

Access to 5-Fluoroisoxazoles via the Nitrosation of Geminal Bromo-Fluoro Arylcyclopropanes

Oksana B. Bondarenko,^a* Aleksandr A. Vinogradov,^a Arseniy I. Komarov,^a George L. Karetnikov,^a Nikolai V. Zyk,^a Tina Holt,^b and Andrei G. Kutateladze^b

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation

^bDepartment of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States

ARTICLE INFO

Article history:

Received

Received in revised form

Accepted

Available online

ABSTRACT

A new method for the synthesis of 3-aryl-5-fluoroisoxazoles via the reaction of nitrosonium chlorosulfate with 2-aryl-1-bromo-1-fluorocyclopropanes containing acceptor substituents in the aromatic ring has been developed. The reaction proceeds highly regioselectively thus providing 3-aryl-5-fluoroisoxazoles in good yields. The structure of isoxazoles was corroborated by the *DU8+* hybrid DFT/parametric computational approach.

2009 Elsevier Ltd. All rights reserved.

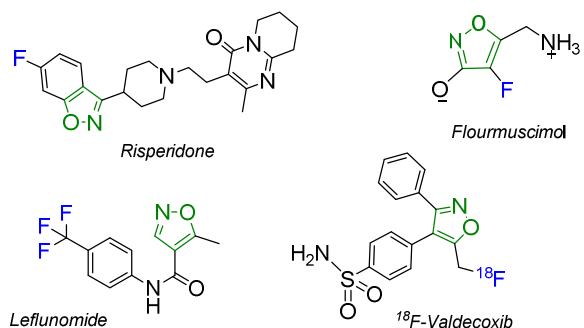
Keywords:

2-Aryl-1-bromo-1-fluorocyclopropanes

Nitrosonium chlorosulfate

3-Aryl-5-fluoroisoxazoles

Regioselectivity


1. Introduction

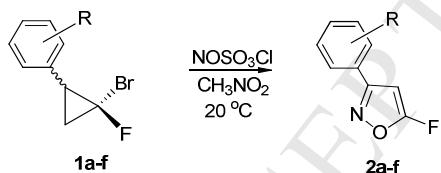
5-Haloisoxazoles are a valuable class of compounds. Chloro- and bromoisoxazoles have been shown to possess herbicidal¹ and antihelminthic² activities. 5-Bromo- and iodoisoxazoles are versatile precursors in metal-catalyzed cross-coupling reactions,³ the reaction of 5-chloroisoxazoles with sodium or tetrabutylammonium borohydride affords unambiguously 5-unsubstituted isoxazoles⁴ valuable intermediates in synthetic organic chemistry.

The most commonly used methods to prepare 5-haloisoxazoles involve the reaction of phosphorus oxyhalide (POCl_3 , POBr_3) with 3-arylisoxazolones^{1,2,5,6} and the [3+2]-cycloaddition of an *in situ* generated nitrile oxide to a halogenated or metallated triple bond.⁷⁻⁹ Both methods have limitations on the halogen incorporated into the molecule. The first one gives access to 5-chloro- and bromoisoxazoles. The second is suitable mainly for production of 5-bromo- and iodoisoxazoles. 5-Haloisoxazoles, including fluorinated heterocycles, were also obtained via diazotization of 5-aminoisoxazoles in large excess of HHal but the yields of the target products were less no more than 40%.¹⁰ At last, 5-chloro/bromoisoxazoles can be synthesized via nitrosation of the corresponding *gem*-dihalocyclopropanes.^{11,12} It is relatively new but a convenient route for producing 5-chloro- and 5-bromoisoxazoles. We have recently shown that this reaction has a broad scope and can be used for the synthesis of both arylated and alkylated 5-haloisoxazoles including polycyclic ones.¹³ This approach is also appealing due to availability and structural

variety of the initial *gem*-dihalocyclopropanes by the Doering reaction under phase-transfer catalysis conditions. From this point of view fluorinated cyclopropanes are of special interest: we expected that nitrosation of such compounds will give rise to little known 5-fluoroisoxazoles.

A number of fluorine-containing (het)arenes are privileged scaffolds exhibiting broad biological activity^{14,15} and among them compounds containing isoxazole fragment, for example, *Risperidone* (antipsychotic medication), *Flourmuscimol* (psychoactive substance), *Leflunomide* (antirheumatic, immunomodulating drug). Fluoroaryl and fluoroalkyl analogues of *Valdecoxib* were found to possess potent inhibitory activities against cyclooxygenase-2 comparable to that of the parent *Valdecoxib*.^{16,17} Fluoroalkyl and fluoroaryl radiolabeled (^{18}F) analogues of *Valdecoxib* were recently reported as potential radiotracers for imaging COX-2 drugs with positron emission tomography (PET) and as EGFR bioprosbes.¹⁸ Thus evolution of

novel methods for incorporating fluorine into organic molecules will no doubt continue to increase the abundance of this element in new efficient drugs.

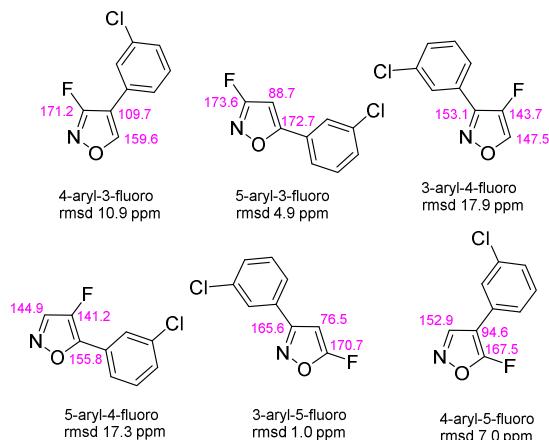

Recently we have found that nitrosation of alkylated mixed *gem*-bromofluorocyclopropanes with SO_3 -activated nitrosyl chloride afforded 5-fluoroisoxazoles.¹⁹ Given that the use of other nitrosating reagents, namely nitrosonium tetrafluoroborate, in reaction with such mixed *gem*-bromofluorocyclopropanes resulted in the formation of fluorinated pyrimidins²⁰ and isoxazolines,²¹ rather than isoxazoles, our preliminary results encouraged us to continue this work in order to establish the generality of the reaction.

Here we report a procedure for the synthesis of 3-aryl-5-fluoroisoxazoles via nitrosation of arylated *gem*-bromofluorocyclopropanes under the action of nitrosonium chlorosulfate.²²

2. Result and discussion

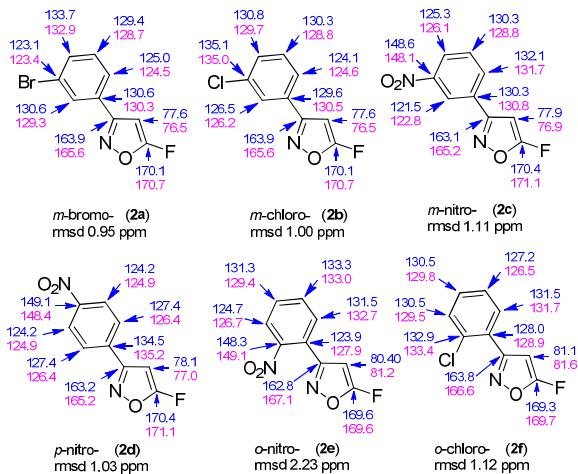
As follows from the previous investigations, *gem*-dihaloarylcyclopropanes with deactivated aromatic rings react smoothly with nitrosating agents and afford good yields of 5-haloisoxazoles.²³ For this reason a series of 2-aryl-1-bromo-1-fluorocyclopropanes **1a-f** was chosen to be studied in this work. We have found that the reaction between cyclopropanes **1a-f** (used as a 1:1 mixture of *E/Z*-isomers) and nitrosonium chlorosulfate carried out in nitromethane at room temperature gave the desired fluoroisoxazoles **2a-f** in good yields (~60-79%). In contrast to *alkylated* 1-bromo-1-fluorocyclopropanes, which under similar conditions gave a mixture of regioisomeric 3- and 4-alkyl-5-fluoroisoxazoles,¹⁹ the only regioisomer was formed in the case of arylated cyclopropanes **1a-f**. The observed high regioselectivity of nitrosation is in agreement with that of the previously studied arylated *gem*-dichloro/bromocyclopropanes.^{11,12}

Table 1. Access to 3-aryl-5-fluoroisoxazoles **2a-f** via nitrosation of *gem*-bromofluoroarylcyclopropanes in nitromethane.


R	1a-f : $[\text{NO}^+]$ ratio	Product	Yield, %
1a	3-Br	2a	64
1b	3-Cl	2b	77
1c	3-NO ₂	2c	75
1d	4-NO ₂	2d	79
1e	2-NO ₂	2e	63
1f	2-Cl	2f	60

Only traces – less than 5% – of 3-aryl-5-bromoisoxazoles were detected in the ¹H NMR spectra of the reaction mixtures in the case of cyclopropanes **1a,c** (see Table, Supp. Mater.) thus attesting to the high selectivity of nitrosonium chlorosulfate for fluoroisoxazoles. All compounds were isolated by column chromatography and characterized by ¹H, ¹³C and ¹⁹F NMR spectroscopy, mass-spectrometry and elemental analysis.

The ¹H NMR spectra of **2a-f** exhibit the absorption of the isoxazole ring proton at ~5.8-6.0 ppm (doublet, ³J_{HF} = 7.5 Hz).


The value of chemical shift unambiguously indicates that the isoxazole ring proton is attached at the C(4) carbon atom. Similarly, in the ¹³C NMR spectra, the upfield signal appeared as a doublet at ~78.0 ppm with a two-bond coupling (²J_{CF} = 16.8 Hz) was uniquely assigned to the HC(4) isoxazole carbon atom. Two remaining quaternary carbon atoms of the isoxazole ring appear as doublets with a three-bond (³J_{CF} = 5.9 Hz) and one-bond couplings (¹J_{CF} = 296.5 Hz) at ~163.0 and ~170.0 ppm, respectively. Because of their similar chemical shifts and dissymmetry in the isoxazole ring nucleus caused by the presence of two vicinal heteroatoms strongly affecting the chemical shifts of both proton and carbon nuclei in the ring, the signals cannot be unambiguously assigned to either C(3) or C(5) carbon atoms. Insufficient information in the literature on fluorinated isoxazoles (NMR data for very few 5-fluoroisoxazoles is found in the literature)^{10,24} offer little help in solving this problem. Moreover, recent report on the synthesis of 5-fluoro-4-methyl-3-phenylisoxazole seems to be doubtful.²⁵ The spectral data given for this compound are in disagreement with proposed structure and with our results. Thus, the observed doublet of the CH₃ group protons in the ¹H NMR spectrum is obviously due to the presence of fluorine atom, however, the value of the coupling constant (20 Hz) is too large for ⁴J especially for the case when coupling atoms are mediated via a double bond. Next, according to the authors, the chemical shift of the C-F carbon atom in the ¹³C NMR spectrum appears at 89.5 ppm, that is in disagreement with characteristic region for C(5) carbon of the isoxazole ring. So, the task at hand was to unambiguously confirm the structure of the isoxazoles **2a-f**.

First, as an alternative approach to differentiating between the initially postulated 3-aryl-5-fluoro- and all other potential candidate structures, we turned to ¹³C NMR and compared the experimental data with the values computed with recently developed *DU8+* hybrid DFT/parametric approach.²⁶ This fast and accurate method was instrumental in many revisions of misassigned organic structures, especially that of natural products.²⁷ As follows from Figs.1 and 2, *DU8+* provides strong and convincing evidence that the major products of these reactions are 3-aryl-5-fluoroisoxazoles. Fig. 1 compares the calculated ¹³C NMR chemical shifts for all six possible positional isomers of *m*-chlorophenyl-fluoro-isoxazoles. The 3-(*m*-chlorophenyl)-5-fluoroisoxazole emerged as a clear winner by a large margin (rmsd over all 9 carbons is 1.0 ppm). Fig. 2 shows similar excellent matches between the computed and experimental ¹³C chemical shifts for 5-fluoroisoxazole products **2a-d,f**, 0.95<rmsd<1.12 ppm.

Figure 1. Comparison of calculated ¹³C NMR chemical shifts for the isoxazole core in all six positional isomers of *m*-chlorophenyl-fluoro-isoxazole.

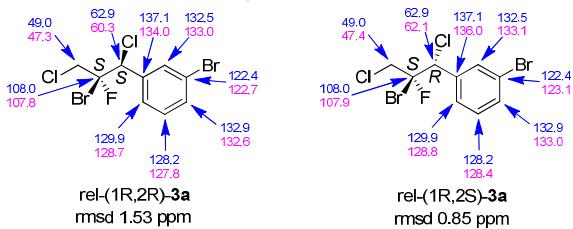
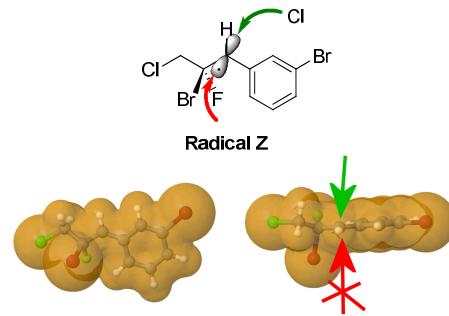
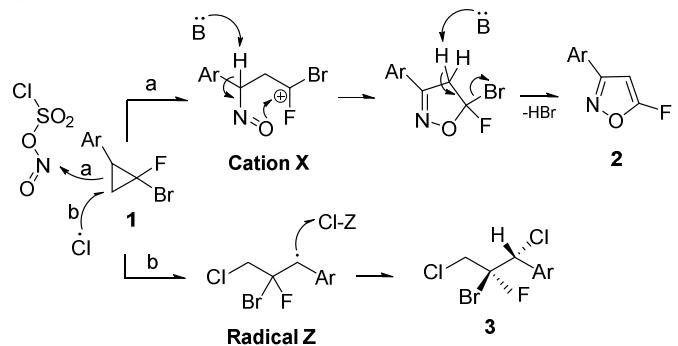

The only outlier was the *o*-nitro product **2e**, which gave a higher rmsd of 2.23 ppm, primarily due to deviations for the two quaternary carbons connecting the two rings. Without these two, the match over the remaining 7 carbons improves to 1.22 ppm.²⁸

Figure 2. Comparison of calculated and experimental ^{13}C NMR chemical shifts for 3-aryl-5-fluoroisoxazoles **2a-f** (blue – experimental values, magenta – calculated with DU8+ ; rmsd values are for all 9 carbons).


Halogenated arylpropanes **3** were also isolated as minor products in some cases (see Table, Supp. Mater.). Although the yield of the open-chain byproduct never exceeded 20%, for completeness we have isolated it from the reaction of cyclopropane **1a** and fully characterized it. Based on ^1H , ^{13}C and ^{19}F NMR data and mass-spectrometry analysis the isolated compound was identified as 2-bromo-1-(3-bromophenyl)-1,3-dichloro-2-fluoropropane **3a**. The ^1H NMR spectrum of **3a** exhibits the signals of three aliphatic protons at 3.94, 4.35 and 5.40 ppm, with their multiplicity and ^1H - ^{19}F coupling being in agreement with the structure of propane **3a**. The ^{13}C NMR also showed the anticipated ^{13}C - ^{19}F coupling, with C-2 of the propane fragment appearing as a doublet at 108.0 ppm with a large one-bond coupling constant ($^1J_{\text{CF}} = 264.2$ Hz), while C-1 and C-3 both appeared as doublets with smaller two-bond couplings ($^2J_{\text{CF}} = 20.5$ and 30.0 Hz). The shape of the cluster of peaks for the molecular ion in mass spectrum revealed that compound **3a** contains two chlorine and two bromine atoms. Ion with mass of 203 pointed to benzylic location of one of the chlorine atoms.

DU8+ calculations of ^{13}C chemical shifts for both diastereomers, *rel*-(*1R,2R*)-**3a** and *rel*-(*1R,2S*)-**3a**, revealed excellent matches for all carbon atoms. However calculated rmsd make it possible to confidently differentiate between diastereomers (Figure 3) and indicate that **3a** is likely *rel*-(*1R,2S*)-**3a** diastereomer.


Figure 3. Comparison of experimental and computed ^{13}C chemical shifts for two diastereomers of **3a**.

In addition, the stereoselective formation of *rel*-(*1R,2S*)-**3a** diastereomer is favorable mechanistically as in the major conformer of the benzylic **Radical Z** (intermediate shown in Figure 4), the approach indicated by the red arrow is blocked by the bromine atom (van der Waals surfaces are shown in projections from the side and from the top).

Figure 4. Approach to benzylic radical from the front face in the shown major conformer is obstructed by protruding bromine atom; van der Waals surface is shown.

Scheme shows combined mechanistic rationale for the formation of the major products, isoxazoles (path *a*), and the minor open-chain dichloride byproduct (path *b*). In path *a*, electrophilic attack of nitrosonium cation could be expected to produce either aryl- or bromo-fluoro-stabilized initial carbocation **Cation X**. Clearly, the stabilization of the cation by halogens prevails; also NO^+ localizes to the benzylic carbon, see path *a*. In subsequent steps, resembling nitroso-oxime tautomeric equilibrium, the initial cation is intramolecularly captured by the oxygen end of the nitroso group, yielding isoxazoline, which in turn undergoes dehydrobromination to furnish the major product, isoxazole **2**.

Scheme. Mechanistic rationale for the formation of major products, isoxazoles **2**, and open-chain byproduct **3**.

We are also assuming that the adduct of nitrosyl chloride and SO_3 exists in equilibrium with free NOCl , which is known to partially decompose via homolytic dissociation.²⁹ This supports a hypothesis that the minor product of 1,3-addition, dichloride **3**, is a product of a radical ring-opening of cyclopropane with chlorine atom (path *b*) forming a bond with unsubstituted methylene and generating the benzylic **Radical Z**. Radical path *b* is therefore different from path *a* in both, the locus of the initial attack and the kind of bond that gets cleaved.³⁰ We managed to diminish nearly twice the amount of halogenated arylpropanes **3** by changing the order of reagents mixing (see Table, Supp. Mater.).¹⁹

3. Conclusion

ACCEPTED MANUSCRIPT

We have developed a straightforward and efficient protocol for the synthesis of 3-aryl-5-fluoroisoxazoles starting from readily accessible fluorine-containing dihalocyclopropanes and nitrosonium chlorosulfate. The structure of isoxazoles was corroborated by the DU8+ hybrid DFT/parametric computational approach. The reaction shows excellent regioselectivity and scalability to gram scale. This process is in fact the first general method for the synthesis of 5-fluoroisoxazoles.

4. Experimental section

¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a 400 MHz spectrometer (400.1, 100.6, and 376.3 MHz for ¹H, ¹³C, and ¹⁹F, respectively) at room temperature; chemical shifts were measured with reference to the solvent for ¹H (CDCl₃, δ = 7.24 ppm) and ¹³C (CDCl₃, δ = 77.13 ppm) and to CFCl₃ (CFCl₃, δ = 0.00 ppm) as an external standard for ¹⁹F. Mass spectra were obtained with a GC-MS instrument using electron-impact ionization (EI, 70eV). HRMS measurements were performed with an electrospray ionization (ESI) instrument with a time-of-flight (TOF) detector. Analytical thin-layer chromatography was carried out with silica gel plates (supported on aluminum). IR spectra were recorded with Nicolet IR200 (Thermo Scientific) FT-IR spectrometer with ZnSe ATR (45° incident angle), resolution 4 wavenumbers, 20 scans per experiment.

Nitrosation of bromofluorocyclopropane 1a with nitrosonium chlorosulfate (General procedure). A 50 ml round bottom flask was charged with 2g (6.8 mmol) of 1-bromo-2-(3-bromophenyl)-1-fluorocyclopropane **1a** in 2.3 mL of nitromethane. Over 10-20 min a freshly prepared suspension of 1.55 g (10.7mmol) of nitrosonium chlorosulfate in 20.7 mL of dry nitromethane was added to this solution at 20°C under stirring.³¹ Reaction progress was monitored by TLC. After completion of the reaction (~1-2 h) reaction mixture was gel-filtrated through a layer of silica gel. The pad of silica gel was washed with dichloromethane (3 x 10 mL). The solvent from combined organic solutions was removed under reduced pressure and the residue was subjected to separation on a slurry-packed silica gel column, ethyl acetate – petroleum ether, 1 : 20, to yield:

2-bromo-1-(3-bromophenyl)-1,3-dichloro-2-fluoropropane *rel*-(*1R,2S*)-3a****³² (0.07 g, 7%) as colorless oil; [Found: C, 29.30; H, 2.40. C₉H₇Br₂Cl₂F requires C, 29.63; H, 1.93%]; R_f 0.86; d_H (400 MHz CDCl₃) 7.77 (1H, s, CH_{Ar}), 7.57 (1H, d, ³J 8.0 Hz, CH_{Ar}), 7.54 (1H, d, ³J 8.0 Hz, CH_{Ar}), 7.30 (1H, t, ³J 8.0 Hz, CH_{Ar}), 5.40 (1H, d, ³J_{HF} 17.0 Hz, CH), 4.35 (1H, dd, ²J_{HH} 12.4 Hz, ³J_{HF} 8.2 Hz, CH₂Cl), 3.94 (1H, t, ²J_{HH}=³J_{HF} 12.4 Hz, CH₂Cl); d_C (100.6 MHz, CDCl₃) 137.1 (C(1)_{Ar}), 132.9 (CH_{Ar}), 132.5 (CH_{Ar}), 129.9 (CH_{Ar}), 128.2 (CH_{Ar}), 122.4 (CBr), 108.0 (d, ¹J_{CF} 264.2 Hz, CBrF), 62.9 (d, ²J_{CF} 20.5 Hz, CHCl), 49.0 (d, ²J_{CF} 30.0 Hz, CH₂Cl); d_F (376 MHz, CDCl₃) -116.2 (1F, m, Br-C-F); m/z (EI): cluster 362 (4.6), 364 (13), 366 (12), 368 (4), 370 (0.5) M⁺, cluster 327 (0.4), 329 (1), 331 (0.6), 333 (0.1) [M⁺ - Cl], cluster 283 (2.2), 285 (3.4), 287 (1.5), 289 (0.2) [M⁺ - Br], cluster 248 (2.8), 250 (3.7), 252 (1) [M⁺ - Br - Cl], cluster 247 (2.8), 249 (4.2), 251 (1.5) [M⁺ - Br - Cl - H], cluster 203 (60), 205 (100), 207 (30) [BrC₆H₄-CHCl⁺], cluster 169 (5), 171 (2) [M⁺ - 2Br - Cl], cluster 168 (5.4), 170 (2) [M⁺ - 2Br - Cl - H], 134 (43) [M⁺ - 2Br - 2Cl], 133 (50) [M⁺ - 2Br - 2Cl - H], 89 (17), 63 (20%).

3-(3-bromophenyl)-5-fluoro-1,2-oxazole **2a** (1.05 g, 64%) as colorless cryst.; m. p. 42°C; [Found: C, 44.47; H, 2.19; N, 5.65.

C₉H₅BrFNO requires C, 44.66; H, 2.08; N, 5.79]; R_f 0.53; d_H (400 MHz, CDCl₃) 7.88 (1H, s, CH_{Ar}), 7.66 (1H, d, ³J 7.8 Hz, CH_{Ar}), 7.59 (1H, d, ³J 7.8 Hz, CH_{Ar}), 7.33 (1H, t, ³J 7.8 Hz, CH_{Ar}), 5.85 (1H, d, ³J_{HF} 7.5 Hz, C(4)H_{is}); d_C (100.6 MHz, CDCl₃) 170.1 (d, ¹J_{CF} 295.5 Hz, F-C-O), 163.8 (d, ³J_{CF} 5.6 Hz, C=N), 133.7 (CH_{Ar}), 130.6 (CH_{Ar} + C(1)_{Ar}), 129.4 (CH_{Ar}), 125.0 (CH_{Ar}), 123.1 (CBr), 77.6 (d, ²J_{CF} 16.9 Hz, C(4)H_{is}); d_F (376 MHz, CDCl₃) -102.9 (1F, d, ³J_{HF} 7.5 Hz, O-C-F); m/z (EI): cluster 241 (1.8), 243 (1.7) M⁺, cluster 213 (13), 215 (13) [M⁺ - CO], cluster 186 (12), 188 (11.5) [M - CO - HCN = BrC₆H₄CF]⁺, 134 (100) [M - CO - Br]⁺, 107 (95) [C₆H₄CF]⁺, 102 (12) [C₆H₄CN]⁺, 88 (9), 75 (15) [C₆H₃]⁺, 50 (10%).

Isoxazoles 2b-2f:

3-(3-chlorophenyl)-5-fluoro-1,2-oxazole **2b** (1.52 g, 77%) obtained from 2.50 g of 1-bromo-2-(3-chlorophenyl)-1-fluorocyclopropane **1b** as colorless cryst.; m.p. 31°C; R_f 0.53 (EtOAc : petroleum ether = 1 : 20); d_H (400 MHz, CDCl₃) 7.72 (1H, s, CH_{Ar}), 7.61 (1H, d, ³J 7.7 Hz, CH_{Ar}), 7.43 (1H, d, ³J 7.7 Hz, CH_{Ar}), 7.38 (1H, t, ³J 7.7 Hz, CH_{Ar}), 5.85 (1H, d, ³J_{HF} 7.5 Hz, C(4)H_{is}); d_C (101 MHz, CDCl₃) 170.1 (d, ¹J_{CF} 295.6 Hz, F-C-O), 163.9 (d, ³J_{CF} 5.6 Hz, C=N), 135.1 (C-Cl), 130.7 (CH_{Ar}), 130.3 (CH_{Ar} + C(1)_{Ar}), 126.5 (CH_{Ar}), 124.5 (CH_{Ar}), 77.6 (d, ²J_{CF} 16.9 Hz, C(4)H_{is}); d_F (376 MHz, CDCl₃) -103.0 (1F, d, ³J_{HF} 7.5 Hz, O-C-F); m/z (EI): cluster 197 (5), 199 (1.5) M⁺, cluster 169 (35), 171 (16) [M⁺ - CO], cluster 142 (53), 144 (21) [M - CO - HCN = ClC₆H₄CF]⁺, 134 (17) [M - CO - Cl]⁺, cluster 111 (12), 113 (3.5) [C₆H₄Cl]⁺, 107 (100) [C₆H₄CF]⁺, 102 (5) [C₆H₄CN]⁺, 75 (52) [C₆H₃]⁺, 50 (38%); HRMS: MH⁺, found 198.0110, 200.0078. C₉H₆ClFNO⁺ requires 198.0116, 200.0087.

5-fluoro-3-(3-nitrophenyl)-1,2-oxazole **2c** (0.47 g, 75%) obtained from 0.78 g (3.0 mmol) of 1-bromo-2-(3-nitrophenyl)-1-fluorocyclopropane **1c** as a yellow oil; [Found: C, 52.03; H, 2.63, N 13.21. C₉H₅FN₂O₃ requires C, 51.93; H, 2.42; N, 13.46%]; d_H (400 MHz, CDCl₃) 8.58 (1H, s, CH_{Ar}), 8.34 (1H, d, ³J 8.0 Hz, CH_{Ar}), 8.14 (1H, d, ³J 8.0 Hz, CH_{Ar}), 7.70 (1H, t, ³J 8.0 Hz, CH_{Ar}), 6.03 (1H, d, ³J_{HF} 7.6 Hz, C(4)H_{is}); d_C (101 MHz, CDCl₃) 170.4 (d, ¹J_{CF} 296.4 Hz, F-C-O), 163.1 (d, ³J_{CF} 5.9 Hz, C=N), 148.6 (C-NO₂), 132.1 (CH_{Ar}), 130.32 (C(1)_{Ar}), 130.25 (CH_{Ar}), 125.3 (CH_{Ar}), 121.5 (CH_{Ar}), 77.9 (d, ²J_{CF} 16.8 Hz, C(4)H_{is}); d_F (376 MHz, CDCl₃) -101.9 (1F, d, ³J_{HF} 7.6 Hz, F-C-O); IR spectrum, cm⁻¹: 1640 (C=N), 1540, 1380 (NO₂); m/z (EI): 208 (89) M⁺, 189 (15) [M⁺ - F], 180 (4) [M⁺ - CO], 153 (10) [M⁺ - CO - HCN = NO₂C₆H₄CF]⁺, 150 (30) [M⁺ - NO - CO = C₈H₅FNO⁺], 134 (100) [M - CO - NO₂]⁺, 122 (10) [C₆H₄NO₂]⁺, 114 (25) [C₆H₄C₂N]⁺, 107 (72) [C₆H₄CF]⁺, 102 (10) [C₆H₄CN]⁺, 76 (60) [C₆H₄]⁺, 63 (18) [C₅H₃]⁺, 50 (49), 43 (29%).

5-fluoro-3-(4-nitrophenyl)-1,2-oxazole **2d** (0.35 g, 79%) obtained from 0.55 g (2.00 mmol) of 1-bromo-1-fluoro-2-(4-nitrophenyl)cyclopropane **1d** as yellow cryst.; m.p. = 108-110 °C; [Found: C, 51.65; H, 2.55; N, 13.12. C₉H₅FN₂O₃ requires C, 51.93; H, 2.42; N, 13.46%]; R_f 0.65 (EtOAc : petroleum ether = 1 : 5); d_H (400 MHz, CDCl₃) 8.32 (2H, d, ³J 8.8 Hz, 2CH_{Ar}), 7.95 (2H, d, ³J 8.8 Hz, 2CH_{Ar}), 6.02 (1H, d, ³J_{HF} 7.4 Hz, C(4)H_{is}); d_C (101 MHz, CDCl₃) 170.4 (d, ¹J_{CF} 297.1 Hz, F-C-O), 163.2 (d, ³J_{CF} 5.9 Hz, C=N), 149.1 (C-NO₂), 134.5 (C(1)_{Ar}), 127.4 (2CH_{Ar}), 124.2 (2CH_{Ar}), 78.1 (d, ²J_{CF} 16.8 Hz, C(4)H_{is}); d_F (376 MHz, CDCl₃) -101.9 (1F, d, ³J_{HF} 7.4 Hz, F-C-O); m/z (EI): 208 (1) M⁺, 180 (22) [M⁺ - CO], 163 (21) [M⁺ - CO - OH], 153 (40) [M⁺ - CO - HCN = NO₂C₆H₄CF]⁺, 150 (8) [M⁺ - NO - CO = C₈H₅FNO⁺], 134 (70) [M⁺ - CO - NO₂]⁺, 122 (11) [C₆H₄NO₂]⁺, 114 (4) [C₆H₄C₂N]⁺, 107 (100) [C₆H₄CF]⁺, 102 (15) [C₆H₄CN]⁺, 76 (13) [C₆H₄]⁺, 50 (15%).

5-fluoro-3-(2-nitrophenyl)-1,2-oxazole 2e (0.18 g, 63%)

obtained from 0.40 g (1.30 mmol) of 1-bromo-1-fluoro-2-(2-nitrophenyl)cyclopropane **1e** as yellow cryst.; m.p. = 114–116°C; [Found: C, 51.90; H, 2.65; N, 13.26. $C_9H_5FN_2O_3$ requires C, 51.93; H, 2.42; N, 13.46%]; R_f 0.70 (EtOAc : petroleum ether = 1 : 5); d_H (400 MHz, $CDCl_3$) 8.06 (1H, d, 3J 7.8 Hz, CH_{Ar}), 7.78–7.72 (1H, m, CH_{Ar}), 7.72–7.66 (2H, m, CH_{Ar}), 5.74 (1H, d, $^3J_{HF}$ 7.4 Hz, C(4)H_{is}); d_C (101 MHz, $CDCl_3$) 169.6 (d, $^1J_{CF}$ 296.4 Hz, F-C-O), 162.8 (d, $^3J_{CF}$ 5.9 Hz, C=N), 148.3 (C-NO₂), 133.3 (CH_{Ar}), 131.5 (CH_{Ar}), 131.3 (CH_{Ar}), 124.7 (CH_{Ar}), 123.9 (C(1)Ar), 80.4 (d, $^2J_{CF}$ 16.8 Hz, C(4)is); d_F (376 MHz, $CDCl_3$) -103.5 (1F, d, $^3J_{HF}$ 7.4 Hz, F-C-O).

3-(2-chlorophenyl)-5-fluoro-1,2-oxazole 2f (0.47 g, 60%) obtained from 1.00 g (4.0 mmol) of 1-bromo-2-(2-chlorophenyl)-1-fluorocyclopropane **1f** as a colorless oil; R_f 0.46 (EtOAc : petroleum ether = 1 : 20); d_H (400 MHz, $CDCl_3$) 7.72 (1H, dd, 4J 1.7 Hz, 3J 7.6 Hz, CH_{Ar}), 7.49 (1H, dd, 4J 1.2 Hz, 3J 7.6 Hz, CH_{Ar}), 7.42 (1H, dt, 4J 1.7 Hz, 3J 7.6 Hz, CH_{Ar}), 7.37 (1H, dt, 4J 1.2 Hz, 3J 7.6 Hz, CH_{Ar}), 6.06 (1H, d, $^3J_{HF}$ 7.6 Hz, C(4)H_{is}); d_C (101 MHz, $CDCl_3$) 169.3 (d, $^1J_{CF}$ 294.8 Hz, F-C-O), 163.8 (d, $^3J_{CF}$ 6.4 Hz, C=N), 132.9 (C-Cl), 131.5 (CH_{Ar}), 130.5 (2 CH_{Ar}), 128.0 (C(1)Ar), 127.2 (CH_{Ar}), 81.1 (d, $^2J_{CF}$ 16.9, C(4)is); d_F (376 MHz, $CDCl_3$) -104.0 (1F, d, $^3J_{HF}$ 7.6 Hz, F-C-O); m/z (EI) cluster 197 (5), 199 (2) M^+ , cluster 169 (48), 171 (16) [M^+ - CO], cluster 142 (80), 144 (26) [M^+ - CO - HCN = ClC_6H_4CF]⁺, 134 (35) [M^+ - CO - Cl]⁺, 107 (100) [C_6H_4CF]⁺, 102 (12) [C_6H_4CN]⁺, 75 (18) [C_6H_3]⁺, 50 (7%); HRMS: MH^+ , found 198.0116, 200.0085. C_9H_6ClFNO requires 198.0116, 200.0087.

Acknowledgment

This work was supported by the Russian Foundation for Basic Research (projects 15-03-04260 and 18-33-01109) and by the National Science Foundation, USA, CHE-1665342. We thank Thermo Fisher Scientific Inc., MS Analytica (Moscow, Russia), and personally Prof. Alexander Makarov for providing mass spectrometry equipment for this work.

References and notes

1. Gibbons, L. K. US Patent 3,781,438, 1973.
2. Carr, J. B.; Durham, H. G.; Hass, D. K. *J. Med. Chem.* **1977**, *20*, 934–939.
3. Schnürch, M.; Flasik, R.; Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. *Eur. J. Org. Chem.* **2006**, 3283–3307.
4. Ponticelli, F.; Tedeschi, P. *Synthesis* **1985**, 792–794.
5. Adembri, G.; Tedeschi, P. *Bol. Sci. Fac. Chim. Ind. Bologna* **1965**, *23*, 203–222.
6. Griesbeck, A. G.; Franke, M.; Neudörfl, J.; Kotaka, H. *Beilstein J. Org. Chem.* **2011**, *7*, 127–134.
7. Sakamoto, T.; Kondo, Y.; Uchiyama, D.; Yamanaka, H. *Tetrahedron* **1991**, *47*, 5111–5118.
8. Ku, Y.-Y.; Grieme, T.; Sharma, P.; Pu, Y.-M.; Raje, P.; Morton, H.; King, S. *Org. Lett.* **2001**, *3*, 4185–4187.
9. Takenaka, K.; Nakatsuka, S.; Tsujihara, T.; Koranne, P. S.; Sasai, H. *Tetrahedron: Asymmetry* **2008**, *19*, 2492–2496.
10. Saito, N.; Kurihara, T.; Yasuda, S.; Akagi, M. *Yakugaku Zasshi* **1970**, *90*, 32–35.
11. Lin, S.-T.; Kuo, S.-H.; Yang, F.-M. *J. Org. Chem.* **1997**, *62*, 5229–5231.
12. Bondarenko, O. B.; Vinogradov, A. A.; Danilov, P. A.; Nikolaeva, S. N.; Gavrilova, A. Yu., Zyk, N. V. *Tetrahedron Lett.* **2015**, *56*, 6577–6579.
13. Zyk, N. V.; Bondarenko, O. B.; Gavrilova, A. Yu.; Chizhov, A. O.; Zefirov, N. S. *Russ. Chem. Bull., Int. Ed.* **2011**, *60*, 328–333.
14. Ismail, F. M. D. *J. Fluorine Chem.* **2002**, *118*, 27–33.
15. Isanbor, C.; O'Hagan, D. *J. Fluorine Chem.* **2006**, *127*, 303–319.
16. Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. *Drug Dev. Res.* **2000**, *51*, 273–286.
17. Kumar, J. S. D.; Ho, M.M.; Leung, J. M.; Toyokuni, T. *Adv. Synth. Catal.* **2002**, *344*, 1146–1151.
18. Toyokuni, T.; Kumar, J. S. D.; Walsh, J. C.; Shapiro, A.; Talley, J. J.; Phelps, M. E.; Herschman, H. R.; Barrio, J. R.; Satyamurthy, N. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 4699–4702.
19. Bondarenko, O. B.; Vinogradov, A. A.; Komarov, A. I.; Smirnov, A. S.; Zyk, N. V. *J. Fluorine Chem.* **2016**, *185*, 201–205.
20. Sedenkova, K. N.; Averina, E. B.; Grishin, Y. K.; Kutatadze, A. G.; Rybakov, V. B.; Kuznetsova, T. S.; Zefirov, N. S. *J. Org. Chem.* **2012**, *77*, 9893–9899.
21. Bondarenko, O. B.; Komarov, A. I.; Zyk, N. V. *Russ. Chem. Bull., Int. Ed.* **2016**, *65*, 1882–1883.
22. The reagent may contain traces of nitrosonium chloropyrosulfate
23. Bondarenko, O. B.; Gavrilova, A. Yu.; Murodov, D. S.; Zyk, N. V.; Zefirov, N. S. *Russ. J. Org. Chem.* **2013**, *49*, 186–194.
24. Chi, K.-W.; Kim, H.-A.; Furin, G.G.; Zhughgov, E.L.; Protzuk, N. J. *Fluor. Chem.* **2001**, *110*, 11–20.
25. Yuan, X.; Yao, J. F.; Tang, Z. Y. *Org. Lett.* **2017**, *19*, 1410–1413
26. for full description of the components of $DU8^+$ method see: Kutatadze, A. G.; Reddy, D. S. *J. Org. Chem.* **2017**, *82*, 3368–3381.
27. for structure revisions utilizing $DU8^+$ and its previous versions see (a) Reddy, D. S.; Kutatadze, A. G. *Org. Lett.* **2016**, *18*, 4860–4863. (b) Kutatadze, A. G. *J. Org. Chem.* **2016**, *81*, 8659–8661. (c) Reddy, D. S.; Kutatadze, A. G. *Tetrahedron Lett.* **2016**, *57*, 4727–4729. (d) Mukhina, O. A.; Koshino, H.; Crimmins, M. T.; Kutatadze, A. G. *Tetrahedron Lett.* **2015**, *56*, 4900–4903. (e) Kutatadze, A. G.; Kuznetsov, D. M. *J. Org. Chem.* **2017**, *82*, 10795–10802. (f) Kutatadze, A. G.; Kuznetsov, D. M.; Beloglazkina, A. A.; Holt, T. *J. Org. Chem.* **2018**, *83*, 8341–8352.
28. The $DU8^+$ method is based on fast optimization of structures at a B3LYP/6-31G(d) level of DFT theory and evaluation of magnetic shielding at another *light* level of DFT theory, ω B97xD/6-31G(d). The spatial proximity of the *ortho*-nitro group to the isoxazole moiety in **2e** results in a push-pull system in which the *biaryl* torsional angle may not be well defined due to the shallow PES and the limitations of the basis set. The fact that the calculated ^{13}C chemical shifts for the remaining 7 atoms match the experimental value very well imparts confidence that **2e** is also a 3-aryl-5-fluoroisoxazole. The closest alternative 5-(*o*-nitrophenyl)-3-fluoroisoxazole gave rmsd = 5.7 ppm with the calculated chemical shift for isoxazole's C4 carbon deviating by more than 14 ppm from the experimental value (C4 is predicted within 1 ppm for the correct 3-(*o*-nitrophenyl)-5-fluoroisoxazole **2e**).
29. Addison, C. C.; Lewis, J. Q. *Rev. Chem. Soc.* **1955**, *9*, 115–149.
30. We do not rule out a mechanism in which the cyclopropyl moiety undergoes single electron oxidation by the electrophile, NO^+ , accompanied by fragmentation of a cyclopropane C-C bond to form a distonic 1,3-radical cation, see: Bondarenko, O. B.; Gavrilova, A. Yu.; Saginova, L.G.; Zyk, N. V.; Zefirov, N. S. *Russ. J. Org. Chem.* **2009**, *45*, 218–225.
31. catalytic amounts of hydroquinone may be added to the suspension of nitrosonium chlorosulfate to suppress radical processes.
32. may contain traces of *rel*-(*IR,2S*)-1,2-dibromo-1-(3-bromophenyl)-3-chloro-2-fluoropropane d_H (400 MHz, $CDCl_3$) 5.47 (1H, d, $^3J_{HF}$ 20.2 Hz, CH), 4.39 (1H, dd, $^2J_{HH}$ 12.3 Hz, $^3J_{HF}$ 7.8 Hz, CH_2Cl), 4.03 (1H, dd, $^2J_{HH}$ 12.3 Hz, $^3J_{HF}$ 11.0 Hz, CH_2Cl), the aromatic protons overlap with that of *rel*-(*IR,2S*)-3a; m/z (EI): cluster 406 (0.8), 408 (2.6), 410 (3.1), 412 (1.5), 414 (0.2) M^+ , cluster 327 (15), 329 (33), 331 (23), 333 (5) [M^+ - Br], cluster 291 (1), 293 (2), 295 (1) [M^+ - Br - Cl - H], cluster 248 (15), 250 (20), 252 (5) [M^+ - 2Br], cluster 247 (10), 249 (20), 251 (10) [$BrC_6H_4-CHBr^+$], 134 (100) [M^+ - 3Br - Cl], 133 (80) [M^+ - 3Br - Cl - H], 107 (18), 63 (30), 50 (25%).

- access to 5-fluoroisoxazoles from geminal bromofluoroaryl cyclopropanes
- high regioselectivity ensures good yields of 5-fluoroisoxazoles