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Because the cuprate superconductors are doped Mott insula-
tors, it would be advantageous to solve even a toy model that 
exhibits both Mottness and superconductivity. We consider 
the Hatsugai–Kohmoto model1,2, an exactly solvable system 
that is a prototypical Mott insulator. Upon either doping or 
reducing the interaction strength, our exact calculations show 
that the system becomes a non-Fermi liquid metal with a 
superconducting instability. In the presence of a weak pairing 
interaction, the instability produces a thermal transition to a 
superconducting phase, which is distinct from the traditional 
state described by Bardeen–Cooper–Schrieffer (BCS) theory, 
as evidenced by a gap-to-transition temperature ratio exceed-
ing the universal BCS limit. The elementary excitations of this 
superconductor are not Bogoliubov quasiparticles but rather 
superpositions of doublons and holons, composite excitations 
that show that the superconducting ground state of the doped 
Mott insulator inherits the non-Fermi liquid character of the 
normal state. An unexpected feature of this model is that it 
exhibits a superconductivity-induced transfer of spectral 
weight from high to low energies, as seen in the cuprates3, as 
well as a suppression of the superfluid density relative to that 
in BCS theory.

Cooper’s4 demonstration that the normal state of a metal is 
unstable to a pairing interaction between two electrons above the 
Fermi surface paved the way to the eventual solution to the prob-
lem of superconductivity in elemental metals such as mercury. In 
modern renormalization group language5,6, the Cooper instability 
is understood as the only relevant perturbation along a Fermi sur-
face given that all renormalizations due to short-ranged repulsive 
interactions are benign. The problem of high-temperature super-
conductivity in copper-oxide ceramics persists because the normal 
state is a doped Mott insulator, a strongly correlated state of matter 
in which no organizing principle such as quasiparticles on a Fermi 
surface can be invoked. The following question thus arises: is there 
an analogue of Cooper’s argument for a doped Mott insulator? Such 
a demonstration would be non-trivial, as the simplest model rel-
evant to the cuprates—the Hubbard model—is intractable in d > 1 
(d the spatial dimension). Given this intractability, we seek a simpli-
fication that permits a definitive answer to the Cooper problem in 
the presence of Mottness.

We demonstrate such an instability for the Hatsugai–Kohmoto 
(HK)1,2 model of a doped Mott insulator. The minimum feature 
of Mottness7,8, thereby setting it apart from a Fermi liquid, is a 
bifurcation of the spectral weight per momentum state into low- 
and high-energy components. Such a bifurcation creates a surface 
of zeros of the single-particle Green function, called a Luttinger 
surface8, and is known to be essential in describing high–low 
energy mixing in doped Mott systems3,7–12. As the HK model is the  

simplest example that captures how quasiparticles (poles of the 
single-particle Green function) on a Fermi surface are converted to 
zeros, any superconducting instability found in such a model could 
ultimately illuminate the solution to the full problem. Recent prog-
ress, in fact part of the motivation for this Letter, has been made 
along these lines in the zero chemical potential limit13 in a phenom-
enological model for the Luttinger surface.

A key experimental signature of superconductivity in the 
cuprates that any model of pairing in a doped Mott insulator should 
inform is the in-plane transfer of spectral weight from high to low 
energies, dubbed the colour change3. Specifically, the integrated 
weight of the optical conductivity over the lower Hubbard band 
scales (below 1 eV) increases below the superconducting temper-
ature, whereas the high-energy component (between 1 and 2 eV) 
decreases. Because the integrated weight determines the number of 
charge carriers, the colour change indicates that high-energy scales 
contribute to the superfluid density, in contrast to the standard BCS 
picture. In addition, the superfluid density is suppressed relative 
to its value in BCS theory14. We show that the HK model exhib-
its both of these features as a direct consequence of Mottness. The 
latter arises from just the splitting of the spectrum into lower and 
upper bands, while the first is a consequence of dynamical mixing 
between the upper and lower Hubbard bands induced by the pair-
ing interaction. As dynamical (hopping-driven) mixing between the 
upper and lower Hubbard bands is present in the Hubbard model 
as a result of the non-commutativity 7,9,10 of the kinetic and potential 
energy terms, our conclusion that dynamical spectral weight trans-
fer (DSWT) is the mechanism for the colour change transcends the 
HK model and is a general consequence of Mottness.

Because the HK model is a simplification of the Hubbard model, 
a loose analogy (based on the all-to-all interactions) with the 
Sachdev–Ye–Kitaev (SYK)15,16 models applied to the strange metal 
phase of cuprates is appropriate, because, although they do not 
mirror the physics accurately, they do offer controlled analytics on 
non-Fermi liquid states. The HK model is probably more powerful 
in this regard as it actually models a Mott insulator with a Luttinger 
surface that gives rise to a non-Fermi liquid upon doping. What the 
HK model lays plain is that DSWT can be separated from the Mott 
gap. With this in mind, we perform calculations in the non-Fermi 
liquid state and study the superconducting instability through an 
exact calculation of the pair-field susceptibility. We then include a 
weak pairing interaction and explore the nature of the supercon-
ducting ground state and its elementary excitations, finding funda-
mental differences with the BCS ground state that ultimately arise 
from the non-Fermi liquid physics

As in the SYK model15, a key ingredient that makes the  
HK and Baskaran2 models tractable is the presence of all-to- 
all interactions. In the HK model and the Baskaran model2 as well
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HHK ¼ �t
P

hj;li;σðc
y
jσclσ þ h:c:Þ � μ
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þ U
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P
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ð1Þ

the interaction term is not random but a constant, U, and, unlike 
SYK, a hopping term (t) is present between nearest neighbours 〈j, 
l〉 that gives the model dimensionality. An additional feature is the 
presence of a constraint j1 + j3 = j2 + j4 that the electrons must satisfy 
for the interaction term U to be felt. Here, μ is the chemical poten-
tial and Ld is the number of lattice sites. Although the SYK model 
is tractable only in the limit of a large number of flavours, the HK 
model is exactly solvable, as can be seen from Fourier transforming 
to momentum space:

HHK ¼
X

k
Hk ¼

X
k
ξkðnk" þ nk#Þ þ Unk" nk#
� 

ð2Þ

Here, the momenta are normalized by the lattice constant a and 
summed over a square Brillouin zone [−π, π)d, within which 
the quasiparticle spectrum ξk = ϵk − μ is set by the dispersion 
ϵk ¼ �ðW=2dÞ

Pd
μ¼1 cos k

μ

I
 with non-interacting bandwidth 

W = 4dt and offset by a chemical potential μ, nkσ ¼ cykσckσ
I

 is the  
fermion number operator for the mode with momentum k and spin 
σ = ↑,↓. It is clear that the kinetic and potential energy terms com-
mute. Consequently, momentum is a good quantum number, unlike 
the Hubbard model, and all eigenstates have a fixed unfluctuating 
occupancy in k-space.

What is surprising about the HK model is that, although the 
potential and kinetic energy terms commute, a correlated metal–
insulator transition still exists1. Consider the exact single-particle 
Green function

GkσðiωnÞ  �
Z β

0
dτ hckσðτÞcykσð0Þieiωnτ ð3Þ

Gkσðiωn ! ωÞ ¼ 1� hnkσi
ω� ξk

þ hnkσi
ω� ðξk þ UÞ ð4Þ

which we plot in Fig. 1a–c. The two-pole structure is reminiscent of 
the atomic limit of the Hubbard model, except iωn is now replaced 
with iωn − ξk. The corresponding density of states shares a mutual 
energy region only for U < W. Consequently, a gap (ΔE = U − W) 
appears in the single-particle spectrum for U > W, resulting in a 
Mott insulating state at half-filling (Fig. 1a), with hnkσi ¼ 1=2

I
 for all 

k. Doping away from half-filling or reducing the interaction strength, 
U < W, eliminates the gap or shifts it away from the chemical poten-
tial, leading to a compressible metallic state (Fig. 1b,c). In this metal-
lic state, the momentum occupancy changes discontinuously from 
〈nk〉 = 〈nk↑ + nk↓〉 = 1 for singly occupied momenta in Ω1 to 2 for the 
doubly occupied part (Ω2) and 0 for the empty region (Ω0).

Spin-rotation invariance of the HK model dictates that, although 
singly-occupied momenta exist in the metal, they cannot appear as 
pure states. The metal is the mixed state consisting of a uniform 
ensemble of spin states:

ΨG; fσkgj i ¼
Y

k2Ω1
cykσk

Y
k2Ω2

cyk"c
y
k# 0j i ð5Þ

which results in a large ground-state degeneracy. Because of the lack 
of mixing between the two Hubbard bands, excitations in the lower 
band are created by ζkσ ¼ cykσð1� nkσÞ

I
 at energy ξk, and those in the 

upper by ηkσ ¼ cykσnkσ
I

 at energy ξk + U. As a result, excitations in the 
metal are more akin to doublon and holon composite excitations 
and hence the metal of the HK model lacks any interpretation in 
terms of Fermi-liquid quasiparticles. This can be seen directly from 
the retarded Green function:

GR
σ ðk;ωÞ ¼

1

ωþ i0þ � ðξk þ U=2Þ � ðU=2Þ2
ωþi0þ�ðξkþU=2Þ

ð6Þ

when the occupancies are equal. Both real and imaginary parts 
of the self-energy diverge at ω = 0 along the surface defined by 
ξk = −U/2. Such a divergence indicates that the Green function can-
not be derived perturbatively from the non-interacting limit—there 
is no Fermi liquid.

The two-pole structure determines the sign changes of the 
Green function and is crucial in calculating the Luttinger count 
2∑kθ(ReG(k,0)). Except for fine-tuned cases, such as at μ = U/2, 
where there is exact particle–hole symmetry, or when U = 0 where 
the model is non-interacting, Luttinger’s theorem is violated in the 
HK model and Hubbard models in similar limits17. The Luttinger 
count is decoupled from the true occupancy and can exceed it by a 
factor of up to 2 (Fig. 1d). This is evident deep in the doped Mott 
insulating regime (Fig. 1b), where Ω1 is singly occupied but contrib-
utes fully to the Luttinger count when the zeros of the Green func-
tion are above the chemical potential. The violation of Luttinger’s 
theorem throughout the phase diagram (Fig. 1d) indicates that the 
metallic state of the HK model is incompatible with Fermi-liquid 
theory.

Having established that we have a completely controlled 
non-Fermi liquid metallic state, we can address the following ques-
tion: is such a state unstable to pairing? To this end, we append the 
HK Hamiltonian with an attractive (g > 0) pairing interaction:

H ¼ HHK � gHp; Hp ¼
1

Ld
ΔyΔ ð7Þ

where Δ = ∑kbk = ∑kc−k↓ck↑ is the s-wave pair creation operator at 
zero total momentum. Seeking an analogue of Cooper’s argument, 
we first focus on the pair amplitude

i_ ∂
∂t αkðt ¼ 0Þ ¼ i_ ∂

∂t hGSðtÞ bkj jψðtÞi
¼ hGSðtÞ bk;H½ j jψðtÞi

ð8Þ

where GSj i
I

 is a metallic state in the zero-temperature ensemble 
described by equation (5), and ψj i

I
 is the state with a single pair 

given by

ψj i ¼
X

k2Ω0
αkb

y
k GSj i ð9Þ

For clarity, we take a maximally polarized state for 
GSj i ¼

Q
k2Ω2

cyk"c
y
k#

  Q
k2Ω1

cyk"

 
0j i

I

. (In the Supplementary 
Information we show that the zero-temperature Gibbs state recov-
ers the same result.) From

½bk;H ¼ 2ξk þ Uðnk# þ n�k"Þ
� 

bk
� g

Ld
ð1� nk" � n�k#Þ

P
k0bk0

ð10Þ

the equations of motion take on the form

ði_∂t � 2ξk � Uhnk# þ n�k"iÞαk
¼ � g

Ld
h1� nk" � n�k#i

P
k0αk0

ð11Þ

where 〈⋯〉 denotes an expectation value in the state GSj i
I

. A similar 
equation can also be derived for the Baskaran18 model.

We solve this equation in the standard way by letting αk(t) = e−iEt/

ℏαk(t = 0). Dividing by the coefficient on the left-hand side and per-
forming the sum over momentum, we obtain

1 ¼ � g

Ld
X

k2Ω0

h1� nk" þ n�k#i
E � 2ξk � Uhnk# þ n�k"i

ð12Þ

as the familiar criterion for a superconducting instability.  
In the range of integration, 〈nkσ〉 = 0, resulting in the simplified 
expression
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1 ¼ �g
Z W=2

μ
dϵ

ρðϵÞ
E � 2ϵþ 2μ

ð13Þ

having converted the sum to an integral weighted by the density 
of states ρ(ϵ) for the band ϵk. This is, up to the limits of integration 
and density of states, exactly of the BCS form. It therefore results in 
a bound-state energy E < 0 for any g > 0, which we plot in Fig. 2 for 
d = 2. In the case of half-filled metal (μ = U/2) in one dimension, for 
example, the binding energy,

Eb ¼ �E  Wð1� ðU=WÞ2Þe�πW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðU=WÞ2

p
=g ð14Þ

is exponentially small in 1/g. The full d-dimensional dependence is 
shown in Supplementary Figs. 1 and 2. Hence, the HK model exhib-
its an analogue of the instability Cooper4 found for a Fermi liquid 
and answers the question affirmatively asked in ref. 19.

The advantage of the HK model is that we can also compute the 
pair susceptibility

χðiνnÞ 
1

Ld

Z β

0
dτ eiνnτhTΔðτÞΔyig ð15Þ

exactly at all temperatures, although in the following we will empha-
size the low-temperature regime T ≪ U, W. Here 〈⋯〉g (resp. 〈⋯〉0) 

is an expectation value in the Gibbs state e−βH/Z (resp. e�βHHK=Z0
I

), 
and νn = 2πn/β is a bosonic Matsubara frequency. As we show in the 
Supplementary Information, χ(iνn) is related to the ‘bare’ suscepti-
bility, χ0(iνn) at g = 0, through the Dyson equation χ = χ0 + gχ0χ. Then 
the fluctuation propagator L ≡ −gχ/χ0 satisfies the usual equation20

L ¼ �g þ gχ0L ¼ 1
χ0 � 1=g

ð16Þ

such that L(ω = 0) diverges when χ0ð0ÞjT¼Tc
¼ 1=g

I
, thereby fixing 

the critical superconducting temperature Tc. To compute χ0, we first 
simplify

hTΔðτÞΔyi0 ¼
X

k;p
hTc�k#ðτÞck"ðτÞcyp"c

y
�p#i0 ð17Þ

¼
X

k
hTc�k#ðτÞck"ðτÞcyk"c

y
�k#i0 ð18Þ


X

k
G�k#ðτÞGk"ðτÞ ð19Þ

up to an unimportant subextensive contribution from coincident 
terms with k = −k, having used that the ensemble consists only of 
Fock states (guaranteed by the preservation of nkσ as a good quan-
tum number in the HK model) in the second line, and in the third 
line that the Gibbs state e�βHHK=Z0

I
 factorizes in k-space. We note 

that, despite the appearance of equation (19), we have not utilized 
Wick’s theorem, which does not apply in general to the HK model. 
Writing out the single-particle Green function

�GkσðτÞ ¼ hckσðτÞcykσi0 ¼ nlkσ f ð�ξlkÞe�τξlk þ ðl ! uÞ ð20Þ

for ξlk ¼ ξk
I

 and ξuk ¼ ξk þ U
I

, nukσ ¼ hnkσi0
I

 and nlkσ ¼ 1� nukσ
I

, and 
f(ω), the Fermi function at temperature T, we have

χ0ðiνnÞ ¼ χ ll0 þ χuu0 þ χ lu0 þ χul0 ð21Þ

χab0 ¼ 1

Ld
X

k
nak"n

b
�k#

f ðωa
kÞ þ f ðωb

�kÞ � 1

iνn � ωa
k � ωb

�k

ð22Þ

where the superscripts ab may represent ll, uu, lu or ul. Because 
of the factors f ðωl

kÞ þ f ðωu
�kÞ � 1

I
, the cross terms χlu0

I
 and χul0

I
 

(between the lower and upper Hubbard bands) contribute no 
low-energy spectral weight when T ≪ U and are dropped hereafter. 
Using ξk = ξ−k and 〈nk↑〉 = 〈nk↓〉 and changing variables, we finally 
arrive at

χ0ð0Þ ¼
Z

dω N 0ðωÞ tanh
βω
2

2ω
ð23Þ

LdN 0ðωÞ ¼ P
k2Ω0

δðω� ξlkÞ þ
P

k2Ω2
δðω� ξukÞ

þ 1
4

P
k2Ω1

δðω� ξlkÞ þ δðω� ξukÞ
ð24Þ

Here, N 0ðωÞ
I

 is an effective density of states, similar to but 
not equal to the HK model’s single-particle density of states 
NðωÞ ¼ 1

Ld
P

k
�1
π ImGðk;ωþ i0þÞ

I
, which has a factor of 

1
2 rather 

than 
1
4 before the sum over the singly occupied region. By the same 

manipulations as in the free fermion case, it is clear that χ0(0) grows 
as ln 1

T
I

 at low temperature. Hence, for any non-zero pairing strength, 
g, χ(0) diverges at the transition temperature Tc / e�1=ðN 0ð0ÞgÞ

I
 (see 

Supplementary Information). In Fig. 2, the transition temperatures 
are calculated explicitly for a variety of parameters.
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Fig. 1 | Single-particle Green functions and phase diagram of the HK 
model. a–c, Poles and zeros of the single-particle Green function (equation 
(3)). A one-dimensional (1D) tight-binding dispersion is used for simplicity. 
Zeros are indicated by dashed blue lines. Poles with weights 0, 0.5 and 1 
are indicated by dotted olive, thin orange and bold red lines, respectively. 
The upper Hubbard band (UHB) and lower Hubbard band (LHB) are 
labelled in a. Regions of occupancy 〈nk〉 = i are labelled as Ωi for i = 0, 1, 2 
in c. d, Ground-state phase diagram of the HK model. The non-Fermi liquid 
covers the entire diagram except for the half-filled Mott insulator for U > W. 
Colour represents the ratio of Luttinger count to filling; deviation from 1 
(white) indicates violation of Luttinger’s theorem.
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We now characterize the ground state of the model in the pres-
ence of a non-zero pairing interaction. We work with the variational 
wavefunction

ψj i ¼
Y

k > 0
ðxk þ ykb

y
kb

y
�k þ

zkffiffiffi
2

p ðbyk þ by�kÞÞ 0j i ð25Þ

normalized by ∣xk∣2 + ∣yk∣2 + ∣zk∣2 = 1. This is a generalization of 
the BCS wavefunction, which corresponds to xk ¼ u2k

I
, yk ¼ v2k

I
, 

zk ¼
ffiffiffi
2

p
ukvk

I
. The utility of this generalized wavefunction is that the 

state with xk = 1 for k ∈ Ω0, yk = 1 for k ∈ Ω2 and zk = 1 for k ∈ Ω1, is a 
ground state of the HK model. Minimizing the energy variationally 
leads to two equations:

ξlkxkzk ¼ ðx2k � z2kÞ
g

Ld
X

p > 0
ðxpzp þ zpypÞ ð26Þ

ξukykzk ¼ ðz2k � y2kÞ
g

Ld
X

p > 0
ðxpzp þ zpypÞ ð27Þ

after taking the limit g ≪ U, W. Details are provided in the 
Supplementary Information. After a few changes of variables, we 
obtain a gap equation

1 ¼ g
2

R
dω N

00 ðωÞffiffiffiffiffiffiffiffiffiffi
ω2þΔ2

p

N
00 ðωÞ ¼ P

k2Ω0
δðω� ξlkÞ þ

P
k2Ω2

δðω� ξukÞ
þP

k2Ω1
δðω� ξlkÞ þ δðω� ξukÞ

ð28Þ

This is the BCS gap equation except for the effective density of 
states N″(ω). The solution has Δ / e�1=ðN 00 ð0ÞgÞ

I
, which is verified 

in the Supplementary Information for a specific example. Note that  
N″(ω) is different from N 0ðωÞ

I
, which controls Tc, as there is no  

factor of 
1
4 before the sum 

P
k2Ω1

I
. Because this sum over the sin-

gly occupied region affects the low-energy spectra, N 00 ð0Þ>N 0ð0Þ
I

 
and the superconducting gap-to-transition temperature ratio 
diverges as e3/(10ρ(μ)g) for g → 0, in contrast to the universal BCS 
result 2ΔTc

¼ 3:53¼
I

 for s-wave pairing in the weak coupling limit. 
Therefore, despite apparent mathematical similarities between pair-
ing in the HK model and BCS pairing of free fermions, the pres-
ence of the singly occupied region Ω1 leads to qualitatively distinct 
phenomena.

The elementary excitations of a BCS superconductor are 
Bogoliubov quasiparticles γkσ ¼ ukckσ � σvkc

y
�kσ

I
. The excitations 

of the superconducting state of the HK model with pairing cannot 
be the same. This is for the same reason that cykσ

I
 is not an elemen-

tary excitation of the HK model, namely that, in the singly occupied 
region, both the upper and lower Hubbard bands have non-zero 
spectral weight. On the other hand, the Green functions for the 
holon and doublon excitations, ζkσ and ηkσ, have weight only in the 
lower and upper Hubbard bands, respectively; these composite 
operators describe the elementary excitations of the HK model. On 
turning on pairing and entering the superconducting state, the new 
excitations are given by mixing of the composite operators and their 
conjugates:

γlkσ /
ffiffiffi
2

p
xkζ

y
kσ � σzkζ�kσ ð29Þ

γukσ / zkη
y
kσ � σ

ffiffiffi
2

p
ykη�kσ ð30Þ

It is straightforward to check that

γu=lkσ ψj i ¼ 0 ð31Þ

ψh jγu=lkσ Hðγu=lkσ Þ
y
ψj i ¼ ψh jH ψj i þ Eu=l

k
ð32Þ

where Eu=l
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξu=lk

2
þ Δ2

q

I
. Therefore, γu=lkσ

I
 are analogous to the 

Bogoliubov quasiparticle excitations of a BCS superconductor but 
composed of doublons or holons, indicating that the non-Fermi liq-
uid nature of the metallic state carries over into the superconduct-
ing state. To further reveal the role of such excitations, we compute 
the spectral function in the superconducting state, treating the pair-
ing interaction (g) at the mean-field level and the Mott interaction 
(U) exactly. Plots for the doped Mott insulator and the half-filled 
metal are provided in Fig. 3a,b. Here, we see that these excitations 
are present in the single-particle spectral function at energies ± Eu=l

k
I

. 
Where the Hubbard bands cross the chemical potential (ω/t = 0), 
we observe the superconducting gap and associated back-bending 
of the dispersions. Therefore, despite the unconventional nature of 
the excitations of the superconducting state as discussed previously, 
their spectroscopic signatures appear BCS-like.

From the spectral function, we can compute the integrated weight 
to see if the colour change3 emerges. Figure 3c attests that the inte-
grated weight of the lower band (wL) in the superconducting state 
relative to the weight at g = 0 is a monotonically increasing function 
of the pair coupling constant, g. The size of this increase is consistent 
with the 6% increase seen experimentally3. The origin of this effect 
in the HK model is simple. The pairing interaction ruins the com-
mutativity of the kinetic and potential energy terms in equation (7). 
This will result in dynamical mixing between the upper and lower 
Hubbard bands, which is well documented7,9 to increase the spectral 
weight in the lower band as it increases the number of low-energy 
degrees of freedom. Conservation of the spectral weight necessitates 
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an equivalent decrease in the high-energy part of the spectrum, as 
seen experimentally3. Because it is the pairing term that leads to a 
breakdown of the integrability of the HK model, DSWT in the HK 
model is a direct result of opening the superconducting gap. As the 
subsequent curves show in Fig. 3c, the integrated weight falls off as 
1/U, as is expected for dynamical mixing across the Hubbard bands. 
Such mixing is a general consequence of Mott physics and hence 
transcends the HK model. Such dynamical mixing can certainly be 
enhanced by instantaneous pairing interactions as such interactions 
involve all energy scales.

The consequences of Mottness on the superconducting 
state extend also to the superfluid stiffness. Again treating the  
pairing interaction at the mean-field level, we have calculated 
the superfluid stiffness in the superconducting ground state in  
Fig. 4. As compared to a regular BCS superconductor, the superfluid 
stiffness in the HK model is significantly suppressed, particularly 
near half-filling. This is a direct consequence of the Mott interac-
tion: proximity to the Mott insulator reduces the kinetic energy and 
hence the effective carrier density, which is an upper bound to the 
superfluid stiffness. Although models with disorder and fluctua-
tions of the pair-field also lead to a suppression, Mottness super-
cedes all such effects and hence the effect we have found here is 
quite general.

Given the recent spate of papers on superconductivity in the 
absence of quasiparticles21–26, our approach offers a systematic 
Hamiltonian-based approach to the breakdown of the quasiparti-
cle picture without invoking randomness. As remarked previously, 
recent work13 on the Luttinger surface applies strictly to the insulator 
where the susceptibility appears to diverge, exhibiting SYK dynam-
ics. Our analysis has revealed here that when both upper and lower 
Hubbard bands carry spectral weight, the essence of Mottness, the 
fundamental excitations of either the metallic or superconducting 

states of a doped Mott insulator cannot be described by conven-
tional quasiparticles.

This is a conclusion that applies also to the cuprates, in which 
the spectral weight of the upper Hubbard band in hole-doped com-
pounds has been observed and compared to calculations of the 
Hubbard model7,27. Although we do not know precisely the excita-
tions of the strange metal normal state of cuprates28, there is over-
whelming evidence that they are not Fermi liquid quasiparticles. 
These arguments extend this notion to the superconducting state. 
Our findings for the HK model and the origin of the colour change 
that should hold for the Hubbard model thus challenge the assump-
tion that the appearance of coherent peaks and back-bending in the 
spectral function of superconducting cuprates is a signature of regu-
lar Bogoliubov quasiparticles. Conversely, they suggest that detailed 
studies of the superconducting state and its excitations can help 
unravel the mysteries of the normal state as a general consequence 
of ultraviolet–infrared mixing29.

Although the HK model is complex enough to capture zeros of 
the Green function and their associated consequences on the metal-
lic state and on the superconducting instability, it does not support 
dynamical spectral weight transfer unless pairing is included. A 
promising line of inquiry would be to see how stable the present 
results are to such dynamical mixing arising from repulsive inter-
actions. Whether a renormalization principle can be established to 
show that the excitations on a zero surface are impervious to such 
mixing remains an open question.
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