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Abstract

In various situations in Floer theory, one extracts homological invariants
from “Morse-Bott” data in which the “critical set” is a union of manifolds, and
the moduli spaces of “flow lines” have evaluation maps taking values in the
critical set. This requires a mix of analytic arguments (establishing properties
of the moduli spaces and evaluation maps) and formal arguments (defining or
computing invariants from the analytic data). The goal of this paper is to iso-
late the formal arguments, in the case when the critical set is a union of circles.
Namely, we state axioms for moduli spaces and evaluation maps (encoding a
minimal amount of analytical information that one needs to verify in any given
Floer-theoretic situation), and using these axioms we define homological invari-
ants. More precisely, we define a (almost) category of “Morse-Bott systems”.
We construct a “cascade homology” functor on this category, based on ideas of
Bourgeois and Frauenfelder, which is “homotopy invariant”. This machinery is
used in our work on cylindrical contact homology.
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1 Introduction

There are now many versions of Floer theory, which are used to define topological in-
variants of various kinds of objects, such as symplectomorphisms, pairs of Lagrangian
submanifolds of a symplectic manifold, contact manifolds, smooth three-manifolds,
etc. In the most basic versions of Floer theory, given an object, usually together
with a generic choice of certain auxiliary data, one obtains a discrete set of “critical
points”, and for each pair of critical points a moduli space of “flow lines” between
them. The invariant is then obtained as the homology of a chain complex which is
generated by the critical points and whose differential counts flow lines, analogously
to classical Morse homology. The proof that the differential has square zero involves
gluing two flow lines when the lower limit of the first flow line and the upper limit of
the second flow line are at the same critical point.

In some less well-behaved Floer theoretic situations, instead of a discrete set of
critical points, one obtains a union of “critical submanifolds”, analogous to the critical
set of a Morse-Bott function on a finite-dimensional manifold. In this case, given two
critical submanifolds, there is still a moduli space of flow lines between them. Now
there are also upper and lower evaluation maps from the moduli space of flow lines
to the two critical submanifolds (or more generally, certain manifolds associated to
them). Two flow lines can be glued only if the lower evaluation map on the first flow
line agrees with the upper evaluation map on the second flow line. The definition of
homological invariants in this situation is more complicated and combines analytical
arguments (establishing properties of the moduli spaces and evaluation maps) with
formal arguments (extracting invariants from the analytic data).

The goal of this paper is to isolate the formal arguments needed to define homo-
logical invariants in such Morse-Bott situations, in the special case when the critical
submanifolds (more precisely the manifolds associated to them) are circles. In par-
ticular, we state axioms for a “Morse-Bott system”, and given a Morse-Bott system,



we define its “cascade homology”. We also define a notion of “morphism” between
Morse-Bott systems, which almost makes Morse-Bott systems into a category. (The
reason for the word “almost” is that two morphisms, such that the target of the
first morphism equals the source of the second, are composable only under certain
transversality conditions.) Given a morphism, we define an induced map on cascade
homology. Finally, we show that the induced maps are functorial, and invariant un-
der “homotopies” of morphisms. The result is a blueprint for defining Floer-theoretic
invariants, by analytically establishing various axioms and then invoking the formal
machinery of this paper. We now describe this in more detail.

1.1 Summary of results

The precise definition of “Morse-Bott system” is given in §2.2. Some key features are
the following. A Morse-Bott system includes a set X; one can think of each element
of S as referring to a “critical submanifold”. For each x € X, there is an associated
closed connected oriented 1-manifold S(z). Given distinct elements x,,x_ € X, and
given an integer d € {0,1,2, 3}, there is a moduli space My(x,,z_) of “flow lines”
from x, to x_, which is a smooth d-dimensional manifold. (In many cases, given x
and x_, there is only one value of d for which this moduli space can be nonempty.
One could also consider moduli spaces for d > 3, but these are not relevant for our
story.) There are smooth “evaluation maps”

ey My(zy, 2z ) — S(zy),
e_: My(xy,x_) — S(z_).

Also, for each z € X there is a local system O, on S(x) locally isomorphic to Z, and
there is an orientation of My(xy,x_) with values in e$O0,, ® e*O,_.

The above data are required to satisfy various axioms. Most importantly, there is
a “compactification” axiom which asserts that M;(z,,z_), as well as My(x,,x_) with
a generic point constraint on ey or e_, or M3(x,,x_) with generic point constraints
on both e, and e_, has a compactification to a compact topological 1-manifold, whose
boundary is explicitly described in terms of fiber products of moduli spaces.

To extract a homological invariant out of this structure, we use the “cascade”
approach. Cascades were introduced by Bourgeois [3], and discovered independently’
by Frauenfelder [11]. The original idea would be to choose a generic auxiliary Morse
function f, on each manifold S(x), and define a chain complex over Z which is gen-
erated by pairs (x,p) where p is a critical point of f,. The chain complex differential

!Some related ideas appeared earlier in [7, 14]. In the work of Bourgeois, the emphasis is on
describing, in Morse-Bott terms, what one would obtain after perturbing to a nondegenerate (non-
Morse-Bott) situation. By contrast, in the work of Frauenfelder, the idea is to define invariants and
prove invariance entirely in the Morse-Bott world. This is closer to our philosophy, since in our main
examples of interest in contact homology, there is no apparent way to perturb to a non-Morse-Bott
situation. See Example 1.2.



counts cascades, which are alternating sequences of gradient flow lines of the Morse
functions f, and elements of the moduli spaces My(z,,x_).

In our situation where each S(z) is a circle, we use a streamlined version of this
construction, following [4], in which one chooses only one base point p, on each circle
S(x). (One can think of this as a limit in which the critical points of f, all approach
pz.) The chain complex has two generators z and ¥ for each z € X. (One can think
of these as a maximum and minimum respectively of f,, which have collided at p,.)
If x and z_ are distinct elements of X, a cascade from 7, or T, to T, or Z_ consists
of a sequence (uq,...,u) for some positive integer k, such that there are distinct
xo, ..., x € X with xy =z, x_ =z, and u; € My, (;_1,2;). Fori=1,... k—1, we
require that the points p,,, e_(u;), and e, (u;+1) on S(z;) are distinct and positively
cyclically ordered with respect to the orientation of S(x;). If we are starting from 7,
then we also impose the point constraint e, (u1) = p,,; and if we are ending at z_,
then we also impose the point constraint e_(ug) = p,_. The differential coefficient
counts such cascades where the total moduli space dimension is the number of point
constraints. When z, = z_, all differential coefficients are defined to be zero, except
that our orientation conventions in §3.2 require that the differential coefficient

0, if O, is trivial,

(02, %) = (1.1)

—2, if O, is nontrivial.

The results in this paper can now be summarized as follows.

Theorem 1.1. (a) Let A be a Morse-Bott system (see Definition 2.1). Then the

cascade homology H:"(A) (see Definition 3.4) is well-defined, independently of
the choice of base points.

(b) Let ® be a morphism of Morse-Bott systems from Ay to Ay (see Definition 2.7).
Then:

(i) The induced map on cascade homology
1 HY(Ar) — HE(Ay)

(see Definition 3.9) is well-defined independently of choices.

(i1) If Ay = Ay and © is the identity morphism (see Example 2.8), then ®, is
the identity map on cascade homology.

(111) If ¥ is a morphism from Ay to As, and if & and ¥ are composable (see
Definition 2.10), then the composition W o ® (see Definition 2.11) satisfies

(Tod), =T, 00, : H?(A) — H?(Ay).



(iv) If ®" is another morphism from Ay to Ay which is homotopic to ® (see
Definition 2.15), then

O, = (), : H?(A)) — H?(A,).

To use this theorem to define Floer-theoretic invariants of some class of objects,
the procedure is as follows: (1) For each object, together with generic auxiliary data
if necessary, define a Morse-Bott system. (2) For two different objects (with auxiliary
data as needed), define a homotopy class of morphisms between the corresponding
Morse-Bott systems. (3) Show that the composition of some morphism in this homo-
topy class with a morphism going in the other direction is homotopic to the identity.

1.2 Examples

The following two examples are the main examples we have in mind and the reason
we are writing this paper.

Example 1.2. Let Y be a closed odd-dimensional manifold. Let A be a contact
form on Y, let R denote the associated Reeb vector field, and let £ = Ker()\) denote
the associated contact structure. Assume that A is nondegenerate and hypertight
(meaning that there are no contractible Reeb orbits). Let J = {J;};c51 be a generic
S'-family of A\-compatible? almost complex structures on R x Y. In [13], we associate
to this data a Morse-Bott system A(Y, \;J) where:

e X is the set of (not necessarily simple) Reeb orbits.
e If x is a Reeb orbit, then:

— S(z) is the image of x in Y, oriented via the Reeb vector field.

— The local system O, comes from the theory of coherent orientations [5, 10],
and is trivial if and only if x is a good® Reeb orbit.

— The grading |z| (see Definition 2.1) is the parity of the Conley-Zehnder

index of z.

e If x, and z_ are distinct Reeb orbits, let M?(z,, 2_) denote the moduli space of
J-holomorphic cylinders from . to z_, i.e. the set of maps u : Rx S? - RxY

2An almost complex structure J on R x Y is A-compatible if J sends ¢ to itself, such that J is
compatible with the linear symplectic form dA on ; J is invariant under translation of the R factor;
and J(0s) = R, where s denotes the R coordinate.

3As in [9], a Reeb orbit x is good if z is not an even-degree multiple cover of a Reeb orbit 2’ for
which the Conley Zehnder indices of x and 2’ have opposite parity.



satisfying the equations

8su + Jtﬁtu = 0,

SErinoo mru(s, -) = +00,

lim 7yu(s,-) is a parametrization of z,
s—+00 -

modulo R translation in the domain. Let /\/l‘g(m, x_) denote the set of elements

of M*(x,,z_) with Fredholm index d. We then have
Md(x"r? I—) = M£+1(ZE+, ZE_)/]R,

where R acts by translation of the R factor in the target. The compactifications
of these moduli spaces are defined by adjoining “broken holomorphic cylinders”.

e The evaluation map e4 sends u — lim, 4 7Ty (u(s,0)).

Analytic arguments in [13] show that A(Y, \;J) satisfies the axioms of a Morse-
Bott system. It then follows from Theorem 1.1(a) that the Morse-Bott system
A(Y, \;J) has a well-defined cascade homology. This cascade homology is the nonequiv-
ariant contact homology of (Y, A, J), which we denote by NCH, (Y, \;J).

To prove that nonequivariant contact homology* depends only on the contact
structure, we show in [13] that if A’ is another hypertight contact form with Ker(\) =
¢, and if J is a generic S'-family of A’ almost complex structures, then there is a mor-
phism of Morse-Bott systems (obtained by counting holomorphic cylinders in a com-
pleted symplectic cobordism) from A(Y, \;J) to A(Y, N;J), which is well-defined up
to homotopy of Morse-Bott systems. Thus by Theorem 1.1(b), we obtain a canonical
map

NCH,.(Y,\;]) — NCH,(Y',N;T). (1.2)

Finally, we show in [13] that the composition of one of the morphisms from A(Y, X;J)
to A(Y, N;J') with one of the morphisms going in the other direction is homotopic to
the identity. It then follows from Theorem 1.1(b) that the map (1.2) is an isomor-
phism. We conclude in [13] that nonequivariant contact homology is an invariant of
closed contact manifolds (Y, &) that admit nondegenerate hypertight contact forms.

Example 1.3. If Y is a closed manifold and £ is a contact structure on Y which
admits a nondegenerate hypertight contact form, a variant of the above construction
is used in [13] to define the S'-equivariant contact homology CHS' (Y, €). Again, the

4Nonequivariant contact homology is a contact analogue of the (Morse-Bott) Floer theory for
autonomous Hamiltonians studied by Bourgeois-Oancea [6]. The paper [6] identified this Morse-
Bott Floer theory with the Floer theory for a (non-Morse-Bott) nonautonomous perturbation of the
Hamiltonian. In our contact situation we cannot make an analogous non-Morse-Bott perturbation,
so if we want to prove that nonequivariant contact homology is a topological invariant, we need to
work entirely within the Morse-Bott world.



analysis in [13] produces Morse-Bott systems, morphisms, and homotopies, and then
Theorem 1.1 gives an invariant (of closed contact manifolds that admit nondegenerate
hypertight contact forms).

Example 1.4. A more classical example arises when Z is a closed smooth manifold,
f:Z — Ris a Morse-Bott function whose critical set is a union of 1-manifolds, and
g is a generic metric on Z. One can then define a Morse-Bott system where:

e X is the set of components of the critical set of f.
e If z € X, then:

— S(z) is the component x, with an arbitrary orientation.

— The local system O, is the orientation bundle of the bundle of unstable
manifolds of the critical points in S(x). That is, if p € S(x), and if D(p)
denotes the unstable manifold of p, then

O.(p) = Hina@)(D(p), D(p)\{p})-

Here ind(x) = dim(D(p)) denotes the (lower) Morse index of the compo-
nent x.

e Let x; and z_ be distinct components of the critical set. Then My(z,,z_) is
nonempty only if d = ind(z) —ind(x_). In this case, My(x,,z_) is the moduli
space of maps v : R — Z satisfying the equations

7'(s) = VI(v(s),
lim ~(s) € S(xz).

s—+0o0

Here we mod out the set of maps v by R translation in the domain. The
compactifications of these moduli spaces are defined by adjoining “broken flow
lines”.

e The evaluation map e sends v — limgyo (s).

The cascade homology of this Morse-Bott system is canonically isomorphic to the
singular homology of the manifold Z. Indeed, following [3], one can perturb the
Morse-Bott function f to a Morse function f’, such that the cascade chain complex
is canonically isomorphic at the chain level to the Morse complex of (f’, g), with each
component of the critical set of f contributing two critical points of f’, both close to
the base point used to define the cascade chain complex. See e.g. [2].



1.3 Comparison with other approaches

Remark 1.5. Zhengyi Zhou [15] has independently developed an abstract Morse-
Bott theory which is similar in spirit to what we are doing here, but applicable in
different situations. He defines a “flow category”, after work of Cohen-Jones-Segal
[8], which is related to our notion of “Morse-Bott system”. In a flow category, the
“critical submanifolds” can have arbitrary dimension, unlike the Morse-Bott systems
in this paper which only have one-dimensional critical submanifolds. However a flow
category is also required to satisfy strong analytic assumptions, in particular that
the moduli spaces have compactifications which are smooth manifolds with corners;
while we make weaker analytic assumptions, in which the only compactifications
that arise are topological 1-manifolds with boundary. Zhou defines a kind of Morse-
Bott cohomology out a flow category using de Rham theory, and in particular with
coefficients in R. One can presumably also set up cascade homology over Z in this
setting.

Remark 1.6. There is also an older approach to Morse-Bott theory due to Fukaya
[12]. (See [1] for a variant of this for Morse-Bott functions on finite-dimensional
manifolds.) The idea is to define a chain complex which consists of appropriate
chains in the (manifolds associated to the) critical submanifolds. The differential is
the sum of the usual boundary operator on chains, plus a term which consists of a
pullback-pushforward of chains over the moduli spaces. This approach has the nice
feature that it does not involve any choice of base points. One can implement this
theory for Morse-Bott systems and prove that it is canonically isomorphic to cascade
homology. However we have omitted this story in order to keep this paper to a
reasonable length.

1.4 The rest of the paper

In §2, we define the notions of Morse-Bott system, morphism of Morse-Bott systems,
composition of morphisms, and homotopy of morphisms. We also prove that the
composition of morphisms is a morphism. We have endeavoured to make a minimum
of assumptions, with the result that the definitions are somewhat long. In many “real-
life” situations, one knows stronger transversality and compactification properties
which are simpler to state. See the remarks in §2.2.

In §3 we set up cascade moduli spaces and prove their key properties. We use
these to define the cascade homology of a Morse-Bott system, as well as a map on
cascade homology induced by a morphism of Morse-Bott systems. We prove that the
induced maps are functorial, and invariant under homotopy of morphisms. Finally,
we show that the above constructions do not depend on the choice of base points.
The conclusion in §3.11 reviews where all of the points in Theorem 1.1 are proved.

Acknowledgments. We thank Zhengyi Zhou for helpful conversations.



2 Morse-Bott systems

In this section we give the precise definitions of “Morse-Bott system”, “morphism” of
Morse-Bott system, and “homotopy” of morphisms. We also define the composition
of “composable” morphisms and prove that this is a morphism.

2.1 Conventions
2.1.1 Orientation of level sets

If X is an n-dimensional oriented manifold, if S is an oriented 1-manifold, if f : X — S
is a smooth map, and if p € S is a regular value of f, then we orient f~'(p) using the

“derivative first” convention. This means that if z € f~!(p), and if (vy,...,v,) is an
oriented basis for T, X such that df,(v1) > 0, then (vs,...,v,) is an oriented basis for
T(f~ ().

2.1.2 Orientation of fiber products

Let X and Y be oriented manifolds of dimension m and n respectively, let S be
an oriented 1-manifold, and let e : X — S and ey : Y — S be smooth maps.
Suppose that the fiber product X xg Y is cut out transversely. We then orient this
fiber product as follows. Given (z,y) € X x Y with e_(z) = e, (y), choose (uy,v;) €
T,X ®T,Y such that de_(u;) — dey(v1) > 0 with respect to the orientation on S.
Choose (u;, v;)i=2,...m+n With de_(u;) = de (v;) such that (uy,v1),. .., (Untn, Umin) 18
an oriented basis for T, X ®T,Y. Then (uz,v2), ..., (Umtn, Umsn) is an oriented basis
for T(, ) (X xsY) if and only if m is odd.

This convention is chosen so that fiber product is associative. Namely, if Z is
another oriented manifold, if S is another oriented 1-manifold, and if e_ : Y — 5’
and e, : Z — S’ are smooth maps, then we have an equality of oriented manifolds

XXS<YXS/Z):(XXSY) XS’Z (21)

whenever all fiber products in this equation are cut out transversely.
Another nice property of this convention is that when X or Y is equal to S, with
e_ or e, equal to the identity map, we have

XXSSZX,

as oriented manifolds.
Also note that if X or Y is a positively oriented point p € S, and if e_ or e,
respectively is the inclusion {p} — S, then we have

{p} xsY =e'(p) €Y,

()IRUOIY g {p) = 7l (p) € X 2

9



as oriented manifolds.
If X and/or Y have boundary, then the boundary (codimension 1 stratum) of the
fiber product X xgY is given by

(X xgY) = (0X) xgY U (=1)ImX)=1X 5 ¢ oY, (2.4)

2.1.3 Compactifications

Let M be a smooth oriented 1-manifold without boundary. In this paper, we define a
“compactification” of M to be a compact oriented topological 1-manifold M, possibly
with boundary, such that M is an open subset of M, the orientation of M restricts
to the orientation of M, and M\M is finite.

Note that if M is a compactification of M, then M\M contains dM, but M\M
might also contain finitely many additional points. For example, under the above
definition, the closed interval [0, 2] is a compactification of the union of open intervals
(0,1) u (1,2). Here 1 is an “extra point” in the compactification which is not in the
boundary. We need to allow such points in order for composition of morphisms of
Morse-Bott systems to work; see Proposition 2.12 below.

2.2 The fundamental definition
Definition 2.1. A Morse-Bott system is a tuple (X, |- |, S, O, M, es) where:

e X is a set.

o || is a function X — Z/2 (the “grading”).

S is a function which assigns to each x € X a closed connected oriented 1-
manifold S(z).

e O assigns to each x € X alocal system O, over S(z) which is locally isomorphic
to Z.

e For d e {0,1,2,3} and z,,x_ € X distinct, My(x,,z_) is a smooth manifold of
dimension d (the “moduli space”).

o e, My(xy,x_) — S(xy) and e_ : My(xy,z_) — S(x_) are smooth maps (the
“evaluation maps”).

e My(zy,2_) is equipped with an orientation with values® in e* O0,, ® e* O, .

We require these moduli spaces and evaluation maps to satisfy the Grading, Fiber
Product Transversality, Finiteness, and Compactification axioms below.

5If M is a smooth manifold and O is a local system over M which is locally isomorphic to Z,
then an “orientation of M with values in O” means a trivialization of Oy; ® O, where Oy, denotes
the orientation sheaf of M.

10



(Grading) If My(z4,2z_) is nonempty, then

d=|z,|—]zr_| mod 2. (2.5)

(Fiber Product Transversality) If 21, x9, 23 € X are distinct and dy, dy are nonnega-
tive integers with dy + dy < 3, then the fiber product

Md1 (xla fL‘Q) XS(CCQ) Md2 ($27 ZL'3)
is cut out transversely.

(Finiteness) For each 25 € X, there are only finitely many tuples (k, x1, ..., zx) where
k is a positive integer and xy,...,xr € X, such that there exist dy,...,dy €
{0,1,2,3} with My, (z;—1,2;) # & foralli=1,..., k.

To state the Compactification axiom, given p4 € S(x4), define the following three
subsets of My(z4,x_):

Md(x-i-ap-‘r?x—) - €Il(p+)’
Md(ervxfup*) = 6:1(]?,), (26)
Md(x-i-ap-i-ax—ap—) = ell(p-l-) N e:l(p—)‘
Convention 2.2. If p, is a regular value of e, then we orient My(x,,p;,x_) as
a level set of e,. If p_ is a regular value of e_, then we orient My(x,,z_,p_) as

minus a level set of e_. If (p,,p_) is a regular value of e, x e_, then we orient
My(xy,pe,z_,p_) as a level set of e, on My(x,z_,p_).

(Compactification) Let z,,z_ € X be distinct, and let (p;,p_) € S(z;) x S(x_) be
generic. “Genericity” includes but is not limited to the following:

e p. is a regular value of all evaluation maps e, : My(zy,x9) — S(zy) for
d < 2.

e p_ is a regular value of all evaluation maps e_ : My(zg,z_) — S(z_) for
d<?2.

e (py,p_) is a regular value of
er xe—: My(xy,x_) — S(zy) x S(x_)

for d < 3.

e All fiber products on the right hand sides of (2.8), (2.9) and (2.10) below
are cut out transversely.

Then:

11



(a) The moduli space My(zy,z_) is compact, i.e. finite.

(b) The moduli space M;(x,,x_) has a compactification M (x,,x_), whose
boundary has an identification®

OMy(z,v) = || (1) My, (21, 20) Xa0) Ma_(zo,2-).  (2.7)

TOFT4,T—
d+ +d_=1

(¢c) The moduli space My (x4, z_,p_) has a compactification My(zy,z_,p_),
whose boundary has an identification

5M2($+,x_,p_) = ]_[ (—1)d+Md+(:p+,1‘0) X (o) Mgy (zo,2-,p-).
i

(2.8)
The moduli space M(x,,py,x_) has a compactification My (24, ps, z_),
whose boundary has an identification

5M2(l’+,p+,$_) = ]_[ (_1)d+_1Md+ (l'-t,-,p-i-,l'o) XS(xo) Md_ (l’(),flﬁ'_).
TOFL 4, T
dy+d_=2

(2.9)

(d) The moduli space Ms(x., py,z_,p_) has a compactification Ms(x,,py,z_,p_),
whose boundary has an identification

(/)M3<.T+,p+,$,,p,) = H (_1)d+71Md+<x+7p+7'r0)XS(xo)Md,<x07x*7p7)'
ad T

(2.10)
In each of the identifications (2.7), (2.8), (2.9), and (2.10), the boundary ori-

entation on the left hand side agrees with the fiber product orientation on the
right hand side. In (b), (c), and (d), the evaluation maps e on M;(z,,z_) etc.
extend continuously to the compactifications, and on the boundaries satisfy

ex(uy,u-) = ex(ug).

(e) The right hand sides of (2.7), (2.8), (2.9) and (2.10) would not include
any extra points if we used compactifications. For example, for (2.7), this
means that if x,,xq, z_ are distinct, then

MO(J:Jr?a:O) XS(JCO) (M1<.T0,$,)\M1(x0,x7>) = @7
(M1 (24, 20)\Mi(21,20)) X8(z0) Moo, 7_) = &.
6More precisely, we should say that part of the data of the Morse-Bott system is the com-

pactification M (x,,r_) and the identification (2.7). A similar remark applies to the rest of the
compactification axiom here and other compactification axioms later.

12



For (2.8), this means that if x,,xy,z_ are distinct, and if p_ € S(z_) is
generic, then

Mo (24, o) XSQm)(ﬁzﬁ(ﬁo,x—,p—)\ﬂdé($07f—,p—)) =,
(M1($+,$0)\M1(I+;Io)) X S(zo) M1($07$—7p—) = .

Remark 2.3. The Grading axiom is needed only to obtain a Z/2 grading on the
cascade homology of a Morse-Bott system. One can also modify this axiom to obtain
a relative Z/N-grading on the cascade homology; to do this, one requires that the
grading difference of two elements of X is a well-defined element of Z/N, such that
My(z,,x_) is nonempty only if |z, | — |[xr_| =d mod N.

Remark 2.4. In many cases of interest, the following stronger version of the Finite-
ness axiom holds: there is an “action” function A : X — R such that (i) for each
L € R, there are only finitely many x € X with A(x) < L, and (ii) if My(z,,2_) # &
then A(xy) > A(z_).

Remark 2.5. A stronger version of parts (b)—(d) of the Compactification axiom
would be that My(z,z_) has a compactification to a smooth manifold with corners
My(xy,z_) for d = 1,2, 3, whose codimension 1 stratum is given by

IMa(zeo) = [ (D)% My, (4, 20) Xsa0) Ma_ (0, 2-).
TOFT4,T—
dy+d_=d
Equations (2.7), (2.8), (2.9), and (2.10) would follow from this, and this is our moti-
vation for the signs in those equations.

Remark 2.6. Part (e) of the Compactification axiom holds automatically if we know
two additional properties: (i) Each of the compactifications in (2.7), (2.8), (2.9), and
(2.10) does not include any additional points aside from the boundary points of the
compactification. That is, as a set we have My (v,, v )\Mi(z,,7r_) = OMy(z,,x_)
etc. (ii) Fiber Product Transversality also holds for triple fiber products when the
sum of the dimensions of the factors is at most 3.

2.3 Morphisms of Morse-Bott systems

We now define a morphism of Morse-Bott systems. This is very similar to the def-
inition of a Morse-Bott system, but some signs are changed in the compactification
axiom: compare equations (2.5), (2.7), (2.8), (2.9), and (2.10) with equations (2.11),
(2.12), (2.13), (2.14), and (2.15) respectively. For more about these sign changes see
§3.5.

Definition 2.7. Let A1 = (Xl, |'|1, 517 Ol, Mi, Gli) and Ag = (XQ, |"2, SQ, 02, va 61)
be Morse-Bott systems. A morphism ® of Morse-Bott systems from A; to A, consists
of the following data for each x; € X1, x5 € X5, and d € {0, 1,2, 3}:
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e A “moduli space” ®4(x1,xs), which is a smooth manifold of dimension d.

e “Evaluation maps”, which are smooth maps

4 Py, ) —> S1(21),
_ o Dy(xq, x9) —> Sa(a).

e An orientation of ®4(x1,x,) with values in e* O, ® e* 02, .

These are required to satisfy the following Grading, Finiteness, Fiber Product Transver-
sality, and Compactification properties:

(Grading) If ®4(x1,x2) is nonempty, then

d= ’.1’1’1 - |$2|2 +1 mod 2. (211)

(Finiteness) For each x; € X, there exist only finitely many z5 € X, such that
®4(x1, x9) is nonempty for some d € {0, 1, 2, 3}.

(Fiber Product Transversality) If z1, 2} € X are distinct and x5 € X5, then all fiber
products

Mél (xlv xll) XSl(x/l) (I)d(m/b xQ)
with d; + d < 3 are cut out transversely. Likewise, if 21 € X; and 9,2 € X,
are distinct, then all fiber products

D1, 25) X5y (ap) M, (25, 22)
with d + dy < 3 are cut out transversely.

(Compactification) Let x; € X; and zo € X5. Let (p1,p2) € Si(x1) x Sa(x2) be
generic. In particular, assume that p; is a regular value of all evaluation maps
e, on My and @4 for d < 2; ps is a regular value of all evaluation maps e_ on
My and @4 for d < 2; and (p1,p2) is a regular value of e, x e_ on ®4(xq,x2)
for d < 3. Define ®4(x1,p1,x2), Py(x1, 22, p2), and Py(x1, p1, T2, p2) as in (2.6).
Assume also that all fiber products on the right hand sides of (2.13), (2.14) and
(2.15) below are cut out transversely. Then:

(a) The moduli space ®¢(z1,x2) is compact, i.e. finite.

(b) ®(z1,22) has a compactification ®,(z1,x5), whose boundary has an iden-

tification
0y (wr,a0) = || Mi (21,2)) x5,0q) Pala), x)
z’1€X1\{x1}
di+d=1 (2 12)
|_| H (I)d xhxz) X Sy (x Mdz(xm@)
$2€X2\{$2}
d+da=1
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(c) ®o(z1, T2, p2) has a compactification ®y(zy, 72, p2), whose boundary has an

identification
552(1‘1@27]92) = H Mc%l(l'l,xi) X S1(zh) @d(xlpx%m)
zieXi\{z1}
dy+d=2
|_| ]_[ (I)d (1, 5) Xs5( () Mdg(x27'r27p2)
€ X2\{z2}
d+do=2

(2.13)

Likewise, ®y (21, p1, 72) has a compactification ®,(x1, p1, 22), whose bound-
ary has an identification

662<J;1ap1;x2) = H _Mél(xlvplvmll) Xsl(wll) (I)d(l‘llran)

z1€X1\{z1}
di+d=2

|_| H d lq’d(ﬂcl,Pl,xz) X S () MdQ(IQ’xQ)

x2€X2\{a:2}
d+do=2

(2.14)

(d) ®3(z1, p1, T2, p2) has a compactification ®s(x1, p1, 72, p2), whose boundary
has an identification

363(%7191,%2;]92) = H _Mc%l(l'hphxi) X S1(zh) (bd(ﬁiafh,m)

x’leXl\{a:l }
di1+d=3

|_| H (—1) ‘pd(%,pl,l’z)x& Mdz(xzaﬁz,]b)-

w5 Xo\{z2}
d+d=3

(2.15)

In each of the identifications (2.12), (2.13), (2.14), and (2.15), the boundary
orientation on the left hand side agrees with the fiber product orientation on the
right hand side. In (b), (¢), and (d), the evaluation maps e extend continuously
to the compactifications and satisfy eq (uy,u_) = ey (ug).

(e) As in part (e) of the Compactification axiom in the definition of Morse-Bott
system, the right hand sides of (2.12), (2.13), (2.14) and (2.15) would not
include any extra points if we used compactifications. For example, for
(2.12), this means that if x1, 2} € X; are distinct and x5 € X5, then

(M (21, Z)\M} (21, 2,)) X 6,01 Po(h, 25) = O,

- (2.16)
Mg (1, 21) X g, (P1(2), 22)\P1 (2], 22)) = O,
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and if z1 € X and z, x}, € X, are distinct, then

(61(51717 xé)\q)l(xl»xé)) X So(ahy) Moz(xlza :UQ) = @7

o ) MQ ) V2! B (2.17)
o1, 5) X 55(ay) (M (2, )\ M7 (29, 72)) = .

Example 2.8. If A = (X,]|-|, 5,0, M,, e4) is a Morse-Bott system, then the identity
morphism from A to itself is defined as follows.

e For all x1, x5 € X, we have

Po(71,72) = . (2.18)
e If x € X, then
(I)d(.%,l') _ S(:E), d= L,
o, d#1.

The evaluation maps
er : Oy(z,2) — S(x)

are both defined to be the identity map. The orientation on ®;(z, ) with values
in

et0, e’ 0, =0,0, =7

agrees with the orientation on S(z).

e If 1,29 € X are distinct, then
(I)d(l‘l, 1'2) = R X Md_l(fbl,l‘g) (219)

for each d € {1,2,3}. The evaluation maps e+ on ®4(z1,x2) are pulled back
from the evaluation maps on My_1(x1,z5). The orientation on ®4(x1, xs) is the
product orientation.

Lemma 2.9. If A is a Morse-Bott system, then the identity morphism ® from A to
itself, defined in Example 2.8, is a morphism of Morse-Bott systems.

Proof. We need to check that the identity morphism & satisfies the Grading, Finite-
ness, Fiber Product Transversality, and Compactification axioms.

The Grading and Finiteness properties for ® follow from the corresponding prop-
erties for A.

The Fiber Product Transversality property for & follows from the corresponding
property for A, together with the fact that fiber products with the identity map are
always cut out transversely.

We now prove the Compactification property for ®. Part (a) follows immediately
from (2.18).
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To prove part (b) of Compactification, suppose first that z; and x5 are equal,
to x € X. We need to check is that if € X, then ®(z,z) has a compactification
@y (z, x) whose boundary has an identification

0P (z,7) = H Mg, (x,27) X g1 Pa(], )
zieX\{z}
di1+d=1
L] [ (D"alx,2h) x5y Ma, (25, 2)

zheX\{z}
d+d2=1

(2.20)

as oriented O-manifolds. Since ®;(z, x) is already compact, we can (and must) com-
pactify it by defining

Oy (x,x) = Py(z, x).

This will then satisfy (2.20), because the right hand side of (2.20) is empty by (2.18).
Suppose now that z; # z. To prove part (b) of Compactification in this case,

define
@1(271,[172) =R x M()([L’l, ZL‘Q), (221)

where R denotes the compactification of R obtained by adding two points at -+oo.
We need an identification

661([['1,332) = L[ M1<£L'1,[B/1) XS(J:’I) @0(33/1,1'2)

) #x1

|_| ]_[ Mo(z1, 7)) X S(x)) Py (2, z2)

36’1 #x1

|_| H =y (21, 7%) X g(ay) Mo(xy, T2)

)

|| T ®olwr, 25) x5y Mi(h, x2).

!
ToFT2

The left hand side of this equation, by definition, is My(z1,x2) U —My(z1,x2). On
the right hand side, the first and last lines are empty by (2.18). The second line gives
My(x1,z2) when x) = x9 by (2.2), and is empty when x| # x5 by the Fiber Product
Transversality property of A. Likewise, the third line gives —My(x1, z3).

Parts (c¢) and (d) of Compactification are proved similarly, setting

q)2(351,3327p2) =R x M1($1,$2>p2)

and so forth.
Part (e) of the Compactification axiom follows from the Fiber Product Transver-
sality property for A. m
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2.4 Composition of morphisms

In order to compose morphisms, we need to make the following transversality hy-
potheses.

Definition 2.10. Let 4; = (X, |- |;, S;, 0", ML, €’) be Morse-Bott systems for i =
1,2,3. Let ® be a morphism from A; to Ay, and let ¥ be a morphism from A to As.
We say that the morphisms ® and W are composable if the following hold:

(a) All fiber products of the form

@dl(ﬂh,l’z) X So(x2) Vg, (5132,333)
with d; 4+ dy < 3 are cut out transversely.
(b) All fiber products of the form
My(z, 1) X8, (20) Pty (T1,T2) X 85(20) Vo (T2, T3),
Doy (1, %2) X 5y(0) Vo (T2, T3) X s55(09) My (w3, 75)
with d + dy + dy < 4 are cut out transversely.

(c) All fiber products of the form

(D1 (w1, 12)\P1 (21, T2)) X 5y(20) Va2, 73),
Dy(1,22) X gy(aa) (W1 (22, 23)\ W1 (22, 23)),
(D1 (1, 22)\P1 (21, 2)) XSy (an) (W1 (22, 23)\ W1 (22, 23))

with d < 1 are cut out transversely. (In particular, the first two are empty when
d = 0, and the third is always empty.)

(d) All of the following fiber products are empty:

(M (w1, 24)\MH(x1,2)) % 5,4 P (2, 22) X 5y000) Vo2, 73) = &,
(@1 (21, 23)\P1 (21, 23)) X g0y MT (23,23 ) X507 Vol3,23) = I,
Do(21,73) Xgy0py M7 (3, 75) X g0y (Wi(az, 23)\ Wi (23, 73)) = &,

Po(21, 72) X y(a) U1 (2, 5) X sy (M (2, 23)\ M3 (2, 23)) = D,

(e) Analogues of conditions (¢) and (d) hold in which one adds a point constraint
at a generic point p; € Si(z1) and increases the dimension of the first factor
by one, and/or adds add a point constraint at a generic point ps € S3(x3) and
increases the dimension of the last factor by one.
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Definition 2.11. Under the assumptions of Definition 2.10, suppose that the mor-
phisms ® and ¥ are composable. The composition of & and ¥ is a morphism ¥ o ®
from A; to Aj defined as follows: If 27 € X; and x5 € X3 and d € {0, 1,2, 3}, then

(\II © (I))d(xlv 1’3) = ]_[ (I)Ch (xlv x2> X Sy (x2) \Ddz (va LL’3), (2'22>

ro€Xo
di+do=d+1

with the fiber product orientation. This is well defined by part (a) of the definition
of composability. The evaluation maps e, : (Vo ®)4(xy,23) — Si(x1) and e_ :
(W o @)a(x1,23) — S3(x3) are defined by ey (uy, u-) = ex(uy).

Proposition 2.12. Under the assumptions of Definition 2.10, if the morphisms ®
and U are composable, then the composition W o ® is a morphism” of Morse-Bott
systems.

Proof. The Grading and Finiteness properties for ¥ o ® follow from the Grading and
Finiteness properties for & and W.

The Fiber Product Transversality property for ¥ o ® follows from part (b) of the
assumption that ® and W are composable.

To prove the Compactification property for ¥ o @, let x; € X; and x3 € X5. We
need to prove parts (a)—(e) of the Compactification property for z; and x3.

(a) We need to prove that (Vo ®)y(zy,x3) is finite. Suppose to get a contradiction
that (Vo ®)g(z1,x3) contains an infinite sequence of distinct elements {(u}, uy)}iz1 .

By the definition of (¥ o ®)¢(x1,z3), for each i, there is an element x} € X5, and a
pair of integers (di,d5) equal to (1,0) or (0,1), such that

(u}, uy) € q’dﬁ(l’l:ﬂ?é) X Sa(h) ‘I’dg(iﬁé,xs)-

By the Finiteness property for ® applied to x1, we can pass to a subsequence such
that all of the 2% are equal to a single element x5 € X5. We can also pass to a further
subsequence so that the d} are all equal to a single integer d; € {0,1}. Without loss
of generality, d; = 1. Thus for all ¢ we have

(u}, ub) € Py (1, T2) X 85 (z2) Yo(@2, T3).

Since Wy(x9,x3) is finite, which we know by the Compactification property for ¥,
we can pass to a subsequence so that all of the u} are equal to a single element
ug € Vo (g, x3). By passing to a further subsequence, we can assume that the sequence
{ui};—1... converges to a point u}" in the compactification ®, (1, x3), which is provided
by the Compactification property for ®. By part (c) of the assumption that ® and ¥
are composable, we cannot have u® € ®;(x1, 25)\®; (71, 22). So u¥ € ®y(x1, z2).

"More precisely, we can define compactifications (¥ o @), (z1,x3) etc. in a canonical way in order
to make W o @ into a morphism of Morse-Bott systems.
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By part (a) of the assumption that ® and W are composable, the fiber product
D1 (21, 22) X g(z0) Yo(2,3) is cut out transversely, so the point (uf°, us) is isolated in
this fiber product. This contradicts the fact that there is a sequence of distinct points
(ul, us) in the fiber product converging to it.

(b) We need to construct the compactification (¥ o ®),(x1,z3). By definition,

(Tod)i(z,23) = || Py (21,72) X5y(00) Ya (w2, 73). (2.23)

mQEXQ
d1+do=2

We first define a preliminary compactification ml(xl, x3), which is not the com-
pactification we want; the latter will be obtained from the former by identifying some
boundary points. The preliminary compactification is

—_—

(\I} © q))l(xlvxfi) = ]_[ Dy, (.171, xQ) X S (x2) Vg, (ZL’Q,ZL‘3), (2'24)

xQEXQ
d1+do=2

where the right hand side is to be interpreted as follows. When (d;,ds) = (1, 1), we
set

Dy (21, T2) X 8y(a0) V1(Ta, w3) = P11, 2) X 55(29) V1 (T2, T3). (2.25)

It follows from parts (a) and (c) of the assumption that ® and ¥ are composable that
this is a topological 1-manifold with boundary. When (d;,ds) = (0,2), we cannot
make an analogous definition because Wy (x5, z3) is not defined. Instead, by (2.3) we
can write

Qo(71, T2) X 5y(ap) Va(w2, T3) = ]_[ e(ur)Wa(wa, e_(ur), z3).

ul GCI)O (21 ,(EQ)

Here e(u1) € {£1} denotes the orientation of the point u; in ®g(xy,x9). We then
define

(DO([El,JZQ) XSg(xg) \112(1E271'3) = H 8(U1)$2(!E27€_<U1),ZL‘3). (226)

ulé(b()(xl,xg)

The case (di,ds2) = (2,0) is handled analogously.

To see that the preliminary compactification (2.24) is compact, note that by the
finiteness property for ®, only finitely many triples (x2,d;, ds) give nonempty con-
tributions to the right hand side of (2.24). When (d;,d>) = (1,1), the contribution
(2.25) is by definition compact. When (d;,ds) = (0,2), the contribution (2.26) is
compact because ®g(x1, 1) is finite and Wy(xg,e_(uy),x3) is compact by the Com-
pactification properties for ® and W. Likewise, each contribution with (d;,dy) = (2,0)
is compact.
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To proceed from the preliminary compactification to the actual compactification,
consider the following three oriented 0-manifolds:

El = L[ Mjl (x17x/1) Xsl(x/l) q)dz (:Cllu 1;2) XSQ(:EQ) \Ildg (‘T27 x3>7

.73/1€X1\{$1}
wQEXz
d1+da+d3z=2

_ + 2 (ot - —
Ey = ]_[ Dy, (71,73 ) X Sa(x3) Mg, (x5, 25) X Sa(x5) W, (23, 23),
z;#x;EXQ
di+da+d3=2

E3 = H (_1)d371q)d1 (xla x2) X 83 (x2) ‘dez (anxg) X S5 (xh) Mgg(xé7x3)'
x2€X2

(EgGXQ,\{IL'g}
di+da+d3=2

(2.27)

We claim now that there is a map

60 ((\p 5 c1>)1(x1,g;3)) By LBy L By (2.28)

with the following properties:

(i) Each point in E; u E3 has exactly one inverse image under ¢. Each point in
FE, U F5 has the same orientation as its inverse image under ¢.

(ii) Each point in E, has exactly two inverse images under ¢, and these two inverse
images have opposite orientations.

Assuming (i) and (ii), we define

(Vo @), (1, 23) = (Vo @) (x1,23)/ ~,

where the equivalence relation ~ identifies two points if they are on the boundary and
¢ maps them to the same point in E,. By (i) and (i), (¥ o ®),(x1,23) is an oriented
topological 1-manifold with oriented boundary given by

0 <(\I] o q))l(l'l,l'g)) = E1 L Eg.
This is the correct boundary, since we can rewrite

Br= ] Mj(21,2}) x5, (¥ o ®)alx], zs),

zh€X1\{z1}
di+d=1

Es= ] (1% o0®)a(zr,25) sy My, (2}, 73).

2,eXa\ {3}
d+ds=1
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To define the map (2.28) and prove (i) and (ii), we now catalog all of the boundary

points of (Vo @)l(xl,xg). To shorten the equations, given x5 € X, and dy,dy € N
with d; + dy = 2, define

Ny ay (2) = Pg, (71, 72) X5y (0) Vay (72, 73).

The preliminary compactification is the disjoint union of the compact oriented 1-
manifolds Ny, 4,(72).

By equation (2.4) and part (b) of the Compactification property for & and ¥, we
have

ON11(72) = H Mél (21,2}) X1 (zh) Dy(x), z9) X Sy(z2) V1(72, 73)

z’leXl\{;m}
d1+d=1

|_| H d2 1(I)d(l’1,l’2) X So(a )Md22(x/27$2) X S (x2) \1’1(1‘2,]}3)

z5€X2\{z2}
d+do=1

L] T @11, 22) sy Mi, (22, 75) X 5,01) Palh, x3)

x/QEXQ\{xQ}
do+d=1

|_| H d3 lq) (Ilﬂx2> X S (x2) \I/d(l’g,l‘3) XSs(IE ) Md3<x37$3>

Z‘3€X5\{I5}
d+d3=1

(2.29)

Note that a priori, we should use W, (x5, 73) instead of ¥, (x5, 3) in the first two terms
on the right hand side, and ®,(x1,x5) instead of ®,(x1,75) and W(zy,x3) in the
last two terms. However no points in ®; (21, 2o)\® (21, 22) or Wy (29, 23)\V1 (22, 73)
contribute to the corresponding fiber products, by condition (d) in the assumption
that ® and ¥ are composable.

By equation (2.26) and part (c) of the Compactification property for ¥, we have

ONoa(r2) = [ —Polwr,72) X 5(an) M, (22, 2%) X550t Walh, 73)

x/QGXQ\{xz}
do+d=2

L] T (0% @01, 22) X 550es) Walws, #5) X sy(a) M, (25, 3).

a:SEXg\{aT3}
d+dz=2

(2.30)
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Similarly, by part (c) of the Compactification property for ®, we have

0Nz o(z9) = ]_[ My (21, 21) X, @ty Pa(T), 2) X 8y(ap) Yo(2, 23)

x’leXl\{xl}
di+d=2

|_| H —1)2 Qg1 5) X gyay) Mg, (%, T2) X8,y (0s) Vo2, 23).

z5€Xo\{z2}
d+do=2

(2.31)

Now all of the boundary points of (M)l(xl, x3) are listed on the right hand
sides of (2.29), (2.30), and (2.31). Each element of the right hand side of one of these
three equations in which the symbol z} appears corresponds to a point in Fj. This
defines the map (2.28).

To prove (i) and (ii), we need to count how many times each point in (2.27) appears
on the right hand side of (2.29), (2.30), or (2.31), as x5 ranges over X, and compare
orientations. Note that the fiber products in (2.27) are empty when (dy, da, d3) equals
(2,0,0) or (0,0,2). The remaining possibilities for (di, ds,d3) are (1,1,0), (1,0,1),
(0,1,1), and (0,2,0). We then see by inspection that each point in E; or E3 appears
exactly once on the right hand side of (2.29), (2.30), or (2.30), with the same sign
as in (2.27). On the other hand, each point in Fy appears exactly twice on the right
hand side of (2.30), (2.30), or (2.31), once with zo = z; and once with x5 = x5, and
these two appearances have opposite signs.

Parts (c) and (d) of the Compactification property are proved by the same argu-
ment as part (b), but with point constraints at p, and/or p_ inserted everywhere.

To prove part (e) of the Compactification property, we will just explain (2.16),

s (2.17) is proved symmetrically, and the rest is proved analogously with point
constraints at p, and/or p_ inserted.

To prove the first line of (2.16), we need to show that

—1
(M (1, 27)\M{ (21, %)) Xs,(1) Pa, (¥, 22) X Vg, (22,23) = &

whenever d; + ds = 1. When d; = 0 this follows from the fact that ® is a morphism.
When d; = 1 this follows from condition (d) in the definition of composable.
To prove the second line of (2.16), we need to show that

My (21, 27) X510 (¥ 0 @)y (2, 23)\(¥ 0 @)1(2], 23)) = &. (2.32)

The second factor, (¥ o ®),\(¥ o ®);, consists of points in (P1\P1) X gz, U1 and
Py Xg() (U1\W1), as well as points as in (2.27). In each case, the contributions
to the fiber product (2.32) are empty, either by condition (d) in the definition of
composable, or by the fact that ® is a morphism. O
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Remark 2.13. Our definition of “identity morphism” is a slight abuse of terminology,
for the following reason. Let A; and A; be Morse-Bott systems, let & be a morphism
from A; to Ay, and let I* denote the identity morphism from A; to itself for i = 1, 2.
Then:

e ' and ® are not necessarily composable; likewise ® and I? are not necessar-
ily composable. Composability with the identity requires ® to satisfy slightly
stronger transversality conditions than in the definition of “morphism”.

e Even when composability holds, the compositions ® o I'' and I? o ® are not
quite equal to ®; the moduli spaces for the compositions are larger than the
moduli spaces for ® because of additional contributions coming from (2.19).
For example, for xq, s distinct we have

(I? 0 @)1 (1, 22) =Py (21, 22)
|_|R X H D (21, 7)) X sap) M (2, 2).

rheXo\{za}

The compactification (12 o ®),(z1, z2) then includes an extra piece

Rx [] @u(er,7h) xswy) Mg(ah, zo). (2.33)
zheXa\{z2}

The evaluation maps are constant on each component of (2.33). In the con-
struction in Proposition 2.12, each component of (2.33) is glued onto the corre-
sponding boundary point of ®;(z1,x2) at the point where the R coordinate is
—0.

Remark 2.14. Although we will not need this, one can also show that the compo-
sition of three morphisms is associative, assuming that all morphisms and pairwise
compositions in question are composable. This follows from (2.22) and the associa-
tivity of fiber product, together with a check that the compactifications agree.

2.5 Homotopies of morphisms

Definition 2.15. Let Al = (Xl, HHl, Sl, Ol, Mi, ei) and A2 = <X27 HHQ, SQ, 02, Mf, €2i)
be Morse-Bott systems. Let ® and &' be morphisms from A; to As. A homotopy
K from ® to &' consists of the following data for each x; € X;, 9 € X,, and
de{0,1,2,3}:

e A “moduli space” Ky(z1,xs), which is a smooth manifold of dimension d.
e “Evaluation maps”, which are smooth maps

e - Kd(.’El,.’EQ) I Sl(xl)a

e Kg(x1,x9) —> Sa(xa).
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e An orientation of K4(z1,x2) with values in €20, ® e* 02, .

These are required to satisfy the following Grading, Finiteness, Fiber Product Transver-
sality, and Compactification properties:

(Grading) If K4(x1,x9) is nonempty, then

d5’$1’1—|$2|2+2 mod 2.

(Finiteness) For each z; € X, there exist only finitely many z, € X? such that
K4(x1,z2) is nonempty for some d € {0, 1,2, 3}.

(Fiber Product Transversality) This condition is the same as in the definition of
“morphism”, but with ®, replaced by Kj.

(Compactification) Let z; € X! and 2o € X?. Let (p1,p2) € Si(z1) x So(xs) be
generic. Define Ky(x1,p1,x2), Kq(z1, 29, p2), and Ky(x1,p1,xe,pa) as in (2.6).
Suppose that p; is a regular value of all evaluation maps e, on M}, &4, @/ and
K, for d < 2; py is a regular value of all evaluation maps e_ on M3, 4, ®/, and
K, for d < 2; and (p1, p2) is a regular value of ey x e_ on ®4(z1, x2), P (21, z2),
and Ky(xq,25) for d < 3. Then:

(a) The moduli space Ko(z1,x2) is compact, i.e. finite.

(b) Ki(z1, ) has a compactification K (71, z5), whose boundary has an iden-
tification

OK (21, 72) = — Po(21, 79 |_|<1>/ (w1, 22)

|_| ]_[ dlMdl(l‘l?xl) Xsl(l‘l) Kd(xlaxZ)

x| XN\ {x
i f} (2.34)

|_| H Y K (1, ) X 5, (2 )Mi(xg,a@).

zHe X2\{x2}
d+da=1

(c) Ka(w1, 72, p2) has a compactification Ky (zy1, 72, ), whose boundary has
an identification

0K 5 (21, 2, p2) = — P1 (1, 22, p2) |_|(I)/ (1, T2, p2)

|_| H —1) B M (21, %)) X g, 21y Kala, x2,p2)
zheX\{z1}
di1+d=2
|_| H Kd 17517332) X So(ahy) Mdg(x27$2>p2)
126X2\{m2}
d+da=2
(2.35)
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Similarly, K5(x1, p1,x2) has a compactification Fg(xl,pl, x3), whose bound-
ary has an identification

OK (w1, p1,0) =P1 (21, p1, T2) |_| —® (21, p1, x2)

|_| H dl 1Mc}1(x17p17x1) X8 () )Kd(xlb'IZ)
zheXN\{z1}
di1+d=2
|_| H d 1Kd($1,p1,372) X So(ah) Md2($27$2)
zheX?\{z2}
d+do=2
(2.36)

(d) Ks(x1,p1, To, p2) has a compactification K3(xy, p1, T2, p2), whose boundary
has an identification

9F3($17P1,$2>p2) :(I)2<x17p17x27p2) |_|_(I)/ ($17P17$2,p2)

|_| H dl lMdl(xlaplaxl) XSl( )Kd<x/1’m27p2)
zieX\{z1}
d1+d 3
|_| H d YK (2, pr, ) X S () Mdg(x27x27p2)
wyeX?\{za}
d+da=3
(2.37)

pactifications and satisfy ey (uy,u_) = eq(ug).

In (b), (c¢), and (d), the evaluation maps e4 extend continuously to the com-

(e) Asin part (e) of the Compactification axiom in the definition of Morse-Bott
system, the right hand sides of (2.34), (2.35), (2.36) and (2.37) would not
include any extra points if we used compactifications.

3 Cascade homology

In this section, we define the cascade homology of a Morse-Bott system. We show
that cascade homology is functorial with respect to morphisms of Morse-Bott systems,
and that the induced maps on cascade homology are invariant under homotopy of
morphisms.

3.1 Setup

Let A = (X,|-|,S,0,M,,es) be a Morse-Bott system. We are going to define its

cascade homology, which is a Z/2-graded Z-module, denoted by Hf(A). To do so,
we need to make a generic choice of a point p, € S, for each x € X. In particular, we
require that:
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e p, is a regular value of all evaluation maps
e My(xy,x) — Sy,
ey s My(x,xz_) — S,
for each x € X and d < 2.

® (pu,,ps_ ) is a regular value of
er xe—: My(xy,x_) — S(zy) x S(x_)
for each pair of distinct points z,,x_ € X and each d < 3.

We denote the set of choices {p, }zex by P. Below we will define the cascade chain com-
plex (C’f (A,P),d). The homology of this chain complex will be denoted by H. 3 (A, P).
We will later show that this homology does not depend on P, and so we can denote
it by H?(A).

The chain complex Cf(A, P) is the sum over x € X of two copies of O,(p.). To
describe this a bit more conveniently, fix a generator of O,(p,) for each z € S. Then

the chain complex C’f(A, P) is freely generated over Z, with two generators for each
x € X. We denote these generators by T and Z. The mod 2 grading of ¥ equals ||,
while the mod 2 grading of ¥ equals |z| + 1.

3.2 Cascade moduli spaces: definition

To define the differential ¢ on the chain complex C’:" (A,P), we need to introduce
cascade moduli spaces. Roughly speaking, we will consider “cascades” that start at
T, or I, and end at Z_ or Z_. When we start at . there is an initial point constraint,
and we end at Z_ there is a final point constraint. Now for the precise definitions.

3.2.1 Notation and simple cases

To define cascade moduli spaces, we need the following notation. Define the “cyclic
fiber product”

Mg, (20, 71) O Mgy (w1,29) O - O Mg, (Tp-1,2) (3.1)
S(z1) S(x2) S(xk-1)

to be the set of k-tuples (uq,...,u;) such that:
o u; € My (x;_1,x;) foreachi =1,... k.

e For each i = 1,...,k — 1, the points p,,, e_(u;), e;(u;+1) are distinct and posi-
tively cyclically ordered with respect to the orientation of S(z;).
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In (3.1), we can also replace the first factor by My, (x¢, ps,, 1), in which case we re-
quire that u; € My, (zo, po, x1); and we can replace the last factor by My, (Tg—1, Tk, Py )
in which case we require that uy € My, (Tg—1, %k, Pz, ). On each of these cylic fiber
products, there is an evaluation map e, with values in S(z), and an evaluation map
e_ with values in S(zy).

Also, we define M} (z,,z_) to be the set of u € My(z,,z_) such that e (u) #
pr, and e_(u) # p, . Similarly, we define Mj(xy,p,z_) to be the set of u €
My(z4,py,x_) such that e_(u) # p_; and we define M7 (xy,z_,p_) to be the set of
ue My(xy,x_,p, ) such that ey (u) # p, .

~

Forxz,,z_ € X and d € {0, 1}, we now define four cascade moduli spaces M%(:ﬁr7 T_),

ML"(er, _), M%(:ur, _), and ML"(:EJF, _). These will be open smooth manifolds of
dimension d, with orientations valued in O, (p,,) ® O, (ps_).
The simplest case is where x, = x_. In this case we define

M}(2,2) = Mj(¥,2) = Mj(%,%) = & (3.2)

and
{S.'L’?px}7 ifd:O?
(%) otherwise.

M} (7,7) = (3:3)

That is, the set Mé‘ (7, T) has two elements, which we label as S, and p,. To complete

this definition, we need to specify the orientation of Mg" (z, ) with values in

Or(p2) ® Ou(ps) = Z.

That is, we need to attach a sign to each of the two points S, and p,. If the local
system O, is trivial, then S, has positive sign and p, has negative sign. If the local
system O, is not trivial, then S, and p, both have negative signs.

Remark 3.1. The above convention is the reason for the —2 in equation (1.1). Com-
bined with the rather natural orientation conventions below, the above convention is
necessary for the orientations to work out in Proposition 3.2(b) below.

We now define the cascade moduli spaces when =, # x_.

3.2.2 Unconstrained cascade moduli spaces

If x, # x_, we define

R N G

k=1x4=x0,21,....0,=C— d1++dp=d (34)
Mj (vo,m1) O My (z1,22) O -+ O My (Th-1, 7).
S(z1) S(z2) S(zx—1)
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The orientation of Mg(@, Z_) with values in O,, (p;,) ® O,_(p,_) is defined as
follows. Consider a point

(u1s - up) €My (w0, x1) O Mg (21,22) O -+ O M;k(xkflaxk)
S(x1) S(x2) S(zx-1)

< Mi(3,,7).

At w;, the moduli space My, (z;—1,x;) a priori has an orientation with values in
Oy, (64 (1)) ®0O,,(e—(u;)). The cyclic fiber product is an open subset of the product
of these moduli spaces for ¢ = 1,..., k. Thus taking the product of these orienta-
tions in order from i = 1 to k, we obtain an orientation of the cascade moduli space

M;(@, Z_) at the point (uq, ..., ux) with values in
k
) O,y (€4(ui) ® O, (e (ur)). (3.5)
i=1

Now there is an isomorphism

O$+ (p$+) = OIO (pmo) = Ol“o (e+(u1)) (36)
obtained by parallel transport in O,, along a positively oriented path in S(z¢) from
Pz t0 €4 (uy). Similarly, for i = 1,...,k = 1 we have an isomorphism

O, (e~ () = Oy, (e4(ui41)) (3.7)

obtained by parallel transport in O,, along a positively oriented path in S(z;) from
e_(u;) to e; (u;41). Finally, there is an isomorphism

Oﬂ&k (6— (uk)) = O:ck (pzk) =0, (px,) (38)

obtained by parallel transport in O,, along a positively oriented path in S(zy) from
e_(ug) to p,,. Combining the isomorphisms (3.6), (3.7) and (3.8) allows us to identify
(3.5) as

k
) O,y (e4+(1) ® O (e (wi)) =~ Ou, () ® Op_(ps)-
i=1
Thus we obtain an orientation of Mf(&:\Jr,Jf_) at the point (uq,...,ux) with values

in Oy (Pzy) ® Ou, (Pry,)- As (ug,...,ux) moves in M;"(%Jr,f_), this orientation is
continuous, because:

e Since we are using Mj (7o, z1) in (3.4), so that p,, # e4(u1), the isomorphism
(3.6) varies continuously.
e Fori =1,...,k =1, since we use the “cyclic fiber product” condition ¢ in
S(zq)
(3.4), so that e_(u;) # ey (u;41), the isomorphism (3.7) varies continuously.

e Since we are using Mj (vx_1,7) in (3.4), so that e_(uy) # ps,,, the isomorphism
(3.8) varies continuously.
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3.2.3 Constrained cascade moduli spaces
Let ., x_ € X be distinct. We define

i) =11 11 [

k=1 zy=x0,T1,..., Tp=T_ d1+-+dr=d+1 (39)
M;(x()’pxovxl) S(O) M;Q(x:l’xZ) SO e O M;l:<xkflaxk)'
1

(z2) S(xk—1)

This is oriented as in (3.4), except that now we can dispense with the isomorphism
(3.6). We define

ui@oe) =11 11 [

k=1 zy=20,T1,..., T =2— d1++dp=d+1 (310)
My (vo,11) O My (z1,22) O -+ O My (Th-1, Tk, Pay,)-
S(z1) S(z2) S(zk—1)

This is oriented as in (3.4), except that here we can dispense with the isomorphism
(3.8). Finally, we define

M;(x+7x ) Md+2<x+7p$+7 Ty Pa_ )

UL 1 [

k=2 xy=x0,21,..., Tp=T_ dy+-+dp=d+2

M;lkl(x07pxoaxl> O M(Z(xlaxQ) O O M;k(xk—hxk)pmk)'
S(x1) S(w2) S(zk-1)
(3.11)

This is oriented as in (3.4), except that now we can dispense with the isomorphisms

(3.6) and (3.8).

3.3 Cascade moduli spaces: the key property
Recall from §3.1 that P denotes the set of choices {p;}zex-

Proposition 3.2. Let x,x_ € X. Fiz X, to denote one of T, or I,; and fix T_ to
denote one of T_ or ¥_. If P is generic then:

(a) The cascade moduli space MOL"(L,E_) is finite.

(b) The cascade moduli space Me(m, _) has a compactification M%(m, _) with

boundary
aM?(‘x+7 L[ M% x+7v) x Me(ya )
yex , , (3.12)
|_| H Mg (@1, y) x M (y,2-).
yeX

30



In (3.12), the boundary orientation on the left hand side agrees with the product
orientation on the right hand side.

Proof. (a) By (3.2) and (3.3), we can assume that x, # x_.
In the unconstrained case when 7, = ¥, and Z_ = Z_, so that all factors in the
cascade (3.4) live in O-dimensional moduli spaces My(z;_1, z;), the desired finiteness

of M(? (Z4,%_) follows from the Finiteness axiom and part (a) of the Compactification
axiom.

If instead we have Z, = T, then we also need to know that M; (x4, p,, , ) is finite
for every x # x,. Suppose to get a contradiction that there is an infinite sequence
{u;}i=1,.. of distinct elements of M (x4, p,,,x). By part (b) of the Compactification
axiom, we can pass to a subsequence so that {u;} converges to a point u,, € M1 (z4,z)
with e; (uw) = pa,. If upw € My(x4,x), this contradicts the assumption that p,, is
a regular value of e;. Thus u, € M (x4, 2)\M;(z, ). Since the latter set is finite,
if p,, is generic then it is not in e, of this set, which is also a contradiction. There-
fore, if P is generic then M;(z,p,,,x) is finite for every x # =z, and consequently
Mé"(:ﬁr, Z_) is finite.

Similar arguments show that if P is generic then M;(x,z_,p,_) is finite for every
x # x_, and My(xy,py,,x_,p, ) is finite. We then likewise deduce that M$($+, )
and Mﬁ(aur, _) are finite.

(b) If x, = z_, then M%(:CJF, _) = & by definition, so we can (and must) take
the compactlﬁcatlon to be the empty set. The right hand side of (3.12) is also empty;
otherwise we could make arbitrarily long chains of nonempty moduli spaces, violating
the Finiteness axiom.

Suppose now that x, # x_. There are four cases to consider, depending on
whether 2, equals Z, or I, and whether Z_ equals _ or Z_. We will just consider
the case where 7, = 7, and T_ = Z_; the proofs in the other cases use the same

A~

ideas. We now need to show that MA"(er, _) has a compactification Mé(:mr,x_)
with oriented boundary

aM$($+7 L[ M% x-i-?v) X Me(yu )
vex , , (3.13)
|_| H Mg (Z4,y) x Mg (y,2-).
yeX

Recall that

m@na) =11 11 [

k=1 xy=x0,T1,..., T =— d1+-+dp=2 (314)
Mj (vo,r1) O My(z1,29) O -+ O My (Th-1, Tk, Pay,)-
S(z1) S(z2) S(zk—1)
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Note that if (ug, ..., u) is in the above moduli space, then only one of the factors u; is
in a 1-dimensional moduli space; this is M (x;_1, z;) if ¢ < k, and M5 (2,1, Tk, Py, ) if
i = k. Every other u; is rigid, i.e. in a 0-dimensional moduli space; this is M (x;_1, ;)
if i <k and My (zg—1, %k, ps,) if @ = k.

The idea of the proof of (3.13) is that the moduli space (3.14) has ends where one
of the following happens: (i) the non-rigid u; approaches an end of its moduli space;
(ii) ey (u;) approaches e_(u;—1) (when ¢ > 1); (iii) e_(u;) approaches e (u;41) (when
i < k); (iv) e4(u;) approaches p,, ,; or (v) e_(u;) approaches p,, (when i < k). We
can compactify the moduli space by gluing together ends of the form (i), (ii), and
(iii), and adding boundary points for ends of the form (iv) and (v). Boundary points
of type (iv) correspond to the first line on the right hand side of (3.13), and boundary
points of type (v) correspond to the second line of (3.13).

To be more precise, and to explain how the orientations work, note that there are
four possibilities for the ¢ such that u; is not rigid: 1 =1 =4k, 1 =i <k, 1 <1 =k,
or 1 <i < k. Accordingly, we can write

Mf(‘%-i-)‘%—) :M;(x-i-ax—apr)

L I M) o Mi@.5)

()

T4 Fr Fr_

| [ MiGE..#) o M a_.p.)
P S(Z'/)
+ —

L [ M@ o M) o MiE.3).

! 1"
o b Fa b (@) (a")

We first define a “partial compactification” of Mf (Z4,7_) by compactifying the
1-dimensional moduli spaces above, to get

MG, )=FuFuFuF,
where

Fl = M;(eraxfapx_)a
B= [ M@)o Mg (@.3-),

TyFAT Fr_

F= [ MG.¥) o W p),

Ty FT Fr_
F= [ M@)o e o MG
Ty AT A A S(a’) S(z")

Here M;(m, x_,p,_) denotes the set of u e My(z,,v_,p,_) such that ey (u) # p,,,
and so forth; and the cyclic fiber products are oriented as before.
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By parts (b) and (c) of the Compactification axiom, the oriented boundaries of
the four parts of the partial compactification are given by

oF = [ Mi(we, o) <@y M3 2, p, )

Ty Fr A
- ]_[ M (x4, ") X S(z") M (2’ x_,p._),
T4 Fr Fr_
_ * / %/ 1 N 4 A// Z
oh = ] Mi@e.a) xse) Mi@,a") O MJ@E",3)
x+¢x’;ﬁx”;ﬁx_ S(w )
% / YA/ Soan A
- H My (IL’_,.,%’) X 5(a) M (.%,.1‘ ) O// Mg (iL‘ ,IL’_),
Ty #x FrFr_ S(a")
— % 4 * BN/
oB= ] M@E.T) @ Mg (z',2") x s(em My (2", 2, p,)
Ty Fr FaFr_
- 11 M(?(@,f’) O, M ") s Mi "2,
x+¢x/;&x//;&x7 )
— L{' ~ ~/ * / " * " n % Py /e
oF, = H M{(z,, 1) 59) Mg (', 2") % g(@ny M7 (2", ") S(O”’) My (", z2)

Ty #x Eal Ea Ex_

_ H M%<ﬂf+7\f'> O M*(m T ) XS(z’/)M (]7 LU”/) ®) M%(A/// A~ )
T4 AT Ea AT E_ S(z")

Note that we can use starred moduli spaces in the above equations, by our assumption
that each point p, is a regular value of all evaluation maps e.

We can combine the above four equations to obtain the following formula for the
boundary of the partial compactification:

oMi (@7 )= ] MJ@..F) xsw) M{(@,2.)

T4FAT Fr_

— [ MG ®) xs@ MG(E 7).

Ty #FT Fr_

(3.15)

Here the first line of (3.15) corresponds to the first lines of the previous four equations.
The partial compactification also has ends, where e, or e_ of the non-rigid factor
approaches a forbidden value. We now classify these. Here the signs are determined
by the orientation conventions in §2.1 and Convention 2.2.
To start, there are ends of F; where e, approaches p,, from either side. Thus

Ends(Fy) = M (34, %4) x Ma(2s,pa, ., Do ). (3.16)

Note that since we are assuming that the points p,, and p,_ are generic, we do not
need a bar on M, in this equation.
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Next, there are ends of F, where e, of the first factor approaches p,, , where e_
of the first factor approaches p,., and where e_ of the first factor approaches e, of
the second factor. Thus

Ends(F) = [[ Mg(@e, %) x Mi(es,po,.a’) O MIEF,2)

!
o b S(@)

+ L[ Mf(x+,x/,pm/) X M(?(/I\,,EL’\_) (317)
T4 Fr Fr_
+ ]_[ Ml*(l'_;,_,l'/) XS(I/) M(?("Z\/?'/T\—)

TyFT Fr_

Note that we do not need bars on M; in the first two lines of this equation because
Pz, and p, are generic; and we do not need a bar on M; in the third line by part
(e) of the Compactification axiom.

Next, there are ends of F3 where e of the second factor approaches p,/, and where
e, of the second factor approaches e_ of the first factor. Thus

Ends(Fy) = [[ Mg(@:,¥) x My(a',poroo—.p)

T4 Fr Fr_

— [ MG F) xs@ Mi (' 2, ps ),

Ty Fr Fr_

(3.18)

where we do not need bars on M, as before.

Finally, there are ends of Fy where e, of the second factor approaches p,/, where
e, of the second factor approaches e_ of the first factor, where e_ of the second factor
approaches p,», and where e_ of the second factor approaches e, of the third factor.
Similarly to the above, we obtain

Ends(F) = [[  M{@..7) x M{(2/.paa") O MG(E".7)

x+;&$/¢x//¢x+ S(I )

— I MEGELT) xsen M (0" O ME(EE)
I+;ﬁx’#x”;ﬁx_ S(ac )

+ J] MEGELT) O M@ pe) x MR 50)
Ty “x! #x! Ex_ S(I )

+ J1 MEGLF) O ME@a") xsen MJ(E"50).
T4 AT AT T S(z')

(3.19)
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Putting the above four equations together, we obtain

Ends(Mf(3:,2)) = =[] M{(E,#) sy MY (&,3-)
Ty Fr Fr_
+ ]_[ Mle(‘%-i-a :\L‘//) XS(a") M()é(‘;/a'%—)

ToFAT Fr_

; , (3.20)
+ HMO (fL)\-i-a i//) X MO (:Ua '717\—)

Yy
+ [ [ MG 9) x M3 (§.5-).
Yy

Here the first line of (3.20) corresponds to the second lines of (3.18) and (3.19); the
second line of (3.20) corresponds to the third line of (3.17) and the fourth line of
(3.19); the third line of (3.20) corresponds to the first lines of (3.16), (3.17), (3.18),
and (3.19); and the fourth line of (3.20) corresponds to the second line of (3.17) and
the third line of (3.19).

To conclude, the first two lines of (3.20) match the corresponding lines of (3.15),
but with opposite orientations. Thus we can glue these ends and boundary points
together, and add points corresponding to the last two lines of (3.20), to obtain the

desired compactification of Mf" (Z4,2_) satisfying (3.13). O
3.4 Definition of cascade homology
We already explained in §3.1 how to define the Z/2-graded chain module CE(A, P).
Definition 3.3. We define the differential

0: CY(A,P) — CZ_,(A,P)
as follows. Let x € X, and fix 7 to denote one of Z or Z. Define

07 = (#ME @07+ #M (7.)7)

yeX

Here #MOL" denotes the signed count of points in MOL" ; it follows from Proposi-
tion 3.2(a) that this is well defined. Furthermore, the Finiteness axiom guarantees
that the whole sum is finite. It follows from the Grading axiom that ¢ decreases the
mod 2 grading by 1. Finally, Proposition 3.2(b) shows that ¢* = 0.

Definition 3.4. We define the cascade homology H:f (A,P) to be the homology of
the chain complex (CE(A, P), 6).
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3.5 The conjugate of a Morse-Bott system

To clarify some signs in the definition of induced maps on cascade homology, it will
help to consider a modification of a Morse-Bott system in which the orientation on
each moduli space My is multiplied by (—1)%.

Definition 3.5. If A = (X,|-[,S,0,M,,es) is a Morse-Bott system, define its
conjugate A = (X,|-],5,0,M,, es+), where

My(ry,2-) = (1) Ma(z+, 7).

Note that the conjugate of a Morse-Bott system is also a Morse-Bott system,
because when we pass to the conjugate, for each of the equations (2.7)—(2.10), both
sides change sign in the same way. Conjugation also does not affect the cascade
homology: It follows from the Grading axiom that the chain complexes Cf (A,P) and
C’::‘ (A, P) are isomorphic via the involution which multiplies each generator ¥ or T by
(=1,

For our purposes, a slightly different involution will be more useful:

Definition 3.6. Define

r: CHA,P) — C{(AP)
by 7(Z) = ¥ and 7(¥) = —Z.
Lemma 3.7. Let 0 denote the differential on C’f(é, P). Then

0T = —70.

Proof. By (3.4) and (3.11), the differentials from hat generators to check generators
or vice-versa count cascades with total moduli space dimension even. By (3.9) and
(3.10), the differentials between check and check generators, or between hat and hat
generators, count cascades with total moduli space dimension odd. O

The reason why conjugation is useful is that if & : A; — A, is a morphism of
Morse-Bott systems, then we can rewrite equations (2.12)—(2.15) using the conjugate
of A; (but not the conjugate of As) to obtain nicer signs, which look just like the
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signs in equations (2.7)-(2.10). Namely, we have

a(bl(xl,l'2> = ]_[ (_1)d1M(1il ('Ihx,l) Xsl(mll) éd(xllalé)

CE’1€X1\{11}
di+d=1

|_| L[ q)d xla'TQ) XSQ(ZE Md2(l’2,$2)
zQEXz\{xQ}
d+dz=1
552(1'1,9527172) = ]_[ (_1)d1M(111(351737/1) X 81 (ah) Dy(x), 2, p2)
ac'leX1\{$1}
di+d=2
|_| H q)d .2?1,332) ><Sz(w2) Mdg(x27$27p2)
xQEXQ\{l'Q}
d+dgo=2
562(351,]71,%2) = ]_[ (—1)d1_1M51($17P17$/1) XSy (2h) Dy(z), w2)

1"1€X1\{.’El}
di+d=2

|_| L[ d lq)d('rhpth) XS2( )M§2(Ié7x2)7

zpeXo\{xa}
d+da=2

0B (1, p1, T2, p2) = ]_[ (=) My, (1, p1, 7)) X5, 1) Pa(7), w2, p2)
zieX1\{z1}
di+d=3
|_| L[ d 1(I)d(x17p17x2) X Sy (! )M32($/2,$2,p2).

zheXo\{z2}
d+da=3

(3.21)

3.6 Induced maps on cascade homology

Let Ay = (X1, ]+ ]1,51,0", M}, e}) and Ay = (Xo, |- |2, S, O%, M2, €3) be Morse-Bott
systems, and let ® : A; — A, be a morphism of Morse-Bott systems. Let (P, Ps) be
a generic pair of choices as needed to define the cascade chain complexes Cf (Ay,Py)
and Cf (Ag,Py). We now define a chain map

By : CF (A, Pr) —> C (A, Py).

The idea is to define ®; by counting “hybrid” cascades consisting of some ele-
ments of M}, followed by an element of ®4, followed by some elements of M?, with
total moduli space dimension zero (after point constraints are taken into account).
The chain map equation arises by considering such cascades with total moduli space
dimension one. In order to simplify the notation when defining this precisely, we will
use the following shortcut.

Definition 3.8. Define a Morse-Bott system
Al Lo AZ = (Xv | ’ |>57 O7M*76i)
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as follows. We take X = X; u X,. For 1 € Xy we define |z] = |z1]; + 1, S, = S5,
and O,, = O} . For z; € X, we define |v;| = |22|s, Siy = S2,, and O,, = O2,. For
x1, o) € Xy and xq, 7, € Xy, we define

Mg(zy,2) = My(z,, 77),
Ma(wg, 5) = Mg (22, 75),
My(x1,29) = Py, 22),
My(zq, 1) = .

The evaluation maps e4 on these moduli spaces are the same as the evaluation maps
for A,, Ay, and .

It follows from the equations (3.21) that A, g A is a Morse-Bott system. We
can now use the generic choices (P;, Ps) to define the cascade chain complex for this
Morse-Bott system. Let ¢ denote the differential. Let 0, denote the differential on

C::‘ (A;,P1), and let 05 denote the differential on C’f (A2, P3). Let @4 denote the portion

of 0 mapping from Cf (A, P1) to C’:f (As, Ps), precomposed with the involution 7. We
can then write the full cascade differential ¢ in block matrix form as

o, 0
(I)ﬁT 52

0=

Since 0% = 0, it follows that
O ®y7 + By70, = 0.
Since 70, = —0d;7, the above equation is equivalent to
2Py = ®40;.
Thus ®; is a chain map.
Definition 3.9. Let
OPP1 s HI(Ay, Py) — HI(Ay, Py).

denote the map on cascade homology induced by the chain map ®;.

3.7 More conjugation

Our next goal is to prove that the induced maps on cascade homology are functorial.
To prepare for this, it will be useful to consider the conjugate of a morphism.
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Definition 3.10. If ® is a morphism of Morse-Bott systems from A; to A,, define
its conjugate @ by

D (1, 22) = (—1) " Py(z1, 22).
Observe that ® is a morphism of Morse-Bott systems from A; to A,, because the
equations (3.21) still hold if we replace ® by ®, M' by M', and M? by M?.

Lemma 3.11. The following diagram commutes (note the minus sign):

CE(AD Pl) ﬁ) OE(A% PQ)

Cf(Al,Pl) i’ CE(AQ,PJ

Proof. The map @y is defined from the cascade differential for the conjugate of the

Morse-Bott system A; Lig As. The lemma then follows from Lemma 3.7 applied to
A= Al [ ) AQ. O

3.8 Functoriality

We are now ready to prove the following key result.

Proposition 3.12. Let & : Ay — Ay and V¥ : Ay — Az be composable morphisms of
Morse-Bott systems. Let (P, Ps, Ps) be generic choices as needed to define the chain

complexes C’f(A,», P;). Then
(Wo ®)7Tr = W2 0 912 P s H (A1 Pr) — HI(As, P).

The idea of the proof is to define a chain homotopy between (Vo ®); and Wy o ®y,
by counting “hybrid” cascades that consist of some elements of M}, followed by
an element of @4, followed by some elements of M2 followed by an element of ¥,
followed by some elements of M3, with total moduli space dimension zero. The chain
homotopy equation then comes from considering such cascades with total moduli
space dimension one. We will again use a shortcut to simplify the notation.

Proof of Proposition 3.12. We define an “almost” Morse-Bott system
A = Al I_IQAQ LIy Ag = (X, | . |,S,O,M*7€i)

as follows. This will satisfy all of the axioms for a Morse-Bott system, except for a
partial failure of the Compactness axiom.

We take X = X7 u Xs u X5.

For 1 € Xy we define |21| = |z1|1, Si, = S;,, and O, = O, . For x5 € X, we
take |zo| = |za2]2 + 1, Sy, = S3,, and Oy, = O2,. For z3 € X3 we take |z3] = |z3]3,
Sy, = S5, and O, = O3 .

xr3?
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For xq, 2} € Xy, 29,2}, € Xy, and x3, 25 € X3, we define

My(xy,7y) = My (1, 2)),
Mo(wg, &) = M7(w, ),
Mg(x3,xy) = Mg (3, 2%),
Md(ﬂil,l’z) = @d(%,@),
My(xo, x3) = Wy(x9, x3),
My(z1,x3) = My(xe, 1) = My(x3,21) = My(23,22) = .

The evaluation maps e4 on these moduli spaces are the same as the evaluation maps
for Al, Az, Ag, i, and W.

Observe that A satisfies all of the axioms for a Morse-Bott system, except that
parts (b)—(d) of the Compactness axiom fail when applied to z; € X; and x5 € X3.
Namely, parts (b)—(d) of Compactness require that we have

aMl(x17x3) = L[ (_1>d19d1 (CEl,.fCQ) XS(:BQ) \I]dg(x27x3)7 <?'>

roEXo
di+da=1

and similar equations with generic point constraints on S, and/or S,,. In fact,
however, the left hand side of each of these equations is empty, since all moduli
spaces from x; to x3 are empty.

What happens if we try to define a cascade “differential” ¢ for (A, (Py, Pa, Ps3))

anyway, despite the above failure of compactness? Proposition 3.2(a) still holds, so
we obtain a well-defined linear map

0: CZ(A, (Py, Py, Py)) — C2_ (A, (P1, P2, P)).

However we no longer know that 0> = 0. In particular Proposition 3.2(b) no longer
holds when x, = 1 € X; and x_ = x3 € X3. We will need to compute the precise
error in order to find out what 02 actually is.

Fix Z; to denote I; or Z;, and fix T35 to denote I3 or Z3. The part of the proof of
Proposition 3.2(b) that is no longer valid is equation (3.15), which in this case would
be

oM, [L’l,l‘g H M (T1,T) X g M%(:r T3)

r’'#1x1,13 (?')
[T MP@F) xs MG (@, 7).

' #x1,23

In the present case, the left hand side is missing points on the right hand side in
which 2’ = x5 € X5 and the cascades do not involve any other elements of X5. More
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precisely, define

2@, %) = | [ Mg (@1, %2) X saa) M} (32, %)

xQEXQ

- ]_[ I1,$2 X S (x2) ML'[($271’3)

IQEXQ

(3.22)

where we use the notation M7 to indicate cascades which involve only one point in
X,. We can then correct the previous equation by adding Z(Z1,73) to the left hand
side, giving

5]\7%(x1,x3)u2x1,x3 H ML" (Z1,T") X g Me(x T3)

T/ #x1,13

L[ M LL’l, / Xs($)M$(l’/,.%3).

x'#x1,13

(3.23)

The rest of the proof of Proposition 3.2(b) now goes through. However since the right
hand side of (3.23) is used to cancel some ends of the moduli space, and since we
had to add the points in Z(Z1,T3) to obtain this right hand side, the result is that

we obtain a compactification M (T, 3) of Mf(%l, T3) with —Z (%1, 23) added to its
boundary. That is,

N (1,3) = [ M5 G0 3) x M{ G2
yeX
LT[ MG, 9) x ME(5,3s) (3.24)
yeX
- Z(%h %3)

Let M\g(il, T3) denote the moduli space of cascades in A; Uyop Az from Z; to T3
in which each factor lives in a zero dimensional moduli space. Observe that as a set,

we have Z(71,73) = M\g (Z1,73). We claim that as an oriented 0-manifold, we have

7 T PN
20,7 = { MoTud), B=E, (3.25)

MO (131,333), r1 = I1.
To see how the orientations work, consider a cascade in
(ug, .. ug) € MJ(Z1,T3).

Here u; € (¥ o ®), for some j € {0,...,k}; u; € M' for all i < j; and u; € M? for all
¢ > j. Assume for simplicity that u; does not have any point constraints. Then all
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factors u; for i > 0 are counted with the same signs in M\g(?ﬁl, 73) and in Z(%1,73);
the minus sign in the second line of (3.22) arises because cascades in ]\7;" (Z1,%2)
are oriented using @ instead of . The factor ug is counted with the same sign in
]T/[\g"(%l,.%g) and Z(Z1,73) when Ty = 71, and with opposite signs when Z; = Z;. The
reason is that in the latter case, up € M; = —M;{. The cases where u; has point
constraints are treated similarly.

Combining (3.25) with (3.24), it follows that the part of ¢ mapping from Cf(Al, Py)
to C’f(Ag, Ps) is given by
0? = —(Vod), (3.26)

Now let K denote the portion of ¢ mapping from C’:"(Al, P1) to Cf(Ag, P3). We can
then write 0z in block matrix form as

a0 0
0=|o7r 0, 0
K \I/ﬁT (93

Squaring this and comparing the lower left entry with (3.26), we obtain
Koy + Wyr®y7 + 3K = —(V o D).
By Lemma 3.11, we can rewrite this as
Koy + 03K = Wy0®y — (Vo )y

Thus K is a chain homotopy between ¥ o @4 and (Vo ®);. O]

3.9 Homotopy invariance

Let A1 = (Xl, | : |1, Sh Ol, Mi, e}i) and AQ = (XQ, | : |2, 527 O27M3762i) be Morse-Bott
systems. We now prove:

Proposition 3.13. Let ®,9' : Ay — Ay be morphisms of Morse-Bott systems. Sup-
pose there exists a homotopy K from ® to ®' as in Definition 2.15. Let (Py1, P2) be

a generic pair of choices as needed to define the cascade chain complezres C’::‘(Al,Pl)

and CE(AQ,,PQ). Then
O, = (), : HI(Ay,Pr) — HE (A, Py).
To prove Proposition 3.13, we define a chain homotopy

K, : C7 (A1, Py) — C7.,(Ay, Py).
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from ®; to ®’y. To do so, we define an “almost” Morse-Bott system
Al UK A2 = (X7 ’ : yusaoaM*uei)u

similarly to Definition 3.8, as follows. We take X = X; u X5. For z; € X; we define
21| = |21 + 2, Spy = SL, and O,, = OL . For x5 € Xy we define |zo| = |22]s,
Sep = 52, and O,, = O2_. For x1,2) € X; and 5,25 € X,, we define

Md(xhx,l) = M;(I1,$1),
Ma(w, xy) = M3 (2, 75),
My(z1, x9) = Kq(x1, 22),
My(xo, 1) = .

The evaluation maps e4 on these moduli spaces are the same as the evaluation maps
for Ay, Ag, and K.

As in Definition 3.8, A; L Ay almost satisfies the axioms for a Morse-Bott system,
except that we do not have parts (b), (c), and (d) of the Compactification axiom,
because of the extra terms involving ® and ¢’ in equations (2.34), (2.35), (2.36), and
(2.37). In any case, since part (a) of Compactification holds, it still makes sense to
define a cascade “differential” 0. We write this in block matrix form as

o— O , (3.27)

Ky 0y
and this is the definition of Kj.

Lemma 3.14. K; satisfies the chain homotopy equation
agKﬁ + Kual = (I);i — Cbﬂ.

Proof. Since we do not have parts (b)—(d) of the Compactness axiom, we do not have
0% = (. Instead, taking note of the extra terms involving ® and @' in equations (2.34),
(2.35), (2.36), and (2.37), and comparing with the definition of ®; and ®;, we find
that

0 = 0 1. (3.28)

o, —d; 0

To explain the signs in this equation, consider a cascade contributing to the coef-
ficient (0?7, ,7_), coming from a ® boundary term in equation (2.34), (2.35), (2.36),
or (2.37). At first glance, these equations suggest that this cascade should count with
the same sign as in ®; when 7, = 7 (which would disagree with (3.28)), and with
the opposite sign as in ®; when . = Z_ (which would agree with (3.28)). However
we have to make two adjustments in order to compare with the signs in (2.34)—(2.37)
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with the signs in the definition of ®;: namely, we have to replace A; by A, and insert
T.

If ¥, = 7, then replacing A; by A, does not affect the sign, because any M*
factors in the cascade are in zero-dimensional moduli spaces. However the 7 factor in
the definition of ®4 does switch the sign.

On the other hand, if 7, = Z_, then there are two cases to consider. If the first
factor in the cascade is in @, then replacing A; by A, does not affect the sign, and
inserting 7 does not affect the sign either. If the first factor in the cascade is in M,
then it lives in a one-dimensional moduli space, while all other factors in M" live
in zero-dimensional moduli spaces. Thus replacing A; by A, switches the sign; and
inserting 7 also switches the sign. This completes the proof of (3.28).

Computing 0% using (3.27) and comparing with (3.28), we obtain

(?QKﬁ + Kﬁél = (I);i — (I)ﬁ.

3.10 Independence of the choice of base points

We now show that if A is a Morse-Bott system, then the cascade homology H 3 (A, P)

does not depend on the choice of base points P, and so can be denoted by Hf(A). In
addition, if ® is a morphism of Morse-Bott systems from A; to As, then the induced

map on cascade homology ®5>7" : H:" (A1, Py) — Hf (Az,Ps) gives a well-defined
map P, : Hf(Al) — HE(AQ). More precisely:
Proposition 3.15. Let A be a Morse-Bott system, and let P, P’ be two choices of

base points as needed to define the cascade chain complex. Then there is a canonical
isomorphism

pp: HY(AP) > HI (A, P) (3.29)
with the following properties:

(a) ppp = ldHi" P
(b) If P" is a third choice of base points, then
Gprp = Gprpr o Pprp Hf(Aa P) — HE(AP”),

(c) If ® is a morphism of Morse-Bott systems from Ay and Ay, if Py and P; are
choices of base points for Ay, and if Py and Pj are choices of base points for
Ag, then the following diagram commutes:

¢7>1 Pl

HZ (A, P) —55 HI(A,P)
(1)1’2,7’1 l lq)z:gyi

¢7>§ Pa
E———

H?(Ay, Py) H? (A3, P})
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Proof. To define the map (3.29), suppose that the pair (P,P’) is generic. Then by
§3.6, the identity morphism of A induces a map

id?'P . H? (A, P) — HI(A,P)),

and we define this to be ¢p: p.

Lemma 3.16. The map ¢pp defined above for generic pairs (P,P’) is an isomor-
phism.

Proof. Let C, denote the free Z-module with generators I and Z for each z € X.
Choose generators of O,(p,) and O,(p,) for each x € X, in order to identify both

cascade chain modules C’:" (A,P) and C’:f (A, P’) with C,. For each x € X, choose
these generators to agree under the isomorphism O,(p,) — O,(p,) given by parallel
transport along a positively oriented embedded arc on S(x) from p, to p,. Then by
the construction in §3.6, ¢ p is induced by a chain map of the form

I+B:C,— C,

where I denotes the identity on Cy, and (BZ,y) # 0 only if x # y and My(z,y) # &
for some d € {0,1}. Now

Y(-FBr:Cy — C,
k=0

is a well-defined linear map, by the Finiteness axiom for a Morse-Bott system, and
it is inverse to I + B. Thus I + B is an isomorphism of chain complexes, and so it
induces an isomorphism on homology. ]

The above definition of ¢ p only works for generic pairs (P, P’); in particular it
does not work when P = P’. To extend the definition to arbitrary pairs (P, P’) for
which both cascade chain complexes are defined, we use the following lemma:

Lemma 3.17. Let ® be a morphism of Morse-Bott systems from Ay to As, and let
Py and Pj be generic choices of base points for Ay and A,, so that the cascade chain
complexes and the map @fZ’Pl are defined. Then:

(a) [C]; j;{ ZS ahgenem'c choice of base points for Ay, so thalt ¢p; p, and @féﬂ are
efined, then
P4, P Ph P}
R OﬁbP{,Pr
(b) If Py is a generic choice of base points for As, so that ®2" and bpy.p, are

defined, then
PP Po, P
o2 = ¢77§,772 © (I)*2 L.
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Proof. The idea is to apply the functoriality of Proposition 3.12 to the composition
of ® with the identity morphism for A; or A;. Unfortunately we cannot do this
directly, because as discussed in Remark 2.13, ® might not be composable with the
identity; and even when it is, the composition of ® with the identity is different from
® (although only inconsequentially). However the proof of Proposition 3.12 still goes
through in this case with minor modifications. We omit the details. [

Lemma 3.18. Let (Py,Pa, P3) be a generic triple of choices of base points for the
Morse-Bott system A. (If any pair of these choices is generic, then the third choice
can be made generically.) Then

¢733,791 = ¢773,'Pz o ¢P2,7’1'

Proof. This is a special case of Lemma 3.17 in which & : A — A is the identity
morphism. O

Continuing the proof of Proposition 3.15, if A is a Morse-Bott system and if P, P’
are any choices of base points for which the cascade chain complexes are defined, then
we can define ¢p p by generically choosing a third set of base points P” and setting

¢'P’,’P = ¢’P’7’P” @) Qb’P”,'P-

It follows by repeatedly applying Lemma 3.18 that ¢/ » does not depend on the choice
of P” and satisfies property (b) in Proposition 3.15. It follows from Lemma 3.16 that
¢prp is an isomorphism.

To prove part (a) of Proposition 3.15, by definition we have

Opp = Qpp 0 Pprp
where P’ is generic. To prove that ¢pp is the identity, by Lemma 3.16 it is enough
to show that
Pppr © Pprp © Gppr = Pppr
where P” is generic. This last equation follows by applying Lemma 3.18 twice.
Part (c) of Proposition 3.15 now follows from Lemma 3.17. [

3.11 Proof of the main theorem

To conclude, we now review how the above results prove all of the points in the main
theorem.

Proof of Theorem 1.1. Part (a) follows from Proposition 3.15(a),(b).

Part (b.i) follows from Proposition 3.15(c).

Part (b.ii) holds by definition, because we are using the maps induced by the
identity morphism to identify the cascade homologies for different choices of base
points with each other.

Part (b.iii) follows from Proposition 3.12.

Part (b.iv) follows from Proposition 3.13. O
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