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Word embedding has benefited a broad spectrum of text analysis tasks by learning

distributed word representations to encode word semantics. Word representations are

typically learned by modeling local contexts of words, assuming that words sharing

similar surrounding words are semantically close. We argue that local contexts can

only partially define word semantics in the unsupervised word embedding learning.

Global contexts, referring to the broader semantic units, such as the document or

paragraph where the word appears, can capture different aspects of word semantics

and complement local contexts. We propose two simple yet effective unsupervised

word embedding models that jointly model both local and global contexts to learn

word representations. We provide theoretical interpretations of the proposed models to

demonstrate how local and global contexts are jointly modeled, assuming a generative

relationship between words and contexts. We conduct a thorough evaluation on a wide

range of benchmark datasets. Our quantitative analysis and case study show that despite

their simplicity, our two proposedmodels achieve superior performance onword similarity

and text classification tasks.

Keywords: word embedding, unsupervised learning, word semantics, local contexts, global contexts

1. INTRODUCTION

Unsupervised word representation learning, or word embedding, has shown remarkable
effectiveness in various text analysis tasks, such as named entity recognition (Lample et al., 2016),
text classification (Kim, 2014) andmachine translation (Cho et al., 2014).Words and phrases, which
are originally represented as one-hot vectors, are embedded into a continuous low-dimensional
space. Typically, the mapping function is learned based on the assumption that words sharing
similar local contexts are semantically close. For instance, the famous word2vec algorithm (Mikolov
et al., 2013a,b) learns word representation from each word’s local context window (i.e., surrounding
words) so that local contextual similarity of words are preserved. The Skip-Gram architecture of
word2vec uses the center word to predict its local context, and the CBOWarchitecture uses the local
context to predict the center word. GloVe (Pennington et al., 2014) factorizes a global word-word
co-occurrence matrix, but the co-occurrence is still defined upon local context windows.

In this paper, we argue that apart from local context, another important type of word
context—which we call global context—has been largely ignored by unsupervised word embedding
models. Global context refers to the larger semantic unit that a word belongs to, such as a document
or a paragraph. While local context reflects the local semantic and syntactic features of a word,
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FIGURE 1 | A text snippet from the 20 Newsgroup dataset. The transparent

part represents the local context of the word “harmful.” The semitransparent

part denotes the remainder of the document.

global context encodes general semantic and topical properties
of words in the document, which complements local context
in embedding learning. Neither local context nor global
context alone is sufficient for encoding the semantics of a
word. For example, Figure 1 is a text snippet from the 20
Newsgroup dataset. When we only look at the local context
window (the transparent part of Figure 1) of the word “harmful,”
it is hard to predict if the center word should have positive or
negative meaning. On the other hand, if we only know the entire
document is about car robbery but do not have information about
the local context, there is also no way to predict the center word.
This example demonstrates that local and global contexts provide
complementary information about the center word’s semantics,
and using either of them only may not be enough to capture the
complete word semantics.

To the best of our knowledge, there is no previous study
that explicitly1 models both local and global contexts to learn
word representations. Topic models (Hofmann, 1999; Blei et al.,
2003) essentially use global contexts to discover latent topics,
by modeling documents as a mixture of latent topics and
topics as distributions over words. In topic modeling, however,
local contexts are completely ignored because word ordering
information is discarded. Some studies along the embedding
line learn word embeddings based on global contexts implicitly.
HSMN (Huang et al., 2012), PTE (Tang et al., 2015), and
Doc2Cube (Tao et al., 2018) take the average of word embedding
in the document as the document representation and encourage
similarity between word embedding and document embedding
for co-occurred words and documents. However, these methods
do not model global contexts explicitly because the document
representations are essentially aggregated word representations
and thus are not tailored for contextual representations.
Moreover, both PTE and Doc2Cube require additional class
information for text classification and thus are not unsupervised
word embedding frameworks.

We propose two models that incorporate both local and
global contexts for unsupervised word embedding learning. Our
proposed models are surprisingly simple extensions of Skip-
Gram and CBOW architectures of word2vec, by extending their

1“Explicitly” means local context and global context have explicit and independent

vector representations.

objective functions to include a loss term corresponding to the
global context. Despite our models’ simplicity, we usea spherical
generative model to show our models have theoretical bases:
Under the assumption that there is a generative relationship
betweenwords and their contexts, ourmodels essentially perform
maximum likelihood estimation on the corpus with word
representations as the parameters to be estimated.

Our contributions are summarized below:

1. We propose two unsupervised models that incorporate both
local and global word contexts in word embedding learning,
allowing them to provide complementary information for
capturing word semantics.

2. We provide theoretical interpretations of the proposed
models based on a spherical generative model, which
shows equivalence between our models’ objectives and
maximum likelihood estimation on the corpus where word
representations are parameters to be estimated.

3. We conduct a thorough evaluation on the word embedding
quality trained on benchmark datasets. The two proposed
models are superior to their word2vec counterparts and
achieve superior performances on word similarity and
text classification tasks. We also perform case studies to
understand the properties of our models.

2. RELATED WORK

In this section, we review related studies on word embedding, and
categorize them into three classes according to the type of word
context captured by the model.

2.1. Local Context Word Embedding
Most unsupervised word embedding frameworks learn word
representations by preserving the local context similarity of
words. The underlying assumption is that similar surrounding
words imply similar semantics of center words. Distributed
word representation is first proposed in Bengio et al. (2000) to
maximize the conditional probability of the next word given the
previous few words, which act as the local context. The definition
of the local context is later extended in Collobert et al. (2011) to
include not only the preceding words, but also the succeeding
ones. Afterwards, the most famous word embedding framework,
word2vec (Mikolov et al., 2013a,b), proposes two models that
capture local context similarity. Specifically, word2vec’s Skip-
Gram model (Mikolov et al., 2013b) maximizes the probability
of using the center word to predict its surrounding words;
word2vec’s CBOW model (Mikolov et al., 2013a), by symmetry,
uses the local context to predict the center word. It is also
shown in Levy and Goldberg (2014) that word2vec’s Skip-Gram
model with negative sampling is equivalent to factorizing a
shifted PMImatrix. Another word embedding framework, GloVe
(Pennington et al., 2014), learns embedding by factorizing a so-
called global word-word co-occurrence matrix. However, the co-
occurrence is still defined upon local context windows, so GloVe
essentially captures local context similarity of words as well.
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2.2. Global Context Word Embedding
There have been previous studies that incorporate global
context, i.e., the document a word belongs to, into word
embedding learning. Doc2Vec (Le and Mikolov, 2014) finds
the representation for a paragraph or a document by training
document embedding to predict words in the document.
Although word embedding is trained simultaneously with
the document embedding, the final goal of Doc2Vec is to
obtain document embedding instead of word embedding, and
documents are treated as the representation learning target but
not as context for words.

A few recent papers incorporate global context implicitly
into network structures where word embeddings are learned.
PTE (Tang et al., 2015) and Doc2Cube (Tao et al., 2018)
construct word-document network and encode word-
document co-occurrence frequency in the edge weights to
enforce embedding similarity between co-occurred words and
documents. However, PTE and Doc2Cube do not explicitly
model global context because document representations
are simply the averaged word embedding. Another notable
difference from unsupervised word embedding is that they
also rely on another word-label network which requires class-
related information to optimize the word embedding for
text classification purposes. Hence, the embedding is trained
under semi-supervised/weakly-supervised settings and does not
generalize well to other tasks.

2.3. Joint Context Word Embedding
There have been a few attempts to incorporate both local
and global contexts in word embedding. (Huang et al., 2012)
proposes a neural language model which uses global context
to disambiguate upon local context. Specifically, the framework
conducts word sense discrimination for polysemy by learning
multiple embeddings per word according to the document that
the word token appears in. However, the document embedding is
directly computed as the weighted average of word embeddings
and is not tailored for contextual representation. In this paper,
we explicitly learn document embedding as global context
representation, so that local and global context representations
clearly capture different aspects of word contexts. Topic word
embeddings (Liu et al., 2015) and Collaborative Language Model
(Xun et al., 2017) share the similar idea that topic modeling
[e.g., LDA (Blei et al., 2003)] benefits word embedding learning
by relating words with topical information. However, these
types of framework suffer from the same major problems as
topic modeling does: (1) They require prior knowledge about
the number of latent topics in the corpus, which may not be
always available under unsupervised settings; (2) Due to the
local optimal solutions given by the topic modeling inference
algorithm, the instability in topic discovery results in instability in
word embedding as well. Our proposed models learn document
embedding to represent global context and do not rely on
topic modeling. The most relevant framework to our design is
Spherical Text Embedding (Meng et al., 2019a) which jointly
models word-word and word-paragraph co-occurrence statistics
on the sphere.

TABLE 1 | Notations and meanings.

Notation Meaning

uw, vw The “input” and “output” vector representation of word

w.

d The vector representation of document d.

|d| The length of document d.

CL(w,d),CG(w,d) The local and global context of a word w ∈ d.

D = {di}
∣

∣

|D|

i=1
The text corpus represented by the set of documents.

V = {wi}
∣

∣

|V|

i=1
The corpus vocabulary represented by the set of unique

word tokens.

h Local context window size.

p Word and document vector dimension.

S
p−1 The unit sphere in R

p.

3. DEFINITIONS AND PRELIMINARIES

In this section, we provide the meanings of the notations
used in this paper in Table 1 and introduce the necessary
preliminaries for understanding our design and interpretations
of the proposed models.

Definition 1 (Local Context). We represent each document d as
a sequence of words d = w1w2 . . .wn. The local context CL(wi, d)
of a word wi ∈ d refers to all other words appearing in the
local context window of wi (i.e., h words before and after wi) in
document d. Formally, wj ∈ CL(wi, d) if wj ∈ d, i − h ≤ j ≤

i + h, i 6= j.

Definition 2 (Global Context). The global context CG(w, d) of a
word w with regard to d refers to the relationship that w appears
in d. Formally, CG(w, d) = {d} if w ∈ d, and CG(w, d) =

∅ otherwise.

Definition 3 (The von Mises Fisher (vMF) distribution). A unit
random vector x ∈ S

p−1 ⊂ R
p has the p-variate vonMises Fisher

distribution vMFp(µ, κ) if its probability density function is

f (x;µ, κ) = cp(κ) exp(κx
⊤µ),

where κ ≥ 0 is the concentration parameter, ‖µ‖ = 1 is themean
direction and the normalization constant cp(κ) is given by

cp(κ) =
κp/2−1

(2π)p/2Ip/2−1(κ)
,

where Ir(·) represents the modified Bessel function of the first
kind at order r, as defined in Definition 4.

Definition 4 (Modified Bessel Function of the First Kind). The
modified Bessel function of the first kind of order r can be
defined as (Mardia and Jupp, 2009):

Ir(κ) =
(κ/2)r

Ŵ
(

r + 1
2

)

Ŵ
(

1
2

)

∫ π

0
exp(κ cos θ)(sin θ)2rdθ ,

where Ŵ(x) =
∫ ∞
0 exp(−t)tx−1dt is the gamma function.
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4. MODELS

In this section, we introduce the two models built upon the
word2vec framework that incorporate both global and local
contexts in unsupervised word embedding learning.

4.1. Joint CBOW Model
The Joint CBOW model adopts the similar idea of word2vec’s
CBOWmodel (Mikolov et al., 2013a). Specifically, themodel tries
to predict the current word given its contexts. The objective has
two components: the loss of using local context for prediction and
the loss of using global context for prediction.

We define the loss of local context as below which
encourages the model to correctly predict a word using its local
context window:

Llocal = −
∑

d∈D

∑

1≤i≤|d|

log p(wi | CL(wi, d))

= −
∑

d∈D

∑

1≤i≤|d|

log p(wi | wi−h, . . . ,wi−1,wi+1, . . . ,wi+h).

(1)

Following Mikolov et al. (2013a), we define the conditional
probability to be

p(wi | wi−h, . . . ,wi−1,wi+1, . . . ,wi+h) =
exp(u⊤wi

vwi )
∑

w′∈V exp(u⊤wi
vw′ )

,

(2)
where uwi =

∑

−h≤j≤h,j 6=0 uwi+j/‖
∑

−h≤j≤h,j 6=0 uwi+j‖ is the

normalized sum of vector representations of words in the local
context window of wi.

We define the loss of global context as belowwhich encourages
the model to correctly predict a word using the document it
belongs to:

Lglobal = −
∑

d∈D

∑

1≤i≤|d|

log p(wi | CG(wi, d))

= −
∑

d∈D

∑

1≤i≤|d|

log p(wi | d).
(3)

We define the conditional probability to be

p(wi | d) =
exp(v⊤wi

d)
∑

w′∈V exp(v⊤w′d)
. (4)

The final objective is the sum of local context loss and global
context loss weighted by a hyperparameter λ.

Ltotal = Llocal + λLglobal. (5)

We note that when λ = 1, the model places equal emphasis on
local and global contexts. When λ < 1, local context matters
more and vice versa.

4.2. Joint Skip-Gram Model
The Joint Skip-Gram model mirrors the Joint CBOW model
in that the inputs and outputs are swapped, i.e., now the model
tries to predict the contexts given the current word. Again, the
objective consists of a local context loss and a global context loss.

We define the loss of local context as below which encourages
the model to correctly predict a word’s local context window:

Llocal = −
∑

d∈D

∑

1≤i≤|d|

log p(CL(wi, d) | wi)

= −
∑

d∈D

∑

1≤i≤|d|

∑

−h≤j≤h,j 6=0

log p(wi+j | wi),
(6)

Following (Mikolov et al., 2013b), we define the conditional
probability to be

p(wj | wi) =
exp(u⊤wi

vwj )
∑

w′∈V exp(u⊤wi
vw′ )

, (7)

We define the loss of global context as below which encourages
the model to correctly predict the document a word belongs to:

Lglobal = −
∑

d∈D

∑

1≤i≤|d|

log p(CG(wi, d) | wi)

= −
∑

d∈D

∑

1≤i≤|d|

log p(d | wi).
(8)

We define the conditional probability to be

p(d | wi) =
exp(u⊤wi

d)
∑

d′∈D exp(u⊤wi
d
′)
. (9)

The final objective is the sum of local context loss and global
context loss weighted by a hyperparameter λ.

Ltotal = Llocal + λLglobal. (10)

We will study the effect of λ in the experiment section.

5. INTERPRETING THE MODELS

In this section, we propose a novel generative model to analyze
the two models introduced in the previous section and show
how they jointly incorporate global and local contexts. Overall,
we assume there is a generative relationship between center
words and contexts, i.e., either center words are generated from
both local and global contexts (Joint CBOW), or local and
global contexts are generated by center words (Joint Skip-

Gram), as shown in Figure 2. A spherical distribution is used
in the generative model where word vectors are treated as the
parameters to be estimated.

5.1. The Spherical Generative Model
Before explaining Joint Skip-Gram and Joint CBOW, we first
define the spherical distribution used in the generative model and
show how it is connected with the conditional probability used in
Joint Skip-Gram and Joint CBOW.
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FIGURE 2 | Joint CBOW and Joint Skip-Gram as generative models.

Theorem 1. When the corpus size and vocabulary size are infinite
(i.e., |D| → ∞ and |V| → ∞) and all word vectors and
document vectors are assumed to be unit vectors2, generalizing the
relationship of proportionality assumed in Equations (2), (4), (7),
and (9), to the continuous cases results in the vMF distribution with
the corresponding prior vector as the mean direction and constant
1 as the concentration parameter, i.e.,

lim
|V|→∞

p(wi | CL(wi, d)) = vMFp(uwi , 1) = cp(1) exp(v
⊤
wi
uwi )

lim
|V|→∞

p(wi | d) = vMFp(d, 1) = cp(1) exp(v
⊤
wi
d)

lim
|V|→∞

p(wj | wi) = vMFp(uwi , 1) = cp(1) exp(v
⊤
wj
uwi )

lim
|D|→∞

p(d | wi) = vMFp(uwi , 1) = cp(1) exp(d
⊤
uwi )

See Appendix for proof.

5.2. Joint CBOW as Words Generation
In this subsection, we show that Joint CBOW performs
maximum likelihood estimation of the corpus assuming local and
global contexts generate words. This assumption follows naturally
how humans write articles: we first have a general idea about
what the document is going to talk about, and then write down
each word so that the word is coherent with both the meaning of

2This is similar to the constraint introduced in Meng et al. (2019a).

the entire document (global context) and its surrounding words
(local context).

We describe the details of the generative model below:

1. Underlying assumptions of local and global contexts.
The global context representation d (equivalent to the

document vector) encodes general semantic and topical
information of the entire document and should be a constant
vector; the local context representation li encodes local
semantic and syntactic information around wi and should
keep drifting slowly as the local context window shifts.

Based on the above intuition, we assume d is fixed for
each document d, while li drifts slowly on the unit sphere
in the embedding space with a small displacement between
consecutive words. Finally, wi is generated based on both d

and li, i.e.,

p(wi gets generated) = p(wi | li) · p(wi | d).

2. Contexts generate words.
Given the local context representation li of wi and global

context representation d, we assume the probability of a
word being generated as the center word is given by the
vMF distribution with the context representation as the mean
direction and 1 as the concentration parameter:

p(wi | li) = vMFp(li, 1) = cp(1) exp(v
⊤
wi
li), (11)
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p(wi | d) = vMFp(d, 1) = cp(1) exp(v
⊤
wi
d). (12)

where we will derive the explicit representation of the local
context representation li later.

Recall that in Joint CBOW, each word plays two roles: (1)
center word and (2) context word for other words. Given the
local context representation li of wi, we assume the probability
of a word being generated as the context word (we use ui to
denote the word is viewed as a context word instead of a center
word) is also given by the vMF distribution:

p(ui | li) = vMFp(li, 1) = cp(1) exp(u
⊤
wi
li), (13)

Now we are ready to use the above generative model for
explaining the relationship between Joint CBOW and text
generation. We begin with deriving the explicit representation
of li. Let U be the set of embedding of context words around
word wi, i.e.,

U = {uwi+j ∈ S
p−1 | uwi+j follows vMFp(li, 1),−h ≤ j ≤ h, j 6= 0},

then we use the maximum likelihood estimates (see Appendix)

to find l̂i:

l̂i =

∑

−h≤j≤h,j 6=0 uwi+j

‖
∑

−h≤j≤h,j 6=0 uwi+j‖
.

Now we view word vector representations vwi , uwi+j and
document representation d as parameters of the text generation
model to be estimated, and write the likelihood of the corpus
D as:

P(D | vwi , uwi+j , d) =
∏

d∈D

∏

1≤i≤|d|

p(wi | l̂i) · p(wi | d).

When the corpus size is finite, we have to turn the equality in
Equations (11) and (12) to proportionality, i.e., p(wi | li) ∝

cp(1) exp(v
⊤
wi
li) and p(wi | d) ∝ cp(1) exp(v

⊤
wi
d). Then the explicit

expression of p(wi | l̂i) and that of p(wi | d) become Equations
(2) and (4), respectively.

The log-likelihood of the corpus D is:

log P(D | vwi , uwi+j , d)

=
∑

d∈D

∑

1≤i≤|d|

(

log p(wi | l̂i)+ log p(wi | d)
)

=
∑

d∈D

∑

1≤i≤|d|

(

log
exp(v⊤wi

l̂i)
∑

w′ exp(v⊤w′ l̂i)
+ log

exp(v⊤wi
d)

∑

w′ exp(v⊤w′d)

)

= −
(

Llocal + Lglobal

)

,

where Llocal and Lglobal correspond to the local context loss
(Equation 1) and the global context loss (Equation 3) of the
Joint CBOW model, respectively. The only difference between
the log-likelihood here and the Joint CBOW objective is that
log-likelihood assumes equal weights on local and global contexts
(λ = 1 in Equation 5).

Therefore, Joint CBOW performs maximum likelihood
estimation on the text corpus with the assumption that words are
generated by their contexts.

5.3. Joint Skip-Gram as Contexts
Generation
In this subsection, we show that Joint Skip-Gram performs
maximum likelihood estimation of the corpus assuming center
words generate their local and global contexts, reversing the
generation relationship assumed in Joint CBOW.

We describe the details of the generative model below:

1. Underlying assumptions of local and global contexts.
The local context of a word wi carries its local semantic

and syntactic information and is assumed to be generated
according to the semantics of wi. Further, we assume each
context word in the local context window is generated
independently, i.e.,

p(CL(wi, d) gets generated) =
∏

wj∈CL(wi ,d)

p(wj | wi).

The global context of word wi carries the global semantics of
the entire document d that wi belongs to and is assumed to be
generated collectively by all the words in d, i.e.,

p(CG(wi, d) gets generated) =
∏

wj∈d

p(d | wj).

2. Words generate contexts.
Given the word representation uwi of wi, we assume the

local and global contexts of wi are generated from the vMF
distribution with uwi as the mean direction and 1 as the
concentration parameter:

p(wj | wi) = vMFp(uwi , 1) = cp(1) exp(v
⊤
wi
uwi ), (14)

p(d | wi) = vMFp(uwi , 1) = cp(1) exp(d
⊤
uwi ). (15)

Now we are ready to write out the likelihood of the collection of
local and global contexts in the entire corpus C = CL ∪ CG:

P(C | uwi , vwi+j , d) = P(CL | uwi , vwi+j , d) · P(CG | uwi , vwi+j , d)

=





∏

d∈D

∏

1≤i≤|d|

∏

wj∈CL(wi ,d)

p(wj | wi)









∏

d∈D

∏

1≤i≤|d|

p(d | wi)



 .

When the corpus size is finite, we have to turn the equality in
Equations (14) and (15) to proportionality, i.e., p(wj | wi) ∝

cp(1) exp(v
⊤
wi
uwi ) and p(d | wi) ∝ cp(1) exp(d

⊤
uwi ). Then the

explicit expression of p(wj | wi) and p(d | wi) will become
Equations (7) and (9), respectively.

The log-likelihood of the contexts C is:

log P(C | uwi , vwi+j , d) =
∑

d∈D

∑

1≤i≤|d|

∑

−h≤j≤h,j 6=0

log p(wi+j | wi)
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TABLE 2 | Dataset statistics.

Dataset # Train/# Test # Classes Avg. doc. length

20News 11, 314/7, 532 20 396

Reuters 5, 485/2, 189 8 105

+
∑

d∈D

∑

1≤i≤|d|

log p(d | wi)

=
∑

d∈D

∑

1≤i≤|d|

∑

−h≤j≤h,j 6=0

log
exp(u⊤wi

vwj )
∑

w′∈V exp(u⊤wi
vw′ )

+
∑

d∈D

∑

1≤i≤|d|

log
exp(u⊤wi

d)
∑

d′∈D exp(u⊤wi
d
′)

= −
(

Llocal + Lglobal

)

,

where Llocal and Lglobal correspond to the local context loss
(Equation 6) and the global context loss (Equation 8) of the Joint
Skip-Grammodel, respectively. The only difference between the
log-likelihood here and the Joint Skip-Gram objective is that
log-likelihood assumes equal weights on local and global contexts
(λ = 1 in Equation 10).

Therefore, Joint Skip-Gram performs maximum likelihood
estimation on the text corpus with the assumption that contexts
are generated by words.

6. EXPERIMENTS

In this section, we empirically evaluate the word embedding
quality trained by our proposed models and conduct a set of case
studies to understand the properties of our models.

6.1. Datasets
We use the following benchmark datasets for both word
embedding training and text classification evaluation. The dataset
statistics are summarized in Table 2.

• 20News: The 20 Newsgroup dataset3 contains newsgroup
documents partitioned nearly evenly across 20 different
newsgroups. We follow the same train/test split of the
“bydate” version.

• Reuters: We use the 8-class version of the Reuters-21578
dataset4 following (Kusner et al., 2015; Xun et al., 2017) with
the same train/test split as described in Sebastiani (2002).

6.2. Baselines and Ablations
We compare our models with the following baseline methods:

• Skip-Gram (Mikolov et al., 2013b) andCBOW (Mikolov et al.,
2013a): The two models of the word2vec5 framework. Skip-
Gram uses the center word to predict its local context, and
CBOW uses local context to predict the center word.

3http://qwone.com/~jason/20Newsgroups/
4http://www.daviddlewis.com/resources/testcollections/reuters21578/
5https://code.google.com/archive/p/word2vec/

• GloVe (Pennington et al., 2014): GloVe6 learns word
embedding by factorizing a global word-word co-occurrence
matrix where the co-occurrence is defined upon a fix-sized
context window.

• DM and DBOW (Le and Mikolov, 2014): The two models of
the Doc2Vec7 framework.DM uses the concatenation of word
embeddings and document embedding to predict the next
word, and DBOW uses the document embedding to predict
the words in a window. Although Doc2Vec is originally
used for learning paragraph/document representation, it also
learns word embedding simultaneously. We evaluate the word
embedding trained by Doc2Vec.

• HSMN (Huang et al., 2012): HSMN8 uses both local and
global contexts to predict the next word in the sequence. The
local context representation is obtained by concatenating the
embedding of words preceding the next word, and the global
context representation is simply the weighted average of all
word embedding in the document.

• PTE (Tang et al., 2015): Predictive Text Embedding (PTE)9

constructs heterogeneous networks that encode word-word
and word-document co-occurrences as well as class label
information. It is originally trained under semi-supervised
setting (i.e., labeled documents are required). We adapt it to
unsupervised setting by pruning its word-label network.

• TWE (Liu et al., 2015): Topical word embedding (TWE)10 has
three models for incorporating topical information into word
embedding with the help of topic modeling. TWE requires
prior knowledge about the number of latent topics in the
corpus and we provide it with the correct number of classes
of the corresponding corpus. We run all three models of TWE

and report the best performance.

We compare our models with the following ablations:

• Concat Skip-Gram and Concat CBOW: The ablation of
Joint Skip-Gram and Joint CBOW, respectively. We train
Joint Skip-Gram and Joint CBOW twice with λ = 0
(only local context is captured) and λ = ∞ (only global
context is captured). Then we concatenate the two embeddings
so that the resulting embedding contains both local and
global context information, but with two types of contexts
trained independently. For fair comparison, the embedding
dimension of λ = 0 and λ = ∞ cases is set to be

p
2 so that the

embedding dimension after concatenation is p, equal to that of
Joint Skip-Gram and Joint CBOW.

6.3. Implementation Details and Settings
Because the full softmax in Equations (2), (4), (7), and (9) results
in computational complexity proportional to the vocabulary size,
we adopt the negative sampling strategy (Mikolov et al., 2013b)
for efficient approximation.

6https://nlp.stanford.edu/projects/glove/
7https://radimrehurek.com/gensim/models/doc2vec.html
8http://ai.stanford.edu/~ehhuang/
9https://github.com/mnqu/PTE
10https://github.com/largelymfs/topical_word_embeddings
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TABLE 3 | Word similarity evaluation.

Methods
WordSim-353 Men SimLex-999

ρ τ ρ τ ρ τ

Skip-Gram 0.430 0.293 0.303 0.206 0.153 0.104

CBOW 0.410 0.284 0.349 0.241 0.109 0.074

GloVe 0.207 0.140 0.196 0.134 0.042 0.028

DBOW 0.378 0.257 0.341 0.234 0.116 0.078

DM 0.367 0.254 0.305 0.209 0.116 0.079

HSMN 0.103 0.070 0.146 0.100 0.027 0.018

PTE 0.312 0.209 0.177 0.120 0.162 0.108

TWE 0.227 0.155 0.210 0.144 0.140 0.093

Concat skip-gram 0.369 0.248 0.324 0.221 0.163 0.111

Concat CBOW 0.413 0.283 0.350 0.240 0.110 0.073

Joint Skip-Gram 0.464 0.319 0.375 0.256 0.181 0.121

Joint CBOW 0.473 0.326 0.374 0.256 0.192 0.131

Bold values denote the best performance among all methods.

We first pre-process the corpus by getting rid of infrequent
words that appear < 5 times in the corpus. For fair comparison,
we set the hyperparameters as below for all methods: word
embedding dimension11 p = 100, local context window size
h = 5, number of negative samples k = 5, number of
training iterations on the corpus iter = 10. Other parameters
(if any) are set to be the default values of the corresponding
algorithm. Our method has an additional hyperparameter λ that
balances between the importance of local and global contexts.We
empirically find λ = 1.5 to be the optimal choice in general, so
we report the performances of our models by setting λ = 1.5 for
all tests.

6.4. Word Similarity Evaluation
In the first set of evaluation, we are interested in how well
the word embedding captures similarity between word pairs.
We use the following test datasets for evaluation: WordSim-
353 (Finkelstein et al., 2001), MEN (Bruni et al., 2014), and
SimLex-999 (Hill et al., 2015). These datasets contain word
pairs with human-assigned similarity scores. We first train
word embedding on 20News dataset12, and then rank word
pair similarity according to their cosine similarity value in the
embedding space. Finally, we compare the ranking given by
the word embedding with the ranking given by human ratings.
We use both Spearman’s rank correlation ρ and Kendall’s rank
correlation τ as measures with out-of-vocabulary word pairs
excluded from the test sets.

The word similarity evaluation results are shown in Table 3.
We observe that Joint Skip-Gram and Joint CBOW achieve
the best performances under two metrics across three test sets.

11Since the datasets used in our experiments are relatively small-scale, using higher

embedding dimensions (e.g., p = 200, 300) does not lead to noticeably different

results, so we only report the results with p = 100.
12In this work, we are interested in embedding quality when embeddings are

trained on the local corpus where downstream tasks are carried out. In Meng et al.

(2019a), we report the word similarity evaluation of embeddings trained on the

Wikipedia dump.

TABLE 4 | Text classification evaluation.

Methods
20News Reuters

Macro-F1 Micro-F1 Macro-F1 Micro-F1

Skip-gram 0.681 0.699 0.750 0.953

CBOW 0.653 0.668 0.866 0.965

GloVe 0.526 0.548 0.725 0.944

DBOW 0.687 0.703 0.796 0.950

DM 0.594 0.610 0.837 0.955

HSMN 0.385 0.431 0.200 0.736

PTE 0.700 0.718 0.776 0.957

TWE 0.608 0.632 0.616 0.916

Concat Skip-Gram 0.759 0.772 0.764 0.958

Concat CBOW 0.680 0.695 0.873 0.961

Joint Skip-Gram 0.773 0.785 0.854 0.962

Joint CBOW 0.736 0.753 0.885 0.966

Bold values denote the best performance among all methods.

The fact that Joint Skip-Gram and Joint CBOW outperform
Skip-Gram, CBOW, and GloVe demonstrates that by capturing
global context in additional to local context, our model is able
to rank word similarity more concordantly with human ratings.
Comparing Joint Skip-Gram and Joint CBOW with DM,
DBOW, and PTE, we show that our models are more effective
in leveraging global context to capture word similarity. Our
models also do better than HSMN, TWE, Concat Skip-Gram,
andConcat CBOW, showing superiority in jointly incorporating
local and global contexts.

6.5. Text Classification Evaluation
In the second set of evaluation, we use a classical downstream
task in NLP, text classification, to evaluate the quality of word
embedding. For each of the two datasets described in section
6.1, we train a one-vs-rest logistic regression classifier on the
training set and apply it on the testing set. The document features
are obtained by averaging all word embedding vectors in the
document, and the word embedding is trained on the training
set of the corresponding dataset. We use Micro-F1 and Macro-
F1 scores as metrics for classification performances, as in (Meng
et al., 2018, 2019c).

The text classification performance is reported in Table 4.
Under all cases, the best performance is achieved by either
Joint Skip-Gram or Joint CBOW. Joint Skip-Gram and
Joint CBOW give constantly better results than Skip-Gram and
CBOW, respectively. This shows that global context enriches
word embedding with topical semantics which is beneficial for
the text classification task. Apart from the fact that our joint
models achieve state-of-the-art performances as unsupervised
word embedding for text classification, another interesting
finding is that Concat Skip-Gram and Concat CBOW are pretty
strong embedding baselines for text classification (outperforming
Skip-Gram and CBOW), but are always inferior to Joint Skip-

Gram and Joint CBOW. This indicates that the combination
of local and global contexts indeed improves word embedding
quality for classification tasks, but how to incorporate both
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FIGURE 3 | Hyperparameter study on word similarity (left) and text classification (right).

TABLE 5 | Running time evaluation on 20News dataset.

Methods Skip-Gram CBOW GloVe DBOW DM HSMN PTE TWE JSG JCBOW

Running time (s) 29.8 24.7 31.2 41.9 35.7 44.6 48.8 >1,000 30.1 25.4

types of contexts is also important—training jointly on local and
global contexts is more effective than training independently on
either context and then performing post-processing to obtain
concatenated word embedding.

6.6. Parameter Study
In the previous subsections, we fix λ for both Joint Skip-

Gram and Joint CBOW models for all evaluation tasks. In
this subsection, we would like to explore the trade-off between
local and global contexts in embedding learning. Specifically,
we vary λ in the Joint Skip-Gram and Joint CBOW model
with a 0.5 interval in range [0, 3] and ∞ (the performances
of λ = ∞ are represented as horizontal dotted lines), and
conduct word similarity evaluation on the WordSim-353 dataset
and text classification evaluation on the 20News dataset. The
performances under different λ’s for both models are shown in
Figure 3. We observe that the optimal settings of both models for
word similarity and text classification are λ = 1.5 and λ = 2.0,
respectively. This verifies our arguments that combining both
types of contexts achieves the best performances.

6.7. Running Time Study
We report the training time on 20News dataset per iteration
of all baselines in Table 5 to compare the training efficiency.
All the models are run on a machine with 20 cores of Intel(R)
Xeon(R) CPU E5-2680 v2 @ 2.80 GHz. Joint Skip-Gram and
Joint CBOW have similar training time with their original
counterparts and are more efficient than the other baselines,
demonstrating their high efficiency.

6.8. Case Studies
In this subsection, we perform a set of case studies to understand
the properties of our models and why incorporating both local

TABLE 6 | Effect of global context on interpreting acronyms.

Acronyms Global (λ = ∞) Local (λ = 0)

CMU mellon, carnegie,

andrew, pa, pittsburgh

andrew, kfnjyea00uh,

am2x, mr47, devineni

UIUC urbana, illinois, uxa,

univ, uchicago

uxa, ux4, ux1,

mrcnext, cka52397

UNC chapel, carolina,

astro,

images, usc

launchpad, gibbs,

umr, lambada, jge

Caltech california, gap,

institute,

keith, technology

juliet, jafoust, lmh,

henling, bdunn

JHU johns, camp, hopkins,

nation, grand

pablo, hasch, iglesias,

davidk, atlantis

Bold values denote the best performance among all methods.

and global contexts leads to better word embedding. We conduct
all the case studies on the 20News dataset unless stated otherwise.

6.8.1. Effect of Global Context
We are interested in why and how global context can be beneficial
for capturing more complete word semantics. We set λ = ∞ and
λ = 0 in Equation (10) so that the embedding trained by Joint
Skip-Gram only captures the global/local context of words. We
select a set of acronyms (e.g., CMU stands for Carnegie Mellon
University.) and use their embedding to retrieve a few most
similar words (measured by cosine similarity in the embedding
space). In Table 6, we list five university acronyms and show the
top words retrieved by the embedding trained with only global
context and only local context, respectively. We observe that
local context embedding retrieves nothing meaningful related to
the acronyms, but global context embedding successfully finds
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TABLE 7 | Cosine similarity of antonym embeddings trained with different

contexts.

Antonyms Global (λ = ∞) Local (λ = 0)

Good—bad 0.3150 0.7127

Happy—unhappy 0.3911 0.6178

Large—small 0.4871 0.7265

Increase—decrease 0.2663 0.7308

Enter—exit 0.2756 0.5553

Save—spend −0.0388 0.4792

the original word components of the acronyms. The reason
is that each original word component usually does not share
similar local context with the acronym (e.g., CMU and the
single word “Carnegie” obviously have different surrounding
words) despite their semantic similarity. However, the original
word components and acronyms usually appear in same/similar
documents, resulting in higher global context similarity. The
insights gained from this case study can be generalized to other
cases where words are semantically similar but syntactically
dissimilar. Global context is effective in discovering semantic and
topical similarity of words without enforcing syntactic similarity.

6.8.2. Different Contexts Capture Different Aspects of

Word Similarity
Word similarity has different aspects. Words can be semantically
similar but syntactically dissimilar and vice versa. For example,
antonyms have opposite semantics (e.g., good vs. bad) but
are syntactically similar and may occur with similar short
surrounding contexts.We list a set of antonyms and provide their
embedding cosine similarity when different types of context are
captured by Joint Skip-Gram (Global, λ = ∞; Local, λ = 0;
Joint, λ = 1.5) as shown in Table 7.

It can be observed that all antonyms have high cosine
similarity when only local context is captured in embedding (λ =

0). On the other hand, antonym embeddings trained on global
context (λ = ∞) have relatively low cosine similarity. The results
verify our intuition that local context focuses more on syntactic
similarity while global context emphasizes more on semantic or
topical similarity of words. Our joint model strikes a balance
between local and global contexts, and thus reflects both syntactic
and semantic aspects of word similarity.

6.8.3. Global Context Embedding Quality
In the third set of case studies, we qualitatively evaluate the
global context embedding by visualizing the document vectors
together with word embeddings. We select five documents from
five different topics of the 20News dataset, and then select several
topical related words for each document. The five topics are:
electric, automobiles, guns, christian, and graphics. We apply t-
SNE (van der Maaten and Hinton, 2008) to visualize both the
document embedding and the word embedding in Figure 4,
where green stars represent document embeddings and red dots
represent word embeddings. Documents are indeed embedded
close to their topical related words, implying that global context
embeddings appropriately encode topical semantic information,
which consequently benefits word embedding learning.

FIGURE 4 | Word and document embedding visualization.

TABLE 8 | Weakly-supervised text classification on Reuters.

Methods Macro-F1 Micro-F1

WeSTClass 0.554 0.593

Doc2Cube 0.435 0.446

Doc2Cube w/Joint Skip-Gram 0.585 0.717

Doc2Cube w/Joint CBOW 0.570 0.700

WeSTClass w/Joint Skip-Gram 0.717 0.801

WeSTClass w/Joint CBOW 0.691 0.698

Bold values denote the best performance among all methods.

6.8.4. Weakly-Supervised Text Classification
In the previous case study, we have shown word embedding
and document embedding can be jointly trained unsupervisedly.
It then becomes natural to consider the possibility to perform
text classification without labeled documents. When only weak
supervisions, such as class surface names (e.g., politics, sports)
are available, the unsupervised word embedding quality becomes
essential for text classification because there is no additional
labeling for fine-tuning word embedding. WeSTClass (Meng
et al., 2018, 2019c) models class semantics as vMF distributions
in the word embedding space and applies a pretrain-refine neural
approach to perform text classification under weak supervision.
Doc2Cube (Tao et al., 2018) leverages word-document co-
occurrences to embed class labels, words and documents in the
same space and perform classification by comparing embedding
similarity. We adopt the two frameworks and replace the original
embedding with the embedding trained by our Joint Skip-Gram

and Joint CBOW models. We perform weakly-supervised text
classification on the training set of Reuters with class names as
weak supervision and report the Macro-F1 and Micro-F1 scores
in Table 8.

We show that we can achieve reasonably good text
classification performances even without labeled documents,
by fully leveraging the context information to capture more
complete semantics in word embedding.
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7. DISCUSSIONS

In this section, we discuss several open issues and interesting
directions for further exploration.

• How to choose appropriate global contexts in practice?
In Definition 2, we defined global context to be the

document in which a word appears. In practice, however,
the global context of a word can flexibly refer to its
belonging paragraph, or several sentences surrounding it,
based on different application scenarios. For example, for
short documents like a piece of review text, it is appropriate
to use the entire document as the global context of a word.
In long news articles or research papers, it might be more
suitable to define the global context as the paragraph or
the subsection a word appears in. Therefore, we recommend
practitioners to experiment with different global context
settings for different texts.

• Global context for other embedding training settings.
In this work, we showed that using global contexts

in addition to local contexts improves unsupervised word
embedding quality since the two types of contexts capture
complementary information about a word. Based on this
observation, we may consider incorporating global contexts
into other embedding learning settings. For example, in
CatE (Meng et al., 2020) we improve the discriminative power
of the embedding model over a specific set of user-provided
categories with the help of global contexts, based on which
a topic mining framework (Meng et al., 2019b) is further
developed. We believe that there are many other tasks where
global contexts can complement local contexts in training and
fine-tuning embeddings.

• Embedding learning in the spherical space.
It has been shown that directional similarity is more

effective than Euclidean measurement in word similarity and
clustering. Therefore, it might be beneficial to model both
local and global contexts in the spherical space to train text
embeddings of even better quality, like in JoSE (Meng et al.,
2019a). Further exploration might involve using Riemannian
optimization on the unit sphere or enforcing vector norm
constraints to fine-tune text embeddings in downstream tasks.

8. CONCLUSIONS AND FUTURE WORK

We propose two simple yet effective unsupervised
word embedding learning models to jointly capture the
complementary word contexts. Local context focuses more on
the syntactic and local semantic aspect whereas global context
provides information more regarding the general and topical
semantics of words. Experiments show that incorporating
both types of contexts achieves state-of-the-art performance
on word similarity and text classification tasks. We provide a
novel generative perspective to theoretically interpret the two
proposed models. The interpretation might pave the path for
several future directions:

(1) The global context may not be always defined as
the document that a word appears in, because
the generative relationship between a word and
its corresponding sentence/paragraph might be
stronger than that between a word and the
entire document.

(2) Our current models (and the original word2vec
framework) assume that the vMF distribution for
generating words/contexts has constant 1 as the
concentration parameter κ . However, the most
appropriate κ might depend on vocabulary size,
average document length in the corpus, etc. and can
vary across different datasets. It will be interesting to
explore how to set appropriate κ for even better word
embedding quality.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study.
This data can be found here: http://qwone.com/~jason/
20Newsgroups/, http://www.daviddlewis.com/resources/
testcollections/reuters21578/.

AUTHOR CONTRIBUTIONS

YM and JHu contributed to the design of the models.
YM, JHu, GW, and ZW implemented the models
and conducted the experiments. YM, JHu, CZ, and
JHa wrote the manuscript. All authors contributed
to the manuscript revision, read, and approved the
submitted version.

FUNDING

Research was sponsored in part by U.S. Army Research
Lab. under Cooperative Agreement No. W911NF-09-2-0053
(NSCTA), DARPA under Agreements Nos. W911NF-17-C-0099
and FA8750-19-2-1004, National Science Foundation IIS 16-
18481, IIS 17-04532, and IIS 17-41317, DTRAHDTRA11810026,
and grant 1U54GM114838 awarded by NIGMS through
funds provided by the trans-NIH Big Data to Knowledge
(BD2K) initiative (www.bd2k.nih.gov). Any opinions, findings,
and conclusions or recommendations expressed in this
document are those of the author(s) and should not be
interpreted as the views of any U.S. Government. The U.S.
Government was authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation hereon.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fdata.
2020.00009/full#supplementary-material

Frontiers in Big Data | www.frontiersin.org 11 March 2020 | Volume 3 | Article 9

http://qwone.com/~jason/20Newsgroups/
http://qwone.com/~jason/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
https://www.frontiersin.org/articles/10.3389/fdata.2020.00009/full#supplementary-material
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Meng et al. Local and Global Context Embedding

REFERENCES

Bengio, Y., Ducharme, R., and Vincent, P. (2000). “A neural probabilistic language

model,” in Conference on Neural Information Processing Systems (Denver, CO).

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet

allocation. J. Mach. Learn. Res. 3, 993–1022. doi: 10.5555/944919.9

44937

Bruni, E., Tran, N.-K., and Baroni,M. (2014).Multimodal distributional semantics.

J. Artif. Intell. Res. 49, 1–47. doi: 10.1613/jair.4135

Cho, K., van Merrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk,

H., et al. (2014). “Learning phrase representations using rnn encoder-decoder

for statistical machine translation,” in Conference on Empirical Methods in

Natural Language Processing (Doha).

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P.

(2011). Natural language processing (almost) from scratch. J. Mach. Learn. Res.

12, 2493–2537. doi: 10.5555/1953048.2078186

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman,

G., et al. (2001). “Placing search in context: the concept revisited,” in

WWW’01: Proceedings of the 10th International Conference onWorldWideWeb

(Hong Kong).

Hill, F., Reichart, R., and Korhonen, A. (2015). Simlex-999: evaluating semantic

models with (genuine) similarity estimation. Comput. Linguist. 41, 665–695.

doi: 10.1162/COLI_a_00237

Hofmann, T. (1999). “Probabilistic latent semantic indexing,” in SIGIR’99:

Proceedings of the 22nd Annual International ACM SIGIR Conference on

Research and Development in Information Retrieval (Berkeley, CA).

Huang, E. H., Socher, R., Manning, C. D., and Ng, A. Y. (2012). “Improving

word representations via global context and multiple word prototypes,” in

Proceedings of the 50th Annual Meeting of the Association for Computational

Linguistics (Jeju Island).

Kim, Y. (2014). “Convolutional neural networks for sentence classification,” in

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (Doha).

Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q. (2015). “From word

embeddings to document distances,” in Proceedings of the 32nd International

Conference on Machine Learning.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., and Dyer,

C. (2016). “Neural architectures for named entity recognition,” in

Proceedings of the 2016 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies

(San Diego, CA).

Le, Q. V., and Mikolov, T. (2014). “Distributed representations of sentences and

documents,” in Proceedings of the 31st International Conference on Machine

Learning (Beijing).

Levy, O., and Goldberg, Y. (2014). “Neural word embedding as implicit matrix

factorization,” in NIPS’14: Proceedings of the 27th International Conference on

Neural Information Processing Systems (Montreal, QC).

Liu, Y., Liu, Z., Chua, T.-S., and Sun, M. (2015). “Topical word embeddings,”

in AAAI’15: Proceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence (Austin, TX).

Mardia, K. V., and Jupp, P. E. (2009). Directional Statistics, Vol. 494. John Wiley &

Sons.

Meng, Y., Huang, J., Wang, G., Wang, Z., Zhang, C., Zhang, Y., et al. (2020).

“Discriminative topic mining via category-name guided text embedding,” in

Proceedings of The Web Conference 2020 (WWW20) (Taipei).

Meng, Y., Huang, J., Wang, G., Zhang, C., Zhuang, H., Kaplan, L., et al.

(2019a). “Spherical text embedding,” in 33rd Conference on Neural Information

Processing Systems (NeurIPS 2019) (Vancouver, BC).

Meng, Y., Huang, J., Wang, Z., Fan, C., Wang, G., Zhang, C., et al. (2019b).

“Topicmine: user-guided topic mining by category-oriented embedding,” in

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)

(Anchorage, AK).

Meng, Y., Shen, J., Zhang, C., and Han, J. (2018). “Weakly-supervised neural text

classification,” in ACM International Conference on Information and Knowledge

Management (CIKM) (Torino).

Meng, Y., Shen, J., Zhang, C., and Han, J. (2019c). “Weakly-supervised hierarchical

text classification,” in AAAI Conference on Artificial Intelligence (AAAI)

(Honolulu, HI).

Mikolov, T., Chen, K., Corrado, G. S., and Dean, J. (2013a). Efficient estimation of

word representations in vector space. CoRR abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b).

“Distributed representations of words and phrases and their compositionality,”

in NIPS’13: Proceedings of the 26th International Conference on Neural

Information Processing Systems (Lake Tahoe, NV).

Pennington, J., Socher, R., and Manning, C. D. (2014). “Glove: global vectors

for word representation,” in Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP) (Doha).

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM

Comput. Surv. 34, 1–47. doi: 10.1145/505282.505283

Tang, J., Qu,M., andMei, Q. (2015). “Pte: predictive text embedding through large-

scale heterogeneous text networks,” In KDD ’15: Proceedings of the 21th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining

(Sydney, NSW).

Tao, F., Zhang, C., Chen, X., Jiang, M., Hanratty, T., Kaplan, L. M., et al. (2018).

“Doc2cube: allocating documents to text cube without labeled data,” in 2018

IEEE International Conference on Data Mining (ICDM) (Singapore).

van derMaaten, L., andHinton, G. E. (2008). Visualizing data using t-SNE. J. Mach.

Learn. Res. 9, 2579–2605.

Xun, G., Li, Y., Gao, J., and Zhang, A. (2017). “Collaboratively improving topic

discovery and word embeddings by coordinating global and local contexts,”

in 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(Halifax, NS).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Meng, Huang, Wang, Wang, Zhang and Han. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Big Data | www.frontiersin.org 12 March 2020 | Volume 3 | Article 9

https://doi.org/10.5555/944919.944937
https://doi.org/10.1613/jair.4135
https://doi.org/10.5555/1953048.2078186
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1145/505282.505283
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles

	Unsupervised Word Embedding Learning by Incorporating Local and Global Contexts
	1. Introduction
	2. Related Work
	2.1. Local Context Word Embedding
	2.2. Global Context Word Embedding
	2.3. Joint Context Word Embedding

	3. Definitions and Preliminaries
	4. Models
	4.1. Joint CBOW Model
	4.2. Joint Skip-Gram Model

	5. Interpreting the Models
	5.1. The Spherical Generative Model
	5.2. Joint CBOW as Words Generation
	5.3. Joint Skip-Gram as Contexts Generation

	6. Experiments
	6.1. Datasets
	6.2. Baselines and Ablations
	6.3. Implementation Details and Settings
	6.4. Word Similarity Evaluation
	6.5. Text Classification Evaluation
	6.6. Parameter Study
	6.7. Running Time Study
	6.8. Case Studies
	6.8.1. Effect of Global Context
	6.8.2. Different Contexts Capture Different Aspects of Word Similarity
	6.8.3. Global Context Embedding Quality
	6.8.4. Weakly-Supervised Text Classification


	7. Discussions
	8. Conclusions and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


