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Exact theory for superconductivity in a doped

Mott insulator

Philip W. Phillips® 4, Luke Yeo and Edwin W. Huang

Because the cuprate superconductors are doped Mott insula-
tors, it would be advantageous to solve even a toy model that
exhibits both Mottness and superconductivity. We consider
the Hatsugai-Kohmoto model'?, an exactly solvable system
that is a prototypical Mott insulator. Upon either doping or
reducing the interaction strength, our exact calculations show
that the system becomes a non-Fermi liquid metal with a
superconducting instability. In the presence of a weak pairing
interaction, the instability produces a thermal transition to a
superconducting phase, which is distinct from the traditional
state described by Bardeen-Cooper-Schrieffer (BCS) theory,
as evidenced by a gap-to-transition temperature ratio exceed-
ing the universal BCS limit. The elementary excitations of this
superconductor are not Bogoliubov quasiparticles but rather
superpositions of doublons and holons, composite excitations
that show that the superconducting ground state of the doped
Mott insulator inherits the non-Fermi liquid character of the
normal state. An unexpected feature of this model is that it
exhibits a superconductivity-induced transfer of spectral
weight from high to low energies, as seen in the cuprates?, as
well as a suppression of the superfluid density relative to that
in BCS theory.

Cooper’s* demonstration that the normal state of a metal is
unstable to a pairing interaction between two electrons above the
Fermi surface paved the way to the eventual solution to the prob-
lem of superconductivity in elemental metals such as mercury. In
modern renormalization group language®®, the Cooper instability
is understood as the only relevant perturbation along a Fermi sur-
face given that all renormalizations due to short-ranged repulsive
interactions are benign. The problem of high-temperature super-
conductivity in copper-oxide ceramics persists because the normal
state is a doped Mott insulator, a strongly correlated state of matter
in which no organizing principle such as quasiparticles on a Fermi
surface can be invoked. The following question thus arises: is there
an analogue of Cooper’s argument for a doped Mott insulator? Such
a demonstration would be non-trivial, as the simplest model rel-
evant to the cuprates—the Hubbard model—is intractable in d>1
(d the spatial dimension). Given this intractability, we seek a simpli-
fication that permits a definitive answer to the Cooper problem in
the presence of Mottness.

We demonstrate such an instability for the Hatsugai-Kohmoto
(HK)"? model of a doped Mott insulator. The minimum feature
of Mottness”®, thereby setting it apart from a Fermi liquid, is a
bifurcation of the spectral weight per momentum state into low-
and high-energy components. Such a bifurcation creates a surface
of zeros of the single-particle Green function, called a Luttinger
surface®, and is known to be essential in describing high-low
energy mixing in doped Mott systems®’~'%. As the HK model is the

simplest example that captures how quasiparticles (poles of the
single-particle Green function) on a Fermi surface are converted to
zeros, any superconducting instability found in such a model could
ultimately illuminate the solution to the full problem. Recent prog-
ress, in fact part of the motivation for this Letter, has been made
along these lines in the zero chemical potential limit" in a phenom-
enological model for the Luttinger surface.

A key experimental signature of superconductivity in the
cuprates that any model of pairing in a doped Mott insulator should
inform is the in-plane transfer of spectral weight from high to low
energies, dubbed the colour change’. Specifically, the integrated
weight of the optical conductivity over the lower Hubbard band
scales (below 1eV) increases below the superconducting temper-
ature, whereas the high-energy component (between 1 and 2eV)
decreases. Because the integrated weight determines the number of
charge carriers, the colour change indicates that high-energy scales
contribute to the superfluid density, in contrast to the standard BCS
picture. In addition, the superfluid density is suppressed relative
to its value in BCS theory'“. We show that the HK model exhib-
its both of these features as a direct consequence of Mottness. The
latter arises from just the splitting of the spectrum into lower and
upper bands, while the first is a consequence of dynamical mixing
between the upper and lower Hubbard bands induced by the pair-
ing interaction. As dynamical (hopping-driven) mixing between the
upper and lower Hubbard bands is present in the Hubbard model
as a result of the non-commutativity >*'° of the kinetic and potential
energy terms, our conclusion that dynamical spectral weight trans-
fer (DSWT) is the mechanism for the colour change transcends the
HK model and is a general consequence of Mottness.

Because the HK model is a simplification of the Hubbard model,
a loose analogy (based on the all-to-all interactions) with the
Sachdev-Ye-Kitaev (SYK)'*'* models applied to the strange metal
phase of cuprates is appropriate, because, although they do not
mirror the physics accurately, they do offer controlled analytics on
non-Fermi liquid states. The HK model is probably more powerful
in this regard as it actually models a Mott insulator with a Luttinger
surface that gives rise to a non-Fermi liquid upon doping. What the
HK model lays plain is that DSWT can be separated from the Mott
gap. With this in mind, we perform calculations in the non-Fermi
liquid state and study the superconducting instability through an
exact calculation of the pair-field susceptibility. We then include a
weak pairing interaction and explore the nature of the supercon-
ducting ground state and its elementary excitations, finding funda-
mental differences with the BCS ground state that ultimately arise
from the non-Fermi liquid physics

As in the SYK model”, a key ingredient that makes the
HK and Baskaran’ models tractable is the presence of all-to-
all interactions. In the HK model and the Baskaran model” as well

Department of Physics and Institute of Condensed Matter Theory, University of lllinois at Urbana-Champaign, Urbana, IL, USA.

Me-mail: dimer@illinois.edu

NATURE PHYSICS | VOL 16 | DECEMBER 2020 | 1175-1180 | www.nature.com/naturephysics

175


mailto:dimer@illinois.edu
http://orcid.org/0000-0003-2621-0738
http://orcid.org/0000-0002-6250-9529
http://crossmark.crossref.org/dialog/?doi=10.1038/s41567-020-0988-4&domain=pdf
http://www.nature.com/naturephysics

LETTERS

Hyx = ftzoﬁl%{,(c}gcl,, +he) - szac}gcjg

(1)

RO D W RN AL ALA
the interaction term is not random but a constant, U, and, unlike
SYK, a hopping term (¢) is present between nearest neighbours (j,
Iy that gives the model dimensionality. An additional feature is the
presence of a constraint j, +j,;=j, + j, that the electrons must satisfy
for the interaction term U to be felt. Here, p is the chemical poten-
tial and L7 is the number of lattice sites. Although the SYK model
is tractable only in the limit of a large number of flavours, the HK
model is exactly solvable, as can be seen from Fourier transforming
to momentum space:

Hux = Zka = Zk(fk(”m + ) + Uniy ngy) (2)

Here, the momenta are normalized by the lattice constant a and
summed over a square Brillouin zone [—z, =)? within which
the quasiparticle spectrum &,=¢,—u is set by the dispersion
ex = —(W/2d) 23:1 cosk” with non-interacting bandwidth
W=4dt and offset by a chemical potential u, ng, = c}\wck(, is the
fermion number operator for the mode with momentum k and spin
o=1,1. It is clear that the kinetic and potential energy terms com-
mute. Consequently, momentum is a good quantum number, unlike
the Hubbard model, and all eigenstates have a fixed unfluctuating
occupancy in k-space.

What is surprising about the HK model is that, although the
potential and kinetic energy terms commute, a correlated metal-
insulator transition still exists'. Consider the exact single-particle
Green function

P
Grolin) = = [ dr (cka(7)c}, (0))e™" (3)
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which we plot in Fig. 1a—c. The two-pole structure is reminiscent of
the atomic limit of the Hubbard model, except iw, is now replaced
with iw,—&,. The corresponding density of states shares a mutual
energy region only for U< W. Consequently, a gap (AE=U—-W)
appears in the single-particle spectrum for U> W, resulting in a
Mott insulating state at half-filling (Fig. 1a), with (nz) = 1/2 for all
k. Doping away from half-filling or reducing the interaction strength,
U< W, eliminates the gap or shifts it away from the chemical poten-
tial, leading to a compressible metallic state (Fig. 1b,c). In this metal-
lic state, the momentum occupancy changes discontinuously from
(m) =(ny +ny)=1 for singly occupied momenta in £, to 2 for the
doubly occupied part (£2,) and 0 for the empty region (£2,).

Spin-rotation invariance of the HK model dictates that, although
singly-occupied momenta exist in the metal, they cannot appear as
pure states. The metal is the mixed state consisting of a uniform
ensemble of spin states:

. _ T 7ot
1#6: {ox}) = [ [, chou ] L 1k, 10) (5)

which results in a large ground-state degeneracy. Because of the lack
of mixing between the two Hubbard bands, excitations in the lower
band are created by {y, = ¢;,(1 — mi5) at energy &, and those in the
upper by 1, = ¢ 1z at energy &, + U. As a result, excitations in the
metal are more akin to doublon and holon composite excitations
and hence the metal of the HK model lacks any interpretation in
terms of Fermi-liquid quasiparticles. This can be seen directly from
the retarded Green function:

Gg(k, ) =

G (iwy, — w) =

1
w+i0" — (& +U/2) -

(U2 (6)
0+i0"—(&+U/2)
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when the occupancies are equal. Both real and imaginary parts
of the self-energy diverge at =0 along the surface defined by
&,=—U/2. Such a divergence indicates that the Green function can-
not be derived perturbatively from the non-interacting limit—there
is no Fermi liquid.

The two-pole structure determines the sign changes of the
Green function and is crucial in calculating the Luttinger count
2 0(ReG(k,0)). Except for fine-tuned cases, such as at u=U/2,
where there is exact particle-hole symmetry, or when U=0 where
the model is non-interacting, Luttinger’s theorem is violated in the
HK model and Hubbard models in similar limits"”. The Luttinger
count is decoupled from the true occupancy and can exceed it by a
factor of up to 2 (Fig. 1d). This is evident deep in the doped Mott
insulating regime (Fig. 1b), where 2, is singly occupied but contrib-
utes fully to the Luttinger count when the zeros of the Green func-
tion are above the chemical potential. The violation of Luttinger’s
theorem throughout the phase diagram (Fig. 1d) indicates that the
metallic state of the HK model is incompatible with Fermi-liquid
theory.

Having established that we have a completely controlled
non-Fermi liquid metallic state, we can address the following ques-
tion: is such a state unstable to pairing? To this end, we append the
HK Hamiltonian with an attractive (¢g>0) pairing interaction:

1
H, =—A'A (7)

HZHHK*ng7 p_Ld

where A=,b,= Y c_i ¢ is the s-wave pair creation operator at
zero total momentum. Seeking an analogue of Cooper’s argument,
we first focus on the pair amplitude

ih 5 (GS (1) |bily (¢))
(GS(#)![bx, Hl [y (1))

ih%ak(t =0)

(8)

where |GS) is a metallic state in the zero-temperature ensemble
described by equation (5), and |y) is the state with a single pair
given by

W) =D o, @kbLIGS) )

clarity, we take a maximally polarized

|GS) = (ergz CltTcli) (erQIC£T> |0). (In the Supplementary
Information we show that the zero-temperature Gibbs state recov-
ers the same result.) From

For state for

[br, H = (2& + U(ni +n_yp)) bx

10
B (= g ) S 1o
the equations of motion take on the form
ihd; — 2&, — U(ngy + n_gp))a
(ihdy — 28 — Unky + nip)) a1

=51 —mg —ng)d paw

where (---) denotes an expectation value in the state |GS). A similar
equation can also be derived for the Baskaran'® model.

We solve this equation in the standard way by letting a(f) =™
", (t=0). Dividing by the coefficient on the left-hand side and per-
forming the sum over momentum, we obtain

1— .
1=-£%° (1= +nw)
L ke E — 2&, — U(nkl + n,kﬂ

(12)

as the familiar criterion for a superconducting instability.
In the range of integration, (#;,) =0, resulting in the simplified
expression
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Fig. 1| Single-particle Green functions and phase diagram of the HK
model. a-c, Poles and zeros of the single-particle Green function (equation
(3)). A one-dimensional (1D) tight-binding dispersion is used for simplicity.
Zeros are indicated by dashed blue lines. Poles with weights 0, 0.5 and 1
are indicated by dotted olive, thin orange and bold red lines, respectively.
The upper Hubbard band (UHB) and lower Hubbard band (LHB) are
labelled in a. Regions of occupancy (n,) =i are labelled as 2, for i=0, 1, 2

in ¢. d, Ground-state phase diagram of the HK model. The non-Fermi liquid
covers the entire diagram except for the half-filled Mott insulator for U> W.
Colour represents the ratio of Luttinger count to filling; deviation from 1
(white) indicates violation of Luttinger’s theorem.

w/2
1= fg/ de
"

having converted the sum to an integral weighted by the density
of states p(¢) for the band ¢,. This is, up to the limits of integration
and density of states, exactly of the BCS form. It therefore results in
a bound-state energy E <0 for any g> 0, which we plot in Fig. 2 for
d=2. In the case of half-filled metal (= U/2) in one dimension, for
example, the binding energy,

ple)

o (13)
E —2e+ 2u

Ey = —E~ W(1 — (U/W?)e ™ VI=W/Ws  (14)
is exponentially small in 1/g. The full d-dimensional dependence is
shown in Supplementary Figs. 1 and 2. Hence, the HK model exhib-
its an analogue of the instability Cooper* found for a Fermi liquid
and answers the question affirmatively asked in ref. *°.

The advantage of the HK model is that we can also compute the

pair susceptibility

y(iv,) = / dr " (TA(z )AT> (15)

exactly at all temperatures, although in the following we will empha-
size the low-temperature regime T<< U, W. Here (---), (resp. {---),)
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is an expectation value in the Gibbs state e/Z (resp. e Pk / Z,),
and v, = 2nn/f is a bosonic Matsubara frequency. As we show in the
Supplementary Information, y(iv,) is related to the ‘bare’ suscepti-
bility, y,(iv,) at g=0, through the Dyson equation y = y, + gy,v. Then
the fluctuation propagator L =—gy/y, satisfies the usual equation®

=-—g+tgnl= (16)

Xo—1/8
such that L(w=0) diverges when y,(0)|_;, = 1/g, thereby fixing
the critical superconducting temperature T.. To compute y,, we first

simplify

(TA Zk (Te_ky (z)cxr (7)c )PTC Pl> (17)
=Y (T @eq (@)elie ), (18)
~ > Gk (7)Gy (7) (19)

up to an unimportant subextensive contribution from coincident
terms with k=—k, having used that the ensemble consists only of
Fock states (guaranteed by the preservation of n,, as a good quan-
tum number in the HK model) in the second line, and in the third
line that the Gibbs state e #H1x /Z, factorizes in k-space. We note
that, despite the appearance of equation (19), we have not utilized
Wick’s theorem, which does not apply in general to the HK model.
Writing out the single-particle Green function

gl
~Gio(7) = (et (2)cl, )y = Miaf (~E)e S + (1 —u)  (20)
for & = & and & = & + U, n' = (mz), and nl =1—n¥, and
flw), the Fermi function at temperature T, we have
Xoliva) = 20 + 28" + 25 + 15 (1)
ab flof) +f(@") —1
= n 22
Xo Lde Kkt —kL iv, _wk_w;,k ( )

where the superscripts ab may represent II, uu, lu or ul. Because
of the factors f(w}) + f(w";) — 1, the cross terms y and x4
(between the lower and upper Hubbard bands) contribute no
low-energy spectral weight when T« U and are dropped hereafter.

Using &, =&, and (n,,)=(n,,) and changing variables, we finally
arrive at
tanh 22
= N’ p— 23
0) / dor N'(@) (23)
LN'(w) = > keo,0(@ — &) + > ken,0(@ — &) (24)

15 0,00 — &) + 8(w — &)

Here, N'(w) is an effective density of states, similar to but
not equal to the HK model’s single-particle density of states

N(@),= 72> 7 ImG(k, @ +i0"), which has a factor of 2 rather
than 4 be% ore the sum over the singly occupied region. By the same
manlpulatlons as in the free fermion case, it is clear that y,(0) grows
asIn 1atlow temperature. Hence, for any non-zero pairing strength
% ;((0) diverges at the transition temperature T o< e V/N'(0)g) (see
Supplementary Information). In Fig. 2, the transition temperatures
are calculated explicitly for a variety of parameters.
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Fig. 2 | Superconducting energy scales in two dimensions. a, Cooper

pair binding energy E, at half-filling (x=0). The linear regime

In (E/W) ~ —(g/W) " is achieved at large values of the inverse pair
coupling (g/W). b, Superconducting temperature T. (solid) at pair
coupling g/W=0., over a range of hole dopings x=1-Y, (n,,)/L¢ away
from half-filling. Its qualitative behaviour under doping is given by the mean
density of states p = 1 (p(i) + p(u — U)) (dotted) at the same pair coupling.

We now characterize the ground state of the model in the pres-
ence of a non-zero pairing interaction. We work with the variational
wavefunction

_ Tt z
w) = Hk = ok yibbly + /2

normalized by |x|*+ |y )*+|z/*=1. This is a generalization of
the BCS wavefunction, which corresponds to x; = u}, y, = v3,

= \2uvy. The utility of this generalized wavefunction is that the
state with x,=1forkeQ, y,;=1forkeR,andz,=1forkef, isa
ground state of the HK model. Minimizing the energy variationally
leads to two equations:

X (b +b1,))l0) (25)

g
Exkzk = (x5 — 23) 14 Zp = o (%020 T 2p¥,) (26)

g
Eviea = (2 — yi) EZP = oX%p2p + 2p¥,) (27)
after taking the limit g« U, W. Details are provided in the
Supplementary Information. After a few changes of variables, we
obtain a gap equation

"

1 = %fda)\/%lz
N'(w) = > ke, d(@ — &)+ > ken,0(@ — &) (28)

+2 keo, 0@ — &) +(w— &)
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This is the BCS gap equation except for the effective density of
states N”(w). The solution has A o e 1/ o )8) which is verified
in the Supplementary Information for a specific example. Note that
N'(w) is 1different from N'(w), which controls T, as there is no
factor of 4 before the sum 3, . Because this sum over the sin-
gly occupied region affects the Tow- energy spectra, N' (0)>N'(0)
and the superconducting gap-to-transition temperature ratio
diverges as e¥1%®9 for ¢— 0, in contrast to the universal BCS
result 22 = 3.53... for s-wave pairing in the weak coupling limit.
Therefore desplte apparent mathematical similarities between pair-
ing in the HK model and BCS pairing of free fermions, the pres-
ence of the singly occupied region £, leads to qualitatively distinct
phenomena.

The elementary excitations of a BCS superconductor are
Bogoliubov quasiparticles y,, = tcks — avkcikg. The excitations
of the superconducting state of the HK model with pairing cannot
be the same. This is for the same reason that CL is not an elemen-
tary excitation of the HK model, namely that, in the singly occupied
region, both the upper and lower Hubbard bands have non-zero
spectral weight. On the other hand, the Green functions for the
holon and doublon excitations, ¢, and #,, have weight only in the
lower and upper Hubbard bands, respectively; these composite
operators describe the elementary excitations of the HK model. On
turning on pairing and entering the superconducting state, the new
excitations are given by mixing of the composite operators and their
conjugates:

Vho X V228, — 02l 15 (29)
Yo X Zk”ka V2 s (30)
It is straightforward to check that
Vo lw) =0 (31)
u NI ufl
Wil H ) = (wiHly) + B (32)

2
where EZ/ P = \/fz/ " + A% Therefore, VZ,ZZ are analogous to the

Bogoliubov quasiparticle excitations of a BCS superconductor but
composed of doublons or holons, indicating that the non-Fermi lig-
uid nature of the metallic state carries over into the superconduct-
ing state. To further reveal the role of such excitations, we compute
the spectral function in the superconducting state, treating the pair-
ing interaction (g) at the mean-field level and the Mott interaction
(U) exactly. Plots for the doped Mott insulator and the half-filled
metal are provided in Fig. 3a,b. Here, we see that these excitations
are present in the single-particle spectral function at energies + E;
Where the Hubbard bands cross the chemical potential (w/t=0),
we observe the superconducting gap and associated back-bending
of the dispersions. Therefore, despite the unconventional nature of
the excitations of the superconducting state as discussed previously,
their spectroscopic signatures appear BCS-like.

From the spectral function, we can compute the integrated weight
to see if the colour change’ emerges. Figure 3c attests that the inte-
grated weight of the lower band (w,) in the superconducting state
relative to the weight at g=0 is a monotonically increasing function
of the pair coupling constant, g. The size of this increase is consistent
with the 6% increase seen experimentally’. The origin of this effect
in the HK model is simple. The pairing interaction ruins the com-
mutativity of the kinetic and potential energy terms in equation (7).
This will result in dynamical mixing between the upper and lower
Hubbard bands, which is well documented” to increase the spectral
weight in the lower band as it increases the number of low-energy
degrees of freedom. Conservation of the spectral weight necessitates
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Fig. 3 | Spectral function in the superconducting ground state. a, Doped
Mott state with parameters U/t=38, g/t=1.75, u/t=1. b, Half-filled metal
with parameters U/t=2, g/t=1, u/t=1. Darker colours indicate higher
intensity. Details of the calculation are provided in the Supplementary
Information. ¢, Integrated spectral weight in the lower Hubbard band

(-4 <w/t<4), at chemical potential u/t=1, relative to the value for g=0.
The increase here is consistent with the experimental trends®.

an equivalent decrease in the high-energy part of the spectrum, as
seen experimentally’. Because it is the pairing term that leads to a
breakdown of the integrability of the HK model, DSWT in the HK
model is a direct result of opening the superconducting gap. As the
subsequent curves show in Fig. 3¢, the integrated weight falls off as
1/U, as is expected for dynamical mixing across the Hubbard bands.
Such mixing is a general consequence of Mott physics and hence
transcends the HK model. Such dynamical mixing can certainly be
enhanced by instantaneous pairing interactions as such interactions
involve all energy scales.

The consequences of Mottness on the superconducting
state extend also to the superfluid stiffness. Again treating the
pairing interaction at the mean-field level, we have calculated
the superfluid stiffness in the superconducting ground state in
Fig. 4. As compared to a regular BCS superconductor, the superfluid
stiffness in the HK model is significantly suppressed, particularly
near half-filling. This is a direct consequence of the Mott interac-
tion: proximity to the Mott insulator reduces the kinetic energy and
hence the effective carrier density, which is an upper bound to the
superfluid stiffness. Although models with disorder and fluctua-
tions of the pair-field also lead to a suppression, Mottness super-
cedes all such effects and hence the effect we have found here is
quite general.

Given the recent spate of papers on superconductivity in the
absence of quasiparticles” %, our approach offers a systematic
Hamiltonian-based approach to the breakdown of the quasiparti-
cle picture without invoking randomness. As remarked previously,
recent work'’ on the Luttinger surface applies strictly to the insulator
where the susceptibility appears to diverge, exhibiting SYK dynam-
ics. Our analysis has revealed here that when both upper and lower
Hubbard bands carry spectral weight, the essence of Mottness, the
fundamental excitations of either the metallic or superconducting
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Fig. 4 | Ground-state superfluid stiffness. Solid lines are the superfluid
stiffness for various values of interaction strength U/t and pairing strength
g/t. Dotted lines are proportional to the kinetic energy when g=0,
representing an upper bound on the superfluid stiffness®.

states of a doped Mott insulator cannot be described by conven-
tional quasiparticles.

This is a conclusion that applies also to the cuprates, in which
the spectral weight of the upper Hubbard band in hole-doped com-
pounds has been observed and compared to calculations of the
Hubbard model”. Although we do not know precisely the excita-
tions of the strange metal normal state of cuprates®, there is over-
whelming evidence that they are not Fermi liquid quasiparticles.
These arguments extend this notion to the superconducting state.
Our findings for the HK model and the origin of the colour change
that should hold for the Hubbard model thus challenge the assump-
tion that the appearance of coherent peaks and back-bending in the
spectral function of superconducting cuprates is a signature of regu-
lar Bogoliubov quasiparticles. Conversely, they suggest that detailed
studies of the superconducting state and its excitations can help
unravel the mysteries of the normal state as a general consequence
of ultraviolet-infrared mixing®.

Although the HK model is complex enough to capture zeros of
the Green function and their associated consequences on the metal-
lic state and on the superconducting instability, it does not support
dynamical spectral weight transfer unless pairing is included. A
promising line of inquiry would be to see how stable the present
results are to such dynamical mixing arising from repulsive inter-
actions. Whether a renormalization principle can be established to
show that the excitations on a zero surface are impervious to such
mixing remains an open question.
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