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ABSTRACT
People nowadays are immersed in a wealth of text data, ranging
from news articles, to social media, academic publications, adver-
tisements, and economic reports. A grand challenge of data mining
is to develop effective, scalable and weakly-supervised methods for
extracting actionable structures and knowledge from massive text
data. Without requiring extensive and corpus-specific human an-
notations, these methods will satisfy people’s diverse applications
and needs for comprehending and making good use of large-scale
corpora.

In this tutorial, we will introduce recent advances in text embed-
dings and their applications to a wide range of text mining tasks
that facilitate multi-dimensional analysis of massive text corpora.
Specifically, we first overview a set of recently developed unsuper-
vised and weakly-supervised text embedding methods including
state-of-the-art context-free embeddings and pre-trained language
models that serve as the fundamentals for downstream tasks. We
then present several embedding-driven text mining techniques that
are weakly-supervised, domain-independent, language-agnostic,
effective and scalable for mining and discovering structured knowl-
edge, in the form of multi-dimensional topics and multi-faceted
taxonomies, from large-scale text corpora. We finally show that the
topics and taxonomies so discovered will naturally form a multi-
dimensional TextCube structure, which greatly enhances text ex-
ploration and analysis for various important applications, including
text classification, retrieval and summarization. We will demon-
strate on the most recent real-world datasets (including political
news articles as well as scientific publications related to the coron-
avirus) how multi-dimensional analysis of massive text corpora can
be conducted with the introduced embedding-driven text mining
techniques1.
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TARGET AUDIENCE AND PREREQUISITES
Researchers and practitioners in the fields of data mining, text min-
ing, natural language processing, information retrieval, database
1Tutorial website can be found at https://yumeng5.github.io/kdd20-tutorial/
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systems, and machine learning. While the audience with a good
background in these areas would benefit most from this tutorial,
we believe the material to be presented would give both general
audience and newcomers an introductory pointer to the current
work and important research topics in this field, and inspire them
to learn more. Our tutorial is designed as self-contained, so only
preliminary knowledge about basic concepts in data mining, text
mining, machine learning, and their applications are needed.

TUTORS AND PAST TUTORIAL EXPERIENCES
We have three tutors. All are contributors and in-person presenters
of the tutorial.
• Yu Meng, Ph.D. student, Computer Science, Univ. of Illinois at
Urbana-Champaign. His research focuses on mining structured
knowledge from massive text corpora with minimum human
supervision. He has delivered a tutorial in VLDB’19.

• Jiaxin Huang, Ph.D. student, Computer Science, UIUC. Her re-
search focuses on mining structured knowledge from massive
text corpora. She is the recipient of Chirag Foundation Graduate
Fellowship in Computer Science. She has delivered a tutorial in
VLDB’19.

• Jiawei Han, Michael Aiken Chair Professor, Computer Science,
UIUC. His research areas encompass data mining, text mining,
data warehousing and information network analysis, with over
800 research publications. He is Fellow of ACM, Fellow of IEEE,
and received numerous prominent awards, includingACMSIGKDD
Innovation Award (2004) and IEEE Computer Society W. Wallace
McDowell Award (2009). He delivered 50+ conference tutorials
or keynote speeches (e.g., SIGKDD 2019 tutorial and CIKM 2019
keynote).

TUTORIAL OUTLINE
One important feature of this tutorial is that we interleave the
introduction to principles andmethods with system demonstrations
to show how the introduced methods work on various kinds of
real-world data sets effectively and efficiently. We will introduce
the related open-source software packages as well.

The outline of the topics that will be covered in the tutorial is
presented as follows.
• Introduction
– Motivation: Why Mining and Structuring Text in a Multi-
Dimensional Way?

– An Overview of Recently Developed Text Embedding Methods
– An Overview of Multi-Dimensional Text Mining Applications

• Overview of Text Embedding Methods
– Euclidean Context-Free Embeddings [4, 11, 17, 20]
– Non-Euclidean Context-Free Embeddings [13, 19, 25]
– Contextualized Language Models [6, 21, 26]
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– Weakly-Supervised Embeddings [12, 16]
• Multi-Faceted Taxonomy Construction
– Coordinated Expansion of Multiple Concepts [7, 22]
– Hierarchical Concept Expansion and Construction [8, 27]

• Multi-Dimensional Topic Mining
– Unsupervised Topic Modeling [1, 3, 18]
– Supervised & Seed-Guided Topic Modeling [2, 9]
– Embedding-Based Discriminative Topic Mining (Demo: Top-
icMine) [12, 16]

• Embedding-Driven Multi-Dimensional Text Analysis
– Multi-Dimensional TextCube Construction [14, 15, 23, 28]
– TextCube-Based Online Analytical Processing [24]
– TextCube-Aware Document Summarization (Demo: TextCube
on Hong Kong Demonstration & COVID-19 Open Research
Dataset) [5, 10, 29]

• Summary and Future Directions
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