

Diastereoselective Heterocyclization of Geminal Bromo-Fluoro Arylcyclopropanes by Nitrosonium Tetrafluoroborate: Access to 4-Fluorinated Isoxazolines and Isoxazoles

Oksana B. Bondarenko,^{a,*} Arseniy I. Komarov,^a George L. Karetnikov,^a Svetlana N. Nikolaeva,^a Nikolai V. Zyk,^a Tina Holt,^b and Andrei G. Kutateladze^b

^aDepartment of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation

^bDepartment of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80208, United States

ARTICLE INFO

Article history:

Received

Received in revised form

Accepted

Available online

ABSTRACT

A series of 5-aryl-4-bromo-4-fluoroisoxazolines was synthesized via nitrosation of 2-aryl-1-bromo-1-fluorocyclopropanes with NOBF_4 . It was shown that the *E*-isomers of the cyclopropanes react highly regio- and diastereoselectively leading exclusively to the *E*-isomers of the isoxazolines. The obtained 5-aryl-4-bromo-4-fluoroisoxazolines were transformed selectively into the corresponding 5-aryl-4-fluoro- or 5-aryl-4-bromoisoxazoles in good yields in the reaction with Lewis acids.

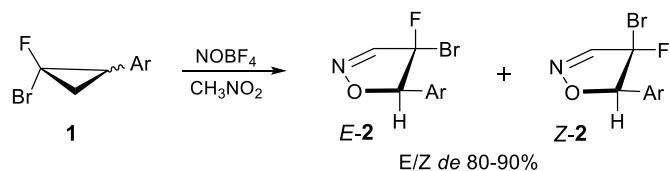
Keywords:

2-aryl-1-bromo-1-fluorocyclopropanes

nitrosonium tetrafluoroborate

5-aryl-4-bromo-4-fluoroisoxazolines

5-aryl-4-fluoroisoxazoles

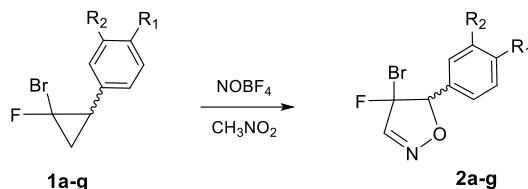

2009 Elsevier Ltd. All rights reserved.

1. Introduction

Synthesis of organic compounds possessing a definitely located fluorine atom constitutes a synthetic challenge, which is typically resolved by a systematic search for selective fluorinating reagents. An alternative for this synthetic strategy is the utilization of fluorine-containing synthons/precursors. Fluorocyclopropanes derived from readily accessible fluorocarbenes can be viewed as one of such synthons. A successful example of this approach is the nitrosation of fluorocyclopropanes to afford fluorinated heterocycles. Recent systematic studies of such nitrosations have assisted the development of practical methods for accessing fluoroisoxazoles, isoxazolines, and pyrimidines. For example, nitrosation of 1-bromo-1-fluorocyclopropanes with the SO_3^2- activated nitrosyl chloride (i.e. nitrosonium chlorosulfate) yields 5-fluoroisoxazoles, which are challenging to obtain.¹ A three-component heterocyclization involving 1-bromo-1-fluorocyclopropanes, nitrosonium tetrafluoroborate, and a molecule of solvent (nitrile) yields previously unknown fluorinated pyrimidine *N*-oxides.² In a recent short communication, we disclosed the reaction of 2-aryl-1-bromo-1-fluorocyclopropanes with NOBF_4 to afford 5-aryl-4-bromo-4-fluoroisoxazolines.³ In this paper, we now report our comprehensive study of the mechanism, stereochemistry, and preparative scope of this useful transformation.

2. Results and discussion

In a typical procedure, *gem*-bromofluorocyclopropanes **1**, taken as mixtures of *E/Z*-isomers in a ratio of 1:1, were added to 1.1 equiv of NOBF_4 in nitromethane at 0°C; after stirring at room temperature for 20 h, isoxazolines **2** were isolated in moderate yields of 33–43%. We have found that under these conditions, the reaction proceeds highly regio- and diastereoselectively, leading predominantly to isoxazolines **2** of *E*-configuration with diastereomeric excess of 80–90% (Scheme 1).


Scheme 1.

The products were isolated chromatographically.⁴ Their structure and composition were determined by ^1H , ^{13}C and ^{19}F NMR spectroscopy, mass-spectrometry and elemental analysis data. The ^1H and ^{19}F NMR spectra of isoxazolines **2** exhibit doublets at 5.70 and -103.2 ppm, respectively, with the same three-bond coupling of $^3J_{\text{H-F}}$ 22.0–22.7 Hz. The signal of $\text{HC}=\text{N}$ proton appears as a singlet at 7.70 ppm. The ^{13}C NMR also showed the expected ^{13}C - ^{19}F coupling with C-4, this appeared as a doublet at 102.8 ppm with a large one-bond coupling ($^1J_{\text{C-F}} =$

271.5 Hz). Carbons C-3 and C-5 appeared both as doublets at 146.4 and 90.6 ppm with smaller two-bond couplings, $^2J_{C-F} = 22.7$ and 19.8 Hz, respectively.

To assess the scope and utility of this new bromofluorocyclopropane transformation, we broadened the range of arylcyclopropanes. The results of the nitrosation reaction are given in Table 1.

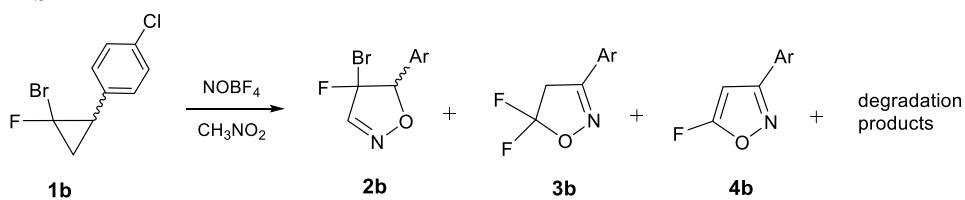
Table 1. Nitrosation of 2-aryl-1-bromo-1-fluorocyclopropanes **1a-g** with nitrosonium tetrafluoroborate: 1.1 eq of NOBF_4 , MeNO_2 , 0-20°C, 24 h, **1a-g** concentration $[\text{C}_0] = 0.06 \text{ mol/L}$

Comp.	R_1	R_2	product	Yield, %
1a	H	H	2a	38
1b	Cl	H	2b	33
1c	Br	H	2c	43 ^a
1d	F	H	2d	40 ^a
1e	Me	H	2e	38
1f	H	Me	2f	35
1g	MeO	H	2g	7 ^b

^aThe resultant mixture contained less than 15% of 3-aryl-5-fluoroisoxazole

^bAttempted reaction with cyclopropane **1g** produced mainly intractable oil even at lower temperatures (-20°C).

Among the tested compounds only cyclopropanes **1a-g** gave targeted isoxazolines **2a-g**. Instructively, cyclopropanes with an acceptor (Cl, Br or NO_2) located in the *meta*-position of the benzene ring were practically unreactive under the same nitrosation reaction conditions. Using an excess of NOBF_4 for their case resulted in the formation of complex mixtures of degradation products with only traces of the corresponding isoxazolines and 5-fluoroisoxazoles.^{1b}


As follows from the Table 1 data, the yields of isoxazolines **2a-g** were less no more than 43%. We should note that the reactivity of NOBF_4 toward *gem*-bromofluorocyclopropanes **1a-g**

was rather moderate and the reaction times needed for completion of the reaction were typically long. Thus, conversion of cyclopropanes **1a-c** after 1 h of the reaction was about 20% affording isoxazolines **2a-c** as the only product. For longer reaction times, approximately 24 h, cyclopropanes **1a-c** were completely consumed; however, the yields of isoxazolines **2a-c** did not exceed 50%. Moreover, in every case studied, it was apparent from the ^1H NMR spectra that at longer times the reaction was complicated due to the formation of by-products. New signals appeared to the left of the $\text{HC}=\text{N}$ signal (downfield) of isoxazolines (7.70 ppm), indicative of side reactions arising in the system. We also tested an alternative nitrosating reagent, $\text{NaNO}_2/\text{CF}_3\text{COOH}$, which was earlier reported in the syntheses of isoxazolines from arylcyclopropanes.⁵ In this case, nitrosation of cyclopropanes **1a-c** also afforded only the *E*-diastereomers of isoxazolines **2a-c**; however, their yields were poor at less than 20%.

Using **1b** as a model compound, we tried to optimize the reaction conditions by varying concentrations, temperatures, and ratios of the initials. For cyclopropane **1b** at concentration of $[\text{C}_0] = 0.3 \text{ mol/L}$, some degradation products were identified, i.e., 4-chlorobenzoic acid⁶ and 4-chlorobenzonitrile (the latter was detected by GC-MS analysis), which were formed in the reaction mixture in amounts comparable with that of isoxazoline **2b** (Table 2, entry 2). Lowering the reaction temperature to 0°C significantly reduced the reaction rate; however, this did not change the content of the reaction mixture: the starting material **1b**, the corresponding isoxazoline **2b** and degradation products were all present in the resultant mixture after 5 h (Table 2, entry 3). At that, the *E/Z*-isomers ratio of the returned unreacted cyclopropane **1b** was changed after the reaction favoring the *Z*-isomer (Table 2, entries 3, 5).⁷

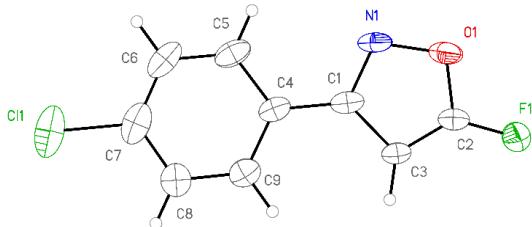

Decreasing the concentration of cyclopropane **1b** to $[\text{C}_0] = 0.01-0.02 \text{ mol/L}$ resulted in the appearance of some other products, one of which was determined to be 5,5-difluoroisoxazoline **3b**. This was revealed by the multiplicity observed in the ^1H , ^{19}F and ^{13}C NMR spectra, as well as the mass spectrum. Indeed, the ^1H and ^{19}F NMR spectra of compound **3b** revealed triplets with the same three-bond coupling of $^3J_{\text{H-F}} = 14.3 \text{ Hz}$. The ^{13}C NMR also showed the expected $^{13}\text{C-}^{19}\text{F}$ coupling, with C-5 appearing as a triplet at 133.0 ppm with a large one-bond coupling ($^1J_{\text{C-F}} = 265.4 \text{ Hz}$). Additionally, carbons C-4 and C-3 appeared both as triplets at 41.4 and 158.4 ppm,

Table 2. Products of nitrosation of cyclopropane **1b** with NOBF_4 in MeNO_2 as a function of the reaction duration, temperature, and concentration of **1b**.

entry	[1b], mol/L	NOBF_4 , eq	T, °C	T, h	Reaction mixture content, ^a %				
					1b (<i>Z/E</i>)	2b	3b	4b	Degrad. products
1	0.3	1.1	0-20	3	58 (1.6:1.4)	23	3	-	16
2	0.3	1.1	0-20	24	-	20	-	5	75
3	0.1	1.2	0-5	5	50 (1.4 : 1)	30	-	-	20
4	0.06	1.1	20	24	-	35	20	10	35
5	0.02	3	20	3	53 (3 : 1)	27	10	5	5
6	0.01	2	20	48	48 (2 : 1)	34	12	6	-
7	0.01	4	20	70	-	25	-	13	62

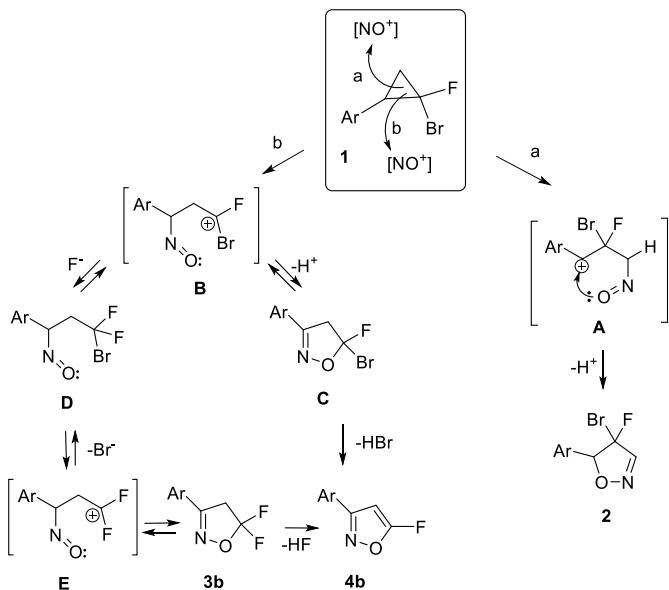
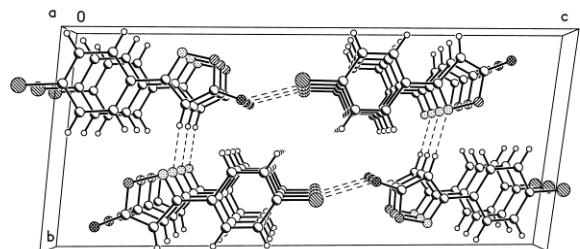
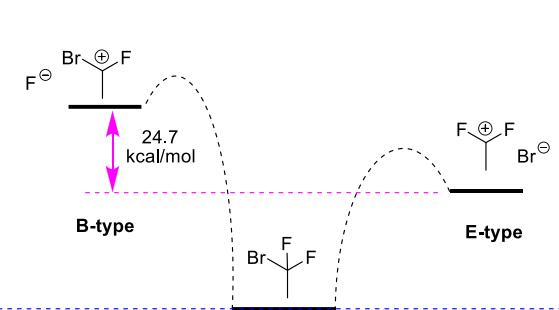

^aCrude reaction mixture products percentage ratio based on ^1H NMR

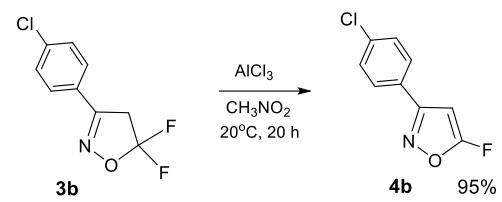
Figure 1. ORTEP drawing of one of the two independent molecules of **4b** in the unit cell. Thermal ellipsoids are shown for $\rho = 50\%$.


with smaller two- and three-bond couplings, $^2J_{C-F} = 31.7$ Hz and $^3J_{C-F} = 2.8$ Hz, respectively. The cluster of the molecular ion of **3b** in the mass-chromatogram was presented by two peaks at 217 (100) and 219 (33). The main mode of **3b** fragmentation was the loss of $\text{CH}_2=\text{CF}_2$ fragment. Finally, along with **3b** negligible amounts of 5-fluoroisoxazole **4b** were detected which structure was unambiguously established by X-ray single crystal diffractometry (see Figs. 1, 2).

Experimental observations suggested the following mechanistic rationale for the overall processes shown in Scheme 2. Nitrosonium attack at the methylene group of bromofluorocyclopropane **1** cleaves the C2-C3 bond furnishing benzylic cation **A** (path *a*, the main). Subsequent heterocyclization leads directly to isoxazolines **2**.⁸ One more reaction pathway is realized in parallel with path *a* at lower initial concentrations of **1b** ($[\text{C}_0] = 0.01\text{-}0.06 \text{ mol/L}$). In these cases the attack of nitrosonium cation is directed also at the benzylic position followed by the C1-C2 bond cleavage to form a competing halogen-stabilized cation **B** (path *b*, the minor one).


Scheme 2. Mechanistic rationale for the main reaction paths in nitrosation of cyclopropanes **1**.

Halogen exchange, as evidenced by the formation of difluoroisoxazoline **3b**, could conceivably be initiated by the fluoride anion captured by cation **B** followed by the loss of the bromide anion to yield **E**.⁹ Judging by our PCM (nitromethane) computations at the B3LYP/6-311+G(d,p) level (Scheme 3), ionization of 1-bromo-1,1-difluoroethane as a model compound for probable intermediate **D** produces two competing halogen-stabilized cations of **B**-type and **E**-type, with the latter being


Figure 2. Crystal packing of **4b**. Dashed lines show the strongest C-H...N contacts and the halogen bonds $\text{Cl}\dots\text{F}$.

almost 25 kcal/mol more stabilized. Kinetically, the bromide departure from **D** to form **E** is also expected to be faster than the departure of the fluoride anion to revert to **B**.

Scheme 3. The energetics of ionization of 1-bromo-1,1-difluoroethane assessed at the B3LYP/6-311+G(d,p) level of theory with a PCM model (nitromethane).

It is conceivable that the formation of 5-fluoroisoxazole **4b** also results from the nitrosation of cyclopropane **1b** at the benzylic position, scission of the C1-C2 bond, and subsequent heterocyclization and aromatization with elimination of HBr, as preceded in the case of nitrosation of dibromocyclopropane¹⁰ and also was demonstrated by our recent results with bromofluorocyclopropanes.¹ However only small quantities of 5-fluoroisoxazole **4b** were observed regardless of the reaction conditions, implying that it is formed independently from the main reaction channel. Furthermore (Table 2), isoxazole **4b** is produced in smaller amounts than isoxazoline **3b**, except for the cases involving high concentration of the starting materials or the 4-fold excess of the nitrosating agent in conjunction with the extended reaction time (Table 2, entries 2 and 7, respectively). We hypothesize that isoxazole **4b** results from dehydrofluorination of isoxazoline **3b**. Experimentally, we confirmed that HF eliminates from **3b** on extended exposure to AlCl_3 (Scheme 4).

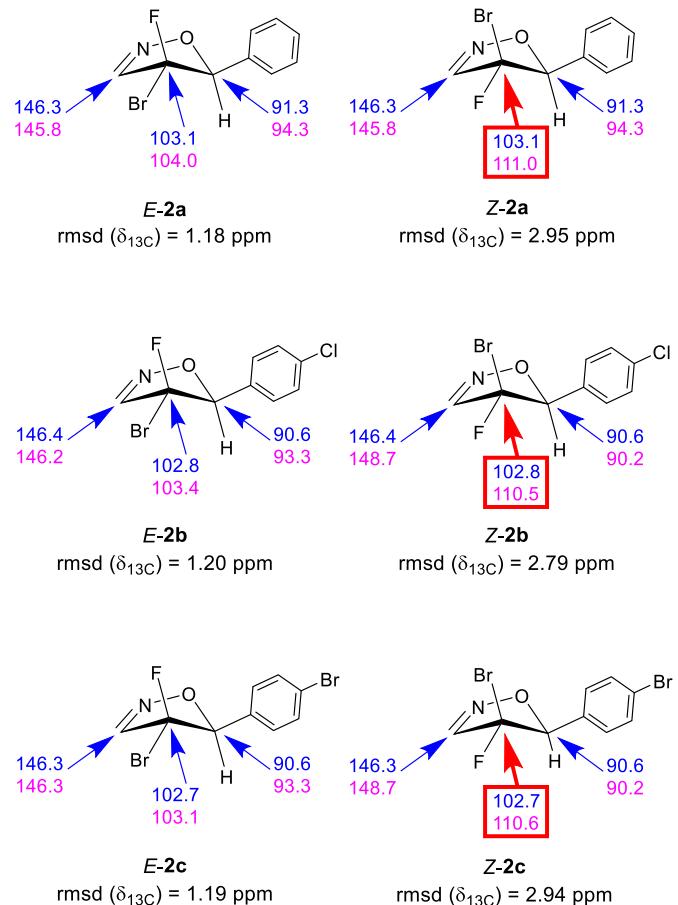
Scheme 4.

In a continued effort to improve the yields of isoxazolines **2** we studied the behavior of each individual cyclopropane diastereomer (*E* and *Z*) under nitrosation conditions. In the case of cyclopropane *Z*-**1b** we obtained ambiguous results using either NOBF_4 or $\text{NaNO}_2/\text{CF}_3\text{COOH}$ conditions. The reaction proceeded slowly (it takes 20–24 h for consumption of the initial) and produced complex mixture of degradation products and only

traces of isoxazolines (<10%, *Z*-**2b** : *E*-**2b** = 1 : 1). On the contrary, the *E*-isomers of cyclopropanes **1a-c** reacted quickly and smoothly with either NOBF_4 or $\text{NaNO}_2/\text{CF}_3\text{COOH}$ system resulting in 100% conversion. The reactions proceeded with high regio- and diastereoselectivity leading exclusively to the corresponding 4-bromo-4-fluoroisoxazolines *E*-**2a-c** in good yields (50-73%), Table 3.

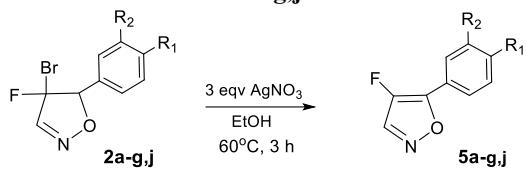
Table 3. Nitrosation of cyclopropanes *E*-**1a-c**

Comp	Reagent	NO^+ , eqv	Solvent	$[\text{C}_0]$, mol/L	τ , h	Product	Yield, %
E-1a	NOBF_4	1.1	MeNO_2	0.10 ^a	3	E-2a	73
E-1b	NOBF_4	1.1	MeNO_2	0.06	8	E-2b	60
E-1b	NaNO_2	3	$\text{Ac}_2\text{OH}/$ MeNO_2	0.04	4	E-2b	60
E-1c	NOBF_4	1.2	MeNO_2	0.10	8	E-2c	50
E-1c	NaNO_2	3	$\text{Ac}_2\text{OH}/$ MeNO_2	0.04	4	E-2c	56


^aNotice that **E-1a** (conc. $[\text{C}_0] = 0.01$ mol/L) reacted with NOBF_4 to give the products of benzene ring nitration: *ortho*-nitro **E-1h** and *para*-nitro **E-1i** were formed in a ratio of ~1 : 1 respectively.

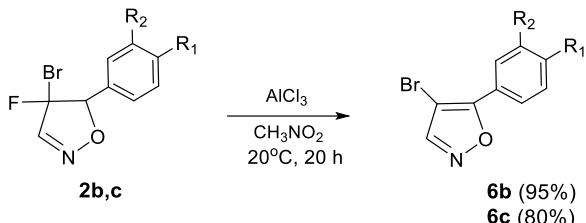
Elucidation of the structure and stereochemistry of isoxazolines **2** was guided by computations of ^1H and ^{13}C NMR chemical shifts with the recently developed hybrid DFT-parametric *DU8+* method.¹⁰⁻¹³ As follows from Fig. 3, mapping the experimental ^{13}C NMR chemical shift values (blue) onto the ones calculated with *DU8+* (magenta) for *E*-isomers *E*-**2a-c** produced an excellent match, $\text{rmsd} \leq 1.2$ ppm, over all 9 carbon atoms. For *Z*-isomers **2a-c**, the rmsd values degraded to > 2.7 ppm. The largest single discrepancy between the calculated and experimental values (i.e. > 7.5 ppm) was due to the carbon bearing the halogen atoms, i.e. C(4). This unambiguously establishes that the major stereoisomers in this reaction possess the *E*-configuration. The rationale of high diastereoselectivity in the nitrosation reaction of arylbromofluorocyclopropanes is under ongoing investigation.

Among the fluorine-containing compounds, isoxazolines and isoxazoles fluorinated at the heterocyclic ring are still underexplored. With isoxazolines **2** in hand, we examined the feasibility of employing these new fluorinated heterocycles as precursors for the synthesis of 4-fluoroisoxazoles. There are very few examples of the synthesis of 4-fluoroisoxazoles in the literature. The first 4-fluoroisoxazoles were synthesized by condensation of 2-fluoro-1,3-propanediones with hydroxylamine hydrochloride¹⁴ or by direct electrophilic fluorination of isoxazole ring with Selectfluor.¹⁵ The reactions were demonstrated on a scarce number of substrates and ensured moderate yields of 4-fluoroisoxazoles. Later, these methods were improved and are presented now by high yielding one-pot cascade fluorination-cyclization¹⁶ or (in reversed order) the cyclization-fluorination processes.¹⁷ The latter approach makes it possible to synthesize 3,5-diaryl-4-fluoroisoxazoles of non-symmetric structures. Another method for the synthesis of non-symmetric 3,5-diaryl-4-fluoroisoxazoles involves treatment of


the corresponding arylated 4-fluoro-4-nitroisoxazolines with MeONa in MeOH .¹⁸

First, we tested several bases for dehydrobromination of **2**. However, the initial studies showed that traditional bases were not suitable in this case. Treating **2b** with NEt_3 at ambient temperature afforded starting material. Inducing dehydrobromination of **2b** under more extreme conditions (reflux with NEt_3 or treatment with $t\text{-BuOK}/t\text{-BuOH}$ at 20 °C) resulted in a considerable amount of degradation of the starting material: no discernible individual compounds were isolated from the resulting mixtures. It is a well-known fact that the isoxazole ring is vulnerable to nucleophilic ring opening. Often, it is the N-O bond of isoxazoles, which is cleaved in reactions by nucleophiles.¹⁹ Finally we turned to silver nitrate, that is widely used as a promoter and catalyst in organic synthesis.²⁰ When **2a** was treated with 1 eq of AgNO_3 for half an hour in ethanol at ambient temperature, we managed to obtain 4-fluoroisoxazole **5a** as a sole product. However, incomplete conversion (30%) of the starting material was observed. To our delight, the use of 3 eq. of AgNO_3 in anhydrous ethanol at 60°C, gave the desired result: 4-bromo-4-fluoroisoxazolines **2a-g,j** underwent dehydrobromination to afford 4-fluoroisoxazoles **5a-g,j** in good-to-excellent yields, see Table 4. We also found that mercury(I) nitrate, $\text{Hg}_2(\text{NO}_3)_2$ could be used in place of silver nitrate in these reactions, however this reagent was somewhat less effective.

Figure 3. Experimental ^{13}C NMR chemical shifts (blue) for the major products **2a-c** are compared with the *DU8+* calculated values (magenta) for their respective *E*- and *Z*-isomers revealing a consistently better match ($\text{rmsd} \leq 1.2$ ppm over 9 carbons) for the *E*-configuration. The largest deviation for the *Z*-series (>7.5 ppm) is localized at the C(4) carbon bearing the halogens


Table 4. Silver(I) nitrate assisted dehydrobromination of 4-bromo-4-fluoroisoxazolines **2a-g,j**

entry	compound	R ₁	R ₂	product	Yield, %	m.p., °C
1	2a	H	H	5a	45	31
2	2b	Cl	H	5b	60 (64 ^a)	95-97
3	2c	Br	H	5c	82	92-93
4	2d	F	H	5d	76	78-80
5	2e	Me	H	5e	92	44-46
6	2f	H	Me	5f	75	35-36
7	2g^b	MeO	H	5g	60	61-63
8	2j^b	MeO	Br	5j	78	118-120

^aThe reaction was carried out at 20°C for 20 h. ^bIsoxazolines **2g,j** were obtained via nitrosation of **1g** with nitrosonium chlorosulfate.

As mentioned above, we managed to eliminate hydrogen fluoride from isoxazoline **3b** by reacting it with AlCl₃. To probe if AlCl₃ is capable of eliminating HF from bromo-fluorides **2**, we subjected isoxazolines **2b,c** to similar reaction conditions, i.e. AlCl₃ in nitromethane (Scheme 5). To our satisfaction, isoxazolines **2b,c** were smoothly and selectively converted into the corresponding 5-aryl-4-bromoisoazoles **6b,c**. These two last reactions nicely illustrate Pearson's hard and soft acid/base principle: silver nitrate as a soft Lewis acid coordinates to the bromine atom (soft base). In contrast, the hard Lewis acid, AlCl₃, reacts with the fluorine atom (hard base).

Scheme 5.

3. Conclusions

We investigated the reaction of aryl-bromofluorocyclopropanes with nitrosating reagents (NOBF₄ and NaNO₂/CF₃COOH) in nitromethane and demonstrated that the outcome of this process largely depends on the *E/Z*-configuration of the starting material. Having established that the *E*-isomers are considerably more reactive producing 5-aryl-4-bromo-4-fluoroisoxazolines of *E*-configuration in good yields, we developed this reaction into a new synthetic approach to 4-bromo-4-fluoroisoxazolines. We have also demonstrated that synthesized 5-aryl-4-bromo-4-fluoroisoxazolines can be smoothly dehydrohalogenated with Lewis acids in agreement with Pearson's concept. 5-Aryl-4-fluoroisoxazoles were obtained in good yields and high regioselectivity by reacting with soft Lewis acids: silver(I) or mercury(I) nitrates. On the contrary, the reaction of 5-aryl-4-bromo-4-fluoroisoxazolines with AlCl₃, a hard Lewis acid, afforded 5-aryl-4-bromoisoazoles in good yields.

4. Experimental

The ¹H, ¹³C, and ¹⁹F spectra of compounds in CDCl₃ were registered using Bruker Avance-400 and Agilent 400-MR spectrometers with working frequencies of 400.13, 100.67, and 376.29 MHz, respectively (internal standards were HMDS for ¹H and ¹³C, and CFCl₃ for ¹⁹F). Chemical shifts were measured with an accuracy of 0.01 ppm, spin-spin coupling constants were measured with an accuracy of 0.1 Hz. Mass spectra were recorded using a Thermo Scientific TSQ 8000 gas chromatograph-mass spectrometer (capillary chromatographic column SPBTM-5 (15 m x 0.25 mm), the gas carrier was helium, with a gas flow rate at 1 mL min⁻¹). The ionization method was electron impact (electron energy was 70 eV). Temperature conditions were 70 °C (2 min), heating at a rate of 20 °C min⁻¹ and maintained at 280 °C (5 min). HRMS measurements were performed with an electrospray ionization (ESI) instrument using a time-of-flight (TOF) detector. The melting points of the obtained compounds were measured using a Mel-TempII instrument and were not corrected. The course of the reaction and the purity of the products were monitored by TLC on Silufol-UV plates ($\lambda = 240$ cm⁻¹). The initial cyclopropanes were synthesized according to the known procedure.²¹ The *anti*- and *syn*-diastereomers **1a-c** were separated by column chromatography on silica gel (40 x 100 mesh), eluent – light petroleum ether.

E-/Z-2-aryl-1-bromo-1-fluorocyclopropanes

E-1-bromo-1-fluoro-2-phenylcyclopropane (E-1a) colorless liquid; d_H (400 MHz, CDCl₃) 7.27-7.45 (5H, m, Ph), 2.81 (1H, ddd, ³J_{HH} 8.4, ³J_{HF} 11.0, ²J_{HF} 2.4 Hz, CH), 1.92 (1H, dt, *J* 8.4, ³J_{HF} 17.2 Hz, CH₂), 1.85 (1H, ddd, *J* 8.4, 9.0, 11.0 Hz, CH₂); d_C (101 MHz, CDCl₃) 133.6 (C_{Ph}), 128.5 (2C_{Ph}), 128.4 (2C_{Ph}), 127.4 (C_{Ph}), 80.5 (d, ¹J_{CF} 302.0 Hz, BrCF), 33.3 (d, ²J_{CF} 10.4 Hz, CHPh), 22.7 (d, ²J_{CF} 10.4 Hz, CH₂); d_F (376 MHz, CDCl₃) -146.53 – -146.37 (1F, m).

E-1-bromo-2-(4-chlorophenyl)-1-fluorocyclopropane (E-1b) colorless liquid; d_H (400 MHz, CDCl₃) 7.33 (2H, d, ³J 8.5 Hz, CH_{Ar}), 7.20 (2H, d, ³J 8.5 Hz, CH_{Ar}), 2.76 (1H, ddd, ³J_{HF} 8.7, 10.8, ³J_{HF} 2.5 Hz, CH_{Ar}), 1.81-1.90 (2H, m, CH₂); d_C (101 MHz, CDCl₃) 133.3 (C_{Ar}), 132.1 (C_{Ar}), 129.7 (2C_{Ar}), 128.7 (2C_{Ar}), 80.0 (d, ¹J_{CF} 302.0 Hz, BrCF), 32.6 (d, ²J_{CF} 10.4 Hz, CH_{Ar}), 22.8 (d, ²J_{CF} 10.4 Hz, CH₂); d_F (376 MHz, CDCl₃) -146.47 – -146.39 (1F, ddd, ³J_{HF} 2.5, 11.0, 15.4 Hz).

Z-1-bromo-2-(4-chlorophenyl)-1-fluorocyclopropane (Z-1b) colorless liquid; d_H (400 MHz, CDCl₃) 7.33 (2H, d, ³J 8.4 Hz, CH_{Ar}), 7.15 (2H, d, ³J 8.4 Hz, CH_{Ar}), 2.76 (1H, ddd, ³J_{HF} 17.8, ³J_{HH} 11.6, ³J_{HF} 8.1 Hz, CH_{Ar}), 2.06 (1H, ddd, ³J_{HF} 16.9, ³J_{HH} 11.6, ²J_{HF} 8.0 Hz, CH₂), 1.65 (1H, pseudo-q, *J* 8.0 Hz, CH₂); d_C (101 MHz, CDCl₃) 134.0 (C_{Ar}), 133.4 (C_{Ar}), 129.9 (2C_{Ar}), 128.6 (2C_{Ar}), 85.6 (d, ¹J_{CF} 302.0 Hz, BrCF), 29.9 (d, ²J_{CF} 11.2 Hz, CH_{Ar}), 22.1 (d, ²J_{CF} 11.2 Hz, CH₂); d_F (376 MHz, CDCl₃) -125.45 (1F, pseudo-td, ³J_{HF} 17.7, 6.8 Hz).

E-1-bromo-2-(4-bromophenyl)-1-fluorocyclopropane (E-1c) colorless liquid; d_H (400 MHz, CDCl₃) 7.47 (2H, d, ³J 8.3 Hz, CH_{Ar}), 7.13 (2H, d, ³J 8.3 Hz, CH_{Ar}), 2.73 (1H, pseudo-td, *J* 10.0, ³J_{HF} 2.0 Hz, CH_{Ar}), 1.81 - 1.90 (2H, m, CH₂); d_C (101 MHz, CDCl₃) 132.6 (d, ³J_{CF} 1.9 Hz, C(1)_{Ar}), 131.6 (2C_{Ar}), 130.0 (d, ⁴J_{CF} 1.5 Hz, 2C_{Ar}), 121.3 (CBr), 79.8 (d, ¹J_{CF} 301.7 Hz, BrCF), 32.6 (d, ²J_{CF} 10.7 Hz, CH_{Ar}), 22.8 (d, ²J_{CF} 10.7 Hz, CH₂); d_F (376 MHz, CDCl₃) -146.45 – -146.33 (1F, ddd, ³J_{HF} 2.0, 11.6, 15.0 Hz).

E-1-bromo-1-fluoro-2-(2-nitrophenyl)cyclopropane (E-1h) colorless liquid; d_H (400 MHz, CDCl₃) 8.02 (1H, dd, ³J_{HH} 7.9, ⁴J_{HH} 1.2 Hz, CH_{Ar}), 7.59 (1H, td, ³J_{HH} 7.9, ⁴J_{HH} 1.2 Hz, CH_{Ar}),

7.46 (1H, t, $^3J_{HH}$ 7.9 Hz, CH_{Ar}), 7.42 (1H, d, $^3J_{HH}$ 7.9 Hz, CH_{Ar}), 3.19 (1H, pseudo-t, J 9.8 Hz, ArCH), 1.88-1.95 (1H, m, CH₂), 1.83 (1H, pseudo-dt, $^3J_{HF}$ 17.6, $^3J_{HH}$ 8.6 Hz, CH₂); d_F (376 MHz, CDCl₃) -143.64 (1F, ddd, $^3J_{HF}$ 2.0, 9.0, 17.6 Hz).

E-1-bromo-1-fluoro-2-(4-nitrophenyl)cyclopropane (E-1i) colorless liquid; d_H (400 MHz, CDCl₃) 8.20 (2H, d, $^3J_{HH}$ 8.7 Hz, CH_{Ar}), 7.41 (2H, d, $^3J_{HH}$ 8.7 Hz, CH_{Ar}), 2.85 (1H, pseudo-t, J 9.5, $^3J_{HF}$ 2.2 Hz, ArCH), 1.96-2.05 (2H, m, CH₂).²²

General Procedure for Synthesis of Isoxazolines 2a-g. To 1.1 mmole of NOBF₄ in 15 mL of nitromethane 1.0 mmole of 2-aryl-1-bromo-1-fluorocyclopropane **1** was added under stirring at 0°C. The reaction mixture was brought to ambient temperature and stirring was continued until the disappearance of **1** (monitored by TLC). Reaction was quenched with saturated Na₂CO₃, the organic layer was separated, and the water layer was additionally shaken with dichloromethane (2 x 25 mL). Combined organic layers were dried over anhydrous Na₂SO₄, solvent was evaporated under reduced pressure and the residue was chromatographed on a slurry-packed Silica Gel column, EtOAc-petroleum ether, 1:20). Isoxazolines **2a-c** were described previously.³

E-4-Bromo-4-fluoro-5-(4-fluorophenyl)isoxazoline (E-2d) was obtained from 300 mg (1.29 mmol) of 1-bromo-1-fluoro-2-(4-fluorophenyl)cyclopropane **1d** as light-yellow oil (135 mg, 40%). d_H (400 MHz, CDCl₃) 7.70 (1H, s, HC=N), 7.40 (2H, dd, $^3J_{HH}$ 8.5, J_{HF} 5.3 Hz, CH_{Ar}), 7.13 (2H, pseudo-t, J 8.5 Hz, CH_{Ar}), 5.74 (1H, d, $^3J_{HF}$ 22.7 Hz, HC-O); d_C (101 MHz, CDCl₃) 163.6 (d, $^1J_{CF}$ 249.0 Hz, C_{Ar}F), 146.4 (d, $^2J_{CF}$ 22.5 Hz, HC=N), 129.6 (d, $^3J_{CF}$ 8.8 Hz, 2CH_{Ar}), 124.8 (dd, J_{CF} 5.2, J_{CF} 3.6 Hz, C(1)_{Ar}), 115.9 (d, $^2J_{CF}$ 21.7 Hz, 2CH_{Ar}), 102.8 (d, $^1J_{CF}$ 272.2 Hz, BrCF), 90.7 (d, $^2J_{CF}$ 19.3 Hz, HC_{is}-O); d_F (376 MHz, CDCl₃) -103.2 (1F, d, $^3J_{HF}$ 22.7 Hz, C(4)_{is}F), -111.2 (1F, pseudo-tt, J_{HF} 8.5, 5.3 Hz, C_{Ar}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 261 (25), 263 (23) [M]⁺; cluster 218 (37), 220 (36) [M-HCNO]⁺; 182 (32) [M-Br]⁺; 165 (30) [M-Br-OH]⁺; 155 (32) [M-Br-HCN]⁺; 151 (70) [M-Br-HNO]⁺; 127 (100) [FC₆H₄CHF]⁺; 123 (65) [FC₆H₄C=O]⁺; 108 (50) [C₆H₄CHF]⁺; 95 (48) [FC₆H₄]⁺; 75 (25). Anal. Calcd (%) for C₉H₉BrF₂NO: C 41.25, H 2.31, N 5.35, found: C 41.11, H 2.15, N 5.43.

E-4-Bromo-4-fluoro-5-(4-methylphenyl)isoxazoline (E-2e) was obtained from 480 mg (2.10 mmol) of 1-bromo-1-fluoro-2-(4-methylphenyl)cyclopropane **1e** as light-yellow oil (205 mg, 38%). d_H (400 MHz, CDCl₃) 7.69 (1H, s, HC=N), 7.32 (2H, d, 3J 7.9 Hz, CH_{Ar}), 7.26 (2H, d, 3J 7.9 Hz, CH_{Ar}), 5.75 (1H, d, $^3J_{HF}$ 22.7 Hz, HC-O), 2.40 (3H, s, CH₃); d_C (101 MHz, CDCl₃) 146.4 (d, $^2J_{CF}$ 22.5 Hz, HC=N), 139.9 (C_{Ar}Me), 129.5 (2CH_{Ar}), 127.7 (2CH_{Ar}), 126.0 (d, $^3J_{CF}$ 5.6 Hz, C(1)_{Ar}), 103.1 (d, $^1J_{CF}$ 271.4 Hz, BrCF), 91.3 (d, $^2J_{CF}$ 19.3 Hz, HC_{is}-O), 21.4 (CH₃); d_F (376 MHz, CDCl₃) -103.0 (1F, d, $^3J_{HF}$ 22.7 Hz, C(4)_{is}F). HRMS (ESI): m/z calcd for C₁₀H₉BrFNO+H⁺: 257.9924, 259.9904 [M+H]⁺, found: 257.9919, 259.9900.

E-4-Bromo-4-fluoro-5-(3-methylphenyl)isoxazoline (E-2f) was obtained from 1192 mg (5.20 mmol) of 1-bromo-1-fluoro-2-(3-methylphenyl)cyclopropane **1f** as light-yellow oil (509 mg, 35%).

d_H (400 MHz, CDCl₃) 7.69 (1H, s, HC=N), 7.34 (1H, t, 3J 8.1 Hz, CH_{Ar}), 7.21-7.26 (3H, m, CH_{Ar}), 5.77 (1H, d, $^3J_{HF}$ 21.8 Hz, HC-O), 2.41 (3H, s, CH₃); d_C (101 MHz, CDCl₃) 146.3 (d, $^2J_{CF}$ 24.9 Hz, HC=N), 138.6 (C_{Ar}Me), 130.6 (CH_{Ar}), 129.1 (d, $^3J_{CF}$ 4.8 Hz, C(1)_{Ar}), 128.6 (CH_{Ar}), 128.2 (CH_{Ar}), 124.8 (CH_{Ar}), 103.2 (d, $^1J_{CF}$ 272.2 Hz, BrCF), 91.3 (d, $^2J_{CF}$ 20.1 Hz, HC_{is}-O), 21.4 (CH₃); d_F (376 MHz, CDCl₃) -103.2 (1F, d, $^3J_{HF}$ 21.8 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 257 (44), 259 (39) [M]⁺;

cluster 214 (27), 216 (27) [M-HCNO]⁺; 178 (100) [M-Br]⁺; 161 (82) [M-Br-OH]⁺; 151 (44) [M-Br-HCN]⁺; 135 (20) [M-Br-HCNO]⁺; 133 (50); 123 (84) [MeC₆H₄CHF]⁺; 119 (66) [MeC₆H₄C=O]⁺; 91 (67) [MeC₆H₄]⁺. Anal. Calcd for C₁₀H₉BrFNO: C 46.54, H 3.51, N 5.43, found: C 46.62, H 3.64, N 5.50.

E-4-Bromo-4-fluoro-5-(4-methoxyphenyl)isoxazoline (E-2g) was obtained from 450 mg (1.83 mmol) of 1-bromo-1-fluoro-2-(4-methoxyphenyl)cyclopropane **1g** as light-yellow oil (35 mg, 7%). d_H (400 MHz, CDCl₃) 7.70 (1H, s, HC=N), 7.33 (2H, d, 3J 8.7 Hz, CH_{Ar}), 6.96 (2H, d, 3J 8.7 Hz, CH_{Ar}), 5.71 (1H, d, $^3J_{HF}$ 23.4 Hz, HC-O), 3.83 (3H, s, OMe); d_C (101 MHz, CDCl₃) 160.8 (C_{Ar}OMe), 146.5 (d, $^2J_{CF}$ 23.3 Hz, HC=N), 129.3 (2CH_{Ar}), 120.8 (d, $^3J_{CF}$ 5.6 Hz, C(1)_{Ar}), 114.2 (2CH_{Ar}), 103.0 (d, $^1J_{CF}$ 270.6 Hz, BrCF), 91.3 (d, $^2J_{CF}$ 19.3 Hz, HC_{is}-O), 55.3 (MeO); d_F (376 MHz, CDCl₃) -103.0 (1F, d, $^3J_{HF}$ 23.4 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 273 (39), 275 (37) [M]⁺; cluster 230 (41), 232 (41) [M-HCNO]⁺; cluster 215 (14), 217 (15) [M-HCNO-Me]⁺; 177 (28) [M-Br-OH]⁺; 167 (69) [M-Br-HCN]⁺; 139 (100) [MeOC₆H₄CHF]⁺; 137 (38); 136 (92); 135 (65) [MeOC₆H₄C=O]⁺; 107 (25) [MeOC₆H₄]⁺. Anal. Calcd for C₁₀H₉BrFNO₂: C 43.82, H 3.31, N 5.11, found: C 43.86, H 3.51, N 4.79.

Z-4-Bromo-5-(4-chlorophenyl)-4-fluoroisoxazoline (Z-2b) characterized from mixture with **E-2b**. d_H (400 MHz, CDCl₃) 7.73 (1H, s, HC=N), 7.45 (2H, d, 3J 8.7 Hz, CH_{Ar}), 7.32 (2H, d, 3J 8.7 Hz, CH_{Ar}), 5.53 (1H, d, $^3J_{HF}$ 26.9 Hz, HCO). GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 277 (8), 279 (11), 281 (3) [M]⁺; cluster 234 (12), 236 (15), 238 (4) [M⁺ - HCNO]; cluster 198 (12), 200 (4) [M⁺ - Br]; cluster 171 (20), 173 (7) [M⁺ - Br-HCN]; cluster 143 (100), 145 (32) [ClC₆H₄CHF]⁺; cluster 139 (90), 141 (30) [ClC₆H₄CO]⁺; cluster 111 (70), 113 (23) [ClC₆H₄]⁺; 75 (85), 50 (75).

3-(4-Chlorophenyl)-5,5-difluoroisoxazoline (3b) yellowish liquid; d_H (400 MHz, CDCl₃) 7.57 (2H, d, 3J 8.5 Hz, CH_{Ar}), 7.44 (2H, d, 3J 8.5 Hz, CH_{Ar}), 3.75 (2H, t, $^3J_{HF}$ 14.3 Hz, CH₂); d_C (101 MHz, CDCl₃) 158.4 (t, $^3J_{CF}$ 3.2 Hz, C=N), 137.9 (CCl), 133.1 (t, $^1J_{CF}$ 265.0 Hz, O-CF₂), 129.5 (2CH_{Ar}), 127.8 (2CH_{Ar}), 126.0 (C(1)_{Ar}), 41.4 (t, $^2J_{CF}$ 31.7 Hz, CH₂); d_F (376 MHz, CDCl₃) -67.8 (2F, t, $^3J_{HF}$ 14.3 Hz, CF₂); GC-MS (EI, 70 eV) m/z (I_{rel}, %): cluster 217 (100), 219 (32) [M]⁺; cluster 197 (3), 199(1) [M-HF]⁺; cluster 187 (5), 189 (1.7) [M-NO]⁺; cluster 169 (10), 171 (3) [M-HF-CO]⁺; cluster 153 (42), 155 (12) [M-CH₂CF₂]⁺; cluster 125 (17), 127 (5); cluster 111 (25), 113 (8) [ClC₆H₄]⁺; 90 (25); 75 (30)

3-(4-Chlorophenyl)-5-fluoroisoxazole (4b), colorless crystals. m.p. 62-64°C; d_H (400 MHz, CDCl₃) 7.71 (2H, d, 3J 8.7 Hz, CH_{Ar}), 7.47 (2H, d, 3J 8.7 Hz, CH_{Ar}), 5.87 (1H, d, $^3J_{HF}$ 7.5 Hz, C(4)_{is}H); d_C (101 MHz, CDCl₃) 170.1 (d, $^1J_{CF}$ 295.7 Hz, =CFO), 164.1 (d, $^3J_{CF}$ 5.9 Hz, C=N), 136.8 (CCl), 129.3 (2CH_{Ar}), 127.7 (2CH_{Ar}), 127.1 (C_{Ar}), 77.5 (d, $^2J_{CF}$ 17.6 Hz, C(4)_{is}H); d_F (376 MHz, CDCl₃) -103.1 (1F, d, 3J 7.5 Hz, OCF); GC-MS (EI, 70 eV) m/z (I_{rel}, %): cluster 197 (7), 199 (2) [M]⁺; cluster 169 (42), 171 (14) [M-CO]⁺; cluster 142 (78), 144 (23) [M-CO-HCN]⁺ = [ClC₆H₄CF]⁺; 134 (40) [M-CO-Cl]⁺; cluster 111 (9), 113 (3) [C₆H₄Cl]⁺; 107 (100) [C₆H₄CF]⁺; 102 (8) [C₆H₄CN]⁺; 75 (23) [C₆H₃]⁺; 50 (8). HRMS (ESI) m/z calcd for C₉H₅ClFNO+H⁺: 198.0116, 200.0087 [M+H]⁺, found: 198.0114, 200.0082. The structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC), deposition number 1893335.

General Procedure for Synthesis of 3-Aryl-4-fluoroisoxazoles 5a-g,j. Isoxazoline **2** (1 eq) was dissolved in 5 mL of absolute ethanol. Then AgNO₃ (3 eq) was added to the

solution. The mixture was heated in a water bath (60°C) for 3 h. After completion of the reaction (TLC control), the precipitate (AgBr, Ag and AgNO₃) was filtered off, the mother liquor was evaporated and the crude product was purified by recrystallization from ethanol.

4-Fluoro-5-phenylisoxazole (5a) was obtained from 103 mg (0.49 mmol) of 4-bromo-4-fluoro-5-phenylisoxazoline **2a** as light-yellow solid (32 mg 45%). m.p. 31°C. d_H (400 MHz, CDCl₃) 8.38 (1H, d, ³J_{HF} 4.2 Hz, HC=N), 7.83 (2H, d, ³J 7.7 Hz, CH_{Ar}), 7.43-7.52 (3H, m, CH_{Ar}); dc (101 MHz, CDCl₃) 152.6 (d, ²J_{CF} 17.7 Hz, C-O), 143.1 (d, ²J_{CF} 17.7 Hz, HC=N), 142.7 (d, ¹J_{CF} 256.2 Hz, C(4)_{is}F), 130.2 (CH_{Ar}), 129.1 (2CH_{Ar}), 125.6 (d, ³J_{CF} 4.8 Hz, C(1)_{Ar}), 125.3 (d, ⁴J_{CF} 4.8 Hz, 2CH_{Ar}); d_F (376 MHz, CDCl₃) -179.7 (1F, d, ³J_{HF} 4.2 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): 163 (41) [M⁺]; 108 (27) [PhCF]⁺; 105 (65) [PhC=O]⁺; 77 (100) [Ph⁺]. HRMS (ESI) calcd for C₉H₆FNO+H⁺: 163.0428 [M+H]⁺, found: 163.0431.

5-(4-Chlorophenyl)-4-fluoroisoxazole (5b) was obtained from 262 mg (0.94 mmol) of 4-bromo-5-(4-chlorophenyl)-4-fluoroisoxazoline **2b** as light-yellow solid (110 mg, 60%). m.p. 95-97°C. d_H (400 MHz, CDCl₃) 8.38 (1H, d, ³J_{HF} 4.2 Hz, HC=N), 7.72 (2H, d, ³J 8.6 Hz, CH_{Ar}), 7.45 (2H, d, ³J 8.6 Hz, CH_{Ar}); dc (101 MHz, CDCl₃) 151.6 (d, ²J_{CF} 17.7 Hz, C-O), 143.1 (d, ²J_{CF} 16.9 Hz, HC=N), 142.8 (d, ¹J_{CF} 257.0 Hz, C(4)_{is}F), 136.2 (CCl), 129.4 (2CH_{Ar}), 126.5 (d, ⁴J_{CF} 5.6 Hz, 2CH_{Ar}), 124.0 (d, ³J_{CF} 4.8 Hz, C(1)_{Ar}); d_F (376 MHz, CDCl₃) -178.8 (1F, d, ³J_{HF} 4.2 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 197 (70), 199 (23) [M⁺]; cluster 139 (100), 141 (33) [ClC₆H₄C=O]⁺; 134 (39) [M -Cl-CO]⁺; cluster 111 (55), 113 (18) [ClC₆H₄]⁺; 107 (15); 75 (28) [C₆H₃]⁺. HRMS (ESI) calcd for C₉H₅ClFNO+H⁺: 198.0116 [M+H]⁺, found: 198.0114.

5-(4-Bromophenyl)-4-fluoroisoxazole (5c) was obtained from 223 mg (0.71 mmol) of 4-bromo-5-(4-bromophenyl)-4-fluoroisoxazoline **2c** as light-yellow solid (142 mg, 82%). m.p. 92-93°C. d_H (400 MHz, CDCl₃) 8.38 (1H, d, ³J_{HF} 4.2 Hz, HC=N), 7.66 (2H, d, ³J 8.5 Hz, CH_{Ar}), 7.62 (2H, d, ³J 8.5 Hz, CH_{Ar}); dc (101 MHz, CDCl₃) 151.7 (d, ²J_{CF} 18.5 Hz, C-O), 143.2 (d, ²J_{CF} 16.9 Hz, HC=N), 142.8 (d, ¹J_{CF} 257.8 Hz, C(4)_{is}F), 132.4 (2CH_{Ar}), 126.7 (d, ⁴J_{CF} 4.8 Hz, 2CH_{Ar}), 124.6 (CBr), 124.4 (d, ³J_{CF} 5.6 Hz, C(1)_{Ar}); d_F (376 MHz, CDCl₃) -178.6 (1F, d, ³J_{HF} 3.4 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 241 (96), 243 (88) [M⁺]; cluster 183 (100), 185 (98) [BrC₆H₄CO]⁺; 155 (62), 157 (57) [BrC₆H₄]⁺; 134 ((88) [M -Br-CO]⁺; 107 (36); 76 (41); 75 (41). Anal. Calcd for C₉H₅BrFNO: C 44.66, H 2.08, N 5.79, found: C 44.57, H 2.08, N 5.85.

4-Fluoro-5-(4-fluorophenyl)isoxazole (5d) was obtained from 150 mg (0.64 mmol) of 4-bromo-4-fluoro-5-(4-fluorophenyl)isoxazoline **2d** as light-yellow solid (73 mg, 76%). m.p. 78-80°C. d_H (400 MHz, CDCl₃) 8.38 (1H, d, ³J_{HF} 4.3 Hz, HC=N), 7.83 (2H, dd, ³J_{HH} 8.9, ³J_{HF} 5.1 Hz, CH_{Ar}), 7.21 (2H, pseudo-t, ³J 8.6 Hz, CH_{Ar}); dc (101 MHz, CDCl₃) 163.5 (dd, ¹J_{CF} 251.5 Hz, ¹J_{CF} 2.0 Hz, C_{Ar}F), 151.8 (d, ²J_{CF} 17.5 Hz, C-O), 143.0 (d, ²J_{CF} 17.5 Hz, HC=N), 142.3 (d, ¹J_{CF} 255.7 Hz, C(4)_{is}F), 127.4 (dd, ³J_{CF} 8.6 Hz, ⁴J_{CF} 4.7 Hz, 2CH_{Ar}), 121.9 (dd, ³J_{CF} 5.1, ⁴J_{CF} 3.5 Hz, C(1)_{Ar}), 116.4 (d, ²J_{CF} 22.2 Hz, 2CH_{Ar}); d_F (376 MHz, CDCl₃) -108.9 (1F, m, C_{Ar}F), -180.2 (d, ³J_{HF} 3.8 Hz, 1F, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): 181 (1) [M⁺]; 153 (50) [M -CO]⁺; 126 (100) [FC₆H₄CF]⁺; 125 (27); 107 (17) [C₆H₄CF]⁺. Anal. Calcd for C₉H₅F₂NO: C 59.68, H 2.78, N 7.73, found: C 59.35, H 2.54, N 7.39.

4-Fluoro-5-(4-methylphenyl)isoxazole (5e) was obtained from 104 mg (0.40 mmol) of 4-bromo-4-fluoro-5-(4-methylphenyl)isoxazoline **2e** as light-yellow solid (65 mg, 92%),

m.p. 44-46°C. d_H (400 MHz, CDCl₃) 8.43 (1H, d, ³J_{HF} 4.2 Hz, HC=N), 7.70 (2H, d, ³J 8.2 Hz, CH_{Ar}), 7.30 (2H, d, ³J 8.2 Hz, CH_{Ar}), 2.41 (3H, s, Me); dc (101 MHz, CDCl₃) 153.4 (d, ²J_{CF} 17.7 Hz, C-O), 143.3 (d, ²J_{CF} 17.8 Hz, HC=N), 142.2 (d, ¹J_{CF} 254.7 Hz, C(4)_{is}F), 141.0 (CMe), 129.8 (2CH_{Ar}), 125.4 (d, ⁴J_{CF} 4.8 Hz, 2CH_{Ar}), 122.5 (d, ³J_{CF} 4.8 Hz, C(1)_{Ar}), 21.6 (Me); d_F (376 MHz, CDCl₃) -180.3 (1F, d, ³J_{HF} 4.2 Hz, C(4)_{is}F). Anal. Calcd for C₁₀H₈FNO: C 67.79, H 4.55, N 7.91, found: C 67.34, H 4.10, N 7.93.

4-Fluoro-5-(3-methylphenyl)isoxazole (5f) was obtained from 141 mg (0.55 mmol) of 4-bromo-4-fluoro-5-(3-methylphenyl)isoxazoline **2f** as yellow solid (72 mg, 75%). m.p. 35-36°C. d_H (400 MHz, CDCl₃) 8.37 (1H, d, ³J 4.2 Hz, HC=N), 7.64 (1H, s, CH_{Ar}), 7.63 (1H, d, ³J 7.7 Hz, CH_{Ar}), 7.39 (1H, t, ³J 7.7 Hz), 7.27 (1H, d, ³J 7.7 Hz, CH_{Ar}), 2.43 (3H, s, Me); dc (101 MHz, CDCl₃) 153.4 (d, ²J_{CF} 18.5 Hz, C-O), 143.3 (d, ²J_{CF} 17.7 Hz, HC=N), 142.6 (d, ¹J_{CF} 256.2 Hz, C(4)_{is}F), 139.0 (CMe), 131.4 (CH_{Ar}), 129.0 (CH_{Ar}), 125.9 (d, ⁴J_{CF} 4.8 Hz, CH_{Ar}), 125.1 (d, ³J_{CF} 4.8 Hz, C(1)_{Ar}), 122.6 (d, ⁴J_{CF} 4.8 Hz, CH_{Ar}), 21.4 (Me); d_F (376 MHz, CDCl₃) -179.7 (1F, m, C(4)_{is}F); GC-MS (EI, 70 eV), m/z (I_{rel}, %): 177 (84) [M⁺]; 148 (17); 119 (100) [MeC₆H₄C=O]⁺; 91 (63) [MeC₆H₄]⁺. Anal. calcd for C₁₀H₈FNO: C 67.79; H 4.55; N 7.91. found: C 67.57; H 4.53; N 7.91.

4-Fluoro-5-(4-methoxyphenyl)isoxazole (5g) was obtained from 90 mg (0.33 mmol) of 4-bromo-4-fluoro-5-(4-methoxyphenyl)isoxazoline **2g** as yellow solid (38 mg, 60%). m.p. 61-63°C d_H (400 MHz, CDCl₃) 8.34 (1H, d, ³J 4.2 Hz, HC=N), 7.76 (2H, d, ³J 8.9 Hz, CH_{Ar}), 7.02 (2H, d, ³J 8.9 Hz, CH_{Ar}), 3.87 (3H, s, OMe); dc (101 MHz, CDCl₃) 161.0 (COMe), 152.8 (d, ²J_{CF} 18.5 Hz, C-O), 142.9 (d, ²J_{CF} 16.9 Hz, HC=N), 141.7 (d, ¹J_{CF} 253.8 Hz, C(4)_{is}F), 127.0 (d, ⁴J_{CF} 4.8 Hz, 2CH_{Ar}), 118.4 (d, ³J_{CF} 5.6 Hz, C(1)_{Ar}), 114.5 (2CH_{Ar}), 55.4 (OMe); d_F (376 MHz, CDCl₃) -181.8 (1F, d, ³J_{HF} 4.2 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): 193 (65) [M⁺], 178 (15) [M -Me]⁺; 150 (28) [M -Me-CO]⁺; 135 (100) [MeOC₆H₄C=O]⁺; 107 (30) [MeOC₆H₄]⁺; 92 (38) [O-C₆H₄]⁺; 77 (30) [Ph⁺]. HRMS (ESI) m/z calcd for C₁₀H₈FNO₂+H⁺: 194.0612 [M+H]⁺, found: 194.0613.

5-(3-Bromo-4-methoxyphenyl)-4-fluoroisoxazole (5j) was obtained from 54 mg (0.15 mmol) of 4-bromo-5-(3-bromo-4-methoxyphenyl)-4-fluoroisoxazoline **2j** as white solid (32 mg, 78%). m.p. 118-120°C d_H (400 MHz, CDCl₃) 8.37 (1H, d, ³J_{HF} 4.2 Hz, HC=N), 8.02 (1H, d, ⁴J 2.0 Hz, CH_{Ar}), 7.75 (1H, dd, ³J 8.7, ⁴J 2.0 Hz, CH_{Ar}), 7.02 (1H, d, ³J 8.7 Hz, CH_{Ar}), 3.97 (3H, s, OMe); dc (101 MHz, CDCl₃) 157.2 (C-OMe), 151.4 (d, ²J_{CF} 18.5 Hz, C-O), 143.0 (d, ²J_{CF} 16.9 Hz, HC=N), 142.0 (d, ¹J_{CF} 256.2 Hz, C(4)_{is}F), 130.3 (d, ⁴J_{CF} 4.8 Hz, CH_{Ar}), 125.9 (d, ⁴J_{CF} 4.8 Hz, CH_{Ar}), 119.5 (d, ³J_{CF} 5.6 Hz, C(1)_{Ar}), 112.5 (CBr), 112.1 (CH_{Ar}), 56.4 (OMe); d_F (376 MHz, CDCl₃) -180.4 (1F, d, ³J_{HF} 4.1 Hz, C(4)_{is}F); GC-MS (EI, 70 eV): m/z (I_{rel}, %): cluster 271 (75), 273 (76) [M⁺]; cluster 256 (25), 258 (24) [M - Me]⁺; cluster 228 (22), 230 (22) [M -Me-CO]⁺; cluster 213 (98), 215 (100) [MeO(Br)C₆H₃C=O]⁺; cluster 185 (21), 187 (20) [MeOC₆H₃Br]⁺; cluster 170 (32), 172 (31) [OC₆H₃Br]⁺; 164 (28) [M -Br-CO]⁺; cluster 155 (21), 157 (22) [C₆H₄Br]⁺; cluster 142 (13), 144 (13); 137 (28); 121 (28); 119 (24); 107 (31); 94 (30); 76 (26); 75 (41); 74 (39); 63 (95). Anal. calcd for C₁₀H₇BrFNO₂: C 44.15, H 2.59, N 5.15, found: C 44.29, H 2.44, N 4.77.

General Procedure for Dehydrofluorination of Isoxazolines (2b,c and 3b). Isoxazoline (1 eq) was dissolved in nitromethane, conc. = 0.2 M. To this solution, 2 eq of AlCl₃ was added and the reaction mixture was stirred at 20°C for 20h. After that, the reaction mixture was poured into water, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The combined organic layers were dried over

anhydrous Na_2SO_4 and the solvent was removed under reduced pressure. The collected residue was pure 5-aryl-4-bromoisoaxazoles **6b,c** or 5-fluoroisoaxazole **4b** in the case of initials **2b,c** and **3b**, respectively.

4-Bromo-5-(4-chlorophenyl)isoaxazole (6b) was obtained from 20.0 mg (0.072 mmol) of 4-bromo-5-(4-chlorophenyl)-4-fluoroisoaxoline **2b** as light-yellow solid (17.5 mg, 95%). m.p. 90°C. δ_{H} (400 MHz, CDCl_3) 8.30 (1H, s, $\text{HC}=\text{N}$), 7.99 (2H, d, 3J 8.8 Hz, CH_{Ar}), 7.49 (2H, d, 3J 8.8 Hz, CH_{Ar}); δ_{C} (101 MHz, CDCl_3) 163.4 (C-O), 153.2 ($\text{HC}=\text{N}$), 136.9 (CCl), 129.3 (2 CH_{Ar}), 128.1 (2 CH_{Ar}), 124.8 (C(1) $_{\text{Ar}}$), 88.9 (C(4) $_{\text{isBr}}$).

4-Bromo-5-(4-bromophenyl)isoaxazole (6c) was obtained from 20.0 mg (0.062 mmol) of 4-bromo-5-(4-bromophenyl)-4-fluoroisoaxoline **2c** as light-yellow solid (15.0 mg, 80%). m.p. 115°C. δ_{H} (400 MHz, CDCl_3) 8.30 (1H, s, $\text{HC}=\text{N}$), 7.92 (2H, d, 3J 8.6 Hz, CH_{Ar}), 7.65 (2H, d, 3J 8.6 Hz, CH_{Ar}); δ_{C} (101 MHz, CDCl_3) 163.4 (C-O), 153.2 ($\text{HC}=\text{N}$), 132.2 (2 CH_{Ar}), 128.2 (2 CH_{Ar}), 125.24 (CBr or C(1) $_{\text{Ar}}$), 125.19 (CBr or C(1) $_{\text{Ar}}$), 88.9 (C(4) $_{\text{isBr}}$).

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (projects no. 15-03-04260 and no 18-33-01109) and by the National Science Foundation, USA, CHE-1665342. We thank Thermo Fisher Scientific Inc., MS Analytica (Moscow, Russia), and personally Prof. Alexander Makarov for providing mass spectrometry equipment for this work. We also acknowledge partial support from M.V. Lomonosov Moscow State University Program of Development for providing an Agilent 400-MR NMR spectrometer.

References and notes:

- (a) Bondarenko, O. B.; Vinogradov, A. A.; Komarov, A. I.; Smirnov, A. S.; Zyk, N. V. *J. Fluorine Chem.* **2016**, *185*, 201–205; (b) Bondarenko, O. B.; Vinogradov, A. A.; Komarov, A. I.; Karetnikov, G. L.; Zyk, N. V.; Holt, T.; Kutateladze, A. G. *Tetrahedron* **2019**, *75*, 2861–2865.
- (a) Sedenkova, K. N.; Averina, E. B.; Grishin, Yu. K.; Bacunov, A. B.; Troyanov, S. I.; Morozov, I. V.; Deeva, E. B.; Merkulova, A. V.; Kuznetsova, T. S.; Zefirov, N. S. *Tetrahedron Lett.* **2015**, *56*, 4927–4930; (b) Sedenkova, K. N.; Averina, E. B.; Grishin, Yu. K.; Kuznetsova, T. S.; Zefirov, N. S. *Tetrahedron Lett.* **2014**, *55*, 483–485
- Bondarenko, O. B.; Komarov, A. I.; Zyk, N. V. *Russ. Chem. Bull., Int. Ed.* **2016**, *65*, 1882–1883.
- The minor **Z-2** isomers were not isolated separately from **E-2** due to the similar R_f values and small quantities (5–9%). Their formation was confirmed by ^1H NMR spectroscopy and GC-MS analysis.
- Gazzaeva, R. A.; Shabarov, Yu. S.; Saginova, L. G. *Khim. Geterotsikl. Soedin.* **1984**, *20*, 246–250.
- Lin, S.-T.; Kuo, S.-H.; Yang, F.-M. *J. Org. Chem.* **1997**, *62*, 5229–5231.
- In the case of cyclopropane **1a**, the only products formed at lower temperatures (0 °C) were *ortho*- and *para*-nitrophenyl *gem*-bromofluorocyclopropanes **1h** and **1i⁶** which occur unreactive for further cyclopropane ring nitrosation under the reaction conditions (for experimental details see ESI).
- We do not have any experimental evidence for the cleavage of the C1-C3 bond, which was realized in the case of alkylbromofluorocyclopropanes.^{1a} Under the current reaction conditions, we did not observe the formation of 4-aryl-5-fluoroisoaxazoles.
- (a) Kirsch, P. *Modern Fluoroorganic Chemistry. Synthesis, Reactivity, Applications*. Wiley-VCH. Weinheim. **2004**, 321 pp.; (b) Ramig, K. *Synthesis*. **2002**, no. 17, 2627–2631; (c) Banks, R. E.; Tatlow, J. C. In *Organofluorine Chemistry Principles and Commercial Applications*. Banks, R. E.; Smart, B. E.; Tatlow, J. C., Eds.; Plenum Press: New York and London, **1994**, 25.
- Bondarenko, O. B.; Vinogradov, A. A.; Danilov, P. A.; Nikolaeva, S. N.; Gavrilova, A. Yu.; Zyk, N. V. *Tetrahedron Lett.* **2015**, *56*, 6577–6579.
- To accelerate computations of relatively large organic molecules, *DU8+* combines computations of structure and NMR properties of organic molecules at a lighter level of DFT theory, and is implemented with the following components: (i) structure optimizations carried out with B3LYP/6-31G(d); (ii) the isotropic magnetic shielding values computed with wB97xD/6-31G(d) and corrected; (iii) Fermi contacts evaluated with B3LYP/DU8 and scaled with the help of NBO-based corrections to obtain spin-spin coupling constants (SSCC).
- for full description of the components of *DU8+* method see: Kutateladze, A. G.; Reddy, D. S. *J. Org. Chem.* **2017**, *82*, 3368–3381.
- for structure revisions utilizing *DU8+* and its previous versions see (a) Reddy, D. S.; Kutateladze, A. G. *Org. Lett.* **2016**, *18*, 4860–4863; (b) Kutateladze, A. G. *J. Org. Chem.* **2016**, *81*, 8659–8661; (c) Reddy, D. S.; Kutateladze, A. G. *Tetrahedron Lett.* **2016**, *57*, 4727–4729; (d) Mukhina, O. A.; Koshino, H.; Crimmins, M. T.; Kutateladze, A. G. *Tetrahedron Lett.* **2015**, *56*, 4900–4903; (e) Kutateladze, A. G.; Kuznetsov, D. M. *J. Org. Chem.* **2017**, *82*, 10795–10802; (f) Kutateladze, A. G.; Kuznetsov, D. M.; Beloglazkina, A. A.; Holt, T. *J. Org. Chem.* **2018**, *83*, 8341–8352.
- (a) Bumgardner, C. L.; Sloop, J. C. *J. Fluorine Chem.* **1992**, *56*, 141–146; (b) Sloop, J. C.; Bumgardner, C. L.; Loehle, W. D. *J. Fluorine Chem.* **2002**, *118*, 135–147.
- Stephens, C. E.; Blake, J. A. *J. Fluorine Chem.* **2004**, *125*, 1939–1945.
- (a) Jeong, Y.; Kim, B.-I.; Lee, J. K.; Ryu, J.-S. *J. Org. Chem.* **2014**, *79*, 6444–6455; (b) Song, D.-H.; Ryu, J.-S. *Bull. Korean Chem. Soc.* **2014**, *35*, 2635–2644.
- Sato, K.; Sandford, G.; Shimizu, K.; Akiyama, S.; Lancashire, M. J.; Yufit, D. S.; Tarui, A.; Omote, M.; Kumadaki, I.; Harusawa, S.; Ando, A. *Tetrahedron* **2016**, *31*, 1690–1698.
- Khisamutdinov, G. Kh.; Okhlobystina, L. V.; Fainzilberg, A. A. *Russ. Chem. Bull., Int. Ed.* **2009**, *58*, 2182–2184.
- Vinick, F. J.; Pan, Y.; Gschwend, H. W. *Tetrahedron Lett.* **1978**, *19*, 4221–4224.
- Rae, D. R.; Zeitler, K.; Li, C.; Ladd, C. L. Silver (I) Nitrate in *Encyclopedia of Reagents for Organic Synthesis*, John Wiley & Sons, 2001, 1–11.
- Muller, C.; Stier, F.; Weyerstahl, P. *Chem. Ber.* **1977**, *110*, 124–137.
- Novokreshchennykh, V. D.; Mochalov, S. S.; Shabarov Yu. S. *Zh. Organ. Khim.* **1979**, *15*, 430–435.