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From the partition function for two classes of classically nonlocal actions containing the fractional
Laplacian, we show that as long as there exists a suitable (nonlocal) Hilbert-space transform the underlying
action can be mapped onto a purely local theory. In all such cases the partition function is equivalent to that
of a local theory and an area law for the entanglement entropy obtains. When such a reduction fails, the
entanglement entropy deviates strongly from an area law and can in some cases scale as the volume. As
these two criteria are coincident, we conjecture that they are equivalent and provide the ultimate test for
locality of Gaussian theories rather than a simple inspection of the explicit operator content.
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I. INTRODUCTION

Locality of the action is a fundamental tenet of quantum
and effective field theory. In fact, the well-known area law
[1–9] for the entanglement entropy (EE) is a direct
consequence of the locality (near-neighbor interactions)
of the action. Deviations then from the area law are
expected to obtain as nonlocal interactions are introduced.
However, this problem is quite subtle as the work of Li
and Takayanagi [10,11] demonstrates. They considered
two nonlocal actions, B) IBðϕÞ ¼

R
ddxϕð−ΔÞγϕ and C)

ICðϕÞ ¼
R
ddxϕeð−ΔÞγϕ with γ ∈ R, where ð−ΔÞγ is the

fractional Laplacian. Although both of these theories
contain nonlocal operators, they display fundamentally
different scaling of the zero-temperature entanglement
entropy:

SB ∼ κd−2
1

ϵ

d−2
þ ; B-theories

SC ∼ κd−2
1

ϵ

d−2þ2γ

þ C-theories ð1Þ

where ϵ is a short-distance cutoff and κd−2 is an arbitrary
function defined on the entangling surface that does not
affect the scaling argument. As is evident, in B-type
theories, the EE has the typical area scaling of a local
QFT, understood as the entropic contribution of UV

degrees of freedom that are entangled across a separating
surface, Σ on the Cauchy slice [1–9]. However, C-type
theories (see also [12]) deviate strongly from this scaling
and can in the case of γ ¼ 1=2 yield a volume law. Hence,
not all nonlocalities in the action give rise to deviations
from area laws. Precisely what is the criterion for the
transition between these types of theories or the conditions
for a change from area to volume EE has never been
clarified. This problem is also relevant to neutron-star
collapse as a transition has been observed [13] between
volume and area laws for the EE.
This paper lays plain the precise types of nonlocalities

that preserve the area law. We find that the minimum
requirement for turning B-type into C-type theories is the
introduction of a (fractional) mass term, hence a minimal
action of the form IðϕÞ ¼ R

ddxðϕð−ΔÞγϕþm2ϕ2Þ. In the
absence of the mass, it is possible to recast all B-type
theories via a Hilbert-space transformation as purely local
theories. The exponential in IC is just an extreme case of
this nonreduction. At the level of the EE, we can think of
the mass term as providing a necessary scale for probing the
fractional structure of the entangling surface. In the absence
of such a scale, the UV physics remains insensitive to the
choice of γ. As a result, we conjecture that these two
criteria, the presence of a local Hilbert-space transforma-
tion and the area law are equivalent and ultimately
determine whether the action for a QFT is truly local.
Although nonlocalities typically indicate that something

went terribly wrong [14–17], for example the non-
Wilsonian procedure of integrating out gapless degrees
of freedom, they are oftentimes fundamental. In fact, a
nonperturbative theory of quantum gravity is unlikely to be
defined through the usual local structures. Rather, locality
likely emerges from a broader organizing principle that
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does not demand it a priori. The Caffarelli-Silvestre (CS)
extension theorem[18] demonstrates that second-order
elliptic differential equations in the upper half-plane in
Rnþ1

þ reduce to one with the fractional Laplacian, ð−ΔÞγ at
Rn, where a Dirichlet boundary condition is imposed. Quite
generally, the fractional Laplacian ð−ΔÞγ (or its conformal
extension, the Panietz operator [19,20]) on a function f in
Rn provides a Dirichlet-to-Neumann map for a function ϕ
in Rnþ1 that satisfies the second-order elliptic differential
equation. In our notation, the fractional Laplacian in the
absence of a mass term should be understood as the
conformal Laplacian raised to a noninteger power. All
the nonlocalities we consider will be constructed from the
fractional Laplacian which has numerous uses in hologra-
phy [20–25] and long-ranged statistical models [26,27].
Note also that Lagrangians with kinetic terms of the form
ϕηðΔÞϕ may be nonlocal in general for certain choices of
the function η even if the Laplacian is not raised to a
fractional power. We do not consider such theories here.

II. PATH INTEGRAL QUANTIZATION

A. Lattice integral

To illustrate our main point in the most familiar of
settings, we consider the two Gaussian integrals,

Z ¼
Z
Rd

dx1 dxde−
1
2
xðMþm21ÞγxþJx ð2Þ

and

Zγ ¼
Z
Rd

dx1 dxde−ð
1
2
xMγxþm2x2ÞþJx ð3Þ

where of course x2 ¼ x · x and M is some diagonalizable
matrix. Formally, Z and Zγ are the very similar in that they
can both be dealt with by replacing ðM þm21Þγ and Mγ þ
m21 by some matrix U and, then solving the Gaussian
integral by diagonalizing U and finally analyzing all the
various eigenvalues. However, there is a major difference
between these two path integrals. The transformation

x → ðM þm21Þ1−γ2 x
J → ðM þm21Þ1−γ2 J ð4Þ

maps Z onto a purely local Gaussian theory up to a constant
that depends only on detðM þm21Þ. As we will see, no
such field redefinition which effectively removes the non-
locality is possible for Zγ. This effective Hilbert-space
transformation plays out in the field quantization and the
computation of the EE.
Despite this difference, both of these theories can be

quantized. We intend to show that

Z ¼ ð2πÞd
detðM þm21Þγ

1
2

e
1
2
J·ðMþm21Þ−γ ·J ð5Þ

and

Zγ ¼
ð2πÞd

detðMγ þm21Þ
1
2

e
1
2
J·ðMγþm21Þ−1·J: ð6Þ

To proceed, we note thatMγ andM commute, and therefore
½M; ðM þm21ÞγŠ ¼ 0 and ½M;Mγ þm21Š ¼ 0. Thus, they
can be simultaneously diagonalized (along with
ðM þm21Þγ and Mγ þm21) and therefore it is possible
to find an orthogonal matrix O ∈ OðnÞ such that
M ¼ O−1DO, where D is a diagonal matrix, Dij ¼ λiδij
and that Mγ ¼ O−1DγO. With this in hand, we find
that ðMþm21Þγ¼O−1ðDþm21ÞγO and Mγþm21¼
O−1ðDγþm21ÞO.
With this result, we can then perform the integrals

explicitly by changing coordinates. To this end, we define
y⊺ ¼ Ox⊺, where y ¼ ðy1;…; ydÞ and x ¼ ðx1;…; xnÞ.
After this change of coordinates, the integral transforms to

Z ¼
Z
Rd

dy1 dyd detðOÞe−1
2
yDγyþJO−1y

×
Z
Rd

dy1 dyde
−
P

d
l¼1

λγly
2
lþ
P

d
l¼1

j0lyl

¼
Yd
l¼1

2π

λγl

1
2

e
−

j02
l

2λ
γ
l ð7Þ

¼ ð2πÞd2
detðMγÞ12 e

1
2
J·M−γ ·J; ð8Þ

where we have set J0 ¼ JO−1 ¼ JO⊺ and have used that
O ∈ OðnÞ, and thus O−1 ¼ O⊺ and detðOÞ ¼ 1. The
same calculation can be tailored to the second formula.
Proceeding, we obtain

Zγ ¼
Z
Rd

dy1 dyd detðOÞe−1
2
yDγyþm2y2þJO−1y;Z

Rd
dy1 dyde

−
P

d
l¼1

ðλγlþm2Þy2lþ
P

d
l¼1

j0lyl

¼
Yd
l¼1

2π

ðλγl þm2Þ
1
2

e
−

j02
l

2ðλγ
l
þm2Þ

¼ ð2πÞd
detðMγ þm21Þ

1
2

e
1
2
J·ðMγþm21Þ−1·J: ð9Þ

The true nonlocality of the second theory, i.e., Zγ , is
manifest when one tries to compare it with the known local
theory (or rather the one known to be equivalent to a local
theory by what we just proved). In doing this, one has to
analyze the expression

BASA, LA NAVE, and PHILLIPS PHYS. REV. D 101, 106006 (2020)

106006-2



e
1
2
J·ðMγþm21Þ−1·J: ð10Þ

In fact one finds, by simple algebra, that, so long as
km2M−γk < 1, that is to say so long as kMγk > m21

1

2
J · ðMγ þm21Þ−1 · J ¼ 1

2

X∞
k¼0

m2kJM−γkJ ð11Þ

thus giving rise to an infinite tower of “local” theories
(hence the nonlocality, which is akin to the structure of the
fractional Virasoro algebra of [28]. The same is also true
for the Lagrangian involving e−Δ

γ
considered by Li and

Takayanagi [10].

B. Functional field integral

The previous analysis enables an immediate quantization
of the underlying field theories. We consider the partition
function

Z½JŠ ¼
Z

Dϕei
R

ddx½1
2
ϕð−Δþm2ÞγϕþJϕŠ: ð12Þ

The field redefinition ψ ¼ ð−Δ2 þm2Þ1−γ2 ϕ followed with

J0 ¼ ð−Δ2 þm2Þ1−γ2 J maps this action onto a Gaussian
model. To obtain the original action under this trans-
formation, it is necessary to integrate the transformed
action by parts. Such an integration by parts rule exists
for any power of the Laplacian but an exponential of the
fractional Laplacian would require infinitely many Hilbert-
space transforms [see Eq. (11)] thereby making any trans-
form to a local theory impossible. As a result, no such field
redefinition exists for C-type theories. As a concrete
example, consider a transformation that localizes the
kinetic term of the action

I ¼
Z
Rd

ddxϕðð−ΔÞγ þm2Þϕþ Jϕ: ð13Þ

Under the field redefinition, ψ ¼ ð−ΔÞ1−γ2 ϕ and the corre-
sponding transformation of the current, the new action
becomes

I0 ¼
Z
Rd

ddxψ −Δþ m2

ð−ΔÞ1−γ ψ þ J0ψ : ð14Þ

As seen clearly, localizing the kinetic term dynamically
antilocalizes the quadratic self-interaction. One could of
course argue that this was a näive expectation and that one
should require that

R
Rd ddxϕðð−ΔÞγ þm2Þϕ ¼ R

PϕPϕ
for some pseudodifferential operator P (identity to which

we refer as integration by parts), which would necessarily
have to have order γ

2
. In fact, one can convince oneself rather

quickly that this is impossible, by writing P ¼ P0 þQ with
P0 arising from the symbol of P and with Q of smaller
order. This is of course the rather obvious fact that a theory
that has a kinetic energy term and “potential” term cannot
be written as a theory that only has a generalized kinetic
energy term.
A sufficient rule for the existence of a localizing Hilbert-

space transformations is

specfÔðγÞg ¼ fÔgγ; ð15Þ

where spec stands for the spectrum of the eigenvalues,
assuming it is discrete, and ÔðγÞ is the generalized kinetic
energy operator. In case Ô has a discrete spectrum (e.g.,
self-adjoint on a compact manifold), this is equivalent to
requiring that ÔðγÞ ¼ Ôγ where Ôγ ¼ 1

Γð−γÞ
Rþ∞
0

dt
t1þγ e−tÔ,

where e−tÔ is the diffusion semigroup associated to Ô.
Equation (15) clearly fails for all C-type theories. Note the
exponential kinetic term in C-type theories violates Eq. (15)
even for γ ¼ 1 in which only the Laplacian is present in the
exponent. In addition, the cos ∂μ kinetic term used by
Levine[12] (which generates volume EE) violates Eq. (15)
thereby lending further evidence that Eq. (15) must hold for
the area law to obtain. Consequently, we propose that an
action I is local if its path integral is equivalent (i.e., equal
up to a constant) to a classically local action. An elementary
calculation (following the calculations we did for Ô ¼ Δ)
should convince the reader that this holds for SðϕÞ ¼R
ϕÔðγÞϕ for an operator ÔðγÞ such that ÔðγÞ ¼ Ôγ

with Ô classically local.
To compute the path integral we will need the fractional

propagator,

ð−Δ2 þm2ÞγDγðx − yÞ ¼ δdðx − yÞ; ð16Þ

The path integral will involve the determinant of such an
operator. This will be evaluated using the standard ζ-
function regularization procedure [29,30]. Let M be an
elliptic, self-adjoint operator, so that it has a complete
spectrum. Let fλng be the sequence of its eigenvalues:
Mϕn ¼ λnϕn. The goal is to define detðMÞ by ζ–function
regularization (essentially following [29]). Given a
sequence of eigenvalues fλng one can form the (general-
ized) zeta function:

ζðsÞ ¼
X
n

λ−sn : ð17Þ

It is a standard fact that ζðsÞ is convergent for ReðsÞ > 2
and that it can in fact be extended analytically to a
meromorphic function throughout the entire complex plane
C with poles only at s ¼ 0 and s ¼ 1. Next observe that on
the one hand

1There is a similar expansion for kMγk < m2, but kMγk > m2

is true away from a finite dimensional vector subspace of the full
Hilbert space.
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d
ds

trðM−γsÞ ¼ d
ds

X
n

λ−γsn ¼ d
ds

ζðγsÞ ð18Þ

and that on the other

d
ds

X
n

λ−γsn ¼
X
n

ð−γ log λjÞλ−γsj ð19Þ

whence, formally, for s ¼ 0

d
ds s¼0

X
n

λ−γsn ¼ −
X
n

λγj; ð20Þ

which equals (formally) log detðMγÞ. We thus define

detðMγÞ ¼ exp
d
ds s¼0

ζðγsÞ ð21Þ

which is the ζ-function regularization of detðMγÞ. This
regularization scheme naturally works for the fractional
Laplacian on a curved manifold, giving rise to a generali-
zation of [30] to fractional Laplacians. The path integral is
now given by

Z½JŠ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð−ΔÞγp eiWðJÞ ð22Þ

where

WðJÞ ¼ −
1

2

Z
Rd

ddxddyJðxÞDγðx − yÞJðyÞ ð23Þ

and Dγðx − yÞ is the fractional propagator defined
in Eq. (16).
For the C-type theories, the partition function is given

instead by

Zγ½JŠ ¼
1

det ðð−ΔÞγ þm2Þ e
iWγðJÞ; ð24Þ

where

WγðJÞ ¼ −
1

2

Z
Rd

ddxddyJðxÞD̃γðx − yÞJðyÞ ð25Þ

and D̃γðx − yÞ is the fractional propagator

ð−Δγ þm2ÞD̃γðx − yÞ ¼ δdðx − yÞ: ð26Þ

Armed with these examples we propose the following
criterion of nonlocality: A QFT is truly nonlocal if there
is no transformation of the Hilbert spaces (even possibly
defined away from a finite dimensional vector space) which
casts the theory as a finite sum of local theories. This
definition clearly sets type-B and type-C theories apart.
Though we are presently limited to Gaussian theories

since wewould like to make contact with EE calculations, it

is natural to consider arbitrary deformations of the frac-
tional Gaussian fixed point. The apparent locality of the
Gaussian fixed point has important implications for the
way one interprets the space of theories surrounding it, in
particular the nontrivial fixed points. Unlike the Gaussian
case that we are presently considering where we can
complement the discussion with EE scaling arguments,
the subtleties of nonlocality in interacting theories may be
put on firm footing first by clarifying not only the analytical
properties (at the level of OPEs) of the theory and the
underlying (nonlocal) CFT [31] but also the algebraic
extension one must make in order to accommodate non-
local CFTs (and the operator algebra in general). The
former has been thoroughly discussed, particularly in the
long-range Ising model literature (Refs. [26] and certain
references therein) while the latter is the subject of Ref. [28]
and future work.

III. ENTANGLEMENT ENTROPY

In this section we determine the leading divergence of
the EE for the nonlocal theory described by Zγ. It is well
established that local quantum field theories [7,8] have
entanglement entropies that scale as the area of the
entangling surface. Though certain features of this scaling
law depend on the specifics of the regulators of the theory,
quite generally, one has that for a local d dimensional field
theory, the leading UV divergence is given by the first of
Eqs. (1).

IV. GEOMETRIC ENTROPY IN A QFT
AND IN A CFT

Let ðM; gÞ be a globally hyperbolic space-time such that
M is diffeomorphic to R × K. Let ∂A ¼ ∂Ā ¼ Σ ⊂ K ⊂ M
be an entangling surface separating two regions A and Ā on
a Cauchy slice, K. We want to calculate the geometric
entropy of the QFT,

Z ¼
Z

Dϕe−S½ϕŠ; ð27Þ

across Σ following Wilczek et al. [4]. For the sake of
simplicity of the argument we assume that the normal
bundle NΣ=K is trivial (i.e., Σ is orientable since it is
codimension 1), and therefore so is the normal bundle
NΣ=M since M is a product manifold. In this discussion the
action, I, corresponds to either theories of type B or C and
is not assumed to be local in any sense. We merely require
that I preserve the Hilbert space decomposition H ¼
HA⊗̂HĀ (⊗̂ reads “completion of the tensor product”)2

A potential issue regarding the compatibility of the

2This is problematic because no such tensor product decom-
position exists from the point of view of algebraic QFT. As is
common in literature, we ignore this technical difficulty by
appealing to the fact that the class of theories we consider are free.
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(fractional) regulator with the Cauchy slice bipartition is
that it is not immediately obvious that this partition induces
a Hilbert space bipartition when the degrees of freedom
are nonlocal. This is resolved by the Caffarelli-Silvestre
extension theorem: The nonlocal theory in question is local
in one higher dimension and can be partitioned there,
provided we give boundary conditions on the entangling
surface extended to this higher dimensional space. Let τ
be imaginary time, so that K ¼ fτ ¼ 0g. The vacuum state
of the QFT is defined as

Φðϕ0Þ ¼
Z
ϕjτ¼0¼ϕ0

Dϕe−I½ϕŠ; ð28Þ

where ϕ0 is a field on slice K ¼ fτ ¼ 0g. We define also
ϕ on time slices slightly deformed away from τ ¼ 0,
K ¼ fτ ¼ 0 g. Since the normal bundle is trivial we can
fix a global unit normal vector n which we imagine
separating K into two regions depending on whether n
is positive or negative (A and Ā resp.). The choice of n also
gives rise to a Hilbert subspace of HK (the Hilbert space of
K). One defines HA to be the space of fields which are
equal to ϕA (the vacuum) on A and analogously HĀ the
ones that are equal to ϕ on Ā. The reduced density matrix
for a region A is defined by

ρA ¼ 1

Z

Z
DϕĀ

0Φ ðϕĀÞΦðϕĀÞ; ð29Þ

where the boundary conditions are such that the trace over
ϕĀ identifies ϕĀþ and ϕĀ

− and acts trivially on the regulated
cut. The field can be thought of as being defined on the
wholeR × K (in Euclidean signature, after a Wick rotation)
except on A (the cut). In order to consider the trace of ρn,
which will be of interest in computing the Rényi entropy,
we need to better understand the geometric construction of
such an object. We consider N to be the total space of the
normal bundle NΣ=M and set τ to be the (unit norm) section
of NΣ=M corresponding to τ. Then M can be identified as
n ¼ 0 and K as n ¼ T ¼ 0 in N . We chose a ramified
(branched) covering of degree n of M ramified at Σ. This
can be thought of as living in N ×R and there are many
nonequivalent such objects which do not affect the calcu-
lation. Call such spaces Cn. The metric on Cn is conic along
Σ with conic angle 2πð1 − nÞ. By the replica trick,

Trρn ¼ Z½CnŠ; ð30Þ

where Z½CnŠ is the Euclidean integral pulled-back to Cn.
In practice, defining well-behaved fields on the covering
space involves a diagonalization procedure in the space of
possibly nonlocal replica fields. As in the usual local case,
if the theory is quadratic, this poses no concern for the class
of theories we consider because ½Δ;ΔγŠ ¼ 0. We then
perform an analytic continuation by choosing any metric

gδ on M which is conic along Σ of conic angle δ ∈ ½0; 2πŠ.
Such a family of metrics cannot be chosen arbitrarily
because, at a minimum, the condition limδ→1 gδ ¼ g must
be met to preserve the n ¼ 1 physics. Then the geometric
entropy is defined as

Sδ ¼ −ð2π∂δ þ 1Þ logZδ; ð31Þ
If δ → 0 is a unique analytical continuation, the geo-

metric entropy, as defined, computes the EE,

S ¼ −TrρA log ρA: ð32Þ
If the theory in question is a CFT, the formal story

remains the same: One must compute the replica partition
function of a CFTd. For d > 2, we simply do not have the
computational machinery to handle such a task except in
very specialized cases. Algebraically, the problem lies in
the fact that while one may formally envision twist operator
insertions that encode the branched structure of replica
space, one cannot carry the analysis further except in
specialized cases [32]. The geometric dual of this algebraic
complication is that, unlike the two dimensional case, the
general ramified geometry that results from the replica trick
does not admit a closed form partition function [33]. As we
shall elaborate upon shortly, when the objective is to
compute the scaling law of the EE, the finite correlation
length ensures that we can compute the replica partition
function asymptotically. In particular, the dominant geo-
metric features that appear in the scaling law are related to
the cone radius and the curvature. If the theory is scale
invariant, such an approach is not possible since the
asymptotics cannot be controlled in a physically mean-
ingful way.

A. EE scaling of massive theory

The effective action, F, on Cδ × Σ, is given by a
Gaussian path integral: − logZδ ¼ log detð−Δγ þm2Þ.
For simplicity, let us assume M ¼ Rd and Σ ¼ Rd−2. To
compute the functional determinant in the effective action,
we use the heat kernel method [34]3 with a hard UV cutoff,

F ¼
Z

∞

ϵ2γ

ds
s
TresΔ

γ
e−sm

2

: ð33Þ

The fractional power of the short distance cutoff is for
dimensional consistency. The heat-kernel method is just as
well suited to study nonlocal theories [36,37] as it is for
local ones. The trace of the heat kernel, ζðsÞ ≔ Tre−sΔ

γ
,

factorizes naturally on the underlying product space. For
the fractional heat kernel on the cone of radius R ∼m−1, the
asymptotics are (cf. the Appendix)

3For a recent review, we refer the reader to Ref. [35] wherein
the authors walk through the computation of the EE as a 1=m
expansion of the heat kernel.
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ζCδ
ðsÞ ¼ s−1=γR2

2π − δ

8π
þ Cs−1=γþ1 þO

s1=γ

R2
: ð34Þ

The constant, C > 0, is related to the curvature of the cone
and does not contribute to the UV scaling of the entropy.
On the flat entangling surface with d − 2 > 0, it may be
computed directly via Fourier transformation,

ζΣd−2ðsÞ ¼ Ad−2

Γðd=2 − 1Þ2γ Γ
d − 2

2γ

Z
∞

0

dppd−3

ð2πÞd−2 e
−sp2γ

¼ s
2−d
2γ

Ad−2

Γðd=2 − 1Þ2γð2πÞd−2 Γ
d − 2

2γ
; ð35Þ

where Ad−2 ¼ AreaðΣÞ. If we assume that we can uniquely
continue Sδ to noninteger δ with ReðδÞ > 0 and take the
limit δ → 0 [38], the EE becomes

S ¼
Z

∞

ϵ2γ

ds
s
½ð2π∂δ þ 1ÞζCδ

Šδ→0
ζΣd−2e−sm

2

¼ κd−2

Z
∞

ϵ2γ

ds
s
s1−

d
2γe−sm

2

; ð36Þ

which implicitly requires m ≠ 0 so that one can define a
cone scale. In the final expression, we labeled the multi-
plicative factors as κd−2. We may infer from the form of
Eq. (36) that the necessary and sufficient condition for an
operator O to have a heat kernel with an area law is

ð2π∂δ þ 1ÞTresOðγÞ ¼ s
2γ
d

X∞
k¼0

aksk; ð37Þ

where the heat kernel trace TresO is calculated on Cδ × Σ.
For small ϵ, the leading-order divergence is an area law

violation:

S ∼ κd−2Γ 1 −
d
2γ

; m2ϵ2γ

∼ κd−2
1

ϵ

d−2γ
þ : ð38Þ

Here we kept only the terms that scale with ϵ and carried
out an asymptotic expansion of the incomplete gamma
function for small ϵ, corresponding to the UV limit. The
volume law appears when γ ¼ 1=2, while the area law for
γ ¼ 1, which is the conventional free-theory limit. This flat
space calculation can be carried out for any entangling
surface in a globally hyperbolic spacetime.

B. EE scaling of massless theory

The heat kernel expansion from which Eq. (36) follows
can be interpreted as a 1=m expansion [35] as the mass
scale is the only meaningful scale in the problem. Thus, one
should not expect m → 0 to produce the correct EE scaling

for the massless case. This issue is not merely an artifact of
the particular asymptotic form we used for the heat kernel,
however. The continuation of Rényi entropy to geometric
entanglement entropy is dependent on a family of conic
metrics. In the limit m → 0, or equivalently, R → ∞, all
conic metrics, gδ, appear to be equivalent near the cone
points. This is of course consistent with the notion that, in a
CFT, rescaling the metric does not alter the (replica)
partition function with which one computes the entropy.
For relevant discussions of geometric entropy in CFTs,
we refer the reader to Refs. [3,39,40].
To make contact with the work of Li and Takayangi, we

consider a fractional CFT on the sphere

I ¼
Z
Sd
ϕð−ΔÞγϕ: ð39Þ

The geometry that follows from the replica trick is a
covering of the sphere ramified at Σ. The structure near the
singular hypersurface is again Cδ × Σ such that when
the deficit angle is 2π, the space is completely smooth.
The heat kernel trace can be decomposed as follows [41]

TrKγðsÞ ¼
Z
Mn⋃iðΣi×CδÞ

ddx trKγðx; x; sÞ

þ
X
i

Z
Σi×Cδ

ddx trKγðx; x; sÞ; ð40Þ

where i indexes the singular points of the replica space. If at
this point, we introduce a correlation length, ξ, and take the
subregion A to be a hemisphere, the large-sphere-radius
limit implies that one can now asymptotically trace the
fractional heat kernel on a space that looks locally like
Cδ ×Rd−2. Thus, to leading order, this recovers the
computation we have carried out in the massive case.
The argument does not hold under ξ → ∞ and hence one
has to carry out the appropriate trace for the chosen
partitioning of the space. As explained in Sec. IV, this
cannot be done exactly. Within the heat kernel framework,
the obstruction is the fact that no closed analytical
expression for the heat kernel trace on the cone exists
[33]. However, exploiting the conformal invariance, we can
rescale the conic metric on S1 × Σ

dr2 þ r2dτ2 þ gΣ →
dr2 þ gΣ

r2
þ dτ2 ð41Þ

where we recognize the first factor as a conformally
compact metric (i.e., asymptotically AdS). Using this
metric in the previously outlined replica trick does not
result in a conic singularity and hence avoids the problem
of requiring a closed form expression for the partition
function on the cone while also making the EE insensitive
to the choice of γ. See Ref. [39] for the details of this
approach.
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Alternatively, one can continue N → 1=N and trace the
heat kernel on the resulting orbifold, Sd=ZN . The details of
the calculation of the EE for the free fractional orbifold
theory has been explicated clearly in Ref. [10] so we do not
repeat it here. The EE scaling is (in our notation)

S ∼ κd−2
1

ϵ

d−2
þ ð 42Þ

thereby leading to an area low of the UV divergence of
entanglement entropy despite the fractional Laplacian.

V. FINAL REMARKS

These calculations highlight also one of the main
differences anticipated in the introduction between the
two types of theories. In the massless theory, one can
probe the entangling surface only up to a given scale,
namely the cutoff scale in a manner independent of γ due to
the invariance of the conic metric under rescalings. On the
other hand, as evident from Eqs. (36) and (38), in the
massive case, one can arbitrarily probe the UV physics.
To conclude, only B-type theories admit a field redefi-

nition or equivalently a Hilbert-space transformation that
exposes the underlying Gaussian nature of the QFT. When
Eq. (15) fails, the theory is truly nonlocal and the related EE
deviates strongly from an area law. In some cases (C-type
theories), we find even a volume law. Whether or not all
deviations [42] from area laws can be understood as a
general case of type-C theories is an unanswered question.
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APPENDIX: FRACTIONAL HEAT KERNEL
ASYMPTOTICS

Here we want to show the asymptotics of the fractional
heat kernel on the 2D cone Cδ. More explicitly we want to
justify Eq. (34). In order to do that we show that there is a
(unique) fractional heat kernel Kγðx; y; sÞ satisfying

( ð∂s − Δγ
xÞKγðx; y; sÞ ¼ 0

lim
s→0þ

Kγðx; y; sÞ ¼ δyðxÞ ðA1Þ

such that as s → 0

Kγðx; x; sÞ ¼ s−1=γ
X
k

akðxÞsk ðA2Þ

uniformly in x. Then the result follows from the same
arguments done for the regular Laplacian on the coneCδ. In
order to prove the existence of such a heat kernel, one must
construct a parametrix starting from the classical result that
the fractional heat kernel in Rd is

KRd ¼ s

ðjx − yj þ s
1
2γÞdþ2γ

: ðA3Þ

Next, specializing to d ¼ 2 and introducing the conic
metric, g,

Kγ ¼
s

ðjx − yjgðyÞ þ s
1
2γÞ2þ2γ

ðA4Þ

where jx − yjg indicates the distance between x and y with
respect to the conic metric g evaluated at the point y
(assuming it is not the vertex of the cone), one can show
that Kγ satisfies

( ð∂s − Δγ
xÞKγðx; y; sÞ ¼ Rðs; x; yÞ

lim
s→0þ

Kγðx; y; sÞ ¼ δyðxÞ: ðA5Þ

The next step is to make Kγ into an exact solution by
summing a convergent series (the Volterra series). This
shows that Eq. (A2) holds. Integrating, one gets the desired
expansion (34). In order to achieve that one makes use of
the form of the metric β2jzj2β−2jdzj2 (in complex coor-
dinates) with δ ¼ 2πβ and therefore that the metric conical
Laplacian is β−2jzj2−2βΔ.
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