. Louis along the MKARNS and Mississippi River.

In Fig. 3, the yellow nodes represent the ports.

• Fifteen locks along MKARNS. They are also made of nodes (a type of turtle) with properties such as ID and location.

• Twenty-four sites, modeled as turtles, along the MKARNS and Mississippi River. In each site, the gage height level is checked

and a decision is made regarding whether the vessels will move forward or not. The red nodes in Fig. 3 represent the sites.

• An algorithm that makes the vessels and trucks move on the waterways and highways, respecting defined interaction rules of

movement between source and destination, navigation time and speed, and other agents. For example, during the simulation,

a vessel always takes the shortest path between its source and destination. The travel logic controls that a defined speed is

enforced for each vessel and truck. The speed is defined when the vessel or truck is created as a random variate following a

truncated exponential distribution. The range and mean of said distribution are parameters that can be controlled by the user.
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Fig. 2. Simulation model interface on NetLogo.

Fig. 3. Simulation model interface setup controllers in NetLogo.

During the simulation, each vessel and truck checks that the distance traveled along the next node in the path is consistent

with its defined speed. If the distance is larger than what it should travel during a tick, it waits for another tick. If it is shorter

than what it should travel, it progresses another step in the path and checks that the cumulative distance is consistent with

the speed. If it encounters an obstacle in its path (e.g., a vessel facing an extreme event or disabled lock), it waits until the

path is enabled again.

The main assumptions of our simulation model are as follows:

• Vessels are uniformly distributed based on the annual demand for commodities. The decisions for instantiating different vessels

are encoded in the model following the times between departures designed to have a uniform distribution throughout the year.



J. Azucena et al.

Fig. 4. Simulation model interface view and lock controllers in NetLogo.

• The speed of vessels varies with its capacity and size [26,44]. The smallest vessel is the fastest one with an average speed of

nine mph. The medium-sized vessel moves at seven mph, where the largest one moves with five mph [26,44]. A truncated

exponential distribution is used to draw random values for the speed each time a vessel is created in the simulation.

• Each vessel and truck carries only one commodity type.

• All the vessels and trucks travel only once to their predefined destinations and do not return to their origin ports.

3.2. Interdependencies of critical infrastructures

The functional interdependencies among ICIs are modeled by simulating a certain number of traveling cargo vessels along the

waterways and a number of available ports with various capacities and conditions. In the case of a natural disturbance (e.g., elevated

water levels), a decision of offloading and re-routing based on the expected size and duration of the disturbance and the current and

future conditions of the ground transportation network is made. Given the flexibility of the proposed simulation model, different

scenarios can be tested to assess the decision making process.

Additionally, another form of functional interdependency is available through the simulation of the interconnected operations of

dam, lock, port, and ground transportation in case of traffic congestion or disruption. Considering such interdependencies of critical

infrastructures and the multimodal transportation components, different scenarios involving human interactions, such as flood

discharge, dredging, and use and maintenance of locks, can be analyzed. Furthermore, cost analysis approaches can be implemented

to estimate the economic impact of commodity flow decisions.

Potential response plans will be simulated to help researchers understand how enacted emergency plans impact the multimodal

transportation system and the surrounding infrastructure. Moreover, the developed agent-based simulation tool is capable of

simulating the evacuation and re-routing processes, for which the system performance can be presented for different points in time.

Thus, the interdependency among multiple decision-makers at ports, ground transportation, and government in this simulation

environment can be captured to generate various scenarios. Such scenarios can help coordinate the efforts to optimize the decision

making process for all stakeholders involved.

4. Case study

4.1. Problem description

In the simulation, the system analyzes a pre-determined set of representative quantities based on the input parameters listed in

Table 2. In addition, Fig. 5 represents a sample run and Fig. 6 shows a sample of plots that were generated during the simulation.
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Fig. 5. Simulation running on NetLogo.

Fig. 6. Instantaneous plotting information while simulation is running on NetLogo.

Table 2

The main inputs and outputs of the developed simulation tool.

Model Inputs Model Outputs

• Gage height from a spatio-temporal model

• Supply and demand between ports (movement of commodities)

• Gage height threshold limit

• Lock availability

• Vessel distribution at each port

• Fleet size

• Number of trucks

• Average speed of each vessel category between every two ports (mph)

• Number of delays between every two ports

• Total time lost due to extreme events (hour)

• Total number of vessels delayed and their tonnages

• Overall average speeds for the three types of vessels (mph)

• Number of extreme events and length (time) in MKARNS and lower Mississippi River

• Number of vessels from each category traveled and arrived between every two ports

• Average speed of trucks for each product type (mph)

Table 3

Detail on simulation scenarios.

Scenario Lock failures GH measurements Unobserved sites

Base Case Real observations Real observations Not included

Random Lock Failures Randomly generated Real observations Not included

Spatio-temporal model Real observations Predictions from model Interpolated from model
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Table 4

Summary of vessels’ statistics for the base-case simulation runs.

From To Product type Vessel

category

Vessel

count

Weight

(ktons)

Average

Speed

(mph)

Extreme

events

Distance

(miles)

Total

delay

(hours)

Baton Rouge Helena Petroleum 1 1 18 3.79 0 540.69 0

Baton Rouge Helena Petroleum 2 1 12 7.83 0 540.30 0

Baton Rouge Helena Petroleum 3 1 6 10.65 0 548.47 0

Baton Rouge Mississippi Crops 1 3 54 4.20 1 355.04 1

Baton Rouge Mississippi Crops 2 4 48 9.06 0 376.49 0

Baton Rouge Mississippi Crops 3 8 48 10.88 3 360.63 2.5

Baton Rouge Mississippi Petroleum 1 1 18 3.53 1 356.43 1

Baton Rouge Mississippi Petroleum 2 1 12 8.74 0 342.95 0

Baton Rouge Mississippi Petroleum 3 1 6 10.90 0 375.89 0

Helena Baton Rouge Petroleum 1 1 18 4.41 0 549.37 0

Helena Baton Rouge Petroleum 2 1 12 8.04 0 552.42 0

Helena Baton Rouge Petroleum 3 1 6 10.76 0 546.18 0

Helena Mississippi Crops 1 1 18 3.79 0 186.45 0

Helena Mississippi Crops 2 1 12 6.35 0 182.55 0

Helena Mississippi Crops 3 1 6 10.11 0 164.31 0

Helena Mississippi Petroleum 1 1 18 3.90 0 170.69 0

Helena Mississippi Petroleum 2 1 12 6.94 0 173.61 0

Helena Mississippi Petroleum 3 1 6 10.42 0 198.04 0

Helena St. Louis Crops 1 3 54 3.69 0 603.78 0

Helena St. Louis Crops 2 4 48 8.72 0 604.63 0

Helena St. Louis Crops 3 7 42 10.44 0 600.64 0

Little Rock Helena Crops 1 12 216 4.40 0 222.02 0

Little Rock Helena Crops 2 18 216 7.67 0 221.72 0

Little Rock Helena Crops 3 31 186 10.25 0 222.14 0

Mississippi Baton Rouge Crops 1 6 108 3.75 2 381.82 1.5

Mississippi Baton Rouge Crops 2 8 96 9.06 3 380.19 3

Mississippi Baton Rouge Crops 3 16 96 11.03 1 382.06 1

Mississippi Baton Rouge Petroleum 1 1 18 4.07 1 379.89 1

Mississippi Baton Rouge Petroleum 2 1 12 8.43 0 381.25 0

Mississippi Baton Rouge Petroleum 3 1 6 10.38 1 378.96 0.5

Mississippi Fort Smith Petroleum 1 1 18 4.33 0 445.88 0

Mississippi Fort Smith Petroleum 2 1 12 7.65 0 441.58 0

Mississippi Fort Smith Petroleum 3 1 6 11.42 0 445.21 0

Mississippi St. Louis Crops 1 10 180 4.01 0 766.42 0

Mississippi St. Louis Crops 2 15 180 8.12 0 766.67 0

Mississippi St. Louis Crops 3 29 174 10.29 0 765.51 0

Tulsa Baton Rouge Petroleum 1 5 90 4.64 4 992.74 4

Tulsa Baton Rouge Petroleum 2 7 84 8.13 2 989.29 2

Tulsa Baton Rouge Petroleum 3 13 78 10.87 6 994.07 6

Tulsa Helena Petroleum 1 1 18 4.26 0 621.25 0

Tulsa Helena Petroleum 2 1 12 8.01 0 612.57 0

Tulsa Helena Petroleum 3 2 12 10.26 0 620.40 0

Tulsa Memphis Petroleum 1 2 36 4.42 0 691.78 0

Tulsa Memphis Petroleum 2 3 36 8.02 0 693.74 0

Tulsa Memphis Petroleum 3 6 36 10.32 0 693.14 0

Tulsa Mississippi Petroleum 1 3 54 4.73 0 613.82 0

Tulsa Mississippi Petroleum 2 5 60 8.30 0 624.32 0

Tulsa Mississippi Petroleum 3 9 54 10.70 0 625.59 0

Tulsa St. Louis Petroleum 1 4 72 4.08 3 1222.94 107.5

Tulsa St. Louis Petroleum 2 6 72 7.44 1 1217.46 190.5

Tulsa St. Louis Petroleum 3 12 72 8.54 4 1217.97 820.25

We generate an output file at the end of the simulation which presents all the measurements listed above. The simulation time is

set for 12 months (1 year), the fleet size is set to 25 trucks, and GH global threshold is 100 ft with individual thresholds set to

action stage level based on the National Weather Service (NWS) data [45]. Initially, vessels began from the ports of Tulsa, Baton

Rouge, Little Rock, Greenville, and Helena, and the locks were all open. The vessels were moving towards their destination ports,

and extreme events were checked by measuring gage height and lock availability at each site. For example, the vessels passing the

sites with GH greater than the allowable threshold between the LA-MS route along the Mississippi River could not move and had

to wait until the GH level falls below the threshold. Whenever a vessel faces any extreme event and stops moving forward, its color

turns red to represent a stoppage. The vessel gets back to its original color when movement resumes. If the disruption is prolonged,

it may potentially inhibit the vessel from reaching its destination. This is moderated by the parameter ‘‘WaitDays’’ that controls the

number of days a given barge waits before detouring into ground transportation as an alternative. To illustrate the capability of

the model, three different simulation runs covering few different aspects of available inputs were generated. First, a base-case run

is generated without including the developed spatio-temporal statistical model with level predictions or possibility of random lock
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Table 5

Summary of vessels’ statistics for the random lock failure case.

From To Product type Vessel

category

Vessel

count

Weight

(ktons)

Average

Speed

(mph)

Extreme

events

Distance

(miles)

Total

delay

(hours)

Baton Rouge Helena Petroleum 1 1 18 3.79 0 536.62 0

Baton Rouge Helena Petroleum 2 1 12 7.79 0 541.13 0

Baton Rouge Helena Petroleum 3 1 6 10.66 0 559.80 0

Baton Rouge Mississippi Crops 1 3 54 4.16 2 361.48 2

Baton Rouge Mississippi Crops 2 4 48 8.79 3 364.60 2.75

Baton Rouge Mississippi Crops 3 8 48 10.85 2 354.17 2

Baton Rouge Mississippi Petroleum 1 1 18 3.49 1 372.51 1

Baton Rouge Mississippi Petroleum 2 1 12 8.79 0 362.73 0

Baton Rouge Mississippi Petroleum 3 1 6 10.86 0 361.19 0

Helena Baton Rouge Petroleum 1 1 18 4.41 0 537.93 0

Helena Baton Rouge Petroleum 2 1 12 8.00 0 539.78 0

Helena Baton Rouge Petroleum 3 1 6 10.75 0 548.47 0

Helena Mississippi Crops 1 1 18 3.74 0 187.75 0

Helena Mississippi Crops 2 1 12 6.20 0 175.08 0

Helena Mississippi Crops 3 1 6 10.34 0 191.32 0

Helena Mississippi Petroleum 1 1 18 3.90 0 164.87 0

Helena Mississippi Petroleum 2 1 12 7.07 0 178.47 0

Helena Mississippi Petroleum 3 1 6 10.34 0 180.94 0

Helena St. Louis Crops 1 3 54 3.68 0 606.06 0

Helena St. Louis Crops 2 4 48 8.73 0 601.40 0

Helena St. Louis Crops 3 7 42 10.45 0 601.31 0

Little Rock Helena Crops 1 12 216 4.38 0 224.75 0

Little Rock Helena Crops 2 18 216 7.63 0 226.20 0

Little Rock Helena Crops 3 31 186 10.33 0 224.12 0

Mississippi Baton Rouge Crops 1 6 108 4.11 3 382.48 3

Mississippi Baton Rouge Crops 2 8 96 8.49 3 381.50 3

Mississippi Baton Rouge Crops 3 16 96 10.92 5 382.18 4

Mississippi Baton Rouge Petroleum 1 1 18 4.12 0 381.25 0

Mississippi Baton Rouge Petroleum 2 1 12 8.43 0 379.39 0

Mississippi Baton Rouge Petroleum 3 1 6 10.48 0 379.89 0

Mississippi Fort Smith Petroleum 1 1 18 4.32 0 442.14 0

Mississippi Fort Smith Petroleum 2 1 12 7.64 0 445.21 0

Mississippi Fort Smith Petroleum 3 1 6 11.38 0 440.96 0

Mississippi St. Louis Crops 1 10 180 4.00 0 767.11 0

Mississippi St. Louis Crops 2 15 180 8.23 0 766.19 0

Mississippi St. Louis Crops 3 29 174 10.23 0 768.11 0

Tulsa Baton Rouge Petroleum 1 5 90 4.45 2 992.51 2

Tulsa Baton Rouge Petroleum 2 7 84 8.35 3 994.31 1.75

Tulsa Baton Rouge Petroleum 3 13 78 10.93 3 990.76 2.5

Tulsa Helena Petroleum 1 1 18 4.77 0 612.57 0

Tulsa Helena Petroleum 2 1 12 8.14 0 614.94 0

Tulsa Helena Petroleum 3 2 12 10.81 0 617.21 0

Tulsa Memphis Petroleum 1 2 36 4.64 0 692.79 0

Tulsa Memphis Petroleum 2 3 36 7.11 0 692.13 0

Tulsa Memphis Petroleum 3 6 36 10.45 1 692.36 1

Tulsa Mississippi Petroleum 1 3 54 4.71 0 631.48 0

Tulsa Mississippi Petroleum 2 5 60 7.87 1 631.82 1

Tulsa Mississippi Petroleum 3 9 54 11.13 0 634.82 0

Tulsa St. Louis Petroleum 1 4 72 4.02 0 1217.46 0

Tulsa St. Louis Petroleum 2 6 72 7.71 3 1222.25 231.75

Tulsa St. Louis Petroleum 3 12 72 7.54 5 1221.08 1216.75

failures. Second, a run that includes random lock failures was generated to show how the model handles new input data and how

output results are affected. Third, the spatio-temporal statistical model is used to predict water levels; hence, it predicts extreme

events resulting from elevated water levels. To validate the spatio-temporal statistical model predictions, we provide water level

time series comparisons with our available true data for multiple sites. A summary of these conditions is presented in Table 3.

For the scope of the current model, random lock failures are assumed to follow exponential distributions, both for the time

between failures and time between repairs. Locks are initiated in a working state, and the time until the next failure is drawn from

the exponential distribution with the mean time of three months as the default value. The time to complete a repair is drawn from

the exponential distribution with the mean time of one week as the default value. The alternation of states is continued until the

simulation run ends. Note that the mean time to failure and the mean time to repair have been coded as two parameters that the

user can modify as needed.

Moreover, when a vessel reaches its destination port, trucks are used to carry its products to the final destinations. Fig. 6 (left)

shows the number of vessels that were used to carry products (Crops) between two ports. At the end of the simulation, we generate
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Table 6

Summary of vessels’ statistics for the spatio-temporal model.

From To Product type Vessel

category

Vessel

count

Weight

(ktons)

Average

Speed

(mph)

Extreme

events

Distance

(miles)

Total

delay

(hours)

Baton Rouge Helena Petroleum 1 1 18 3.79 0 540.69 0

Baton Rouge Helena Petroleum 2 1 12 7.81 0 541.12 0

Baton Rouge Helena Petroleum 3 1 6 10.66 0 541.13 0

Baton Rouge Mississippi Crops 1 3 54 4.19 0 372.45 0

Baton Rouge Mississippi Crops 2 4 48 9.05 0 368.37 0

Baton Rouge Mississippi Crops 3 8 48 10.94 0 359.85 0

Baton Rouge Mississippi Petroleum 1 1 18 3.53 0 382.63 0

Baton Rouge Mississippi Petroleum 2 1 12 8.73 0 340.31 0

Baton Rouge Mississippi Petroleum 3 1 6 10.89 0 362.05 0

Helena Baton Rouge Petroleum 1 1 18 4.41 0 549.37 0

Helena Baton Rouge Petroleum 2 1 12 8.02 0 555.68 0

Helena Baton Rouge Petroleum 3 1 6 10.67 0 557.39 0

Helena Mississippi Crops 1 1 18 3.79 0 186.45 0

Helena Mississippi Crops 2 1 12 6.32 0 172.26 0

Helena Mississippi Crops 3 1 6 10.11 0 161.73 0

Helena Mississippi Petroleum 1 1 18 3.93 0 167.99 0

Helena Mississippi Petroleum 2 1 12 6.73 0 159.89 0

Helena Mississippi Petroleum 3 1 6 10.43 0 185.07 0

Helena St. Louis Crops 1 3 54 3.68 0 605.75 0

Helena St. Louis Crops 2 4 48 8.72 0 608.37 0

Helena St. Louis Crops 3 7 42 10.45 0 606.94 0

Little Rock Helena Crops 1 12 216 4.40 0 224.23 0

Little Rock Helena Crops 2 18 216 7.67 0 221.62 0

Little Rock Helena Crops 3 31 186 10.26 0 221.21 0

Mississippi Baton Rouge Crops 1 6 108 3.76 0 382.54 0

Mississippi Baton Rouge Crops 2 8 96 9.12 0 384.15 0

Mississippi Baton Rouge Crops 3 16 96 11.05 0 382.47 0

Mississippi Baton Rouge Petroleum 1 1 18 4.12 0 390.17 0

Mississippi Baton Rouge Petroleum 2 1 12 8.40 0 377.97 0

Mississippi Baton Rouge Petroleum 3 1 6 10.40 0 390.17 0

Mississippi Fort Smith Petroleum 1 1 18 4.33 0 445.88 0

Mississippi Fort Smith Petroleum 2 1 12 7.65 0 441.58 0

Mississippi Fort Smith Petroleum 3 1 6 11.41 0 442.14 0

Mississippi St. Louis Crops 1 10 180 4.01 0 766.41 0

Mississippi St. Louis Crops 2 15 180 8.12 0 767.70 0

Mississippi St. Louis Crops 3 29 174 10.29 0 765.47 0

Tulsa Baton Rouge Petroleum 1 5 90 4.65 0 995.40 0

Tulsa Baton Rouge Petroleum 2 7 84 8.14 0 992.99 0

Tulsa Baton Rouge Petroleum 3 13 78 10.92 0 993.82 0

Tulsa Helena Petroleum 1 1 18 4.26 0 612.57 0

Tulsa Helena Petroleum 2 1 12 8.01 0 612.57 0

Tulsa Helena Petroleum 3 2 12 10.25 0 619.71 0

Tulsa Memphis Petroleum 1 2 36 4.43 0 692.60 0

Tulsa Memphis Petroleum 2 3 36 8.02 0 692.70 0

Tulsa Memphis Petroleum 3 6 36 10.31 0 690.98 0

Tulsa Mississippi Petroleum 1 3 54 4.71 0 619.98 0

Tulsa Mississippi Petroleum 2 5 60 8.31 0 634.12 0

Tulsa Mississippi Petroleum 3 9 54 10.70 0 630.51 0

Tulsa St. Louis Petroleum 1 4 72 4.09 1 1222.59 106.5

Tulsa St. Louis Petroleum 2 6 72 7.44 1 1219.24 191.5

Tulsa St. Louis Petroleum 3 12 72 8.54 4 1221.53 824.25

an output report summarizing multiple statistics of vessel (e.g., average speed and the number of extreme events) and truck behavior

and summary plots (e.g., boxplots) that help the user understand varying aspects of the hybrid model.

4.2. Simulation results

This subsection reports the results obtained for a one-year base-case simulation run for the lower Mississippi River and MKARNS

and compares selected results with the other two runs. These results are shown in Tables 4–7 and Figs. 7–9. Table 4 shows summary

statistics for vessels traveled between every two ports classified by the vessel category, where category 1 represents small-sized

vessels carrying up to 6 ktons of cargo, category 2 represents medium-sized vessels carrying up to 12 ktons of cargo, and category

3 represent large-sized vessels carrying up to 18 ktons of cargo. Table 4 information includes the number of vessels that have

traveled between every pair of ports, average speed of travel, product type carried (petroleum or crops in our case), records of

vessel category, and the total weight of carried products (in kilo tons). The number of extreme events (disruptions) faced by the
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Fig. 7. Simulation model output of time to reach destinations for vessels in different categories (in hours).

Fig. 8. Number of extreme events for vessels in different categories.

vessels is shown, where a disruption occurs in our setting whenever the water level exceeds a predefined threshold. The total delay

(in hours) caused by such disruptions and the distance traveled by vessels are also recorded. Some of these statistical summaries

are plotted such as the ones in Figs. 7–9 showing a boxplot of the distributed time to destination, a bar chart of number of extreme

events by vessel category, and a boxplot of average speed of each vessel category, respectively. The outputs of the simulation model

also include detailed information about all vessels appeared in the model (see Table 8 in Appendix). Like the records mentioned

before, the detailed information includes the product type carried, category of the vessel, total weight of the product, and a defined

ID for each vessel (modeled as a turtle). Also registered, each vessel’s start time, time of departure from its origin, and its end time
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Fig. 9. Average speeds of vessels in different categories (mph).

(time of arrival at its destination). These records can help extend the simulation analysis and contribute to the model’s debugging

and validation. Table 7 shows summary statistics for trucks traveled from all ports to four defined exit points labeled as cardinal

directions (i.e., East, West, North, and South) located at the edges of the studied area. For example, we have 16 fleets of trucks

that have traveled from the Fort Smith port to the eastern exit point with an average speed of 71.57 mph. Trucks that reach these

boundary points are assumed to have left the area to other states to deliver goods. There are four random chosen boundary points

located at the east, west, south and north of the studied area map. To model possible delays (disruptions) of trucking-delivery of

goods, possible congestion on the highways is represented using ‘‘slow down points’’ which are sections where truck speed is reduced,

generating a similar behavior of possible congestion on the road. This feature of the simulation model is useful when considering

commodity flow planning with information about traffic data. These results are available with additional detailed information about

the trucks, as shown in Table 9 in Appendix.

Comparing the results for the base-case scenario with the random lock failures (shown in Table 5), one can observe an overall

increase in the total delay hours for random lock failures. In fact, the total delay in hours for the base-case scenario is about 1,141 h

compared to approximately 1,474 hours for the case of random lock failure. This shows that the model responds as expected to

changes across simulation runs. For the third case (i.e.,spatio-temporal predictions) shown in Table 6, one can see that there is

no significant difference between the model’s final output of approximately 1,122 h of delay compared to the base-case one with

1,141 h. This shows that the developed spatio-temporal statistical model is predicting close water levels compared to the actual data

available used in the base-case run. In addition, to validate the spatio-temporal model predictions of water levels, Fig. 10 compares

the predicted values (with a 90% point-wise confidence band) to the real observed data in two selected sites. Two important elements

can be seen in Fig. 10: (1) the prediction captures the seasonality of the actual data and (2) the trend of the spatio-temporal statistical

model behaves as the actual data. Specially, the developed statistical model captures both trend and seasonality with a low mean

squared error (MSE) of 1.7 f t2 for the fitted values vs. the GH observations.

5. Conclusions and future research

In this study, multiple contributions are made to the ICIs risk analysis and commodity flow literature. First, a spatio-temporal

statistical model was developed to capture extreme natural events causing disruptions in inland waterways and predict them in

the future to facilitate commodity flow planning and response actions. The developed statistical model can also handle missing

data without a noticeable degradation in its overall performance. In addition, the statistical model was developed and tested

on the lower Mississippi River and the MKARNS. Second, a simulation tool is built to capture the effect of inland waterways

disruptions on the commodity flow through other ICIs, which provides a broad understanding of the multimodal transportation

system interdependencies in action. Third, access to the most recent version of the simulation model is currently available as an

open-sourced tool for researchers, decision-makers, and other stakeholders to advance research in multimodal transportation [39].
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Fig. 10. Water levels (in ft) predicted by the Spatio-temporal statistical model vs. actual data at some selected sites.

The current version of the model has limitations that can be reduced by this research team or potential users of this open-sourced

tool. Especially, distributing vessels uniformly over time might not be the best representation of real demand as it most likely is not

stationary and presents some forms of seasonality. This is a promising research direction that can be explored in the future. Another

limitation is the capability of the statistical model for emulating outliers in predicting GH measurements. The current model uses a

Bayesian Gibbs sampling approach that relies on the mean of sampled predictions. This may lead to conservative estimates. Clearly,

emphasis on this limitation can be another valuable research direction.

This work could be extended to support emergency service response and detailed analysis of ports operations. In addition,

national economic and transportation studies centered on inland waterways and their interdependency with ground transportation

can be investigated by extending the developed simulation tool to include features such as private trucking companies routes, real-

time traffic data, and railroads information. An economic study based on the developed simulation tool covering the current case

study is among the near future research directions.
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Table 7

Summary of trucks’ statistics for the base-case simulation runs.

From Product type Destination Count Avg. speed (mph)

Fort Smith Petroleum E 16 71.57

Fort Smith Petroleum N 2 68.99

Fort Smith Petroleum S 2 67.42

Helena Crops E 61 68.32

Helena Crops N 61 68.78

Helena Crops S 61 61.41

Helena Petroleum E 16 66.25

Helena Petroleum N 2 69.35

Helena Petroleum S 2 57.92

Table 8

Detailed outputs for vessels.

Product

type

ID Distance

traveled

Weight

(ktons)

Vessel

category

Extreme

events

Total

delay

(hours)

Avg.

speed

(mph)

End time

(ticks)

Start time

(ticks)

From To Time elapsed

(ticks)

Petroleum 3 548.47 6 3 0 0 10.65 1551.75 1500.25 Baton Rouge Helena 51.5

Petroleum 4 356.43 18 1 1 1 3.53 601.25 500.25 Baton Rouge Mississippi 101

Petroleum 5 342.95 12 2 0 0 8.74 2539.5 2500.25 Baton Rouge Mississippi 39.25

Petroleum 6 375.89 6 3 0 0 10.90 4534.75 4500.25 Baton Rouge Mississippi 34.5

Petroleum 100 549.37 18 1 0 0 4.41 124.5 0 Helena Baton Rouge 124.5

Petroleum 101 552.42 12 2 0 0 8.04 4569 4500.25 Helena Baton Rouge 68.75

Petroleum 102 546.18 6 3 0 0 10.76 6301 6250.25 Helena Baton Rouge 50.75

Petroleum 103 170.69 18 1 0 0 3.90 1294 1250.25 Helena Mississippi 43.75

Petroleum 104 173.61 12 2 0 0 6.94 5525.25 5500.25 Helena Mississippi 25

Petroleum 105 198.04 6 3 0 0 10.42 2519.25 2500.25 Helena Mississippi 19

Petroleum 200 445.88 18 1 0 0 4.33 103 0 Mississippi Fort Smith 103

Petroleum 201 441.58 12 2 0 0 7.65 1558 1500.25 Mississippi Fort Smith 57.75

Petroleum 202 445.21 6 3 0 0 11.42 4289.25 4250.25 Mississippi Fort Smith 39

Petroleum 203 379.89 18 1 1 1 4.07 593.5 500.25 Mississippi Baton Rouge 93.25

Petroleum 204 381.25 12 2 0 0 8.43 2545.5 2500.25 Mississippi Baton Rouge 45.25

Petroleum 205 378.96 6 3 1 0.5 10.38 5036.75 5000.25 Mississippi Baton Rouge 36.5

Petroleum 346 693.08 18 1 0 0 4.38 161 2.75 Tulsa Memphis 158.25

Petroleum 359 1226.83 18 1 1 1 4.49 275.75 2.75 Tulsa St. Louis 273

Petroleum 371 1219.62 6 3 0 0 10.58 118 2.75 Tulsa St. Louis 115.25

Petroleum 378 1221.13 6 3 0 0 10.85 115.25 2.75 Tulsa St. Louis 112.5

Petroleum 322 989.20 6 3 0 0 10.87 93.75 2.75 Tulsa Baton Rouge 91

Petroleum 369 1215.23 6 3 1 206.5 3.83 817.5 500.25 Tulsa St. Louis 317.25

Petroleum 376 1218.30 6 3 1 202.5 3.81 820 500.25 Tulsa St. Louis 319.75

Petroleum 357 1216.69 18 1 1 105.5 2.92 917.5 500.25 Tulsa St. Louis 417.25

Petroleum 310 987.27 12 2 0 0 8.81 612.25 500.25 Tulsa Baton Rouge 112

Petroleum 372 1219.62 6 3 1 208 3.85 817.25 500.25 Tulsa St. Louis 317

Petroleum 374 1218.30 6 3 1 203.25 3.82 819 500.25 Tulsa St. Louis 318.75

Petroleum 330 610.70 18 1 0 0 4.41 638.75 500.25 Tulsa Mississippi 138.5

Petroleum 363 1213.83 12 2 1 190.5 3.74 825 500.25 Tulsa St. Louis 324.75

Crops 1014 591.24 6 3 0 0 11.00 5304 5250.25 Helena St. Louis 53.75

Crops 1015 600.07 6 3 0 0 9.88 5311 5250.25 Helena St. Louis 60.75

Crops 1016 607.05 6 3 0 0 9.99 5311 5250.25 Helena St. Louis 60.75

Crops 1200 355.85 18 1 0 0 4.59 77.5 0 Baton Rouge Mississippi 77.5

Crops 1201 351.65 18 1 1 1 3.53 600 500.25 Baton Rouge Mississippi 99.75

Crops 1202 357.63 18 1 0 0 4.47 1330.25 1250.25 Baton Rouge Mississippi 80

Crops 1203 385.20 12 2 0 0 9.51 1290.75 1250.25 Baton Rouge Mississippi 40.5

Crops 1204 381.58 12 2 0 0 8.39 1295.75 1250.25 Baton Rouge Mississippi 45.5

Crops 1205 365.67 12 2 0 0 9.56 1288.5 1250.25 Baton Rouge Mississippi 38.25

Crops 1206 373.50 12 2 0 0 8.79 2542.75 2500.25 Baton Rouge Mississippi 42.5

Crops 1207 378.67 6 3 1 1 10.23 2537.25 2500.25 Baton Rouge Mississippi 37

Crops 1208 356.15 6 3 1 1 10.32 2534.75 2500.25 Baton Rouge Mississippi 34.5

Crops 1209 358.96 6 3 0 0 11.22 2532.25 2500.25 Baton Rouge Mississippi 32

Crops 1210 357.34 6 3 0 0 10.51 4534.25 4500.25 Baton Rouge Mississippi 34

Crops 1211 348.94 6 3 0 0 10.34 4534 4500.25 Baton Rouge Mississippi 33.75

Crops 1212 363.40 6 3 0 0 11.82 4531 4500.25 Baton Rouge Mississippi 30.75

Crops 1213 355.53 6 3 0 0 11.75 4530.5 4500.25 Baton Rouge Mississippi 30.25

Crops 1214 366.00 6 3 1 0.5 10.84 6034 6000.25 Baton Rouge Mississippi 33.75

Crops 1407 379.89 12 2 0 0 8.17 59.25 12.75 Mississippi Baton Rouge 46.5
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Fig. 11. Water level thresholds set by user for all sites to control extreme events criteria.

Table 9

Detailed outputs for trucks.

ID Product type Distance traveled (miles) Start time (ticks) End time (ticks) From To Time elapsed (ticks) Avg. speed (mph)

5000 Petroleum 524.7424833 103 110.75 Fort Smith E 7.75 67.71

5001 Petroleum 524.5594318 103 111.25 Fort Smith E 8.25 63.58

5002 Petroleum 524.5952797 103 110.25 Fort Smith E 7.25 72.36

5003 Petroleum 524.3400126 103 110.25 Fort Smith E 7.25 72.32

5004 Petroleum 524.3189491 103 110.5 Fort Smith E 7.5 69.91

5005 Petroleum 525.4226671 103 110.5 Fort Smith E 7.5 70.06

5006 Petroleum 524.7314365 103 110 Fort Smith E 7 74.96

5007 Petroleum 524.2494159 103 110.25 Fort Smith E 7.25 72.31

5008 Petroleum 524.4084918 103 110 Fort Smith E 7 74.92

5009 Petroleum 524.5227015 103 110.25 Fort Smith E 7.25 72.35

5010 Petroleum 524.5717312 103 110.5 Fort Smith E 7.5 69.94

5011 Petroleum 524.3143702 103 109.75 Fort Smith E 6.75 77.68

5012 Petroleum 524.2374395 103 110.5 Fort Smith E 7.5 69.90

5013 Petroleum 524.1374195 103 110.25 Fort Smith E 7.25 72.29

5014 Petroleum 524.6757786 103 110.25 Fort Smith E 7.25 72.37

5015 Petroleum 524.2429046 103 110 Fort Smith E 7 74.89

5016 Petroleum 167.7360173 103 105.5 Fort Smith N 2.5 67.09

5017 Petroleum 177.1946809 103 105.5 Fort Smith N 2.5 70.88

5018 Petroleum 443.1499304 103 109.75 Fort Smith S 6.75 65.65

5019 Petroleum 450.1915388 103 109.5 Fort Smith S 6.5 69.26

7000 Petroleum 242.3998382 142.5 146.5 Helena E 4 60.60

7001 Petroleum 239.7554172 142.5 146 Helena E 3.5 68.50

7002 Petroleum 243.9796093 142.5 146.5 Helena E 4 60.99

7003 Petroleum 240.2386683 142.5 145.75 Helena E 3.25 73.92

7004 Petroleum 241.5537637 142.5 146 Helena E 3.5 69.02

7005 Petroleum 239.2439371 142.5 146.25 Helena E 3.75 63.80

7006 Petroleum 240.4777264 142.5 145.75 Helena E 3.25 73.99

7007 Petroleum 241.2591156 142.5 146.25 Helena E 3.75 64.34

7008 Petroleum 241.0668822 142.5 146.25 Helena E 3.75 64.28

7009 Petroleum 242.7985141 142.5 146.25 Helena E 3.75 64.75

7010 Petroleum 241.4463379 142.5 146.25 Helena E 3.75 64.39

7011 Petroleum 239.9652814 142.5 146 Helena E 3.5 68.56

7012 Petroleum 243.0676827 142.5 146.25 Helena E 3.75 64.82

7013 Petroleum 243.2426233 142.5 146.5 Helena E 4 60.81

7014 Petroleum 238.8765655 142.5 145.75 Helena E 3.25 73.50

7015 Petroleum 239.9229721 142.5 146 Helena E 3.5 68.55

7016 Petroleum 394.0866412 142.5 148.5 Helena N 6 65.68

7017 Petroleum 386.0744743 142.5 147.75 Helena N 5.25 73.54

7018 Petroleum 262.8503073 142.5 147 Helena S 4.5 58.41

7019 Petroleum 258.4577559 142.5 147 Helena S 4.5 57.44

8000 Crops 240.4638423 47 50.5 Helena E 3.5 68.70

8001 Crops 385.549631 47 52.75 Helena N 5.75 67.05

8002 Crops 258.635328 47 50.5 Helena S 3.5 73.90

8003 Crops 241.2157411 52.75 56.25 Helena E 3.5 68.92

8004 Crops 385.151909 52.75 58 Helena N 5.25 73.36

8005 Crops 258.5213772 52.75 57.25 Helena S 4.5 57.45

(continued on next page)
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Table 9 (continued).

ID Product type Distance traveled (miles) Start time (ticks) End time (ticks) From To Time elapsed (ticks) Avg. speed (mph)

8006 Crops 239.7437967 1021.25 1025 Helena E 3.75 63.93

8007 Crops 384.7920906 1021.25 1026.75 Helena N 5.5 69.96

8008 Crops 263.6299675 1021.25 1025 Helena S 3.75 70.30

8009 Crops 240.3038144 1026.75 1030.5 Helena E 3.75 64.08

8010 Crops 391.4770111 1026.75 1032.75 Helena N 6 65.25

8011 Crops 255.6389391 1026.75 1031.25 Helena S 4.5 56.81

8012 Crops 239.9652814 1032.75 1036.5 Helena E 3.75 63.99

8013 Crops 388.9339639 1032.75 1038.75 Helena N 6 64.82

8014 Crops 259.789386 1032.75 1036.25 Helena S 3.5 74.23

8015 Crops 242.9573568 1038.75 1042.25 Helena E 3.5 69.42

8016 Crops 383.1177057 1038.75 1044.25 Helena N 5.5 69.66

8017 Crops 255.8213064 1038.75 1043.5 Helena S 4.75 53.86

8018 Crops 242.8259393 1044.25 1047.5 Helena E 3.25 74.72

8019 Crops 390.222719 1044.25 1049.5 Helena N 5.25 74.33

8020 Crops 262.4966935 1044.25 1049 Helena S 4.75 55.26

8021 Crops 242.2872164 1049.5 1053 Helena E 3.5 69.22

8022 Crops 389.1117699 1049.5 1055.75 Helena N 6.25 62.26

8023 Crops 253.3064752 1049.5 1053.5 Helena S 4 63.33

8024 Crops 242.9258206 1056 1059.5 Helena E 3.5 69.41

8025 Crops 392.8540749 1056 1061.5 Helena N 5.5 71.43

8026 Crops 259.0699308 1056 1060.5 Helena S 4.5 57.57

8027 Crops 242.0606581 1061.5 1064.75 Helena E 3.25 74.48

8028 Crops 380.523792 1061.5 1067 Helena N 5.5 69.19

8029 Crops 259.2975286 1061.5 1065.25 Helena S 3.75 69.15

8030 Crops 242.3815963 2020.75 2024.25 Helena E 3.5 69.25

8031 Crops 386.7121652 2020.75 2025.75 Helena N 5 77.34

8032 Crops 257.3860023 2020.75 2025.25 Helena S 4.5 57.20

8033 Crops 243.0613488 2025.75 2029.25 Helena E 3.5 69.45

8034 Crops 384.1817111 2025.75 2031 Helena N 5.25 73.18

8035 Crops 258.8727207 2025.75 2030.25 Helena S 4.5 57.53

8036 Crops 242.2048536 2031 2034.75 Helena E 3.75 64.59

8037 Crops 394.453156 2031 2037.25 Helena N 6.25 63.11

8038 Crops 253.9643062 2031 2035.5 Helena S 4.5 56.44

8039 Crops 243.3186303 2037.25 2040.5 Helena E 3.25 74.87

8040 Crops 388.3791161 2037.25 2042.5 Helena N 5.25 73.98

8041 Crops 258.4626828 2037.25 2041 Helena S 3.75 68.92

8042 Crops 241.4879116 2042.5 2046.25 Helena E 3.75 64.40

8043 Crops 385.1115147 2042.5 2047.75 Helena N 5.25 73.35

8044 Crops 264.8154224 2042.5 2047 Helena S 4.5 58.85

8045 Crops 241.4091439 2047.75 2051.25 Helena E 3.5 68.97

8046 Crops 390.574694 2047.75 2053 Helena N 5.25 74.40

8047 Crops 254.1111329 2047.75 2052.25 Helena S 4.5 56.47
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Appendix. Introduction to the developed simulation tool

Simulation setup

A user can use model controls (Figs. 3–4) to quickly adjust the settings of the initial environment (see buttons, sliders, and

other controls). To initiate a simulation run after setting up the environment, the user can input various attributes through sliders,

choosers, and switches. The steps are as follows:

Step 1: First, click the ‘‘Spatial Temporal Analysis’’ button to run the spatio-temporal model to generate predicted GH and lock

availability data.
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Step 2: Click the ‘‘Setup Environment’’ button. This button is used to initialize the model, and it is a NetLogo ‘‘once-button’’

that runs its code once. After this step, all maps will be drawn on the user interface.

Step 3: Click the ‘‘Add Ports’’ button to draw eight circles on the waterways that depict the ports of interest in our model.

Step 4: Click the ‘‘Add Locks & Sites’’ button to initialize and draw all fifteen locks and twenty-four sites with their variables.

Then, click ‘‘Add Vessels’’ to draw vessels on the ports based on the data. The vessels are categorized according to their

size and speed into three groups, and they carry two types of products in the current setting: petroleum and crops.

After completing the above steps, a value for ‘‘Simulation-Time’’ needs to be set to indicate the number of months the simulation

will run. The available options are 3, 6, 9, and 12 months. ‘‘Fleet-Size’’ provides the number of trucks required to carry products

from one vessel through the highways when vessels reach to their destinations, and when they are unable to move for a certain

amount of time due to extreme events. The global slider ‘‘GH-Threshold’’ may need to be adjusted to a reasonable value (higher

than the individual sites’ GHs which also can be adjusted as shown in Fig. 11). This value acts as the threshold value of GH, which is

being compared with the hourly value of GH at each site. Such information about GH thresholds can be adopted from sources such

as the United States Geological Survey (USGS) [46]. We can change the value at runtime. There are fifteen switches, each of which

acts as a controller to turn on/off the corresponding lock. The selection can also be changed during the runtime. When one lock is

closed, the vessels that are supposed to pass through the lock will wait in the previous node in the path and will not move forward

until the lock is reopened. If the ‘‘LockRandomFailures’’ button is set to ‘‘On’’, locks’ failure and repair events will be generated using

random variates. The mean time to these events is controlled by the parameters ‘‘AvgTimeToLockFail’’ and ‘‘AvgTimeToLockRepair’’.

After all the settings are completed, click the ‘‘Start Simulation’’ button xand the vessels at each port start moving towards their

predefined destinations. Each vessel checks for any unsafe circumstances at the locks and sites along its route and makes decisions

accordingly.

Model outputs

After running the simulation tool, multiple numerical outputs are generated for the user. The outputs can be classified into

summaries and detailed results. The summaries are shown in Tables 4–7 and Figs. 7–9. As mentioned in Section 4.2, Tables 4

and 7 show summary statistics for the vessels traveled between every two ports classified by the vessel category. In addition,

summarized vessel and truck tables such as Table 4 show the number of vessels (trucks) that have traveled from ports, average speed

of travel, product type carried and other statistics that help the user understand the commodity flow changes under each scenario.

Each summarized table output is exported as a ‘‘CSV’’ file format that can be used as an input file to other statistical software

or programming languages for further analysis. Furthermore, some of these statistical summaries are plotted using the NetLogo R

extension and exported as publication-quality ‘‘PDF’’ files such as the ones shown in Figs. 7–9. The outputs of the simulation tool also

include detailed information about all vessels appeared in the model (see Table 8). Like the records mentioned before, the detailed

information includes the product type carried, category of the vessel, total weight of the product, and a defined ID for each vessel

(modeled as a turtle). Also registered, each vessel’s start time, time of departure from its origin, and its end time (time of arrival

at its destination). These records can help extend the simulation analysis and contribute to the model’s debugging and validation.

These results are tabulated and exported as a ‘‘CSV’’ file with additional detailed information about the trucks, as shown in Table 9.

The detailed information in Table 9 is useful to identify individual trucks by their ID, destination, departure (start) and arrival (end)

times in the simulation along with distance traveled in miles and average speed in mph for each truck. Such information becomes

useful in analyzing a given product’s current logistic plan and finding possible ways to alter and improve the current one.
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