

1 Comparison of high resolution pressure measurements

2 on a high-rise building in a closed and open-section

3 wind tunnel

4 Giacomo Lambertia^{a,*}, Luca Amerio^b, Giulia Pomaranzic, Alberto Zasso^c,
5 Catherine Gorlé^a

⁶ *Stanford University, Y2E2 Building, 473 Via Ortega, Stanford, CA, 94305*

⁷ *Advanced Technology + Research group, ARUP, UK*

⁸ *^cPolitecnico di Milano, Via G. La Masa 1, 20156, Milan, Italy*

9 Abstract

Wind tunnel testing represents an established technique for the assessment of wind-induced pressure on cladding systems. Nonetheless, some physical events, such as the pressure peaks that occur on a building's lateral facades, are not fully understood. To enable detailed analysis of the nature of these pressure peaks, we performed high-resolution pressure measurements on a high-rise building in two different wind tunnels: the closed-circuit wind tunnel of Politecnico di Milano, and the open-circuit Wall of Wind facility at Florida International University. The objective of the paper is to present the experimental set-up and the high-resolution pressure data, and to investigate the characteristics of the extreme suction events at individual pressure taps and their relevance for cladding design. We first compare the two atmospheric boundary layers, and subsequently present the pressure coefficients statistics. Then, we present probability density functions of the local and area-averaged pressure coefficients and visualize the space-time characteristics of two peak events to investigate their relevance for cladding design. The experiments provide consistent results and exhibit two types of suction events: one is characterized by an extremely short duration and spatial extension, while the other impacts a larger portion of the facade.

Keywords: wind tunnel, cladding, atmospheric boundary layer, pressure peaks

*Corresponding author

Email addresses: giacomo1@stanford.edu (Giacomo Lamberti), gorle@stanford.edu

(Catherine Gorlé)

Preprint submitted to Elsevier

January 4, 2021

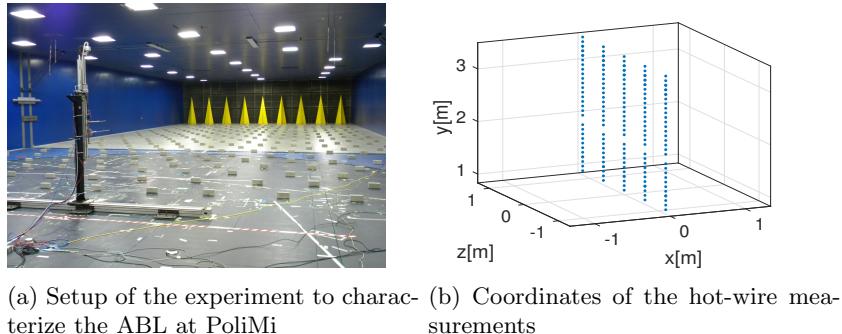
11 **1. Introduction**

12 For the design of cladding, such as the glazed panels often employed to
13 cover high-rise building facades, the correct estimation of wind loads is critical,
14 both from a safety and economic point of view. Building codes provide different
15 approaches to estimate the pressure acting on the panels but when the pressure-
16 induced load is critical, common practice is to rely on wind tunnel cladding tests.
17 During such experiments, pressure time-series are recorded in several points on
18 the building's surface by means of a synchronous multi-pressure sensing system
19 (SMPSS) [1–8]. On a building's lateral facades these pressure time series often
20 exhibit extreme suction events. In these regions, the pressure is characterized
21 by strong non-Gaussian behavior [9–15]; pressure peaks that correspond to pres-
22 sure coefficients lower than -10 have been observed and result in large negative
23 skewness [16, 17]. The spatial characteristics of these pressure peaks are still
24 not fully understood and pose a challenge for dimensioning the cladding sys-
25 tem: strong suction events that are extremely localized might not be relevant
26 for cladding design, while events that extend over a larger region could play an
27 important role.

28 Previous studies on the spatial distribution of pressure peaks have focused
29 primarily on low-rise buildings [18–23]. To enable detailed analysis of these
30 peak events on high-rise buildings, we performed high-resolution pressure mea-
31 surements in two different wind tunnels. The first experiment was performed
32 in the atmospheric boundary layer (ABL) wind tunnel of the Politecnico di
33 Milano (PoliMi). It focused on measuring the pressure in the most critical re-
34 gions on a high-rise building faade, i.e. adjacent to the corners and edges of the
35 side walls, for an open-terrain exposure and different inflow directions. To en-
36 able analysis of the temporal and spatial extension of the peak events, the model
37 was equipped with 447 closely-spaced pressure taps connected to high-frequency
38 pressure scanners [17].

39 The same high-rise building model was then tested at the Wall of Wind
40 (WoW) facility of Florida International University. The objective of this sec-

41 ond round of tests was to verify if the spatial and temporal characteristics of
42 the pressure peak phenomena observed in the PoliMi experiment could be repro-
43 duced in the WoW. Hence, the tests were performed using a similar open-terrain
44 exposure, considering a subset of critical inflow directions identified at PoliMi
45 [17]. To promote the dissemination of the data as a benchmark test case for
46 the determination of wind loading on high-rise buildings, the PoliMi dataset is
47 available to the scientific community on the open-access repository Zenodo [24],
48 while the WoW dataset is available on the Stanford digital repository (SDR,
49 [25]).


50 The objective of this paper is to present the experimental set-up and the
51 high-resolution pressure data, and to investigate the characteristics of the ex-
52 treme suction events at individual pressure taps and their effect on the area-
53 averaged pressure of glazed panels. In the following, we first discuss the ex-
54 perimental set-up in both wind tunnels, considering the velocity measurements
55 performed to characterize the ABL, and the pressure measurements on the high-
56 rise building. Subsequently, we present the comparison of the results. To verify
57 the consistency of the two incoming ABLs, we compare the profiles of mean ve-
58 locity, turbulence intensity, integral time-scales and spectra. The wind pressure
59 measurements are first compared in terms of the mean, root mean square, and
60 spectra of the pressure coefficients. Subsequently we present pressure coefficient
61 time-series to determine the frequency and intensity of the pressure peaks, to-
62 gether with probability density functions of local and area-averaged pressure
63 coefficients. To interpret these results, additional visualization of the spatial
64 and temporal extent of individual peak events, and of their effect on the area-
65 averaged pressure on a cladding element, is performed. Finally, extreme value
66 analysis is used to compute the peak pressure coefficient on individual taps and
67 the design pressure coefficient for a typical glazed panel. The last section of the
68 paper summarizes the conclusions and possible areas of future research.

69 **2. Experimental setup**

70 The PoliMi facility is a closed-circuit wind tunnel; the boundary layer test
71 section has a cross section of $14 \times 4 \text{ m}^2$ and is 35m long. The models are
72 placed at a distance of 10m from the inlet, in the center of a turntable of radius
73 6.5m, to enable tests at different wind directions. The WoW ABL facility is an
74 open-circuit wind tunnel with a 6.1m wide and 4.3m high test section, and a
75 turntable with a radius of 4.9m. In the following, we first describe the set-up of
76 the velocity measurements, performed at the center of the turntable in absence
77 of the model to characterize the ABL in both wind tunnels. Subsequently we
78 introduce the set-up for the pressure measurements on the high-rise building.

79 *2.1. Velocity measurements*

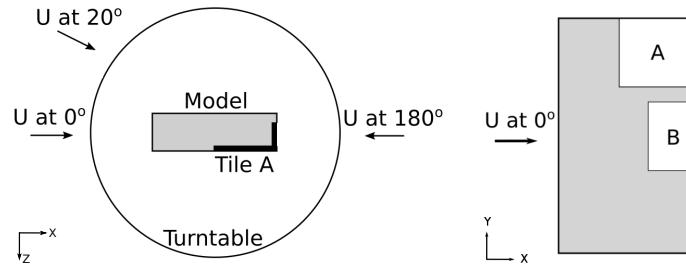
80 In the PoliMi wind tunnel, a detailed characterization of the ABL was carried
81 out using 3D hot-wires with a sampling frequency of 2000Hz. The velocity
82 components were measured at 280 points distributed on a plane at the building
83 location, as shown in Figure 1. The outcome of the experiment consists of
84 20s time-series of the three velocity components at 5 spanwise locations (0.6m
85 apart) and 56 vertical locations (43.7mm apart below 0.75m and 87.5mm apart
above).

86
87
88
89
Figure 1: PoliMi experimental setup of velocity measurements.

86
87 The ABL in the WoW was characterized using TFI Cobra probes with a
88 sampling frequency of 2500Hz. 60s time-series of the three components of ve-
89 locity were recorded at 6 vertical locations in the center of the turntable. The

90 spatial resolution of these measurements varied between 0.3m and 0.6m. Table
 91 summarizes the parameters of the two experiments in terms of sampling
 92 frequency, total duration, and reference velocity at 2m height. The WoW tests
 93 were run at a higher reference velocity than the PoliMi tests; the comparisons
 in section 3.1 will be presented in terms of non-dimensional quantities.

	$f_{samp}[\text{Hz}]$	$T[\text{s}]$	$U_{ref}[\text{m/s}]$
PoliMi	2000	20	7.8
WoW	2500	60	35.4


Table 1: Sampling frequency, total duration, and reference velocity at 2m height for the velocity measurements performed in both facilities.

94

95 *2.2. Pressure measurements*

96 *2.2.1. Building model*

97 The same high-rise building model was used in both experimental facilities.
 98 It is a 1m wide, 0.3m deep and 2m high rectangular box, representative of a 100m
 99 tall building in full-scale. The model was placed at the center of a turntable to
 100 allow testing at different inflow directions. In the present work we focus on three
 101 wind directions: 0° , 20° and 180° , following the convention defined in Figure 2.
 102 Results for the 0° and 180° tests have been previously presented in [26]; in this
 103 paper we add the analysis for the downwind wind direction of 20° , since strong
 104 peak suction events have been observed for this wind direction [17].

(a) Top view of the turntable, indicating (b) Side view of the building model
 the convention used for the wind direction

Figure 2: Sketch of the building model.

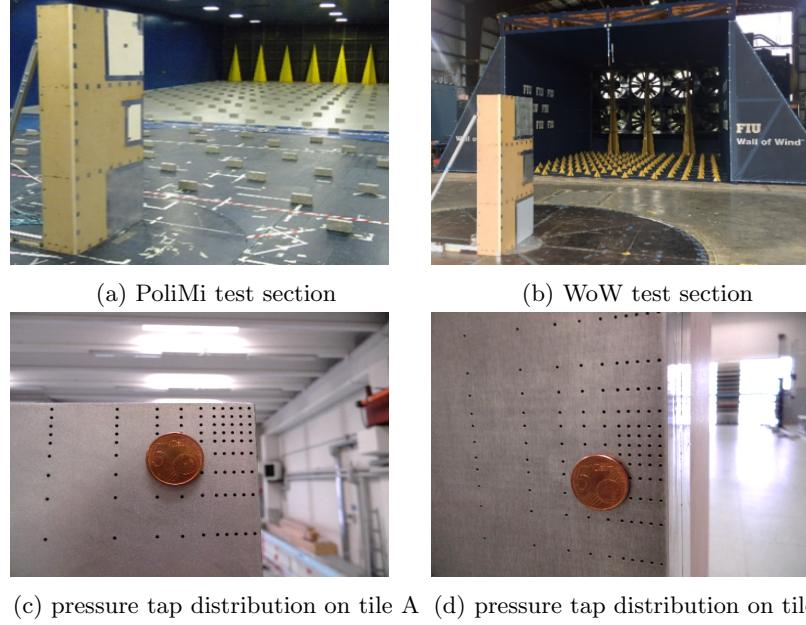


Figure 3: Pictures of the test sections of both wind tunnels and close-up of the aluminum tiles.

105 The experiment was designed to enable a detailed study of the pressure
 106 distribution in the regions of the building where the highest pressure peaks are
 107 expected, i.e. near the corners and edges of the building [17]. Therefore, we
 108 designed two aluminum tiles containing 224 and 223 pressure taps respectively:
 109 tile A located on the top-corner of the model and tile B centered at 1m height
 110 adjacent to the building edge (Figure 2). The minimum tap distance is 3.4mm
 111 on both tiles; the resolution is progressively decreased when moving away from
 112 the building edges. The pressure taps have an internal diameter of 1.3mm; they
 113 are connected to the pressure scanner system through rubber tubes with the
 114 same diameter to avoid discontinuities. Figure 3 shows the distribution of the
 115 pressure taps on tile A, together with the set-up of the experiment in the two
 116 wind tunnel facilities. The tubing system introduces distortion in the pressure
 117 signal; the raw pressure measurements are divided by the tubing frequency
 118 response function to account for this distortion and reconstruct the original
 119 pressure signal before post-processing.

120 *2.2.2. Pressure Measurement System*

121 At PoliMi, the model was instrumented with 7 PSI ESP-32 HD high-speed
122 pressure scanners, connected to a data acquisition system with a sampling fre-
123 quency of 500Hz. The outcome of each test consists of 300s time-series of pres-
124 sure measured at 446 taps. The reference velocity of $\sim 11.8\text{m/s}$ at 2m height was
125 measured during each test by a Pitot tube located 7m upwind of the building.
126 The reference pressure was computed by pneumatically averaging the pressure
127 recorded at 4 different points across the test section, during each test.

128 The WoW measurements were performed using pressure scanners with a
129 sampling rate of 520Hz. As in the PoliMi wind tunnel, 300s time-series of pres-
130 sure were recorded at 446 taps. The tests were performed at the same Reynolds
131 number, i.e. with a target reference velocity of 11.8m/s at 2m height. At the
132 beginning of the experiment, TFI Cobra probes were employed to measure the
133 velocity at two vertical locations at a lateral distance of 2m from the building.
134 Since the facility is an open-circuit wind tunnel, the reference pressure was de-
135 termined from the nearest weather station. The details of both experiments are
summarized in Table 2.

	$f_{\text{samp}}[\text{Hz}]$	$T[\text{s}]$	$U[\text{m/s}]$
PoliMi	500	300	11.7
WoW	520	300	11.0

Table 2: Sampling frequency, total duration and reference velocity at 2m height for the pressure measurements performed in both facilities.

136

137 **3. Results**

138 In this section, we first compare the velocity statistics of the incoming bound-
139 ary layers generated in the two wind tunnels in terms of the mean velocity, tur-
140 bulence intensities, integral time-scales, and velocity spectra. Non-dimensional
141 quantities are presented, since the measurements were performed for different
142 reference velocities. Subsequently, we present the comparison of the pressure
143 measurements both in terms of statistics, i.e. mean, root mean square and

¹⁴⁴ spectra, and in terms of time-series and peak events. The pressure values are
¹⁴⁵ presented as non-dimensional C_p quantities defined as

$$C_p(t) = \frac{p(t) - p_{ref}}{\bar{q}_{ref}}, \quad (1)$$

¹⁴⁶ where p_{ref} is the static reference pressure and \bar{q}_{ref} is the average dynamic
¹⁴⁷ pressure measured at roof height.

¹⁴⁸ From an engineering design point-of-view, surface pressure measurements are
¹⁴⁹ usually performed to assess the load on cladding elements and their supporting
¹⁵⁰ structure. The relevance of the peak phenomena is therefore determined by
¹⁵¹ their effect on the area-averaged pressure acting on the panels. By exploiting
¹⁵² the high density of pressure taps used in the experiments, we can compute
¹⁵³ the area-averaged pressure acting on a cladding element by direct numerical
¹⁵⁴ integration:

$$p_{AA}(t) = \frac{\sum p_i(t)A_i}{A_{tot}} \quad (2)$$

¹⁵⁵ where p_{AA} is the area-averaged pressure on the panel, p_i is the pressure recorded
¹⁵⁶ by the i -th tap, A_i is the tributary area of the i -th tap, and A_{tot} is the total
¹⁵⁷ area of the panel (i.e. $A_{tot} = \sum A_i$). In the present paper we consider a typical
¹⁵⁸ panel size of $2 \times 3\text{m}^2$, although others may be employed. The resulting time
¹⁵⁹ signal can be analyzed using extreme value analysis techniques; in the present
¹⁶⁰ work, we employ the Cook & Mayne method [27].

¹⁶¹ 3.1. Velocity statistics

¹⁶² In the following plots, the gray error-bars represent the variation of the
¹⁶³ velocity statistics measured at the different spanwise locations in the PoliMi
¹⁶⁴ wind tunnel, and the gray circles indicate the corresponding spanwise-averaged
¹⁶⁵ values; the red dots represent the data measured at WoW.

¹⁶⁶ Figure 4 shows the profiles of mean streamwise velocity, nondimensionalized
¹⁶⁷ by the reference velocity at 2m height. The profiles are shown both in linear and
¹⁶⁸ logarithmic scale. The WoW measurements are within the spanwise variation of
¹⁶⁹ PoliMi data at all available measurement heights. When plotted in logarithmic
¹⁷⁰ scale, the velocity profiles manifest the expected linear trend of a neutral ABL.

¹⁷¹ By fitting regression lines to the data, we obtain a roughness length of $\sim 3\text{mm}$
¹⁷² and $\sim 2.5\text{mm}$ for the PoliMi and WoW tests respectively.

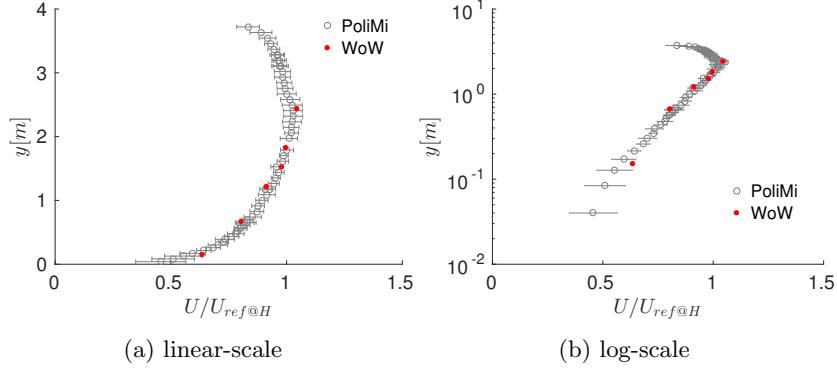


Figure 4: Comparison of nondimensional mean velocity between PoliMi and WoW data.

¹⁷³ The turbulence intensities, defined as the ratio of the root mean square and
¹⁷⁴ the mean velocity, are compared in Figure 5. The streamwise turbulence inten-
¹⁷⁵ sity measured at WoW is within the interval defined by the spanwise variation
¹⁷⁶ in the PoliMi experiments, except for the lowest and highest points. The highest
¹⁷⁷ discrepancy occurs close to the ground where the turbulence intensity in WoW
¹⁷⁸ is ~ 0.07 lower than the PoliMi spanwise-averaged value. The WoW profiles of
¹⁷⁹ vertical turbulence intensity are ~ 0.06 lower close to the ground and ~ 0.02
¹⁸⁰ higher above 1.8m. Similarly, the spanwise turbulence intensity computed from
¹⁸¹ WoW data at 0.15m height is ~ 0.045 lower than PoliMi spanwise-averaged
¹⁸² value at the same height and above 1.5m it is $\sim 0.02 - 0.03$ higher.

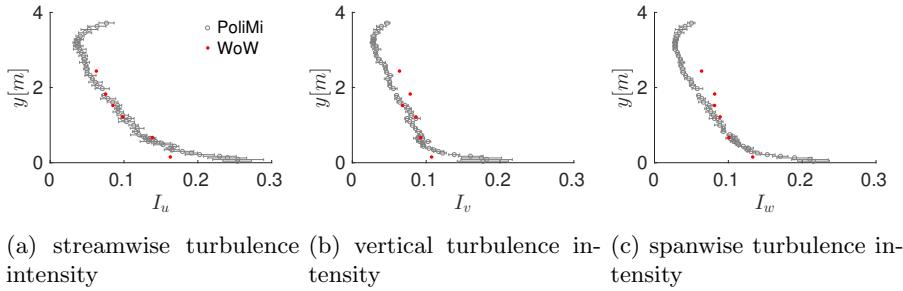


Figure 5: Comparison of turbulence intensities between PoliMi and WoW data.

183 Figure 6 shows the comparison in terms of non dimensional integral time-
 184 scales; the profiles are nondimensionalized using the reference velocity at roof
 185 height and the height of the building. All three components show reasonable
 186 agreement, considering that a significant spanwise variation is observed in the
 187 PoliMi experiment. The main discrepancy between the two datasets again ap-
 188 pears close to the ground in the vertical and spanwise profiles.

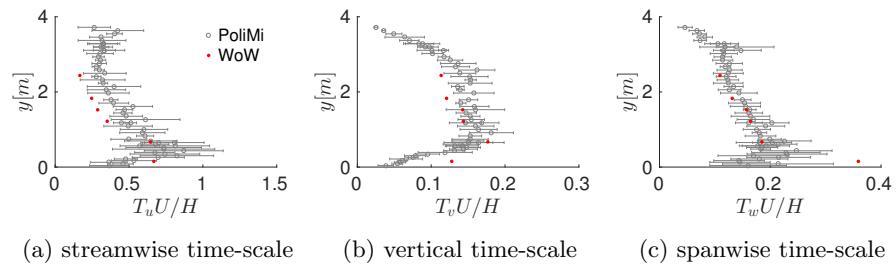


Figure 6: Comparison of nondimensional integral time-scales between PoliMi and WoW data.

189 Finally, the power spectra of the streamwise velocity component are com-
 190 pared to the standard Von-Karman spectrum in Figure 7. The three profiles
 191 agree well throughout the range of nondimensional frequencies that the two
 192 experiments have in common. The longer time-series measured in the WoW
 193 test allow to capture larger scales compared to the PoliMi experiment; this is
 194 evident from the lower frequencies in the spectrum computed from the WoW
 195 data. Conversely, even though the sampling frequency of the cobra probes is
 196 higher than the sampling frequency of the hot-wires, the spectrum measured
 197 at PoliMi contains higher nondimensional frequencies compared to WoW data.
 198 This is a result of the fact that the Reynolds number of the WoW experiment is
 199 almost 5 times larger than the Reynolds number of the PoliMi test; therefore,
 200 the sampling frequency of 2500Hz does not enable the measurement of scales as
 201 small as in the PoliMi wind tunnel.

202 The comparison of the velocity statistics indicates that the PoliMi and WoW
 203 experimental set-ups have very similar incoming ABLs, both in terms of the
 204 time-averaged velocity and the turbulence quantities.

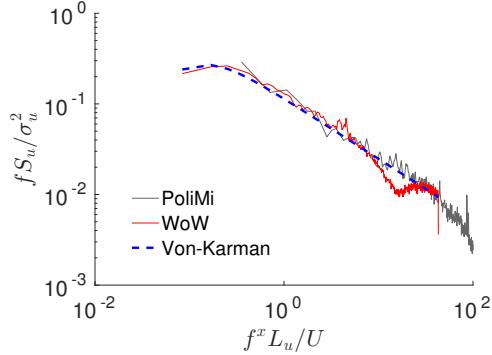


Figure 7: Comparison of streamwise velocity spectra between PoliMi and WoW data at 0.67m height, compared to the Von-Karman spectrum adapted for wind engineering [28]

205 3.2. *Pressure statistics*

206 In this section we first compare the pressure statistics measured in the two
 207 wind tunnels, for two configurations: $0 - 180^\circ$ and 20° wind directions. Sub-
 208 sequently, we present the comparison of the time-series and peak values for the
 209 20° wind direction, which produced the strongest suction peaks [17].

210 3.2.1. $0 - 180^\circ$ *wind directions*

211 Figure 8 shows the distribution of the pressure coefficient statistics on the
 212 building's lateral facade at $0 - 180^\circ$ wind directions. The mean pressure co-
 213 efficients recorded in both wind tunnels agree well qualitatively: the flow first
 214 separates at the windward edge generating an area of relatively strong nega-
 215 tive pressure coefficient (red region in Figures 8a and 8b), then it reattaches
 216 on the rear part of the model (yellow region in Figures 8a and 8b). From the
 217 contour plot it appears that the WoW data experiences a slightly stronger neg-
 218 ative pressure coefficient, especially in the separation region. The distribution
 219 of the root mean square (rms) of the pressure coefficient is shown in Figures 8c
 220 and 8d. Both sets of measurements show high fluctuations in the region of flow
 221 separation and reattachment; the rms C_p computed at WoW is slightly higher
 222 than the PoliMi one, especially in the separation region.

223 Figure 9 provides a more quantitative comparison, showing the statistics of

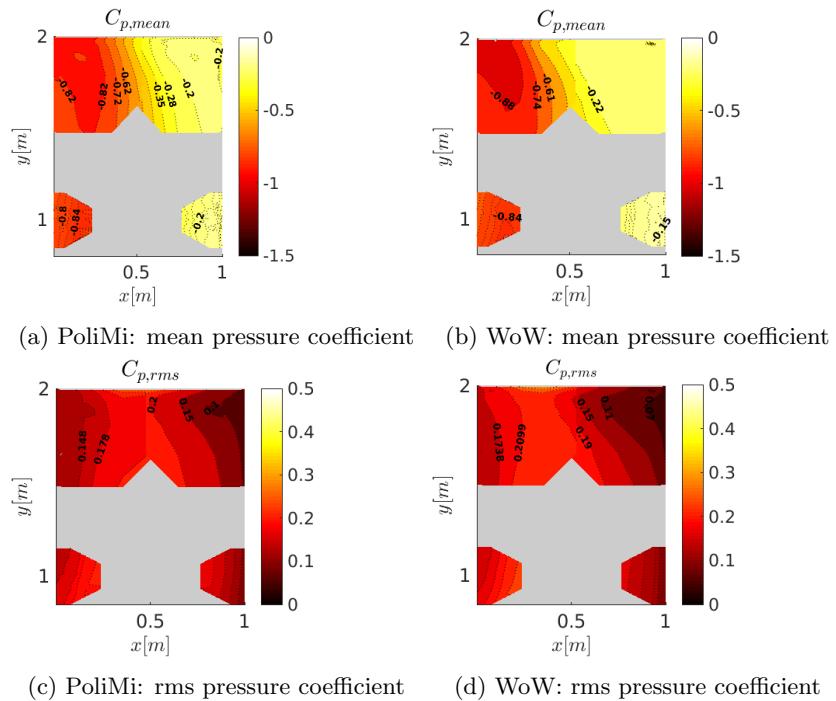


Figure 8: Comparison of pressure coefficient first and second order statistics. Tiles on the right and on the left of each subplot refer to 0° and 180° wind directions respectively.

224 the pressure coefficient along two rows of taps on tiles A and B respectively. The
 225 highest discrepancy is experienced on the top part of the model (tile A) in the
 226 reattachment region. The maximum difference in the time-averaged pressure
 227 coefficient along the row of taps at 1.76m height, is ~ 0.19 (Figure 9b); the
 228 maximum difference in rms C_p is ~ 0.04 (Figure 9c). Along the row of taps at
 229 1m (Figures 9f), the agreement between the two data-sets is rather good in both
 230 upwind and downwind locations. The maximum discrepancy in time-averaged
 231 and rms coefficients is ~ 0.05 and ~ 0.02 respectively.

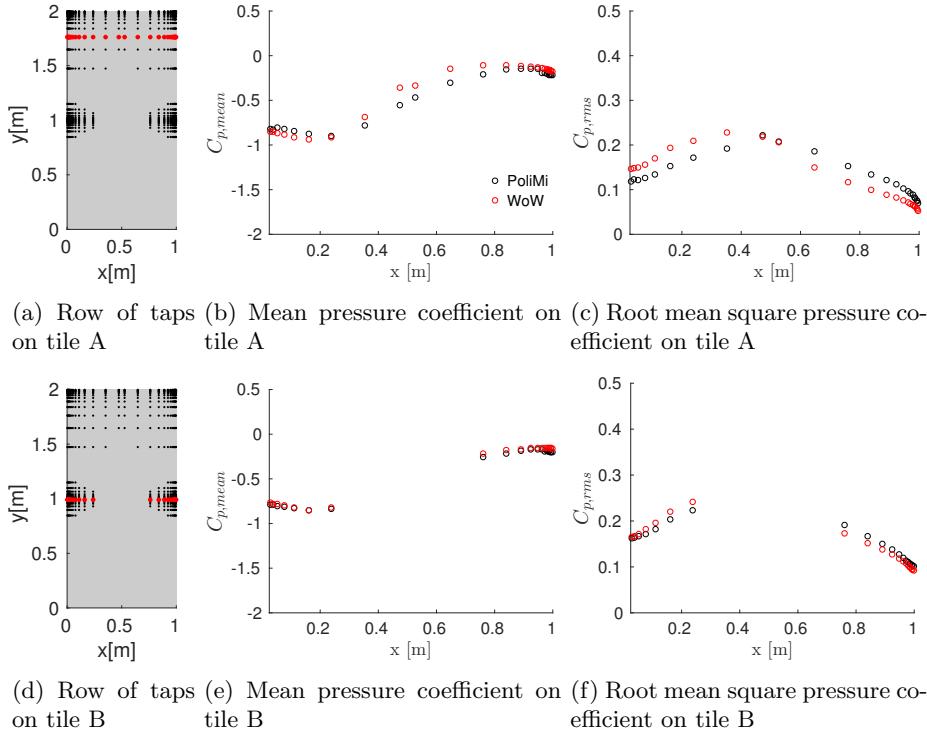


Figure 9: Comparison of mean and root mean square pressure coefficients, at $0 - 180^\circ$.

232 The difference between the two experiments could partially be explained by
 233 looking at the characteristics of the incoming boundary layers. While the mean
 234 velocity profiles agree well (Figure 4), the profiles of turbulence intensity mani-
 235 fest some discrepancies above 1.7m (Figure 5). The higher turbulence intensities
 236 generated at WoW could result in higher pressure fluctuations in the separation

237 region, compared to the PoliMi experiment [29]. Furthermore, the higher tur-
 238 bulence intensities in the WoW experiment could cause the reattachment point
 239 of the flow to move upstream, resulting in faster recovery and lower absolute
 240 values of mean and fluctuating C_p in the rear portion of the model [29, 30].

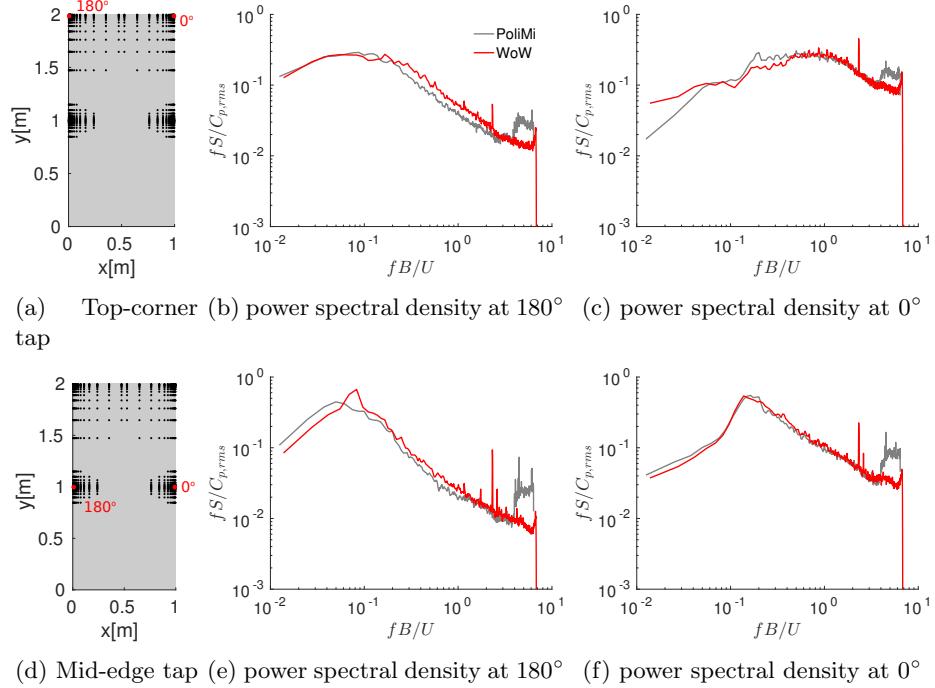


Figure 10: Non-dimensional power spectral density of the pressure coefficient at 0 – 180° wind direction on top-corner and mid-edge taps.

241 In Figure 10 we plot the power spectral density of the pressure coefficient
 242 measured in the same tap at 0° and 180° wind directions (marked by the red
 243 dots). The power spectra are adimensionalized using the frequency; the adi-
 244 mensional frequency is computed using the reference velocity at roof height and
 245 the width of the model (B). The comparison between the two experiments
 246 shows good agreement at most frequencies. Considering the top-corner tap (tile
 247 A), the only significant deviation appears at 0° at low frequencies, where WoW
 248 data reaches higher energy-content compared to PoliMi ones. Focusing on the
 249 pressure tap at 1m height (tile B), we can see that in both experiments the

250 highest energy content occurs around $\frac{fB}{U} \sim 0.15$ and 0.08 , at 180° (Figure
 251 10e) and 0° (Figure 10f) respectively. The more local peaks observed at very
 252 high-frequencies are likely due to experimental noise.

253 *3.2.2. 20° wind direction*

254 Figure 11 shows the distribution of the mean and rms pressure coefficients on
 255 the building's lateral facade at 20° wind direction. In this configuration both
 256 tiles are located in the wake of the building and experience relatively strong
 257 suction and pressure fluctuations. The mean pressure coefficient measured at
 258 WoW appears slightly less strong than the PoliMi one (Figures 19a and 19b),
 259 while no significant differences in rms C_p are evident from Figures 11c and 11d.

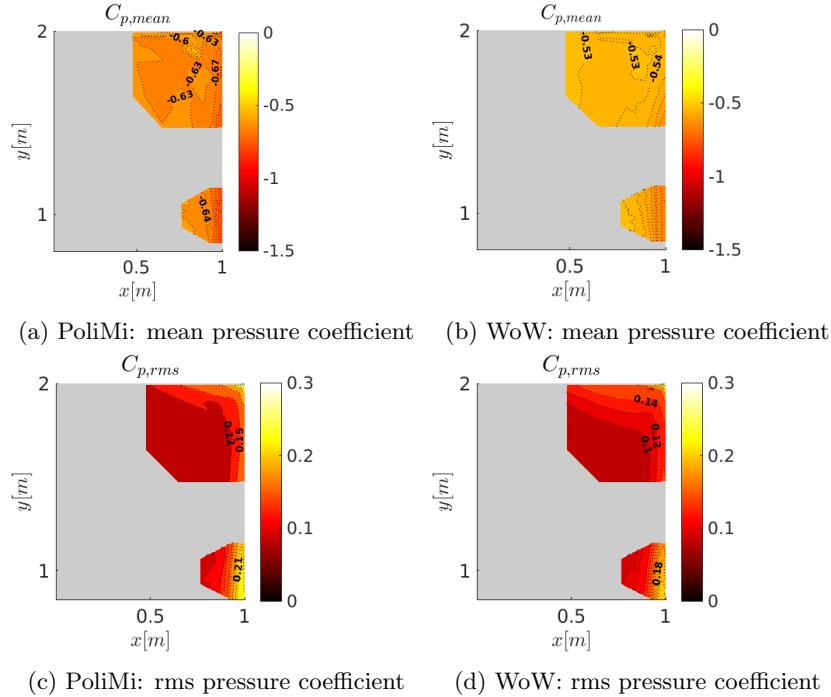


Figure 11: Comparison of mean and root mean square pressure coefficients, at 20° wind directions.

260 A quantitative comparison is again presented by considering two rows of
 261 taps along the building's lateral facade (Figure 12). The maximum discrepancy
 262 between the two data-sets along the row of taps selected on tile A is ~ 0.15

263 and ~ 0.02 , for first and second order statistics respectively (Figures 12b and
264 12c); focusing on tile B, the difference in the mean and rms C_p is ~ 0.13 and
265 ~ 0.03 respectively (Figures 12b and 12c). As for the $0 - 180^\circ$ wind directions,
266 these discrepancies could be caused by the differences in the boundary layer
267 turbulence intensities.

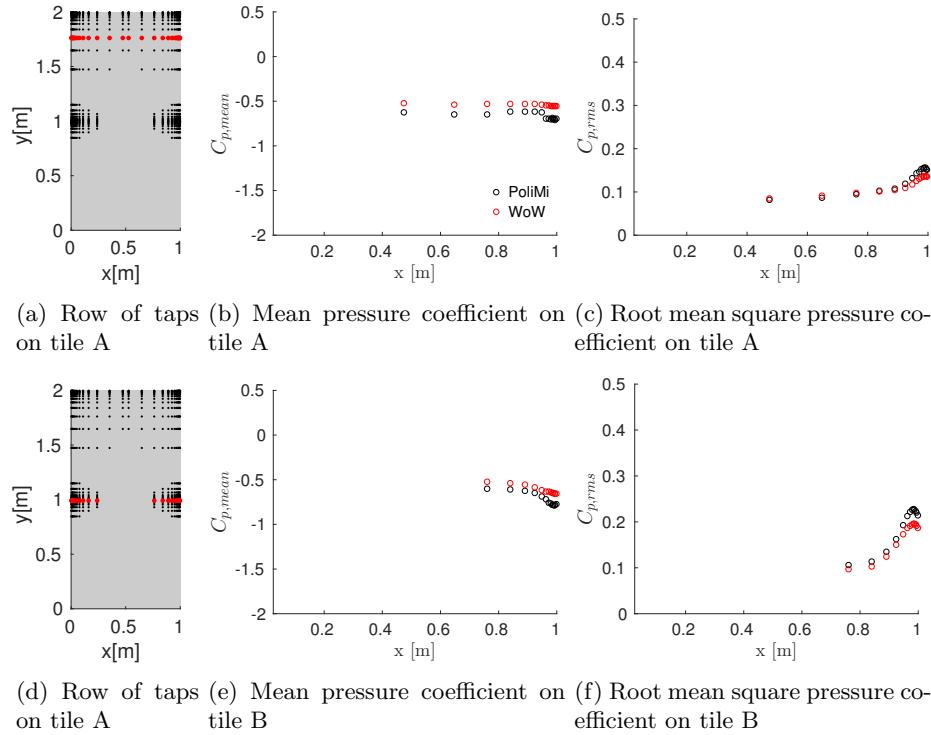


Figure 12: Comparison of pressure coefficient first and second order statistics, at 20° .

268 Figure 13 shows the power spectral density of the pressure coefficient mea-
269 sured in two taps (marked by the red dots) at 20° wind direction. The agree-
270 ment between the two data-sets over the range of frequencies considered is good.
271 When considering the pressure tap at 1m height, both experiments exhibit the
272 highest energy content around $\frac{fB}{U} \sim 0.05$.

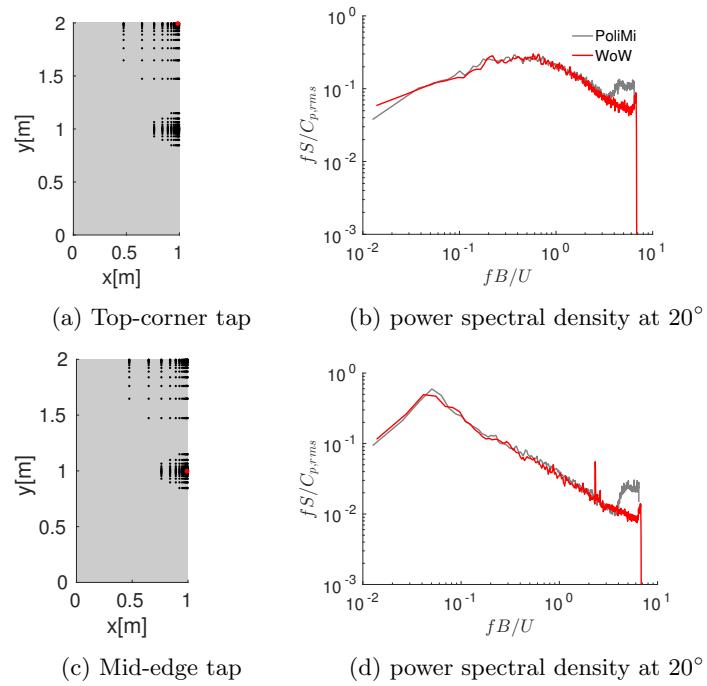


Figure 13: Non-dimensional power spectral density of the pressure coefficient at 20° wind direction on top-corner and mid-edge taps.

273 *3.3. Pressure peaks*

274 The comparison in terms of pressure peaks focuses only on the 20° case,
 275 since this represents the most interesting and critical situation for the locations
 276 of interest [17]. We first compare the frequency and strength of the local suction
 277 events observed during the two experiments by considering the time-series and
 278 the probability distributions of the pressure coefficient measured at an individual
 279 pressure tap. Subsequently, we present the probability distributions of the area-
 280 averaged pressure coefficient, considering a typical cladding panel of $2 \times 3\text{m}^2$. To
 281 support the interpretation of the results, snapshots of the pressure time-series
 282 surrounding two different negative peak events are visualized.

283 In Figure 14 we show the time-series of the pressure coefficients recorded on
 a pressure tap adjacent to the corner of tile A, at 20° wind direction.

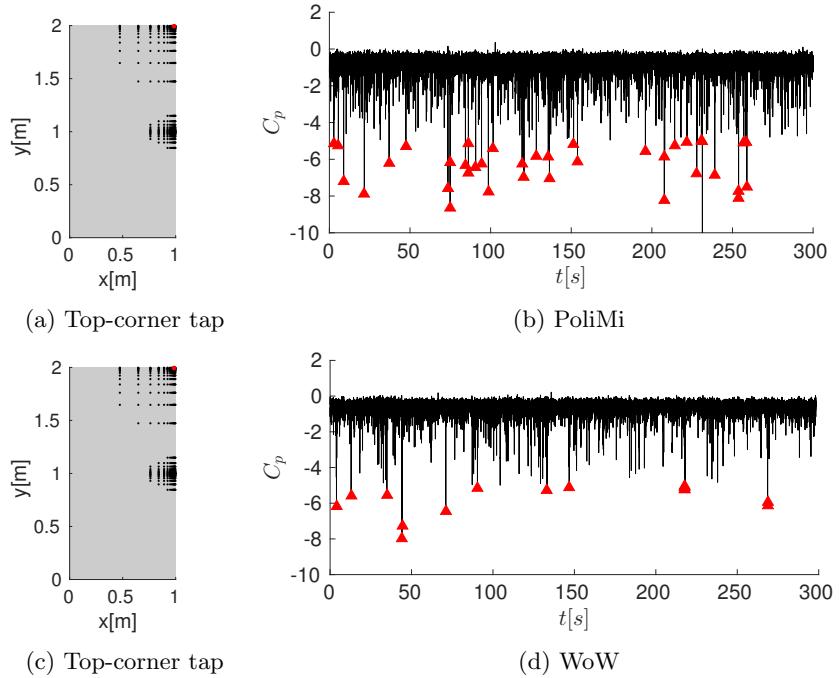


Figure 14: Time-series of pressure coefficient at 20° wind direction on top-corner tap. The red arrows indicate the negative peaks lower than $C_p = -5$

284

285 During the 300s period of the experiments, multiple negative peaks occur in

both tests: 38 and 15 peaks stronger than $C_p = -5$ appear in the PoliMi and WoW time-series respectively (red arrows in Figure 14). The largest negative pressure coefficient recorded at PoliMi is ~ -10 , while at WoW it is ~ -8 . Qualitatively, the time-series exhibit very similar behavior, but the negative peak values measured at PoliMi are slightly stronger and more frequent than the WoW ones. Figure 15 shows the probability density functions (PDFs) of the pressure coefficients in both experiments on the same top-corner tap, and on a mid-edge tap on Tile B. The PDFs are shown both in linear and logarithmic scale. A similar non-Gaussian behavior is found: the distributions are significantly skewed to the left as a result of the negative pressure coefficient peaks. The plot in logarithmic scale highlights this asymmetry, with the left tail of the PDFs following a nearly linear trend. The effect is more pronounced on tile A than tile B; specifically the skewness of the PDFs on the top-corner tap is ~ -4.27 and ~ -4.35 for PoliMi and WoW data respectively (Figure 15b), while the corresponding values of skewness on the mid-edge tap are ~ -0.65 and ~ -0.69 (Figure 15e).

Figure 16 shows the PDFs of the pressure coefficient averaged over a $2 \times 3\text{m}^2$ cladding panel, highlighted in red in Figures 16a and 16d. The averaging operation filters out the most negative pressure coefficient peaks; as a result the PDFs manifest a less pronounced non-Gaussian behavior. The skewness of the PDFs on the top-corner panel is now reduced to ~ -1.11 and ~ -1.33 for PoliMi and WoW data respectively (Figure 16b), while the ones on the mid-edge panel are ~ -0.57 and ~ -0.58 (Figure 16e).

The high spatial resolution of the pressure taps enables further analysis of the spatial characteristics of the peak events to interpret the difference between the pdfs of the local and area-averaged pressure coefficients. Figure 17 depicts short time intervals around the occurrence of the peaks on the top-corner tap (Figures 17b and 17e) and the corresponding spatial distribution of the pressure coefficient at the time instants marked by the red arrows (Figures 17c and 17f). In addition, the pressure coefficient averaged over a $2 \times 3\text{m}^2$ panel (sketched in Figure 17c), is plotted during the same time period. In both experiments,

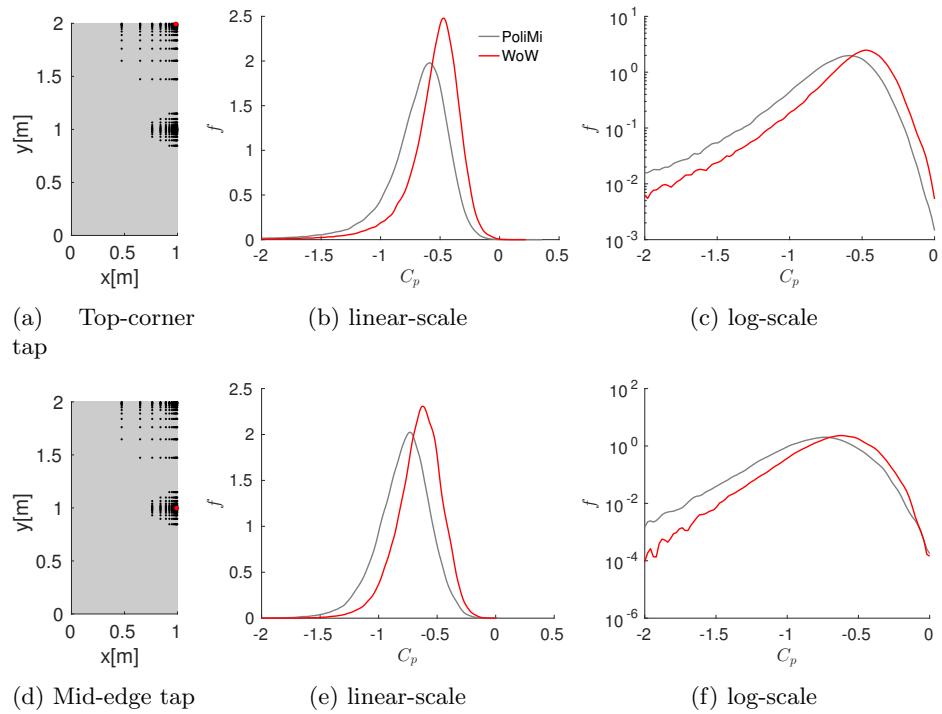


Figure 15: Probability density functions of pressure coefficient at 20° wind direction.

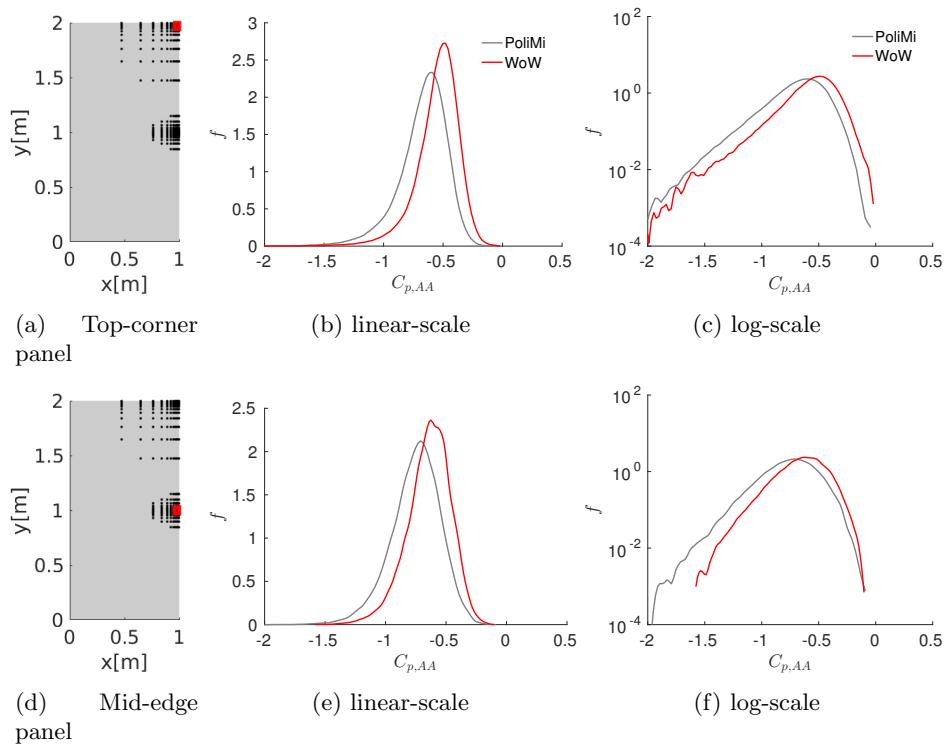


Figure 16: Probability density functions of area-averaged pressure coefficient on $2 \times 3\text{m}^2$ panels, at 20° wind direction.

317 extremely concentrated peak events, both in time and space, are recorded in
 318 the same location, for the same wind direction. This type of events, which are
 319 limited in space and time, have a small effect on the area-averaged pressure, as
 320 evident from Figures 17b and 17e. Specifically, during the peak event observed
 321 at PoliMi, the area-averaged pressure coefficient drops below the mean value by
 322 ~ 0.7 for a period of time of $\sim 34\text{ms}$; at WoW a drop in area-averaged pressure
 323 coefficient of ~ 0.6 is observed for $\sim 40\text{ms}$. This type of event is not critical for
 324 the panel.

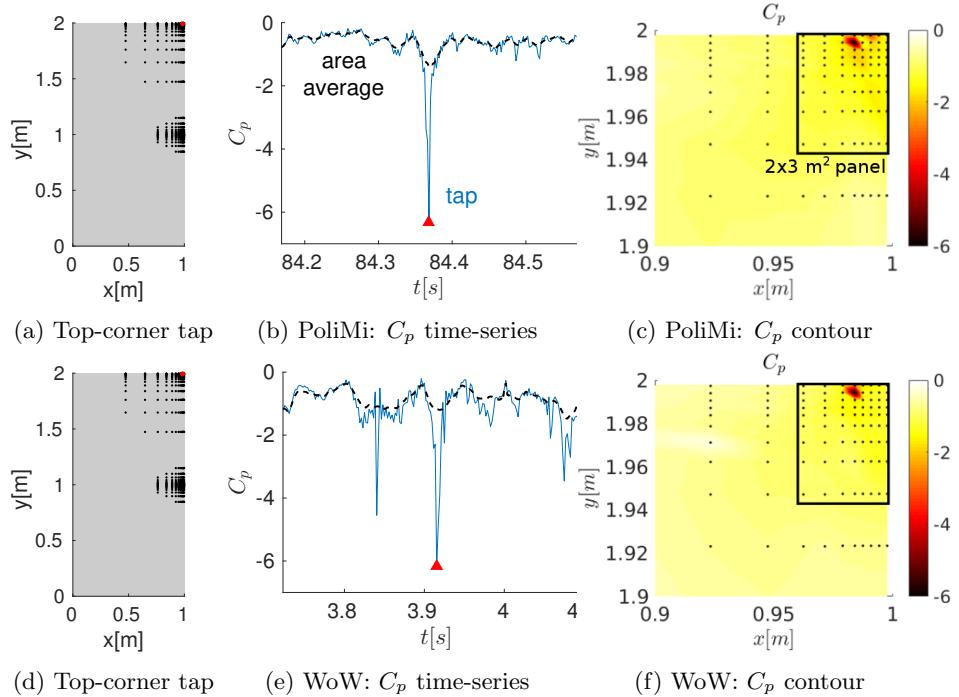


Figure 17: Time-series of pressure coefficient at 20° wind direction on top-corner tap, the red arrows indicate a negative peak lower than $C_p = -5$, and distribution of pressure coefficient around the tile at the time instant of the negative peak.

325 A completely different phenomenon can be observed during different time
 326 instants. Figure 18 depicts short time-series around the occurrence of pressure
 327 peaks at two nearby taps, indicated by the circles in the corresponding contour
 328 plots. The contour plots (Figures 18c and 18f) show the spatial distribution of
 329 the pressure coefficient at the time instants marked by the red arrows in the

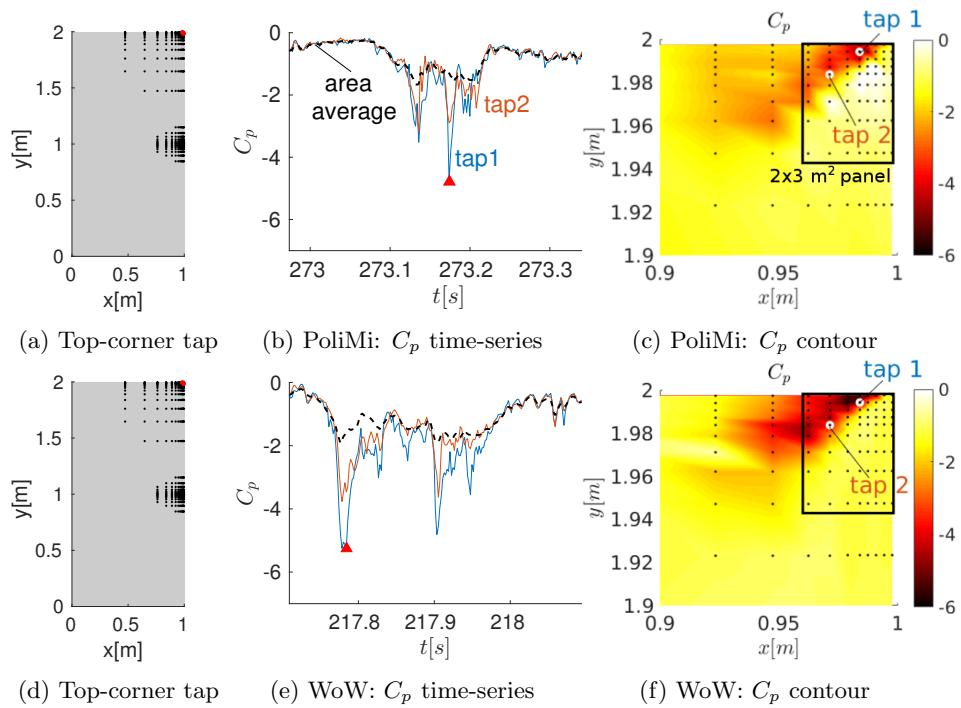


Figure 18: Time-series of pressure coefficient at 20° wind direction on top-corner tap, the red arrows indicate a negative peak lower than $C_p = -5$, and distribution of pressure coefficient around the tile at the time instant of the negative peak.

330 time-series (Figures 18b and 18e). In this case, both PoliMi and WoW tests
331 experience a strong negative pressure coefficient, up to $C_p = -5$, that impacts
332 a large portion of the tile. The time-series reveal that when the negative peak
333 occurs in *tap 1*, *tap 2* experiences a negative peak at the same time, although
334 weaker. This suction event extends for a longer time period than before, as
335 evident from Figures 18b and 18e, and causes the area-averaged pressure to
336 significantly deviate from the mean value. During the suction event measured
337 at PoliMi, the area-averaged pressure coefficient drops below the mean value by
338 ~ 1 , for a period of time of ~ 120 ms; at WoW a drop in area-averaged pressure
339 coefficient of ~ 1.35 is observed for ~ 270 ms. This phenomenon appears to be
340 consistent between the two datasets, and represents a more critical situation
341 than the sharp and concentrated peak of Figure 17.

342 *3.4. Extreme value analysis*

343 To compute the design pressure coefficients from the two datasets, we employ
344 extreme value analysis both on the individual pressure taps and on the area-
345 averaged value. In each case, the peak pressure coefficient is computed according
346 to the Cook & Mayne method [27]: the time history of pressure coefficient is
347 divided in windows, the most negative peak pressure coefficient is extracted
348 from each window and a Gumbel distribution is fitted to the extreme values
349 [14]. We used 16 windows of size 18s, equivalent to 6min in full-scale (assuming
350 a full-scale reference velocity of 30m/s). Since the resulting windows are shorter
351 than the recommended 10min window size, the Gumbel distribution is corrected
352 according to the method proposed by Cook and Mayne [27]. Figure 19 shows
353 the spatial distribution of the peak pressure coefficients with a 22% probability
354 of exceedance adjacent to the top corner of the building's lateral facade. As
355 expected, this region of the building experiences the highest negative values;
356 here the sharp and strong suction events, such as the ones of Figure 17, cause
357 the peak pressure coefficient to reach negative values below ~ -7 . The spatial
358 distribution is very similar between both experiments, but the PoliMi values are
359 generally lower than those obtained from the WoW; this is consistent with the

360 higher frequency and strength of the negative peak events observed in the time
 361 series.

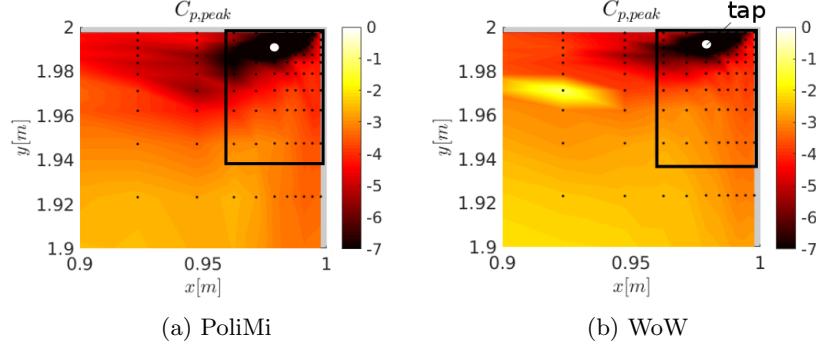


Figure 19: Comparison of peak pressure coefficients relative to a 22% probability of exceedance, at 20° wind directions.

362 In terms of cladding design, the quantity of interest is the design pressure
 363 on the panels. Table 3 compares the design pressure coefficients relative to
 364 a 22% of exceedance and referenced to the dynamic pressure at roof height.
 365 We report both the local design pressure coefficients obtained from the single
 366 pressure tap indicated in Figure 19, and the values calculated for a $2 \times 3\text{m}^2$
 367 panel, as sketched in Figure 19. The difference in the local values is 26%,
 368 but it reduces to only 10% when considering the area-averaged design pressure
 369 coefficient. This can be attributed to the localized effect of a subset of the
 370 strong suction events (Figure 17). As for the rms C_p , the differences in the
 371 design pressure coefficients obtained from both experiments could be related
 372 to the higher turbulence intensities that characterize the ABL at WoW. If the
 373 higher turbulence intensity causes the reattachment point of the flow on the side
 374 wall to move upstream, the flow will recover faster and could exhibit less strong
 375 and less frequent pressure fluctuations in the rear portion of the model [29, 30].

	PoliMi	WoW
Top-corner tap	-12.60	-9.37
Top-corner panel	-3.34	-3.01

Table 3: Peak pressure coefficient relative to a 22% probability of exceedance, 20° wind direction.

376 Finally, Figure 20b shows the decrease in the absolute value of the design
 377 pressure coefficient for panels of increasing dimension, keeping the aspect ratio
 378 constant to 1.5 (Figure 20a). The results show good agreement between both
 379 experiments: the maximum discrepancy is $\sim 10\%$. The design pressure coeffi-
 380 cients calculated from the PoliMi test are consistently more negative than the
 381 WoW values, which is a consequence of the more frequent and stronger suction
 382 events.

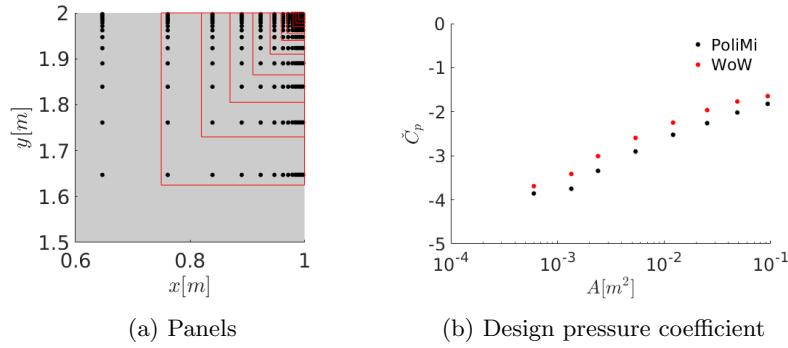


Figure 20: Design pressure coefficient for panels of increasing area, 20° wind direction..

383 4. Conclusions and future work

384 In the present work, we presented high-resolution pressure measurements on
 385 a high-rise building model acquired in two different wind tunnels: the closed-
 386 circuit wind tunnel of Politecnico di Milano and the Wall of Wind open-circuit
 387 wind tunnel of Florida International University. The experiment was designed
 388 to enable detailed analysis of the nature of the pressure peaks that occur on
 389 the building's lateral facade [17]. The objective of the paper was to present
 390 the experimental set-up and the high-resolution pressure data, and to study the
 391 occurrence of peak events at individual pressure taps and their relation to the
 392 area-averaged pressure on a typical cladding panel size.

393 First, we presented a comparison of the velocity statistics of the two atmo-
 394 spheric boundary layers. The mean velocity data recorded at WoW is within
 395 the interval defined by the spanwise variation of the PoliMi measurements over

396 the entire building height. The turbulence intensities and integral time-scales
397 exhibit some differences close the ground and near the top of the building, but
398 these differences are limited to a maximum discrepancy of 0.07 in turbulence
399 intensity near the ground. Comparison of the power spectra of the streamwise
400 velocity component further confirms good agreement between the atmospheric
401 boundary layers generated in both experiments.

402 Subsequently, we compared the distributions of the mean and root mean
403 square pressure coefficients on the building's lateral facade at $0 - 180^\circ$ and 20°
404 wind directions. The two datasets show similar behavior; however, the negative
405 pressure coefficient measured at WoW is slightly stronger than the one mea-
406 sured at PoliMi, especially in the separation region. Quantitative comparison
407 of pressure coefficient profiles along two rows of taps indicates that the largest
408 discrepancies in the mean and root mean square pressure coefficients (0.19 and
409 0.04 respectively) occur near the top of the building at $0 - 180^\circ$. The pres-
410 sure power spectra for different pressure taps and at different wind directions
411 indicate good agreement between both experiments.

412 Comparison of the pressure time-series recorded for the 20° wind direction
413 shows frequent suction peaks in both experiments, resulting in a high skewness
414 of the probability density functions of the pressure coefficients recorded at in-
415 dividual pressure taps. Both experiments reveal the occurrence of two types of
416 pressure peak events: some peak events near the top corner of the building on
417 tile A are very localized in space and time, while other events extend over a
418 larger portion of the facade on both tile A and B. As a result, area-averaging
419 of the pressure measurements decreases the skewness of the probability density
420 functions for the pressure coefficient, and the design pressure coefficients for
421 panels of increasing size decrease in absolute value. These effects are similar
422 between both experiments, but the WoW values for the design pressure coeffi-
423 cients are consistently more negative than those from PoliMi, with a maximum
424 discrepancy of 10% for a $2 \times 3\text{m}^2$ panel.

425 The observed discrepancies in the statistics of the pressure measurements ob-
426 tained from the WoW and PoliMi experiments could be attributed to differences

427 in the turbulence intensities of the boundary layers in both facilities. To fur-
428 ther investigate this effect, future work will analyze additional tests performed
429 at the WoW for higher Reynolds numbers and a different terrain exposure. In
430 addition, future work will consider quantitative analysis of the space-time char-
431 acteristics of the pressure signals to provide further insight on the relevance
432 of the two types of suction events for cladding design. Finally, both data sets
433 presented in this paper are made available to the scientific community to serve
434 as a benchmark test case for numerical simulations and measurements of wind
435 loads on high-rise buildings [24, 25].

436 **5. Acknowledgements**

437 The experimental design and the first experiment at PoliMi were supported
438 by ARUP. The repeat experiment at WoW was supported by the National Sci-
439 ence Foundation under Grant Number 1635137. We gratefully acknowledge the
440 contribution of the staff at the NHERI Wall of Wind facility who made the
441 WoW experiments possible. In particular, we wish to thank Walter Conklin,
442 Arindam Chowdhury, Peter Irwin, Ashkan Rasouli and Maryam Refan.

443 [1] D Surry and T Stathopoulos. An experimental approach to the economical
444 measurement of spatially-averaged wind loads. *Journal of Wind Engineering*
445 and *Industrial Aerodynamics*, 2(4):385–397, 1978.

446 [2] WH Melbourne. Comparison of measurements on the caarc standard tall
447 building model in simulated model wind flows. *Journal of Wind Engineering*
448 and *Industrial Aerodynamics*, 6(1-2):73–88, 1980.

449 [3] JD Holmes. Distribution of peak wind loads on a low-rise building. *Journal*
450 of *Wind Engineering and Industrial Aerodynamics*, 29(1-3):59–67, 1988.

451 [4] J E Cermak. Wind-tunnel development and trends in applications to civil
452 engineering. *Journal of wind engineering and industrial aerodynamics*,
453 91(3):355–370, 2003.

454 [5] F Cluni, V Gusella, SMJ Spence, and G Bartoli. Wind action on regular
455 and irregular tall buildings: Higher order moment statistical analysis by
456 hffb and smpss measurements. *Journal of Wind Engineering and Industrial*
457 *Aerodynamics*, 99(6-7):682–690, 2011.

458 [6] W Kim, Y Tamura, and A Yoshida. Interference effects on local peak pres-
459 sures between two buildings. *Journal of Wind Engineering and Industrial*
460 *Aerodynamics*, 99(5):584–600, 2011.

461 [7] MF Huang, W Lou, C M Chan, N Lin, and X Pan. Peak distributions and
462 peak factors of wind-induced pressure processes on tall buildings. *Journal*
463 of *Engineering Mechanics*, 139(12):1744–1756, 2013.

464 [8] JW Zhang and QS Li. Field measurements of wind pressures on a 600
465 m high skyscraper during a landfall typhoon and comparison with wind
466 tunnel test. *Journal of Wind Engineering and Industrial Aerodynamics*,
467 175:391–407, 2018.

468 [9] Jon A Peterka and Jack E Cermak. Wind pressures on buildings-probability
469 densities. *Journal of the structural division*, 101(6):1255–1267, 1975.

470 [10] JD Holmes. Non-gaussian characteristics of wind pressure fluctuations.
471 *Journal of Wind Engineering and Industrial Aerodynamics*, 7(1):103–108,
472 1981.

473 [11] D Surry and D Djakovich. Fluctuating pressures on models of tall buildings.
474 *Journal of wind engineering and industrial aerodynamics*, 58(1-2):81–112,
475 1995.

476 [12] Dae Kun Kwon and Ahsan Kareem. Peak factors for non-gaussian load
477 effects revisited. *Journal of Structural Engineering*, 137(12):1611–1619,
478 2011.

479 [13] Fahim Sadek and Emil Simiu. Peak non-gaussian wind effects for database-
480 assisted low-rise building design. *Journal of Engineering Mechanics*,
481 128(5):530–539, 2002.

482 [14] Xnlai Peng, Luping Yang, Eri Gavanski, Kurtis Gurley, and David Prevatt.
483 A comparison of methods to estimate peak wind loads on buildings. *Journal*
484 *of wind engineering and industrial aerodynamics*, 126:11–23, 2014.

485 [15] Nicholas J Cook. on the gaussian-exponential mixture model for pressure
486 coefficients. *Journal of Wind Engineering and Industrial Aerodynamics*,
487 153:71–77, 2016.

488 [16] D Rocchi, P Schito, and A Zasso. Investigation on the relation between
489 incoming wind characteristics and surface pressure distribution. *Journal of*
490 *Wind Engineering and Industrial Aerodynamics*, 2011.

491 [17] L Amerio. *Experimental high resolution analysis of the pressure peaks on*
492 *a building scale model facades*. PhD thesis, Italy, 2018.

493 [18] J-X Lin, D Surry, and HW Tielemans. The distribution of pressure near
494 roof corners of flat roof low buildings. *Journal of wind engineering and*
495 *industrial aerodynamics*, 56(2-3):235–265, 1995.

496 [19] D Banks, RN Meroney, PP Sarkar, Z Zhao, and F Wu. Flow visualiza-
497 tion of conical vortices on flat roofs with simultaneous surface pressure
498 measurement. *Journal of Wind Engineering and Industrial Aerodynamics*,
499 84(1):65–85, 2000.

500 [20] F Wu, PP Sarkar, KC Mehta, and Z Zhao. Influence of incident wind
501 turbulence on pressure fluctuations near flat-roof corners. *Journal of Wind*
502 *Engineering and Industrial Aerodynamics*, 89(5):403–420, 2001.

503 [21] X Peng, L Yang, E Gavanski, K Gurley, and D Prevatt. A comparison
504 of methods to estimate peak wind loads on buildings. *Journal of wind*
505 *engineering and industrial aerodynamics*, 126:11–23, 2014.

506 [22] E Gavanski and Y Uematsu. Local wind pressures acting on walls of low-
507 rise buildings and comparisons to the Japanese and US wind loading provi-
508 sions. *Journal of Wind Engineering and Industrial Aerodynamics*, 132:77–
509 91, 2014.

510 [23] P Huang, X Peng, and M Gu. Aerodynamic devices to mitigate rooftop suc-
511 tions on a gable roof building. *Journal of wind engineering and industrial*
512 *aerodynamics*, 135:90–104, 2014.

513 [24] OpenAIRE. Zenodo. <https://zenodo.org>, 2019.

514 [25] Stanford University. Stanford digital repository.
515 <https://library.stanford.edu/research/stanford-digital-repository>, 2019.

516 [26] L Amerio, G Lamberti, G Pomaranzi, A Zasso, and C Gorlé. Comparison
517 of high-resolution pressure peaks in closed and open-section wind tunnels.
518 *Italian conference on wind engineering (INVENTO)*, 2018.

519 [27] NJ Cook and JR Mayne. A novel working approach to the assessment of
520 wind loads for equivalent static design. *Journal of Wind Engineering and*
521 *Industrial Aerodynamics*, 4(2):149–164, 1979.

522 [28] R. Harris. On the spectrum and auto-correlation function of gustiness in
523 high winds. *Electrical Research Association*, 1968.

524 [29] PJ Saathoff and WH Melbourne. The generation of peak pressures in
525 separated/reattaching flows. *Journal of Wind Engineering and Industrial*
526 *Aerodynamics*, 32(1-2):121–134, 1989.

527 [30] John D Holmes. *Wind loading of structures*. CRC press, 2018.