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Single-parameter scaling in the magnetoresistance of optimally doped La2−xSrxCuO4

Christian Boyd and Philip W. Phillips
Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street,

Urbana, Illinois 61801, USA

(Received 17 May 2019; revised manuscript received 30 September 2019; published 25 October 2019)

We show that the recent magnetoresistance (MR) data on La2−xSrxCuO4 (LSCO) in strong magnetic fields
B [P. Giraldo-Gallo et al., Science 361, 479 (2018)] obeys single-parameter scaling of the form MR(B, T ) =
f (μH (T )B), where μ−1

H (T ) ∼ T α (1 � α � 2), from T = 180 K until T ∼ 20 K, at which point the single-
parameter scaling breaks down. The functional form of the MR is distinct from the simple quadratic-to-
linear combination of temperature and magnetic field found in the optimally doped iron superconductor
BaFe2(As1−xPx )2 [I. M. Hayes et al., Nat. Phys. 12, 916 (2016)]. Further, the low-temperature departure of
the MR in LSCO from its high-temperature scaling law leads us to conclude that the MR curve collapse is not
the result of quantum critical scaling. We examine the classical two-dimensional (2D) effective medium theory
(2DEMT) previously [A. A. Patel et al., Phys. Rev. X 8, 021049 (2018)] used to obtain the quadratic-to-linear
resistivity dependence on field and temperature for metals with a T -linear zero-field resistivity. It appears that
this scaling form results only for a binary, random distribution of metallic components. More generally, we find a
low-temperature, high-field region where the resistivity is simultaneously T and B linear when multiple metallic
components are present. Our findings indicate that if mesoscopic disorder is relevant to the magnetoresistance
in strange metal materials, the binary-distribution model which seems to be relevant to the iron pnictides is
distinct from the more broad-continuous distributions relevant to the cuprates. Using the latter, we examine the
applicability of 2DEMT to the MR in LSCO and compare calculated MR curves with the experimental data.

DOI: 10.1103/PhysRevB.100.155139

I. INTRODUCTION

A new ingredient uncovered recently in the study of strange
metal physics in strongly correlated electron systems is the
linear in B growth of the magnetoresistance (MR) [1–3]. First
observed [2] in the iron superconductor BaFe2(As1−xPx )2 was
a scaling collapse of the resistivity ρ data through a function
that is a quadrature of B and T in the form [ρ(T, B) − ρ0] =√

(αkBT )2 + (γμBB)2, with dimensionless α and γ and T
and B being the temperature and magnetic field, respectively.
From here on out, we refer to this as quadrature scaling.
This scaling form is intriguing as it suggests a linear in B
scattering rate in addition to the Planckian rate [4] charac-
terizing strange metal physics. Since the first observation,
the iron chalcogenide FeSe1−xSx [5] was also observed to
exhibit linear MR at strong fields [3] near a nematic critical
point, and similar behavior is seen in nonsuperconducting
Ba(Fe1/3Co1/3Ni1/3)2As2 near its magnetic critical point [6].

The magnetoresistance in La2−xSrxCuO4 (LSCO) tells a
different story. An experimental collaboration [1] observed
large, unsaturating quadratic-to-linear MR near optimal dop-
ing which does not obey the quadrature scaling. At low
temperatures, a region of simultaneous T, B linearity exists
in strong fields (B ∼ 50–80 T).

In trying to reconcile the temperature dependence of LSCO
with the iron quadratic-to-linear MR curves, we uncover a
different single-parameter scaling in the LSCO MR data. By
examining the effective medium theories that have been used
to understand B-linear resistivity in inhomogeneous materials,
we show that while such programs can yield quadrature
temperature and field scaling, such a combination applies

to only the case of an equally distributed two-component
system as depicted in Fig. 1(a). In the general case of multiple
metallic constituents [Fig. 1(b)] or in the continuum limit,
we find temperature scaling more closely resembling the
LSCO experiment, i.e., linear in both temperature and applied
magnetic field at low temperature and strong fields. We close
by examining the validity of applying a classical theory to the
MR of LSCO and discuss possible issues.

II. SINGLE-PARAMETER SCALING IN THE
MAGNETORESISTANCE

A great deal of data (see Supplementary Materi-
als of [1]) exist on hole-doped LSCO samples (p =
0.161–0.19) in the presence of strong magnetic fields.
Analyzed in terms of the magnetoresistance MR(T, B) :=
[ρ(T, B) − ρ(T, B = 0)]/ρ(T, B = 0) across the measured
temperatures TC < 50 K < T < 180 K, the experimental data
produce several temperature-dependent curves [Fig. 2(a)].
Hidden within these data is a single temperature and magnetic
field combination μH (T )B which collapses all of these dif-
ferent temperature curves onto a single MR curve [Fig. 2(b)].
In the case of the optimally doped iron superconductor [2]
BaFe2(As1−xPx )2, iron chalcogenide [3] FeSe1−xSx, and [6]
Ba(Fe1/3Co1/3Ni1/3)2As2, the MR was found to collapse onto
a simple function, MR(B) ∼ [

√
1 + #B2/T 2 − 1] = f (B/T ),

in terms of a single scaling parameter (B/T ) related to the
zero-field scattering rate ρ(T, B = 0) ∝ T and a dimensionful
constant # characterizing the material. In contrast, the temper-
ature dependence of the scaling parameter μ−1

H (T ) within the
LSCO data [Fig. 3(b)] appears to be distinct from scattering
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FIG. 1. A visual summary of our investigation into effective
medium theory applied to an inhomogeneous material where each
region contains a T -linear resistivity (note: not to scale). In systems
other than those with two components (equally distributed), the MR
is distinctly not given by the quadrature combination of field and
temperature scales ρ(T, B) − ρ0 =

√
(αkBT )2 + (γμBB)2.

rates [7,8] inferred from the temperature dependence in the
zero-field resistivity ρ(T ) ∼ ρ0 + αT or the high-temperature
Hall angle cot θH (T ) ∼ T 2. Further, if the experimental fit
to the resistivity ρ(T ) = ρ0 + αT is used below Tc, the MR
collapses onto a single quadratic-to-linear curve from T =
180 K all the way down to T ∼ 20 K [Fig. 3(a)], along which
the form of μH (T ) does not appear to be altered from its
high-temperature scaling.

Below T ∼ 20 K, the high-field (50–80 T) MR is also
linear in field but is no longer an extension of the curve
extrapolated from higher temperatures (Fig. 4). Interestingly,
T � 20 K is the regime in which the field derivative of the
resistivity, β := ∂ρ(T, B)/∂B, appears to suddenly become
temperature independent at high field [1]. If the MR is
forced to collapse at low temperatures, then the inferred zero-
temperature resistivity ρ(T, B = 0) must change abruptly
near T ∼ 20 K [Fig. 4(c)], although it could remain linear,
but at the same time does not appear to upturn as would
be expected from a residual, intervening pseudogap order.
Additionally, the field scaling μH (T ) below T = 20 K would
need to be proportional to this zero-field resistivity μ−1

H (T ) ∝
ρ(T, B = 0) in order to be consistent with the saturation of
β to a constant value—a fact that can be seen by differen-
tiating MR(B, T ) and using the single-parameter assumption
MR(B, T ) = f (μH (T )B) when β = const:

∂MR(B, T )

∂B
= μH (T )

df (x)

dx

∣∣∣∣
x=μH (T )B

(1)

= β

ρ(B = 0, T )
, (2)

(
df (x)

dx
, β const

)
⇒ μH (T ) ∝ 1

ρ(B = 0, T )
. (3)

Regardless of whether or not we accept the scaling as-
sumption that MR(B, T ) = f (μH (T )B), either the high-
temperature scaling is broken, or the low-temperature

(a)

(b)

FIG. 2. (a) The unscaled magnetoresistance curves for LSCO
at doping p = 0.19 using data available online (see Supplementary
Materials of [1]). (b) Curve collapse of the magnetoresistance data
at temperatures above Tc by rescaling the magnetic field with a
temperature-dependent factor μH (T ). Plotted are the raw data points
rescaled by the temperature-dependent scale μH (T ) [Fig. 3(b)]. The
overall magnitude of μH (T ) is undetermined.

resistivity [and/or temperature scaling μH (T )] is altered from
its high-temperature form. In the first case where the scal-
ing is broken, a quantum critical explanation for the high-
temperature MR data is no longer viable since the T -linear
resistivity behavior persists. Alternatively, if the scaling is
enforced, it appears that the high-temperature strange metal
is distinct from the T � 20 K state in a strong magnetic
field. The disconnect between high-temperature and low-
temperature MR observed in hole-doped LSCO is also seen
in the electron-doped cuprate La2−xCexCuO4, where the low-
temperature MR exhibits linear-in-field scaling once super-
conductivity is suppressed [9] and, in that case, is the only
regime attributed to quantum criticality. The fact that the
LSCO MR data above T ∼ 20 K are not smoothly connected
to the low-temperature MR, and the resulting inconsistency
with quantum critical scaling at higher temperatures, is one of
our principal conclusions.

The resistivity data at high magnetic fields [1] were
measured across several samples at different dopings p =
0.16–0.19, all of which appear to demonstrate quadratic-to-
linear magnetoresistance above Tc. In contrast to the data
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(a)

(b)

FIG. 3. (a) The collapse shown in Fig. 2(b) extended below
TC using the experimental fit to the zero-field resistivity. (b) The
temperature-dependent magnetic field scale μH (T ). The points in
μH (T ) are calculated by inverting the scaling used to obtain curve
collapse in (a). Error bars represent the accuracy of the curve
collapse fit defined by the minimum of the mean-square error, not
experimental error. The curves are two possible fits to the calculated
points.

taken at p = 0.19, the curve collapse is not as absolute in the
underdoped samples (Fig. 5). The collapse appears to worsen
below p = 0.19 in the more underdoped samples. By contrast,
in the quantum critical iron compounds—BaFe2(As1−xPx )2,
Ba(Fe1/3Co1/3Ni1/3)2As2, and FeSe1−xSx—the simple mag-
netoresistance scaling MR(B, T ) ∼ [

√
1 + #B2/T 2 − 1] con-

tinues over an extended range of dopings, e.g. [2], in
BaFe2(As1−xPx )2 from p = 0.31, optimal doping, to at least
p = 0.41. Further systematic MR data on the overdoped side
of LSCO can clarify what behavior is unique to the doping
p = 0.19.

III. EFFECTIVE MEDIUM THEORY AND ITS
CONTINUUM LIMITS

Previously, a theory collaboration [10] produced a quadra-
ture combination of applied magnetic field and temperature in
the resistivity ρ(B, T ) − ρ0 ∝

√
(αkBT )2 + (γμBB)2 by use

of a two-dimensional effective medium theory (2DEMT). The
particular 2DEMT [11,12] relevant to the current experiments

(a)

(b) (c)

FIG. 4. (a) The magnetoresistance at T � 15 K scaled to have
the slope of the previous temperature fits [Fig. 3(a); with the same
accuracy that determined μH (T )]. Black lines are high-field linear
fits, and the red line is the linear extrapolation of T = 50 K data.
Even if the residual resistivity ρ0 is tuned within experimental
uncertainty ρ0 � 4.5 μ� cm, these three curves do not collapse for
any μH (T ). (b) The result of enforcing single-parameter scaling by
altering the zero-field resistivity ρ(B = 0, T ) below T ∼ 20 K. The
red line is the dashed line demonstrating curve collapse in Fig. 3(a).
(c) The low-temperature resistivity inferred from the curve collapse
in (b). Error bars represent propagated error from uncertainty in
μH (T ) through the definition of the magnetoresistance MR(B, T ),
not experimental error. The red curve represents a linear fit to the
form of the low-temperature resistivity necessary for curve collapse.

is the extension to a tensor conductivity [13] developed in
the mid-1970s. In this approach, one defines the macroscopic
conductivity σ E of a material made up of several constituents
through the disorder-averaged local electric field E0 = 〈E(x)〉
and local current I(x) = σ(x)E(x) by σE E0 = 〈I(x)〉. For
local conducting patches with spherical (in 2D, circular)
symmetry, σ E

xx,xy can be found self-consistently by replacing
the external environment of a local conducting patch by its
average and assuming the internal field is constant. This ap-
proximation relies on the typical length scale of inhomogene-
ity being large enough to treat each region as having a well-
defined local conductivity, e.g., if the domains are suitably
larger than the mean free path, after which the conductivities
are classically averaged using the aforementioned mean-field
approximation.

The distribution of metallic components used to obtain the
quadrature result [10] was chosen to be bivalued. At a fixed
temperature (mobility), the MR of an inhomogeneous, two-
component system is known to be described by the desired
square-root function [14] when the two types of carriers are
oppositely charged and each is present in exactly half the
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FIG. 5. (a)–(g) Collapse of the first two measured MR curves above Tc in the doping range p = 0.161–0.190, where p = 0.190 is the
“optimally doped” sample analyzed in detail previously. The normalized mean absolute error (NMAE) is compared to the smoothed T = 50 K
MR data. The “smoothing” used is a simple moving average over 50 data points. The increase in error at p = 0.168 shown in (c) relative to
p = 0.168 may be due to the bump near the end of the data, similar to the end of the curve in p = 0.161 shown in (a). (h) The smoothed MR
curves at T = 50 K across the doping range p = 0.161–0.190. The curves across this doping range are not continuously transforming into the
MR at p = 0.190. Notably, p = 0.168 jumps up closer to the p = 0.161 curve, possibly related to the increase in error observed in (c).

sample. The results of 2DEMT for same-sign charge carriers
distributed equally throughout the system, as in the current
case, was noted then [14] as well. One of the key points of
inquiry in this work is whether or not this feature is robust to
a more general multisourced distribution.

In that same calculation, the scattering within each of the
two types of metallic regions was assumed to be controlled by
a mobility which captures strange metallic behavior through
μ ∝ μH ∝ τ ∼ 1/T , where μH couples to the magnetic field.
In the standard case, μH B = ωCτ . In Patel et al. [10], different
slopes for the mobility scaling μ−1(T ) ∝ T were used; how-
ever, the results are not affected by this change.

The magnetic field is assumed to affect the current only
through the Lorentz force. The steady-state conditions, similar
to that proposed in the Boltzmann equation in [15], are

I = σ0E + μH (I × B), (4)

I = σ(B) · E, (5)

which lead to local, field-dependent conductivities of the form

σxx(x, B) = σ0(x)

1 + (μH B)2 = μn(x)

1 + (μH B)2 , (6)

σxy(x, B) = (μH B)σxx(x) = μn(x)(μH B)

1 + (μH B)2 . (7)

The zero-field conductivity is assumed to be locally Drude-
like and isotropic σ (x) = n(x)μ. Hence, the full form of the
macroscopic conductivity is given by the ansatz

σ E (B) = μ

1 + (μH B)2

(
nE

xx (μH B)nE
xy

−(μH B)nE
xy nE

xx

)
. (8)
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The 2D tensorial extension of the Bruggeman-Landauer equa-
tion [16] (or see [10,14]) results in the coupled effective
medium equations

0 =
∑
i=1,2

n2
i − (

nE
xx

)2 + (μH B)2
(
ni − nE

xy

)2

(
ni + nE

xx

)2 + (μH B)2
(
ni − nE

xy

)2 , (9)

0 =
∑
i=1,2

ni − nE
xy(

ni + nE
xx

)2 + (μH B)2
(
ni − nE

xy

)2 , (10)

where n1,2 refer to local carrier densities. The exact solution
is transparent in its dimensionless field strength μH B depen-
dence,

nE
xx = √

n1n2

√
1 +

(
n1 − n2

n1 + n2

)2

(μH B)2, (11)

nE
xy = 2n1n2

(n1 + n2)
. (12)

Rescaling by the field and mobility factors to obtain σ E (B),
then inverting, demonstrates that this field scaling carries over
to the resistivity components

ρxx(B) = μ−1

√
1 + ( n1−n2

n1+n2

)2
(μH B)2

√
n1n2

, (13)

ρxy(B) = 2B

(n1 + n2)

(
μH

μ

)
(14)

and also the magnetoresistance

MR(B) =
√

1 +
(

n1 − n2

n1 + n2

)2

(μH B)2 − 1. (15)

If μ−1
H (T ) ∝ μ−1(T ) ∝ ρ(T, B = 0) ∝ T , then

ρ(B, T ) =
√

(const × T )2 + ( n1−n2
n1+n2

)2
(const × B)2

√
n1n2

(16)

indeed scales as a temperature-field quadrature combination;
hence, this procedure provides one possible avenue for un-
derstanding the empirical formula seen in the aforemen-
tioned iron compounds. Since the magnetic field enters this
model only through its dimensionless combination (μH B)
and the conductivity multiplicatively splits into two pieces,
σ (B) = σ0 × σ̃ (μH B), it automatically follows that the mag-
netoresistance admits single-parameter scaling MR(B, T ) =
f (μH B) = f (#B/T ) in this combination. Note that in this
special, equally distributed, discrete binary case, there exists
a stricter single-parameter scaling in the combination of di-
mensionless field strength μH B and the “disorder strength”
η := |(n1 − n2)/(n1 + n2)| in terms of the single parameter
x = (ημB) such that MR(μ, B, η) = √

1 + x2 − 1.
We now extend the same analysis to three-, four-, and

five-component, equally distributed metallic systems. Of the
discrete cases examined, only the binary (two-component)
case has a nonlinear low-temperature resistivity that is asymp-
totically quadratic in temperature (Fig. 6) as T → 0 despite
the fact that each features a qualitatively quadratic-to-linear
magnetoresistance at fixed temperature (and/or field scal-
ing μH ). It may be quite general of quadratic-to-linear MR

FIG. 6. The scaled resistivity ρ(T, B)/ρ0 for evenly distributed,
evenly spaced discrete (a) two-component, (b) continuum limit,
(c) three-component, (d) four-component, and (e) five-component
metallic distributions in a strong magnetic field. Dashed lines are
(a) quadratic and (b)–(e) linear fits to the low-t resistivities, while the
black lines are the zero-field curves for a T -linear resistivity modeled
by ρ(T ) = ρ0 + αT = ρ0(1 + t ).

curves, obtained from an effective medium approximation or
otherwise, to produce low-temperature, high-field T, B-linear
resistivities for systems with a T -linear zero-field resistivity.
The fact that the low-temperature resistivity should generally
be set by the zero-field resistivity in disorder-based models
of the magnetoresistance was emphasized previously in [17].
Consequently, the simple square-root function currently ap-
pears to be unique to the two-component inhomogeneous
system.

We further bolster the generality of simultaneously T, B-
linear regions being typical outputs of an effective medium
approximation by examining the continuum limit of these
equally spaced, evenly distributed discrete systems, i.e., a
system with a box probability distribution governing the
carrier densities. The coupled effective medium equations
become

∫ n0+
n0

n0−
n0

dn
n2 − (

nE
xx

)2 + (μB)2
(
n − nE

xy

)2

(
n + nE

xx

)2 + (μB)2
(
n − nE

xy

)2 = 0, (17)

∫ n0+
n0

n0−
n0

dn
n − nE

xy(
n + nE

xx

)2 + (μB)2
(
n − nE

xy

)2 = 0, (18)

which can be rescaled n, nE
xx,xy → (n/n0), (nE

xx,xy/n0) to de-
pend only on the relative disorder strength 
:

∫ 1+


1−


dn
n2 − (

nE
xx

)2 + (μB)2
(
n − nE

xy

)2

(
n + nE

xx

)2 + (μB)2
(
n − nE

xy

)2 = 0, (19)

∫ 1+


1−


dn
n − nE

xy(
n + nE

xx

)2 + (μB)2
(
n − nE

xy

)2 = 0. (20)
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These integrals can be performed exactly to obtain nonlinear
equations

0 = −nE
xx�1

(
nE

xx, nE
xy, μB,


) − 2nE
xx�2

(
nE

xx, nE
xy, μB,


)
+ 2
[(μB)2 + 1], (21)

0 = (μB)�1
(
nE

xx, nE
xy, μB,


) − �2
(
nE

xx, nE
xy, μB,


)
, (22)

with the functions �1 and �2 defined as

�1 = ln

((
nE

xx

)2 + 2nE
xx(1 + 
) + (μB)2
2

xy + (1 − 
)2(
nE

xx

)2 + 2nE
xx(1 − 
) + (μB)2
2

xy + (1 − 
)2

)

(23)

�2 = tan−1

(
σE + (μB)2(1 + 
 − σH ) + 1 + 


(μB)
(
nE

xx + nE
xy

)
)

− tan−1

(
nE

xx + (μB)2
(
1 − 
 − nE

xy

) + 1 − 


(μB)
(
nE

xx + nE
xy

)
)

.

(24)

For compactness, we have made the substitution 
xy = nE
xy −

1 − 
 in the above formulas. The resistivity obtained from
this continuum limit scales linearly in temperature [Fig. 6(b)]
at strong fields (regime of linear MR) and low temperatures
as found in the discrete cases with more than two metallic
components.

The form of the magnetoresistance in the binary, discrete
case (15) demonstrates that the disorder strength η = (n1 −
n2)/(n1 + n2) enters only coupled to μB. This combination
suggests that the MR curves obtained from the coupled ef-
fective medium equations (19) and (20) might generically de-
pend only on a single combination of some disorder-strength-
dependent function α(η) and the dimensionless magnetic field
strength: MR(η,μH B) = f (α(η)μH B). In continuum models,
the disorder strength can be defined by the ratio of the variance
to the mean of the underlying disorder distribution. For fi-
nite discrete combinations, this additional disorder-dependent
scaling appears to be unique to binary distributions. In the
continuum limit of the discrete cases and for the continuum
Gaussian distribution, however, the single-parameter (disor-
der) dependence appears to reemerge (Fig. 7). Previously [18],
Gaussian disorder distributions were shown to produce MR
curves through either effective medium theory or averaging
random resistor networks that produced equivalent curves
when both horizontal and vertical axes were rescaled by
disorder-dependent terms. The scaling used to separately col-
lapse the calculated Gaussian and box distribution MR curves,
merely tuning a coefficient multiplying the horizontal scale
μH B, is less sensitive to experimental noise and makes a
comparison between data sets of unknown disorder strengths
more direct.

It appears that the types of field and temperature depen-
dence obtained from an effective medium theory involving
equally distributed metallic components can be grouped into
two categories (Fig. 1). In the case of a random, equally
distributed, binary combination, effective medium theory pro-
duces MR curves equivalent to the quadrature scaling seen in
the doped iron compounds. For all other equally distributed

FIG. 7. The MR curves (a) from the continuum limit of the
discrete, equally distributed metallic systems and (b) including a
Gaussian disorder profile. (c) and (d) The MR where the magnetic
field strength is scaled by a disorder-dependent factor α(η) corre-
sponding to the data plotted above. The normalized mean absolute
error [NMAE := (sum of |deviations of fit to data|)/(sum of |data|)]
is obtained by fitting a scaled interpolating function of the less
disordered curves to the calculated values at the strongest disorder
strength η. The discrepancy between left and right magnitudes of the
curves is due to different effective definitions of η in either the box
or Gaussian case.

discrete or continuum cases (including an inhomogeneity
profile governed by a Gaussian distribution), the functional
form of the MR is such that the low-temperature, high-field
resistivity remains T linear toward T = 0. It is tempting to
wonder if the binary case should be excluded as a pathology;
however, accurately predicting the effective conductivity in
binary metallic mixtures (suitably far from any percolative
critical point) is a triumph of effective medium theory [19,20].
When the two metallic components differ in sign of charge
carriers and are present in equal area fractions, the square-root
[Eq. (15)] function is an exact result [14] due to a duality
theorem [21]. For two-component systems with the same
sign of carriers in each domain, another exact result [22]
verifies the asymptotic coefficients of the square-root function
at high field, even if the area fractions are not exactly evenly
distributed. In light of the ability of metallic, two-component
systems to produce the desired quadrature temperature-field
resistivity scaling seen near the quantum critical point of
the aforementioned iron compounds, irrespective of the mi-
croscopic dynamics, be they in terms of Sachdev-Ye-Kitaev
type models or nonquasiparticle descriptions, it may be worth
seriously considering how such a seemingly specific descrip-
tion arises from critical fluctuations between ordered and
disordered metallic phases.

IV. APPLICATION OF EFFECTIVE MEDIUM
THEORY TO LSCO

The prominent features reported within the experimental
measurement of the LSCO data are a quadratic-to-linear

155139-6



SINGLE-PARAMETER SCALING IN THE MAGNETORESISTANCE … PHYSICAL REVIEW B 100, 155139 (2019)

unsaturating MR and the existence of a high-field (B =
50–80 T), low-temperature region where the resistivity dis-
plays a simultaneous T, B-linear change in resistivity. As these
appear to be generic features of effective medium models
with more than two metallic constituents (Fig. 6), we ex-
amine how the assumptions within effective medium theory
are met by the LSCO samples in question. Naturally, this
first requires demonstrating the existence of inhomogeneity,
i.e., charge density variations, at the dopings where the MR
data [1] were obtained. Scanning tunneling microscopy at low
temperatures [23] near optimally doped LSCO observed vari-
ations in the T = 4.2 K local spectral gap, and 63Cu nuclear
quadrupole resonance measurements [24] observed variations
in the local hole density at high temperatures 100 K < T <

300 K across a wide doping range. In a cuprate with similar
inhomogeneity, the local spectral gap was concretely found to
track the local doping level at low temperature in Bi2201 [25],
so we assume this holds in LSCO as well. The two mea-
surements both find a length scale of 5–10 nm associated
with the local inhomogeneities and infer, at low temperatures,
an effectively temperature-independent local doping variation
of ploc = 0.12–0.18 near p = 0.16, which corresponds to a
sizable disorder strength η ≈ 0.125. The mean free path in
optimally doped LSCO is estimated through the standard
resistivity formula [26] for a layered 2D, free-electron system,

l = hd

ρkF e2
, (25)

where d ≈ 0.64 nm is the interlayer distance, ρ is the in-plane
resistivity, and kF is a typical Fermi wave vector. Across
the measured dopings, kF does not change drastically [27];
in the nodal regions kF ≈ 5.3 nm−1, and near the antinodal
regions [28] kF ≈ 7 nm−1. Using the experimental fit to
ρ(T ) and the typical (anti)nodal wave vectors as bounds,
we find that l ≈ 1.3–1.7 nm at T = 180 K and l ≈ 4–6 nm
at T = 50 K and that the mean free path equals roughly
the maximal domain size l ≈ 10 nm at T ≈ 22–29 K. At
high temperatures, the mean free path l is smaller than the
typical size of density variations, which we take as justifica-
tion to apply the classical conductivity averaging procedure
described in effective medium theory. Perhaps comfortingly,
other macroscopic properties are known to vary locally in the
Bi2Sr2Can−1CunO2n+4+x (BSCCO) family of cuprates, such
as the growing evidence in the past decade of nanoscale Fermi
surface variations [29–31].

The experimental fit to the T -linear zero-field resistiv-
ity of optimally doped LSCO ρ(T ) ≈ ρ0 + αT , with α ≈
1.02 μ� cm/K and ρ0 ≈ 1.54 μ� cm, allows for a dimen-
sionless temperature t = αT/ρ0 (α/ρ0 ≈ 0.68 K−1 in the
measured sample) and scaled resistivity ρ/ρ0 to be con-
structed. If we take the inverse temperature scale that couples
to the magnetic field to also scale linearly in temperature,
μ−1

H (T ) ∝ ρ(T, B = 0), then the resistivity ρ(T, B) curves
obtained through an effective medium calculation are quali-
tatively similar to the experimental data measured at strong
magnetic fields and low temperatures (Fig. 8). As found
earlier [Fig. 3(b)], however, the high-temperature (50 < T <

180) LSCO MR data indicate that the field scaling μ−1
H (T )

is nonlinear. As long as this behavior transitions to a linear
form at the lowest temperatures, this scaling can continue to

(a)

(b)

FIG. 8. (a) The dimensionless resistivity ρ(t, μH (t )B)/ρ0 as a
function of dimensionless temperature t and field strength μH (t )B,
where μ−1

H (t ) ∝ ρ(t, B = 0)/ρ0 = (1 + t ), calculated using a Gaus-
sian disorder distribution. Black dashed lines are linear fits to the
low-temperature data. (b) The low-temperature resistivity from ex-
periment, rescaled by ρ0 ≈ 1.5 μ� cm and using t (T ) = (αT/ρ0 ) ≈
[0.68 K−1]T.

hold (Fig. 9). The effect of the high-temperature curvature in
μ−1

H (T ) can be seen by comparing how rapidly the curves at
different field strengths μH (0)B approach one another [Fig. 9
vs Fig. 8(a)].

As mentioned in the previous discussion on MR curve
collapse, a rapidly changing zero-field resistivity around T ∼
20 K—in contrast to a rapidly changing μH (T )—offers one
possible way of reconciling the lack of curve collapse at low
temperature T � 20 K (Fig. 4). Yet the resistivity curves in
optimally doped LSCO (Fig. 8) appear to be smooth around
T = 20 K. Presumably, the single-parameter scaling seen
at higher temperatures must end below T ∼ 20 K. In the
context of a nanoscale inhomogeneity description for the MR
in LSCO, this is to be expected. The calculated mean free
path l is on the order of the largest density domains near
T ≈ 22–29 K, below which, for T = 15, 10, 4 K, curve
collapse appears to be broken and the use of a local, classical
conductivity averaging procedure becomes suspect. Near T ∼
25 K, the field slope of the resistivity, β = ∂ρ/∂B, was found
to saturate to a temperature-independent value. Similar abrupt
changes in the low-temperature MR are seen in a disordered
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FIG. 9. The dimensionless resistivity ρ(t, μH (t )B)/ρ0, where
the temperature scaling is a simple piecewise combination of
μ−1

H (t ) ∝ (1 + t ) for t � 20 and μ−1
H (t ) proportional to the nonlinear

fit μ−1
H (t ) ∝ 1 + at + bt5/3 [Fig. 3(b)] for t � 20. The kink in the

topmost μH (0)B = 20 curve is due to this simple piecewise model.
At higher μH (0)B values, the resistivity will eventually upturn at low
temperature. The variation in the magnitude of μH (0)B arises from
the use of a box disorder distribution rather than a Gaussian as in
Fig. 8(a).

MnAs-GaAs composite [32], where the single-parameter scal-
ing, inferred from ∂ (MR)/∂T ∝ μH (T ) in the B-linear MR
regime, breaks down once the mean free path increases above
the average spacing between the MnAs nanoparticles. In
this compound, the mobility μH (T ) = μ(T ) was measured
separately and found to be proportional to the linear MR
field slope from T = 50 to 300 K. The experimental findings
on MnAs-GaAs were understood within the context of a
random resistor network [33,34] whose conclusions in terms
of single-parameter scaling in terms of μH (T ) are identical to
the 2DEMT description [18] within its regime of validity.

A 2DEMT description of the MR in LSCO does not clarify
why single-parameter scaling should appear only near the
doping p = 0.19. As far as the effective medium theory is

FIG. 10. Comparison of the computed MR curves from effective
medium theory, using either a Gaussian or box distribution, to the
MR curve measured in LSCO doped to p = 0.19 at T = 50 K from
B = 0–80 T.

concerned, the mean doping level is not particularly special;
the only consideration is whether or not the sample contains
inhomogeneity that varies on a sufficiently large scale so that
it can be modeled as a random mixture of conducting patches.
From the 63Cu experiment [24], the variation in local hole
concentration is present in the lightly over- and underdoped
samples and increases on the overdoped side (measured at
p = 0.2, 0.25). Nothing appears unique about p = 0.19 in
terms of the disorder profile. The worsening curve collapse in
the underdoped samples might follow from new mechanisms
associated with the pseudogap order influencing the MR.

While the 2DEMT with a continuum inhomogeneity pro-
file qualitatively reproduces a quadratic-to-linear MR, single-
parameter scaling in the MR, and low-temperature, high-field,
T -linear resistivity and accurately predicts when the curve
collapse breaks down, the MR curves are not exactly identical
to those obtained from the optimally doped LSCO sample
(Fig. 10) even when compared above Tc. If the LSCO MR
were perfectly predicted by the effective medium theory, the
ability to scale out disorder (Fig. 7) should result in calculated
and experimental MR curves that can be scaled onto each
other by only tuning μB. This appears not to be the case since
the calculated and experimentally measured MR curves are
more distinct than MR curves in the underdoped samples were
(Fig. 5). One possible source of error found in the nematic
iron compound [3] is that samples with a smaller residual
resistivity see an enhanced quadratic-in-B MR from standard
Fermi surface orbits associated with Kohler’s rule. In the
optimally doped sample (p = 0.19), the residual resistivity
is lower than in any of the other measured samples at other
dopings (see Supplementary Materials of [1]). As a result,
more traditional orbital mechanisms may be altering the low-
field form of the MR curve as well as any of the following
mechanisms not included: correlations between the density
regions, the Fermi surface structure beyond the isotropic
classical steady-state equation used to model the DC current
response, field-dependent scattering, and mobility variations
associated with the change in local doping level.

V. SUMMARY

We have demonstrated that the magnetoresistance in opti-
mally doped LSCO above TC is governed by single-parameter
scaling MR(B, T ) = f (μH (T )B) for some function f (x) dis-
tinct from the quadrature combination of field and temperature
seen in the resistivity of iron materials near their quantum crit-
ical points [2,3,6]. We stress that this is a model-independent,
empirical fact of the data set [1]. The temperature scaling
μ−1

H (T ) inferred from the curve fitting at high (and low)
temperatures is not directly related to the zero-field resistivity
ρ(T ) ∼ T or the high-temperature Hall angle cotH (T ) ∼ T 2,
although it may be in a crossover regime between the two.

While the T -linear resistivity scaling in LSCO may have
quantum critical origins, the small mean free path of this bad
metal reasonably allows us to analyze its magnetoresistance
within a classical model. We find that an effective medium
approximation, which takes experimental LSCO zero-field
transport and its inhomogeneity profile as inputs, is capable of
producing MR curves that qualitatively replicate the behavior
of LSCO above T ∼ 20 K. At temperatures below T ∼ 20 K,
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the mean free path is no longer smaller than the size of density
variations, and the breakdown of the classical conductivity
averaging procedure occurs simultaneously with the lack of
single-parameter scaling in the MR and the resistivity field
slope β = ∂ρ/∂B saturating to a temperature-independent
value. Interestingly, an inhomogeneous binary combination
of metallic components appears to be unique in producing
the previously mentioned quadrature combination of temper-
ature and field dependence of the resistivity if both metallic
components are characterized by a T -linear zero-field resis-
tivity. This case may be relevant to the iron pnictides, but a
broader range of disorder seems to be necessary to capture the

behavior in the cuprates. Hence, this work seems to hint at two
operative mechanisms for the quadrature magnetoresistance
observed in the pnictides and the unsaturating independent T
and B-linear resistivities in the cuprates.
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