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ABSTRACT

Can one build a knowledge graph (KG) for all products in the world?
Knowledge graphs have firmly established themselves as valuable
sources of information for search and question answering, and it is
natural to wonder if a KG can contain information about products
offered at online retail sites. There have been several successful ex-
amples of generic KGs, but organizing information about products
poses many additional challenges, including sparsity and noise of
structured data for products, complexity of the domain with mil-
lions of product types and thousands of attributes, heterogeneity
across large number of categories, as well as large and constantly
growing number of products.

We describe AutoKnow, our automatic (self-driving) system
that addresses these challenges. The system includes a suite of novel
techniques for taxonomy construction, product property identifi-
cation, knowledge extraction, anomaly detection, and synonym
discovery. AutoKnow is (a) automatic, requiring little human
intervention, (b)multi-scalable, scalable in multiple dimensions
(many domains, many products, and many attributes), and (c) inte-
grative, exploiting rich customer behavior logs. AutoKnow has
been operational in collecting product knowledge for over 11K
product types.
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1 INTRODUCTION

A knowledge graph (KG) describes entities and relations between
them; for example, between entities Amazon and Seattle, there can
be a headquarters_located_at relation. The past decade has wit-
nessed broad applications of KG in search (e.g., by Google and Bing)
and question answering (e.g., by Amazon Alexa or Google Home).
How to automatically build a knowledge graph with comprehensive
and high-quality data has been a hot topic for research and industry
practice in recent years. In this paper, we answer this question for
the Retail Product domain. Rich product knowledge can significantly
improve e-Business shopping experiences through product search,
recommendation, and navigation.

Existing industry success for knowledge curation is mainly for
popular domains such as Music, Movie, and Sport [4, 12]. Two com-
mon features for such domains make them pioneer domains for
knowledge collection. First, there are already rich data in struc-
tured form and of decent quality for these domains. Taking Movie
as an example, in addition to common knowledge sources such as
Wikipedia and WikiData, other authoritative movie data sources
include IMDb 1, and so on. Second, the complexity of the domain
schema is manageable. Continuing with the Movie domain, the
Freebase knowledge graph [4] contains 52 entity types and 155 rela-
tionships [36] for this domain. An ontology to describe these types
and relationships can be manually defined within weeks, especially
by leveraging existing data sources.

The retail product domain presents a set of new challenges for
knowledge collection.

1https://www.imdb.com/
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Figure 1:WeproposeAutoKnow, a pipeline that constructs a prod-

uct knowledge graph. AutoKnow fixes incorrect values (e.g., “Fla-
vor:Cherry” for Product 1) and imputes missing values (e.g., “Fla-
vor:Choc.” for Product 2); however, it does not impute where it is in-

applicable (e.g., Color applies for wrapped candies such as Product

3, but does not apply to pretzel snack Product 1). It also extends tax-

onomy (e.g., Pretzels) and finds synonyms (e.g., Chocolate vs. Choc.).

C1- Structure-sparsity: First, except for a few categories such
as electronics, structured data are sparse and noisy across nearly
all data sources. This is because the majority of product data reside
in catalogs from e-Business websites such as Amazon, Ebay, and
Walmart, and they often rely on data contributed by retailers. In
contrast to publishers for digital products like movies and books,
in the retail business retailers mainly list product features in titles
and descriptions instead of providing structured attribute infor-
mation, and may even abuse those structured attribute fields for
convenience in selling products [35, 37]. As a result, structured
knowledge needs to be mined from textual product profiles (e.g.,
titles and descriptions). Thousands of product attributes, billions of
existing products, and millions of new products emerging on a daily
basis, require fully automatic and efficient knowledge discovery
and update mechanisms.

C2- Domain-complexity: Second, the domain is much more
complex. The number of product types is towards millions and
there are various relationships between the types like sub-types
(e.g., swimsuit vs. athletic swimwear), synonyms (e.g., swimsuit vs.
bathsuit), and overlapping types (e.g., fashion swimwear vs. two-
piece swimwear). Product attributes vastly differ between types
(e.g., compare TVs and dog food), and also evolve over time (e.g.,
older TVs did not have WiFi connectivity). All of these make it hard
to design comprehensive ontology and keep it up-to-date, thus
calling for automatic solutions.

C3- Product-type-variety: Third, the variety of different prod-
uct types makes it even harder to train knowledge enrichment
and cleaning models. Product attributes, value vocabularies, text
patterns in product titles and descriptions often differ for different
types. Even neighboring product types can have different attributes;
for example, Coffee and Tea, which share the same parent Drink, de-
scribe size using different vocabularies and patterns (e.g., “Ground
Coffee, 20 Ounce Bag, Rainforest Alliance Certified” vs. “Classic Tea
Variety Box, 48 Count (Pack of 1)”). On the one hand, training one
single model is inadequate to achieve good results for all different
types of products. On the other hand, collecting training data for
each of the thousands to millions of product types is extremely
expensive, and implausible for less-popular types. Maintaining a
huge number of models also brings big system overhead.

With all of these challenges, the solutions in building existing
KGs both in industry (e.g., Google Knowledge Graph, Bing Satori
Graph [12]), and in research literature (e.g., Yago [10], NELL [6],
Diadem [11], Knowledge Vault [8]), cannot directly apply to the
retail product domain, as we will further discuss in Section 7.

In this paper, we present our solution, which we call AutoKnow
(Figure 1). AutoKnow starts with building product type taxonomy
(i.e., types and hypernym relationships) and deciding applicable
product attributes for each type; after that, it imputes structured
attributes, cleans up noisy values, and identifies synonym expres-
sions for attribute values. Imagine how an autonomous-driving
vehicle perceives and understands the environment using all the
signals available with minimized human interventions. AutoKnow
is self-driving with the following features.

• Automatic: First, it trains machine learning models and
requires very little manual efforts. In addition, we leverage
existing Catalog data and customer behavior logs to generate
training data, eliminating the need for manual labeling for
the majority of the models and allowing extension to new
domains without extra efforts.

• Multi-scalable: Our system is scalable in multiple dimen-
sions. It is extensible to new values and is not constrained to
existing vocabularies in the training data. It is extensible to
new types, as it trains one-size-fits-all models for thousands
of types, and the models behave differently for different
product types to achieve the best results.

• Integrative: Finally, the system applies self-guidance, and
uses customer behavior logs to identify important product
attributes to focus efforts on.

A few techniques play a critical role to allow us to scale up to
the large number of product types we need to generate knowledge
for. First, we leverage the graph structure that naturally applies
to knowledge graphs (entities can be considered as nodes and re-
lationships can be considered as edges) and taxonomy (types and
hypernym relationships form a tree structure), and apply Graph
Neural Network (GNN) for learning. Second, we take product cate-
gorization as input signals to train our models, and combine our
tasks with product categorization for multi-task training to allow
better performance. Third, we strive to learn with limited labels
to alleviate the burden of manual training data creation, relying
heavily on weak supervision (e.g., distant supervision) and on semi-
supervised learning. Fourth, we mine both facts and heterogeneous
expressions for the same concept (i.e., type, attribute value) from
customer behavior logs, abundant in the retail domain.

More specifically, we make the following contributions.

(1) Operational system:We describe AutoKnow, a compre-
hensive end-to-end solution for product knowledge collec-
tion, covering components from ontology construction and
enrichment, to data extraction, cleaning, and normalization.
A large part of AutoKnow has been deployed and opera-
tional in collecting over 1B product knowledge facts for over
11K distinct product types, and the knowledge has been used
for Amazon search and product detail pages.

(2) Technical novelty:We invented a suite of novel techniques
that together allow us to scale up knowledge discovery to
thousands of product types. The techniques range from NLP



and graph mining to anomaly detection, and leverage state-
of-the-art techniques in GNN, transformer, and multi-task
learning.

(3) Empirical study: We describe our practice on real-world
e-Business data from Amazon, showing that we are able
to extend the existing ontology by 2.9X, and considerably
increase the quality of structured data, on average improving
precision by 7.6% and recall by 16.4%.

Whereas our paper focuses on retail domain and our experi-
ments were conducted on Amazon data, the techniques can be
easily applied to other e-Commerce datasets, and adapted to other
domains with hierarchical taxonomy, rich text profiles, and cus-
tomer behavior logs, such as finance, phylogenetics, and biomedical
studies.

2 DEFINITION AND SYSTEM OVERVIEW

2.1 Product Knowledge Graph

A KG is a set of triples in the form of (subject, predicate, object).
The subject is an entity with an ID, and this entity belongs to one
or multiple types. The object can be an entity or an atomic value,
such as a string or a number. The predicate describes the relation
between the subject and the object. For example, (prod_id, has-
Brand, brand_id) is a triple between two entities, whereas (prod_id,
hasSugarsPerServing, “32”) is a triple between an entity and an
atomic value. One can consider the entities and atomic values as
nodes in the graph, and predicates as edges that connect the nodes.

For simplicity of problem definition, in this paper we focus on a
special type of knowledge graph, which we call a broad graph. The
broad graph is a bipartite graph G = (N1,N2, E), where nodes in
N1 represent entities of one particular type, called the topic type,
nodes inN2 represent attribute values (that can be entities or atomic
values), and edges in E connect each entity with its attribute values.
The edges are labeled with corresponding attribute names (Figure 1).
In other words, a broad graph contains only two layers, and thus
contains attribute values only for entities of the topic type. We
focus on broad graphs where the topic type is product. Once a
broad graph is built, one can imagine stacking broad graphs layer
by layer to include knowledge about other types of entities (e.g.,
brand), and eventually arrive at a rich, comprehensive graph.

Product types form a tree-structured taxonomy, where the root
represents all products, each node represents a product type, and
each edge represents a sub-type relationship. For example, Coffee
is a sub-type of Drink.

We assume two sources of input. First, we assume existence of
a product Catalog, including a product taxonomy, a set of product
attributes (not necessarily distinguished between different product
types), a set of products, and attribute values for each product. We
assume that each product has a product profile that includes title,
description, and bullet points, and in addition a set of structured
values, where title is required and other fields are optional. Second,
we assume existence of customer behavior logs, such as the query
and purchase log, customer reviews, and Q&A. We next formally
define the problem we solve in this paper.
Problem definition: Let C = (T ,A, P) be a product Catalog,
where (1) T = (T,H) denotes a product taxonomy with a set
of product types T and the hypernym relationships H between
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Figure 2:AutoKnow architecture, containing ontology suite

to enrich product ontology and data suite to enrich product

structured data.

types in T; (2) A denotes a set of product attributes, and (3) P =
{PID, {T }, {(A,V )}} contains for each product (PID is the ID) a set
of product types {T } and a set of attribute-value pairs {(A,V )}. Let
L denote customer behavior logs. Product Knowledge Discovery
takes C and L as input, enriches the product knowledge by adding
new types and hypernym relationships to T , and new product
types and attribute values for each product in P.

2.2 System Architecture

Figure 2 depicts the architecture of our AutoKnow system. It has
five components, categorized into two function suites.

Ontology suite: The ontology suite contains two components:
Taxonomy enrichment and Relation discovery. Taxonomy enrich-
ment identifies new product types not existing in input taxonomy
T and decides the hypernym relationships between the newly dis-
covered types and existing types, using them to enrich T . Relation
discovery decides for each product type T ∈ T and attribute A ∈ A,
whether A applies to type T and if so, how important A is when
customers make purchase decisions for these products, captured
by an importance score.

Data suite: The data suite contains three components: Data
imputation, Data cleaning, and Synonym discovery. Data imputation
derives new (attribute, value) pairs for each product in P from
product profiles and existing structured attributes. Data cleaning
identifies anomalies from existing data in P and newly imputed
values. Synonym discovery associates synonyms between product
types and attribute values.

Each component is independent, automatic and multi-scalable;
on the other hand, the components are well pieced together. The
early components provide guidance and richer data for later com-
ponents; for example, relation discovery identifies important and
meaningful relations for the data suite, and data imputation pro-
vides richer data for synonym discovery. The later components fix
errors from early parts of the pipeline; for example, data cleaning
removes mistakes from data imputation.

Table 1 summarizes how each component of AutoKnow em-
ploys the aforementioned techniques. We next describe in Section 3
how we build the ontology and in Section 4 how we improve the
data. To facilitate understanding of our design choices, for each
component we present comparison of our proposed solution with
the state-of-the-arts, show ablation study, and show real examples
in Appendix A. Unless otherwise mentioned, we use the Grocery
domain in the US market and the flavor attribute to illustrate our
results, but we have observed the same trend throughout differ-
ent domains and attributes. We describe detail of the experimental



Table 1: Key techniques employed by each component.

Techniques
Component AK
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Graph structure X X
Taxonomy signal X X
Distant supervision X X X
Behavior information X X X

Table 2: Example of input(text)/output(BIOE tag) sequences

for the type and flavor of an ice cream product.

Input Ben & Jerry’s black cherry cheesecake ice cream
Output O O O B-flavor I-flavor E-flavor B-type E-type

setup and end-to-end empirical study in Section 5 and lessons we
learned in Section 6.

3 ENRICHING THE ONTOLOGY

3.1 Taxonomy Enrichment

Problemdefinition:Online catalog taxonomies are often built and
maintained manually by human experts (e.g., taxonomists), which
is labor-intensive and hard to scale up, leaving out fine-grained
product types. How to discover new product types and attach them
to the existing taxonomy in a scalable, automated fashion is critical
to address the C2- Domain-complexity challenge.

Formally, given an existing product taxonomy T = (T,H), Tax-
onomy Enrichment extends it with T ′ = (T ∪ T′,H ∪ H′), where
T′ is the set of new product types, and H′ is the additional set of
hypernym relationships between types in T and in T′.
Key techniques: The product domain proposes its unique chal-
lenges for taxonomy construction. A product type and its instances,
or a type and its sub-types, are unlikely to be mentioned in the same
sentence as in other domains such as “big US cities like Seattle”,
so traditional methods like Hearst patterns do not apply. Our key
intuition is that since product types are very important, they are
frequently mentioned in product titles (see Table 2 for an exam-
ple) and search queries (i.e., “k-cups dunkin donuts dark”); we thus
leverage existing resources such as product profiles in the Catalog
C or search queries in behavior logs L to effectively supervise the
taxonomy enrichment process.

We enrich product taxonomy in two steps. We first discover
new types T′ from product titles or customer search queries by
training a type extractor. Then, we attach candidate types in T′

to the existing taxonomy T by solving a hypernym classification
problem. We next briefly describe high-level ideas of each step and
details can be found in [22].
Type extraction: Type extraction discovers new product types men-
tioned in product titles or search queries. For the purpose of rec-
ognizing new product types from product titles, it is critical that
we are able to extract types not included in training data. Thus,
we adopt an open-world tagging model and formulate type extrac-
tion as a “BIOE” sequential labeling problem. In particular, given
the product’s title sequence (x1, x2, ..., xL), the model outputs the

Table 3: AK-Taxonomy improves over state-of-the-art by

17.7% on Edge-F1.

Method Edge-F1 Ancestor-F1

Substr [5] 10.7 52.9
HiDir [33] 40.5 66.4
MSejrKu [29] 53.1 76.7
Type-Attachment 62.5 84.2

w/o. multi-hop (≥2) GNN 50.4 (↓12.1%) 75.9 (↓8.3%)
w/o. user behavior (query↔product) 60.1 (↓2.4%) 83.0 (↓1.2%)

sequence of (y1,y2, ...,yL), where yi ∈ {B, I ,O, E}, representing
"begin", "inside", "outside", "end" respectively. Table 2 illustrates
an example of sequential labels obtained using OpenTag [37]: “ice
cream” is labeled as product type, and "black cherry cheesecake" as
product flavor.

To train the model, we adopt distant supervision to generate
the training labels. For product titles, we look for product types
in Catalog provided by retailers (restricted to the existing product
types), and generate BIOE tags when types are explicitly and ex-
actly mentioned in their titles. For queries, we look for the type
of purchased products in the query to generate BIOE tags. Once
the extraction models are trained, we apply them on product titles
and queries. New types from titles are taken as T′, and those from
queries, albeit noisier, will be used for type attachment.
Type Attachment: Type attachment organizes extracted types into
the existing taxonomy. We thus solve a binary classification prob-
lem, where the classifier determines if the hypernym relationship
exists between two types T ∈ T,T ′ ∈ T′.

Our key intuition is to capture various signals from customer be-
haviors with a GNN-based module. In particular, we first construct
a graph where the nodes represent types, products, and queries,
and the edges represent various relationships including 1) product
co-viewing, 2) a query leading to a product purchase, 3) the type
mentioned in a query or a product (according to the extraction).
The GNN model allows us to refine the node representation using
the neighborhood information on the graph. Finally, the type rep-
resentation for eachT ∈ T∪T′ is combined with semantic features
(e.g., word embedding) of the type names and fed to the classifier.

To train the model, we again apply distant supervision. We use
the type hypernym pairs in the existing taxonomy as the supervi-
sion to generate positive labels, and generate five negative labels by
randomly replacing the hyponym type with other product types.
Component Evaluation: For product type extraction in the Gro-
cery domain, we obtained 87.5% precision according to MTurk eval-
uation; in comparison to state-of-the-art techniques, Noun Phrase
(NP) chunking obtains 12.3% precision and AutoPhrase [30] obtains
20.9% precision.

For type attachment, we took hypernym relationships from
existing taxonomy as ground truth, randomly sampled 80% for
model training, 10% as validation set and 10% for testing. We mea-
sured both Edge-F1 (F-measure on parent-child relationship) and
Ancestor-F1 (F-measure on ancestor-child relationship) [2, 21]. Ta-
ble 3 shows that our GNN-based model significantly outperforms
the state-of-the-art baselines, improving Edge-F1 by 54.3% over
HiDir [33], and by 17.7% over MSejrKu [29]. Ablation tests show
that both the multi-hop GNN and the user behavior increase the
performance.



3.2 Relation Discovery

Problem definition: In a catalog there are often thousands of
product attributes; however, different sets of attributes apply to
different product types (e.g., flavor applies to snacks, but not to
shampoos), and among them, only a small portion have a big in-
fluence on customer shopping decisions (e.g., brand is more likely
to affect shopping decisions for snacks, but less for fruits). Under-
standing applicability and importance will help filter values for
non-applicable attributes and prioritize enrichment and cleaning
for important attributes. Thus, how to identify applicable and im-
portant attributes for thousands of types is another key problem to
solve to address the C2- Domain-complexity challenge.

Formally, given a product taxonomy T = (T,H) and a set of
product attributesA, Relation Discovery decides for each (T ,A) ∈ T×
A, (1) whether attribute A applies to products of typeT , denoted by
(T ,A) → {0, 1}, and (2) how important A is for purchase decisions
on products of T , denoted by (T ,A) → [0, 1]. Here, we do not
consider newly extracted types in T′, since they are often sparse.
Key techniques: Intuitively, important attributeswill be frequently
mentioned by sellers and buyers, whereas inapplicable attributes
will appear rarely. Previous approaches explored this intuition,
but either leveraged only one text source at a time (e.g., only cus-
tomer reviews) or combined sources according to a pre-defined
rule [15, 27, 31]. Here we train a classification model to decide
attribute applicability, and a regression model to decide attribute
importance. We used Random Forest for both models and employ
two types of features reflecting behavior of the customers.

• Seller behavior, captured by coverage of attribute values for
a particular product type, and frequency of mentioning at-
tribute values in product profiles.

• Buyer behavior, captured by frequency of mentioning at-
tribute values in search queries, reviews, Q&A sessions, etc.

For a given (T ,A) pair, we compute features that correspond to
different signals (e.g., reviews, search logs, etc.). To this end, we
estimate frequencies of mentions of attribute values in the corre-
sponding text sources (see details in Appendix B). Note that sellers
are required to provide certain applicable attributes (e.g., barcode).
These attributes have high coverage, but they are not always im-
portant for shopping decisions and appear rarely in customer logs.
We thus train two different models for applicability and importance
to capture such subtle differences.

We collect manual annotations for training, both in-house and
using MTurk. In the latter case, for a given (T ,A) pair, we asked
six MTurk workers whether the attribute A applies to products
of type T , and how likely A will influence shopping decisions for
products of type T . The applicability is decided by majority voting,
and importance is decided by averaging influence likelihood grades.
Once we trained the model, we apply it to all (T ,A) pairs to decide
applicability and importance.
Component Evaluation: We collected two datasets. The first
dataset contains 807 applicability and importance labels for 11
common attributes (e.g., brand, flavor, scent) and 79 randomly sam-
pled product types. The second dataset contains 240 applicability
labels for 7 product types (e.g., Shampoo, Coffee, Battery) and 180 at-
tributes for which there are values in the Catalog. We combined the
data, used 80% for training and 20% testing, and reported results in

Table 4: AK-Relations outperforms using only coverage fea-

tures on both applicability prediction (by 4.7%) and impor-

tance prediction (1.9X). Here “Seller features” does not in-

clude the “Coverage features”.

Method Precision Recall F1 Spearman

Coverage features 0.90 0.80 0.85 0.39
Seller features 0.90 0.84 0.87 0.72
Buyer features 0.86 0.83 0.84 0.68
All features 0.94 0.84 0.89 0.74

Table 4. Our results show that comparing with the strongest signal–
coverage, various behavior signals improved F-measure by 4.7%
for applicability, and improved Spearman for importance by 1.9X.
Ablation tests show that both buyer features and seller features
contribute to the final results.

4 ENRICHING AND CLEANING KNOWLEDGE

4.1 Data Imputation

Problem definition: The Data Imputation component addresses
the C1- Structure-sparsity challenge by extracting structured
values from product profiles to increase coverage. Formally, given
product information (PID, {T }, {(A,V )}), Data imputation extracts
new (A,V ) pairs for each product from its profiles (i.e., title, descrip-
tion, and bullets).

State-of-the-art techniques have solved the problem for a type-
attribute pair (T ,A), obtaining high extraction quality with BIOE
sequential labeling combined with active learning [37]. Equation (1)
shows sequential labeling with BiLSTM and CRF:

(y1,y2, ...yL) = CRF(BiLSTM(ex1 , ex2 , ..., exL )), (1)
where exi is the embedding ofxi , usually initializedwith pre-trained
word embedding such as GloVe [25], and fine-tuned during model
training. As an example, the output sequence tags in Table 2 shows
that "black cherry cheesecake” is a flavor of the product.

However, the technique does not scale up to thousands to mil-
lions of product types and tens to hundreds of attributes that apply
to each type. How to train an extraction model that acknowledges
the differences between different product types is critical to scale
up sequential labeling to address the C3- Product-type-variety
challenge.
Key techniques: We proposed an innovative taxonomy-aware
sequence tagging approach that makes predictions conditioned on
the product type. We describe the high-level ideas next and details
can be found in [16].

We extended sequence tagging described in Equation (1) in two
ways. First, we condition model predictions on product type T ∈ T:
(y1,y2, ...yL) = CRF(CondSelfAtt(BiLSTM(ex1 , ex2 , ..., exL ), eT ))

(2)
where eT is the pre-trained hyperbolic-space embedding (Poincare [23])
of product type T , known to preserve the hierarchical relation be-
tween taxonomy nodes. CondSelfAtt is the conditional self atten-
tion layer that allows eT to influence the attention weights.

Second, to better identify tokens that indicate the product type,
and address the problem that products can be mis-classified or
product type information can be missing in a catalog, we employ
multi-task learning: training sequence tagging and product catego-
rization at the same time, with a shared BiLSTM layer.



Table 5: AK-Imputation improves over state-of-the-art by

10.1% on F1 for flavor extraction across 4,000 types.

Model Vocab size Precision Recall F1

BiLSTM-CRF [37] 6756 70.3 49.6 57.5
AK-Imputation 13093 70.9 57.8 63.3

w/o. CondSelfAtt 9528 74.5 53.2 61.5
w/o. MultiTask 12558 68.8 57.0 61.9

We again adopt the distant supervision approach to automat-
ically generate the training sequence labels by text matching be-
tween product profiles and available attribute values in the Catalog.
The trained model is then applied to all (PID,A) pairs for predicting
missing values.
Component Evaluation: In Table 5, we show the performance
evaluation and ablation studies of flavor extraction across 4000
types of products in the Grocery domain. Compared to the baseline
BiLSTM-CRF model adopted by current state-of-the-art [37], both
CondSelfAtt and MultiTask learning, when applied alone, improve
F1 score by at least 7.0%; combination of the two together improved
F1 by 10.1%.

4.2 Data Cleaning

Problem definition: The structured data contributed by retailer
are often error-prone because of misunderstanding or intentional
abuse of the product attributes. Detecting anomalies and removing
them is thus another important aspect to address theC1- Structure-
sparsity challenge. Formally, given product information (PID, {T },
{(A,V )}), Data cleaning identifies (A,V ) pairs that are incorrect for
the product, such as (A = flavor,V = “1 lb. box”) for a box of
chocolate and (A = color,V = “100% Cotton”) for a shirt.

Abedjan et al. [1] have made successes in cleaning values of
types like numerical and date/time. We focus our discussion on
textual attributes, which are often considered as most challenging
in cleaning. Similar to data imputation, the key is to address the
C3- Product-type-variety challenge such that we can scale up
to nearly millions of types. In particular, we need to answer the
question: how to identify anomaly values inconsistent with product
profiles for a large number of product types?
Key techniques: Our intuition is that an attribute value shall be
consistent with the contexts provided by the product profiles. We
propose a transformer-based [32] neural net model that jointly
processes signals from textual product profile (D) and the product
taxonomy T via a multi-head attention mechanism to decide if a
triple (PID,A,V ) is correct (i.e., whether V is the correct value of
attribute A for product PID). The model is capable of learning from
raw textual input without extensive feature engineering, making it
ideal for scaling to thousands of types.

The raw input of the model is the concatenation of token se-
quences inD,T andV . For the i-th token in the sequence, a learnable
embedding vector ei is constructed by summing up three embed-
ding vectors of the same dimension:

ei = eFastTexti + e
Segment
i + ePositioni , (3)

where eFastTexti is the pre-trained FastText embedding [3] of token
i , eSegment

i is a segment embedding vector that indicates to which
source sequence (D, T or V ) token i belongs, and ePositioni is a

Table 6: AK-Cleaning improves over state-of-the-art anom-

aly detection by 75.3% on PRAUC. R@.7P shows the recall

when the precision is 0.7, etc.

Model PRAUC R@.7P R@.8P R@.9P R@.95P

Anomaly Detection [18] 32.0 2.4 1.3 1.3 1.3
AK-Cleaning 56.1 59.6 39.8 26.0 20.7

w/o. Taxonomy 52.6 52.6 36.2 22.4 3.0
positional embedding [32] that indicates the relative location of
token i in the sequence. The sequence of embeddings [e1,e2, . . .] is
propagated through a multi-layer transformer model whose output
embedding vector eOut captures the distilled representations of all
three input sequences. Finally, eOut passes through a dense layer
followed by a sigmoid node to produce a single score between 0
and 1, indicating the consistency of D and V ; in other words, the
likelihood of the input triple (PID,A,V ) being correct (see Appendix
C for details and Figure 4 for the model architecture).

To train the cleaning model, we adopt distant supervision to
automatically generate training labels from the input Catalog. We
generate positive examples by selecting high-frequency values that
appear in multiple brands, then for each positive example we ran-
domly apply one of the following three procedures to generate
a negative example: 1) We build a vocabulary vocab(A) for each
attribute A and replace a catalog value V of A with a randomly
selected value from vocab(A); 2) We randomly select n-grams from
the product title that does not contain the catalog valueV , where n
is a random number drawn according to the distribution of lengths
of tokens in vocab(A); 3) We randomly pick the value of another at-
tribute A′ , A to replace V . At inference time, we apply our model
to every (PID,A,V ) triple and consider those with a low confidence
as incorrect.
Component Evaluation: As shown in Table 6, evaluation on the
flavor attribute for the Grocery domain on 2230 labels across 223
types shows that our model improves PRAUC over state-of-the-art
anomaly detection technique [18] by 75.3%, and considering the
product taxonomy in addition to product profiles improved PRAUC
by 6.7%.

4.3 Synonym Finding

We finally very briefly discuss how we identify synonyms with the
same semantic meaning, including spelling variants (e.g., Reese’s vs.
reese), acronyms or abbreviation (e.g., FTO vs. fair trade organic), and
semantic equivalence (e.g., lite vs. low sugar). Aligning synonym
values is another important aspect to address the C1- Structure-
sparsity challenge, and how to train a domain-specific model to
distinguish identical values and highly-similar values is a key ques-
tion to answer.

Our method has two stages. First, we apply collaborative filter-
ing [17] on customer co-view behavior signals to retain product
pairs with high similarity, and take their attribute values as candi-
date pairs for synonyms. Such a candidate set is very noisy, hence
requires heavy filtering. Second, we train a simple logistic regres-
sion model to decide if a candidate pair has exactly the same mean-
ing. The features we consider include edit distance, pre-trained
MT-DNN model [19] score, and features regarding distinct vs. com-
mon words. The features regarding distinct vs. common words play
a critical role in the model; they focus on three sets of words: words
appearing only in the first candidate but not the second, and vice



Table 7: Statistics for raw data used as input to AutoKnow.

Product Domain Grocery Health Beauty Baby

#types 3,169 1,850 990 697
med. # products/type 1,760 18,320 27,150 28,700

#attributes 1,243 1,824 1,657 1,511
med. #attrs/type 113 195 228 206

versa, and words shared by the two candidates. Between every two
out of these three sets, edit distance and embedding similarity are
computed and used as features.

An experiment on 2500 candidate pairs (143 positive; half used
for training) shows a PRAUC of 0.83 on Grocery flavor; removing
the distinct-word features will reduce the PRAUC to 0.79.

5 EXPERIMENTAL RESULTS

We now present our product knowledge graph (PG) produced by
the AutoKnow pipeline. We show that we built a graph with over
1 billion triples for over 11K product types and significantly im-
proved accuracy and completeness of the data. Note that we have
already compared each individual component with state-of-the-art
in previous sections, so here we only compare PG with the raw
input data.

5.1 Input Data and Resulting Graph

Raw Data: AutoKnow takes Amazon Product Catalog, including
the product type taxonomy, as input. We chose products of four
domains (i.e., high-level categories): Grocery, Health, Beauty, and
Baby. These domains have the commonality that they contain quite
sparse structured data; on the other hand, the numbers of types
and the sizes vary from domain to domain. We consider products
that have at least on page view in a randomly chosen month.

Table 7 shows statistics of the domains. For each domain, there
are hundreds to thousands of types in the Catalog taxonomy, and
the median number of products per type is thousands to tens of
thousands. Amazon Catalog contains thousands of attributes; how-
ever, for each individual product most of the attributes do not apply.
Thus for each product, there are typically tens to hundreds of pop-
ulated values. We say an attribute is covered by a type if at least
one product of that type has a value in Catalog for the attribute.
As shown in the statistics, each domain involves thousands of at-
tributes, and the median number of attributes per product type is
100-250.
Building a Graph:We implemented AutoKnow in a distributed
setting using Apache Spark 2.4 on an Amazon EMR cluster, and
Python 3.6 on individual hosts. Deep learning was implemented
using TensorFlow and AWS Deep Graph Library 2 was used to im-
plement Graph Neural Networks for AK-Taxonomy. AK-Relations
component was implemented using Spark ML. AK-Imputation com-
ponent used an AWS SageMaker instance for training3.
Resulting PG: Key characteristics of our PG are shown in Table 8.
The table presents aggregated statistics for the four product do-
mains. We highlight that after product type extraction, we increase
the size of the taxonomy by 2.9X, from 6.7K to 19K; some types ap-
pear in different domains and there are 11K unique types. We show
2https://www.dgl.ai/
3https://aws.amazon.com/sagemaker/

Table 8: Aggregated statistics describing our PG on four

product domains (Grocery, Baby, Beauty, Health).

#Triples #Attributes #Types #Products

>1B >1K >19K >30M

Table 9: AutoKnow achieved 87.7% type precision and in-

creased the number of types by 2.9X.

Grocery Health Beauty Baby Avg

precision 93.89% 84.60% 82.24% 89.97% 87.68%
MoE 2.71% 4.08% 4.32% 3.40% 3.63%
#types 3368 7276 4102 4368 4778
increase 1.1X 3.9X 4.1X 2.4X 2.9X

how much we improve the quality of the structured knowledge in
the next section.

5.2 Quality Evaluation

Metrics: We report precision, recall, F-metric of the knowledge. To
understand how much gap there is in providing correct structured
data for each attribute, we also define a new metric, called defect
rate, the percentage of (product, attribute) pairs with missing or
incorrect values. Specifically, consider an attribute A. Let c be the
number of products with correct values for A,w be the number of
products with a wrong value for A, s be the number of products
where A does not apply but there is a value (e.g., flavor for shoes),
m be the number of products where A applies but the value is
missing, and t be the number of products within the scope. We
compute applicability, the percentage of products where A applies,
as (c +w +m)/t ; coverage as (c + s +w)/t ; precision as c/(c + s +w);
recall as c/(c+w+m); and defect rate asD = (w+s+m)/(c+w+s+m).

We consider three types of triples: triples with product types
such as (product-1, hasType, Television), triples with attribute val-
ues such as (product-2, hasBrand, Sony), and triples depicting entity
relations such as (chocolate, isSynonymOf, choc). We report preci-
sion for each type of triples. Computing recall is hard, especially
for type triples and relation triples, since it is nearly impossible
to find all applicable types and synonyms; we thus only report it
for triples with attribute values. For triples involving products, we
used product popularity weighted sampling.
Type triples: Table 9 shows the quality of product-type triples
measured by MTurk workers on 300 labels per domain. MoE shows
the margin of error with a confidence level of 95%. AutoKnow
obtained an average precision of 87.7% and increased the number
of types in each domain by 2.9X on average.
Attribute triples: We start with choosing three text-valued at-
tributes that are fairly popular to all 4 domains, and evaluated each
(domain, attribute) pairs on 200 samples (Table 10). Note that even
though they are popular among all text-valued attributes except
brand, the applicability is still fairly low (<10% most of the cases),
showing the big diversity of each domain. We made three obser-
vations. First, we significantly increased the quality of the data
(precision up by 7.6%, recall up by 16.4%, F-measure up by 14.1%,
and defect rate down by 14.4%). Second, the quality of the gener-
ated data is often correlated with the precision of the raw data.



Table 10: PG improves over input data on average by 7.6%

(percentage point) on precision, 16.4% on recall, and 14.4% on

defect rate, with average MoE of 6.56% on precision/recall.

Attribute 1 Attribute 2 Attribute 3
Grocery Input PG Input PG Input PG

Applicability 38.51% 7.53% 10.00%
Precision 68.61% 82.59% 49.94% 77.30% 55.10% 55.10%
Recall 37.17% 83.15% 1.43% 80.96% 54.58% 54.59%

F-measure 48.22% 82.87% 2.78% 79.09% 54.84% 54.85%
Defect Rate 62.91% 21.14% 98.58% 30.72% 49.50% 49.49%
Health Input PG Input PG Input PG

Applicability 1.35% 0.59% 57.92%
Precision 70.54% 84.00% 59.11% 70.00% 78.00% 61.75%
Recall 59.69% 49.92% 69.50% 63.45% 47.13% 69.92%

F-measure 64.66% 62.62% 63.89% 66.56% 58.76% 65.58%
Defect Rate 49.69% 52.34% 48.31% 45.45% 55.04% 38.28%
Beauty Input PG Input PG Input PG

Applicability 0.04% 0.54% 4.82%
Precision 18.83% 48.00% 71.98% 76.00% 62.00% 61.68%
Recall 69.44% 69.44% 65.21% 59.95% 53.26% 62.98%

F-measure 29.62% 56.76% 68.43% 67.03% 57.30% 62.32%
Defect Rate 82.35% 59.02% 40.19% 42.76% 48.51% 39.50%

Baby Input PG Input PG Input PG
Applicability 0.0011% 0.09% 55.82%
Precision 1.45% 0.03% 8.22% 10.60% 42.00% 49.54%
Recall 9.79% 9.79% 3.83% 50.92% 44.13% 56.39%

F-measure 2.53% 0.06% 5.23% 17.55% 43.04% 52.74%
Defect Rate 98.72% 99.97% 97.30% 89.63% 60.81% 50.46%

Table 11:AutoKnow cleaned 1.77M incorrect values for two

attributes with a precision of 90%.

Grocery Recall@ 90% Recall@ 80% #Removed %Removed

Attribute 1 36.58% 58.20% 1,381,277 55.06%
Attribute 2 9.92% 13.29% 320,960 59.40%
Health Recall@ 90% Recall@ 80% #Removed %Removed

Attribute 1 76.72% 85.93% 30,215 32.63%
Attribute 2 3.18% 21.14% 14,110 20.92%
Beauty Recall@ 90% Recall@ 80% #Removed %Removed

Attribute 1 94.33% 97.16% 10,926 62.31%
Attribute 2 46.05% 69.74% 7,651 11.87%

Baby Recall@ 90% Recall@ 80% #Removed %Removed

Attribute 1 87.24% 95.31% 2,673 66.17%
Attribute 2 52.07% 59.24% 1,956 73.04%

For example, the precision of the data in the Baby domain is very
low; as a result, the PG data also have low precision. On the other
hand, recall tends to have less effect; for example, Attribute 2 has
a recall of 1.4% for Grocery, but we are able to boost it to 81.0%
with reasonable precision (77.3%). Third, there is still huge space for
improvement: the defect rate is at best 21.1%, and can be over 90% in
certain cases. We also note that production requires high accuracy,
so we trade recall with precision in the production system.

Next, we randomly chose 8 (type, attr) pairs for top-5 important
attributes to report our results at a finer granularity (Table 18 in
Appendix A). The attribute values are categorical (much smaller
vocabulary) or binary, leading to higher extraction quality. Auto-
Know obtained an average precision of 95.0% and improved the
recall by 4.3X.

To highlight how data cleaning improves the data quality, we
show in Table 11 the noisy values we have removed for the same

Table 12: Precision for triples representing relations be-

tween entities. Precision for synonym relations is reported

on two representative attributes.

Attribute 1 Attribute 2 Product Types

Precision 91.6% 93.7% 88.1%
#Pairs 6,610 1,066 21,900

two attributes as in Table 10. At a precision of 90% (i.e., 9 out of
10 removed values are indeed incorrect), we achieve a recall of
73.7% for Attribute 1 and 27.8% for Attribute 2. In total we removed
1.3M values for these two attributes, accounting for 21% of Catalog
values and 64.6% of AK-Imputation.
Relation triples: Finally, we show precision of relation triples in
Table 12, including hypernym relations between product types and
synonym relations between attribute values. We observed very high
precision for value synonyms (>90%) and fairly high for hypernyms
(88.1%) when we consider attaching to any ancestor node (not
necessarily to the leaf) as correct.

6 LESSONS WE LEARNT

There are many lessons in building the Product KG, pointing to
interesting research directions.

Non-tree product hierarchies: First, we may need to funda-
mentally reconsider the way we model taxonomy and classify prod-
ucts. Common practice is to structure product types into a tree
structure for “subtypes”, and classify each product into a single
(ideally leaf) type. However, we miss multiple parents; for example,
“knife” has subtypes “chef’s knife”, “hunting knife”, which corre-
spondingly is also a subtype of “Cutlery & Knife” and “Hunting
kits”. Also, there is often no clear cut for product types: one product
can be both fashion swimwear and two-piece swimwear. In general,
we need to extend concepts to model broadly subtype, synonym,
and overlapping relationships; for each product, we can simply ex-
tract the type from its title, and infer other types according to the
relationship between product types.

Noisy data: Second, the large volume of noises can deteriorate
the performance of the imputation and cleaning models. This can be
observed from our lower quality of knowledge in the Baby domain,
caused by wrong product types and many inapplicable values in
Catalog. We propose aggressive data cleaning before using the
data for training, and training a multi-task end-to-end model that
imputes missing values and identifies wrong or inapplicable values.

More than text: Third, product profile is not the only source
of product knowledge. A study on randomly sampled 22 (type,
attribute) pairs shows that 71.3% values can be derived from Ama-
zon product profiles, an additional 3.8% can be derived from Ama-
zon product images, and 24.9% have to be sought from external
sources such as manufacturer websites. This observation hints that
a promising direction is to enhance AutoKnow with image pro-
cessing capabilities and web extraction.

7 RELATEDWORK

Industry KG systems typically rely on manually defined ontology
and curate knowledge from Wikipedia and a number of structured
sources (e.g., Freebase[4], Bing Satori [12], YAGO [10], YAGO2 [14]).
Research systems conduct web extraction, but again observing



pre-defined ontology and focus on named entities such as people,
movies, companies (e.g., NELL [6], Knowledge Vault [8], Deep-
Dive [7]). By comparison, this work extracts product knowledge
from product profiles, where the structure, sparsity and noise level
are very different from webpages; many attribute values are free
texts or numbers instead of named entities. Incorporating taxonomy
knowledge into machine learning models and utilizing customer be-
havior signals for supervision are two themes employed throughout
this work to improve model performance.

The product knowledge graph described in [34] differs from our
work as it focuses on training product embeddings to represent
co-view/complement/substitute relationship defined therein, while
this work focuses on collecting factual knowledge about products
(e.g., product types and attribute values). Recent product property
extraction systems [35, 37] apply tagging on product profiles, but
consider a single product type. Web extraction systems [26, 28]
extract product knowledge from semi-structured websites, and the
techniques are orthogonal to ours.

In addition to end-to-end systems, there have been solutions
for individual components, including ontology definition [4, 10],
entity identification [10], relation extraction [20], hierarchical em-
bedding [23], linkage [13, 24], and knowledge fusion [8, 9]. We
apply these techniques whenever appropriate, and improve them
to address the unique challenges for the product domain.

8 CONCLUSIONS

This paper describes our experience in building a broad knowledge
graph for products of thousands of types. We applied a suite of
ML methods to automate ontology construction, knowledge enrich-
ment and cleaning for a large number of products with frequent
changes. With these techniques we built a knowledge graph that
significantly improves completeness, accuracy, and consistency of
data comparing to Catalog. Our efforts also shed light on how we
may further improve by going both broader and deeper in product
graph construction.
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A EXAMPLES

Here we provide example outputs produced by each of the five com-
ponents (Figure 2). Taxonomy enrichment and relation discovery
results are shown in Tables 13, 14 and 15. Next, data imputation,
cleaning and synonym finding results are shown in Figure 3 and
Tables 16 and 17. Finally, we also show additional evaluation results
for the entire pipeline on a sample of type-attribute pairs in Table 18
(see evaluation details in Section 5).

Table 13: Examples of type extraction results.

Source Text Product Type

Product 4 Country Pasta Homemade Style Egg
Pasta - 16-oz bag

Egg Pasta

Product Hamburger Helper Lasagna Pasta, Four
Cheese, 10.3 Ounce (Pack of 6)

Lasagna Pasta

Product COFFEE MATE The Original Powder Cof-
fee Creamer 35.3 Oz. Canister Non-dairy,
Lactose Free, Gluten Free Creamer

Coffee Creamer

Query mccormick paprika 8.5 ounce paprika
Query flax seeds raw flax seeds

Table 14: Examples of detected product type hypernyms.

Child Type Parent Type

Coconut flour Baking flours & meals
Tilapia Fresh fish

Fresh cut carnations Fresh cut flowers
Bock beers Lager & pilsner beers
Pinto beans Dried beans

Table 15: Attributes identified as most important for two ex-

ample types.

Cereals Shampoo

brand brand
ingredients hair type

flavor number of items
number of items ingredients
energy content liquid volume

B ATTRIBUTE APPLICABILITY AND

IMPORTANCE

Recall that for each (product type, attribute) pair we need to identify
whether the attribute applies and how important the attribute is
(e.g., whether color applies to Shoes, and how important is color
for Shoes). To this end, we independently train a Random Forest
classifier to predict applicability and a Random Forest Regressor to
predict importance scores (for applicable attributes). In both cases,
we consider each (product type, attribute) pair as an instance, and
we label a sample of such pairs with either applicability or impor-
tance labels (Section 3.2). Sample prediction results for attribute
importance are shown in Table 15

(a)

(b)

(c)

Figure 3: Examples of extracted attribute values from Open-

Tag and TXtract.

In both models, we use the same set of features that characterize
how relevant the attribute is for the given product type. The first
feature is coverage, which is the proportion of products that have a
non-missing attribute value. Next, a range of features are based on
frequency of attribute mentions in different text sources. Consider a
text source s (e.g., product descriptions, reviews, etc.), and suppose
that all products of the required type are indexed from 1 to n. Note
that a particular product i , can have several pieces of text of type s
(e.g., a product might have several reviews), and let l(s, i) denote the
number of such pieces. A feature based on signal s is then defined
as x(s) = 1

n
∑n
i=1

(
1

l (s ,i)
∑l (s ,i)
j=1 M(s, i, j)

)
Here M(s, i, j) = 1 if the

j-th piece of text of signal s associated with product i mentions the
attribute (e.g., whether the j-th review of the i-th shoes mentions
color), otherwiseM(s, i, j) = 0.

We consider two implementations of M(s, i, j), and accordingly,
for each s we compute two features. First,M(s, i, j) = 1 if text piece
j contains attribute value of product i (e.g., whether the review for
product i contains color of this product). Second, M(s, i, j) = 1 if



Table 16: Example errors found by the cleaning model.

Product profile Attrib.
Attribute

value

Love of Candy Bulk Candy - Pink Mint
Chocolate Lentils - 6lb Bag

Flavor Pink

Scott’s Cakes Dark Chocolate Fruit &
Nut Cream Filling Candies with Burgandy
Foils in a 1 Pound Snowflake Box

Flavor snowflake box

Lucky Baby - Baby Blanket Envelope
Swaddle Winter Wrap Coral Fleece New-
born Blanket Sleeper Infant Stroller Wrap
Toddlers Baby Sleeping Bag (color 1)

Flavor Color 1

ASUTRA Himalayan Sea Salt Body Scrub
Exfoliator + Body Brush (Vitamin C), 12
oz | Ultra Hydrating, Gentle, Moisturiz-
ing | All Natural & Organic Jojoba, Sweet
Almond, Argan Oils

Scent vitamin c
body scrub -
12oz & body
brush

Folgers Simply Smooth Ground Coffee, 2
Count (Medium Roast), 31.1 Ounce

Scent 2Packages
(Breakfast
Blend, 31.1 oz)

Table 17: Examples of discovered flavor and scent synonym

pairs.

flavor synonyms
herb and garlic herb & garlic
macadamia nut macadamia

roasted oolong tea roasted oolong
decaffeinated honey lemon decaf honey lemon

zero carb vanilla zero cal vanilla
scent synonyms

basil (sweet) sweet basil
rose flower rose

aloe lubricant aloe lube
unscented uncented

moonlight path moonlit path

Table 18: AutoKnow obtained an average precision of 95.0%

and improved the recall by 4.3X for important categori-

cal/binary attributes.

Scope Prec Recall Recall gain

pair-1 91.05% 70.18% 7.3X
pair-2 97.06% 19.70% 5.2X
pair-3 97.12% 36.13% 1.3X
pair-4 93.87% 37.72% 10.5X
pair-5 95.88% 25.01% 1.2X
pair-6 90.42% 87.46% 2.8X
pair-7 97.97% 55.95% 1.4X
pair-8 96.44% 87.49% 4.5X

text piece j contains any common attribute value for this product
type (i.e., whether the review for product i contains any frequent
color values among Shoes). We consider a value to be common if
it is among the top 30 most frequent values within the given type.
We consider several text signals (e.g., product titles, reviews, search
queries, etc.) and compute 30 features as described above. Finally,
for each feature we also consider an alternative where products are
weighted by popularity, and thus in total we have 60 features.

Figure 4: Cleaning model architecture.

C TAXONOMY-AWARE SEMANTIC

CLEANING

The cleaning model detects whether or not a triple (PID,A,V ) is
correct (i.e., whether V is the correct value of attribute A for prod-
uct PID) by attending to its taxonomy node and semantic signals
in product profile. Let D = [d1, . . . ,dnD ], T = [t1, . . . , tnT ] and
V = [v1, . . . ,vnV ] be the token sequences of the product descrip-
tion, product taxonomy, and target attribute value, respectively. We
construct the input sequence S by concatenating D, T and V and
inserting special tokens "[CLS]" and "[SEP]" as follows.

S = concat([CLS],D, [SEP],T , [SEP],V ) := [s1, . . . , snS ] (4)
where nS = nD + nT + nV + 3. We then map each si ∈ S to an
embedding vector ei ∈ Rd as the summation of three embedding
vectors of the same dimension d :

ei = eFastTexti + e
Segment
i + ePositioni , i = 1, . . . ,nS (5)

where eFastTexti is the pretrained FastText embedding [32] of si ,
e
Segment
i is a segment embedding vector defined as:

e
Segment
i =


eD, if si ∈ D

eT, if si ∈ T

eV, if si ∈ V ,

(6)

and ePositioni is the position embedding vector of the location of si in
the sequence (i.e. i), for which we adopt the same constructions used
in [32]. Here eFastTexti ’s and ePositioni ’s are frozen (not trainable), and
eD, eT, eV are randomly initialized and jointly trained with other
model parameters.

The embedding sequence [ei ]nS1 is propagated through a multi-
layer transformer model where number of layers, number of heads
and hidden dimension are hyperparameters. The final embedding
vector of the special token [CLS], denoted by eOut , captures the
distilled representations of all three input sequences. It is passed
through a dense layer followed by a sigmoid node to produce a
single score between 0 and 1, indicating the likelihood of the input
triple (PID,A,V ) being correct. See Figure 4 for an illustration of
the model architecture.

In Table 16 we give examples of attribute value errors detected
by the cleaning model.
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