

1 Sensitivity of LES predictions of wind loading on a
2 high-rise building to the inflow boundary condition

3 Giacomo Lamberti^{a,*}, Catherine Gorlé^a

4 ^a*Stanford University, Y2E2 Building, 473 Via Ortega, Stanford, CA, 94305*

5 **Abstract**

Large eddy simulations (LES) can provide a powerful tool for cladding design, but their accuracy strongly depends on the correct representation of the incoming atmospheric boundary layer (ABL). The objective of this work is to validate LES of a wind tunnel experiment of wind loading on a high-rise building, focusing on accounting for sensitivity to the incoming ABL. We define three uncertain parameters, i.e. the roughness length of the terrain, the turbulence kinetic energy, and the integral time-scale, using the available experimental data. Subsequently we perform 27 LES using different combinations of these parameters. The results indicate that (1) accurately quantifying the turbulence statistics at the building location, rather than at the inflow, is essential when analyzing LES of wind loading, and (2) correctly accounting for inflow uncertainty when performing validation against experiments could drastically improve confidence in the predictions. By accounting for this uncertainty, we predict intervals that encompass the experimental data for the rms pressure coefficients. The magnitude of the local peak pressure coefficients is generally under-predicted by 12%; however, the predicted intervals for design pressure coefficients on cladding panels of different sizes located at the upper-windward corner of the building fully encompass the experimental result.

6 **Keywords:** Large-eddy simulations (LES), wind loading, uncertainty
7 quantification (UQ)

*Corresponding author

Email addresses: giacomol@stanford.edu (Giacomo Lamberti), gorle@stanford.edu (Catherine Gorlé)

Preprint submitted to Elsevier

January 4, 2021

8 **1. Introduction**

9 Cladding design requires accurate estimations of wind loads to guarantee the
10 structural integrity of cladding panels without resorting to overly conservative
11 designs. This is especially important near the corners and edges of high-rise
12 buildings' side walls, where the wind-induced pressure is characterized by a
13 strong non-Gaussian behavior [1–6] that can result in extreme suction loads.
14 The most common approach to estimate wind loads for cladding design re-
15 lies on wind tunnel experiments. During cladding experiments, a synchronous
16 multi-pressure sensing system (SMPSS) records pressure time series in several
17 locations on the building's surface [7–14]. The main limitation of this type of
18 tests lies in the spatial resolution of the measurements. The number of pressure
19 taps that is used in routine wind tunnel tests is insufficient to accurately esti-
20 mate the area-averaged pressure on each cladding panel from integration of the
21 local pressure distribution. Therefore, alternative methods have been developed
22 to estimate the area-averaged pressure from limited measurement locations. A
23 common approach is to assume a linear relationship between the duration and
24 spatial extension of the pressure peak phenomena. Under this assumption, the
25 pressure time-series can be filtered to remove extremely localized peak events
26 that are not relevant for cladding design [15–17]. However, the assumption
27 of a linear relationship between the duration and the size of peak events can
28 introduce inaccuracies in the calculated design loads [18].

29 Computational fluid dynamics (CFD) represents an attractive alternative in
30 this respect: the required resolution for the simulations generally results in a
31 sufficient number of grid cells within the area of a typical cladding panel to di-
32 rectly calculate the total load from integration. Large-eddy simulations (LES),
33 which apply a low-pass filter to the Navier-Stokes equations to resolve the larger
34 energy-containing scales of turbulence, such that only the smaller, more univer-
35 sal scales need to be modeled [19], are of particular interest: the simulations
36 allow for a direct estimate of the design pressure coefficients based on the time-
37 series of the resolved pressure coefficients. However, LES results can depend on

38 specific model choices, such as the numerical schemes, the turbulence model,
39 or the inflow boundary conditions. The importance of the inflow conditions
40 has been clearly demonstrated on two benchmark test cases. In [20], 70 simu-
41 lations and experiments of pressure coefficients on a rectangular cylinder were
42 compared, while [21] reviewed LES and experiments on the high-rise CAARC
43 building. In both cases significant discrepancies were observed between the dif-
44 ferent experimental and numerical results on the lateral faces (or façades), and
45 it was suggested that differences in the inflow conditions could be responsible for
46 these discrepancies. Several other studies also concluded that good agreement
47 between LES and experimental results is strongly dependent on the accuracy of
48 the specified inflow conditions [22–26].

49 The definition of a turbulent inflow condition that accurately represents the
50 surface layer in terms of the mean velocity, turbulence intensities, and turbu-
51 lence length-scales, can be particularly challenging in LES. Synthetic turbulence
52 generators are a popular choice because of their computational efficiency, but re-
53 sults depend both on the specific turbulence generator used and on the required
54 input parameters. [23] performed LES on the CAARC building using three
55 different inflow methods and demonstrated significant scatter in the predicted
56 mean and root-mean-square (rms) pressure coefficients in the separation region.
57 [27] performed LES simulations of a high-rise building, using a synthetic turbu-
58 lence generator. They considered 2 different velocity and turbulence intensity
59 profiles, and showed that the specified mean velocity profile mainly influences
60 the mean pressure on the building, while the prescribed turbulence intensity
61 has a stronger effect on the pressure fluctuations. [28] used a different synthetic
62 turbulence generator to perform several LES simulations, considering baseline
63 and halved values for the turbulence intensity and integral length-scales. The
64 authors concluded that the specified integral length-scales have a smaller effect
65 on the mean and rms pressure coefficients on the building’s surface compared
66 to the turbulence intensity.

67 The analysis of the dependence of LES results on the specific formulation
68 of the turbulence generator and the selected input parameters is further com-

69 plicated by the fact that the specified inflow statistics will develop towards an
70 equilibrium solution downstream of the inlet. The generated turbulent velocity
71 field is not a solution of the system of equations being solved, and the final
72 result at the location of the building will depend on the subgrid model, the wall
73 model, and the discretization used. It is not uncommon to observe a strong
74 decrease in the turbulence intensity between the inlet and the downstream lo-
75 cation of interest [29, 30]. As a result, it is difficult to generalize the conclusions
76 of previous studies, since the precise turbulent velocity statistics at the location
77 of the building are unknown. In [31] we proposed to address this problem by
78 optimizing the input parameters of a divergence-free digital filter turbulent in-
79 let generator [32], such that the desired velocity statistics are obtained at the
80 location of the building.

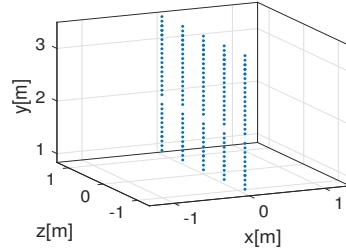
81 The goal of the present work is to leverage this method to investigate the ef-
82 fect of uncertainty in the inflow conditions on LES predictions of the mean, rms
83 and peak pressure coefficients on a high-rise building in a systematic way. We
84 model a wind tunnel experiment that provides high-resolution pressure measure-
85 ments on the building’s lateral façades[18, 33], since previous studies indicated
86 high sensitivity of the results to the inflow conditions in these locations. We
87 focus on the effect of three uncertain parameters that define the incoming sur-
88 face layer: the roughness length of the terrain, the turbulence kinetic energy
89 and the integral time-scale of the streamwise velocity component. These pa-
90 rameters are characterized using the available wind tunnel measurements, and
91 the inflow optimization is performed to identify 27 realizations of digital filter
92 input parameters that represent the variability in the wind tunnel flow condi-
93 tions. The ensemble of the 27 LES results is then analyzed to assess uncertainty
94 in the predicted mean, rms and peak pressure coefficients. We consider both
95 local peak pressure coefficients and design pressure coefficients averaged over
96 different panel sizes, which are the quantities of interest for cladding design.
97 The results are compared to the wind tunnel data for validation, and addi-
98 tional analysis is performed to provide insight on the relative importance of the
99 different uncertain inflow parameters.

100 The remainder of this paper is organized as follows: Section 2 summarizes
101 the wind tunnel experiment, while Section 3 presents the LES setup and the
102 details of the inflow sensitivity analysis. In Section 4, we present the results,
103 and Section 5 summarizes the conclusions and identifies possible areas of future
104 research.

105 **2. Wind tunnel measurements**

106 The simulations model a wind tunnel experiment on a high-rise building,
107 carried out in the closed-section wind tunnel of Politecnico di Milano (PoliMi)
108 [18]. The facility has a test section that is 35m long, 14m wide and 4m high.
109 In this section, we briefly summarize the velocity measurements, performed to
110 characterize the atmospheric boundary layer (ABL) in the wind tunnel, and the
111 pressure measurements on the building. For additional details regarding the
112 experiments the reader is referred to [18, 33].

113 *2.1. ABL characterization*


114 A detailed characterization of the ABL was performed using 3D hot-wires
115 with a sampling frequency of 2000Hz. The velocity components were recorded
116 on a plane perpendicular to the flow direction at the center of the turntable, i.e.
117 at the future location of the building model. The outcome of the experiments
118 consists of 20s time-series of the three components of velocity at 5 spanwise
119 locations and 56 vertical locations. The 5 spanwise locations are 0.6m apart,
120 while the resolution in the vertical direction is 43.7mm below 0.75m and 87.5mm
121 above, as indicated in Figure 1.

122 *2.2. Pressure measurements*

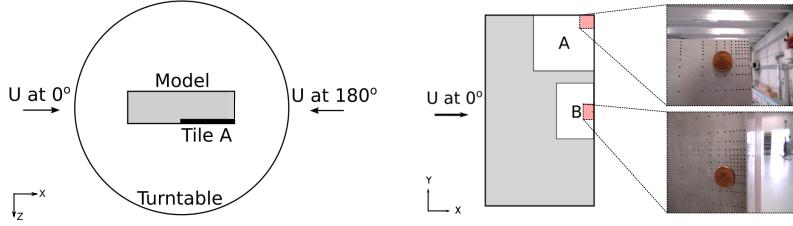
123 The model of the high-rise building, shown in Figure 2, is a 1m long, 0.3m
124 wide and 2m high rectangular box. The experiment was designed to enable a
125 detailed study of the pressure distribution in the regions of the building where
126 the highest pressure peaks are expected, i.e. near the corners and edges of the
127 building. Therefore, the model was equipped with 2 aluminum tiles containing
128 224 pressure taps each, with a minimum spacing of 3.4mm. Tile A is located on

(a) Setup of the experiment to characterize the ABL at PoliMi

(b) Coordinates of the hot-wire measurements

Figure 1: PoliMi experimental setup of velocity measurements.

Figure 2: Test on the high-rise building


129 the top-corner of the model while tile B is centered at 1m height and adjacent
 130 to the building edge (Figure 3b). The outcome of the experiment consists of
 131 300s long time-series of pressure, sampled at a rate of 500Hz.

132 The high-rise building model was placed at the center of a turntable with
 133 a radius of 6.5m, to allow testing at different inflow directions. In the present
 134 work we focus on the standard 0° exposure, following the convention defined in
 135 Figure 3a. Using the symmetry of the model, the wind tunnel data obtained for
 136 the 180° exposure will be used for a more complete validation of the predicted
 137 lateral façade pressure coefficients for 0° exposure.

138 **3. Methods**

139 *3.1. CFD model set-up*

140 All LES simulations are performed with the OpenFOAM v4.0 pisoFOAM
 141 solver, using the standard Smagorinsky subgrid-scale turbulence model [34].
 142 The Reynolds number of the flow, based on the building height and the reference

(a) Top view of the turtable, indicating the convention used for the wind direction
 (b) Side view of the building model and the pressure tap distribution

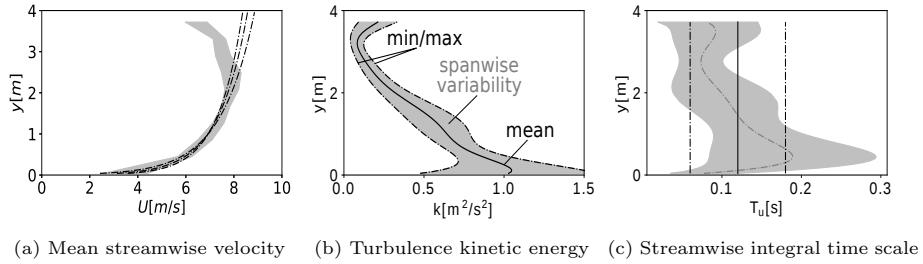
Figure 3: High-rise building pressure measurements setup.

143 velocity at the building height, is ~ 1.1 million. The computational domain is
 144 20×5 m in the streamwise and spanwise directions; the height of the domain
 145 is equal to the wind tunnel height, i.e. 4m. The high-rise building is located
 146 at a distance of 5m from the inlet boundary and 14m from the outlet [23].
 147 The blockage ratio, i.e. the ratio between the area of the windward face of the
 148 building and the domain cross section, is 2.8% [35].

149 The mesh includes refinement regions close to the ground and to the building
 150 model, resulting in a total number of 7.5 million hexahedral cells. The highest
 151 spatial resolution is achieved next to the corners of the building, similar to
 152 the pressure tap distribution in the wind tunnel experiment. In these regions,
 153 the resolution is 3.2mm, 1.6mm and 0.8mm in the streamwise, spanwise, and
 154 vertical directions, respectively, which result in $y^+ \sim 100$ on average. Since the
 155 wall-adjacent cells extend into the logarithmic region, a log law wall function
 156 is used to fit the instantaneous horizontal velocity and predict the wall shear
 157 stress on the building surface [36]. To investigate the effect of the chosen grid
 158 resolution, a simulation was performed with a coarser mesh, which had a 4
 159 times lower spatial resolution next to the corners and edges of the building.
 160 The predictions for the mean pressure coefficient had a coefficient of agreement
 161 $R^2 = 0.97$, while for the rms pressure coefficients $R^2 = 0.83$. Power spectral
 162 densities of the pressure signals presented in Section 4 further indicate that the
 163 finer grid resolves the scales that contribute most to the pressure fluctuations.
 164 To generate a turbulent flow field at the inflow, we employ the divergence-free

165 version of the digital filter method developed in [32, 37]. The method introduces
166 a turbulent velocity field in a plane next to the inlet boundary, as follows:

$$u_i = U_i + a_{ij}u_{*,j}, \quad (1)$$


167 where U_i is the mean velocity, a_{ij} the Cholesky decomposition of the Reynolds
168 stress tensor and $u_{*,j}$ a random fluctuation with zero mean and exponential
169 spatial and temporal correlation. As proposed in [31], the inflow generation
170 method is coupled with an optimization algorithm to ensure that the desired
171 turbulence statistics are obtained at the location of the building; this is discussed
172 in more detail in section 3.2. At the lower wall, a rough-wall logarithmic wall
173 function, designed to guarantee horizontal homogeneity of the mean velocity
174 profile, is applied. The formulation is similar to the wall function commonly used
175 in RANS simulations of the ABL [38, 39], but it is applied to the instantaneous
176 flow field [36].

177 On the side boundaries we impose periodic boundary conditions, while on the
178 top boundary we impose a slip boundary condition. The outlet is treated as a
179 pressure-outlet with constant relative pressure equal to zero and a zero-gradient
180 boundary condition for the other flow variables. The momentum and turbu-
181 lence model equations are discretized using second order numerical schemes and
182 iteratively solved using a linear solver with a symmetric Gauss-Seidel smoother.
183 The Poisson equation is approximated with second order schemes and solved us-
184 ing the generalised geometric-algebraic multi-grid (GAMG) solver with Gauss-
185 Seidel smoother. To monitor convergence of the time-statistics, we select 1
186 pressure tap per pressure tile and run the simulations until the corresponding
187 mean and rms pressure coefficients stopped varying. After this burn-in period,
188 we further run the simulations for 50 – 60s to obtain the pressure time-series,
189 with a 0.0001s time-step.

190 *3.2. Characterization of the inflow uncertainty*

191 The objective is to quantify the effect of inflow uncertainty in the experiment
192 by performing an ensemble of LES simulations. We characterize the inflow

193 uncertainty by considering the spanwise variation in the measured profiles for
 194 the mean velocity, the turbulence kinetic energy, and the streamwise integral
 195 time scales, as shown by the grey shaded area in Figure 4. Subsequently, three
 196 different profiles are defined for each of these quantities, covering the range of
 197 the measured values.

(a) Mean streamwise velocity (b) Turbulence kinetic energy (c) Streamwise integral time scale

Figure 4: ABL profiles for the inflow sensitivity analysis.

198 The mean velocity profile is prescribed using the log-law, which is determined
 199 by two independent parameters: a reference velocity and the roughness length
 200 of the terrain y_0 . Since we can expect the pressure coefficients to be Reynolds
 201 number independent, we select y_0 as the uncertain parameter. By fitting a
 202 logarithmic profile to the measurements at each spanwise location, we define
 203 an upper and lower limit and a mean value for y_0 ; the resulting mean velocity
 204 profiles are shown in Figure 4a. These profiles are used to define U_i in Eq. 1; by
 205 using the wall function that represents the effect of the roughness length of the
 206 terrain we ensure that the shape of the inlet profile is maintained throughout
 207 the domain [31].

208 The three profiles for the turbulence kinetic energy are defined by consid-
 209 ering the minimum, mean and maximum values from the measurements. To
 210 compensate for the turbulence decay commonly observed when using digital
 211 filter methods, we first perform simulations for an empty domain with the op-
 212 timization algorithm proposed in [31]. The optimization procedure adjusts the
 213 input parameters for the inflow generator until the desired statistics are obtained
 214 at the location of interest. In particular, to achieve turbulence intensities at the

215 building location that closely represent the experimental values, the algorithm
216 modifies the spanwise ($\overline{w'^2}$) and vertical ($\overline{v'^2}$) components of the Reynolds stress
217 tensor imposed at the inflow. The optimization was performed for the mean val-
218 ues of y_0 and the integral time scale (discussed next), providing three sets of
219 inputs for a_{ij} in Eq. 1 that can represent the three profiles plotted in 4b.

220 The last term in Eq. 1 is the fluctuation term $u_{*,j}$, which is a function of the
221 turbulence integral length- and time-scales. Since the spatial resolution of the
222 hot-wire measurements is insufficient to compute 2-point correlations, we used
223 Taylor's hypothesis [40] to compute the integral length-scales [31]. The stream-
224 wise integral time-scale T_u was then selected as the third uncertain parameter.
225 Upper and lower bounds, and the mean value for the parameter are shown in
226 Figure 4c; in this case the inflow algorithm requires a constant value over height
227 [31]. The resulting values for T_u are directly used to specify the temporal cor-
228 relation of $u_{*,j}$ at the inlet. It is noted that some streamwise inhomogeneity in
229 the time scales has been observed. This variation is more challenging to control
230 using the optimization, in part because the value specified at the input can also
231 affect the downstream level of turbulence kinetic energy. This interaction will
232 be quantified in section 4.2, and it will be taken into account when interpreting
233 the results for the pressure coefficients.

234 In summary, we represent the uncertainty in the inflow conditions using
235 three parameters: the roughness length of the terrain y_0 , the turbulence kinetic
236 energy k and streamwise integral time-scale T_u . The spanwise variation of the
237 experiment was used to characterize these uncertain parameters, defining upper
238 and lower bounds and mean values. All possible combinations of the selected
239 parameter values define 27 inflow conditions; therefore, we perform the corre-
240 sponding 27 LES simulations to study the effect of the inflow uncertainty on
241 the results.

242 3.3. Quantities of interest

243 3.3.1. Pressure coefficient time statistics

244 We will consider the effect of the different inflow conditions on the statistics
245 of the non-dimensional pressure coefficient, defined as follows:

$$C_p(t) = \frac{p(t) - p_{ref}}{\frac{1}{2}\rho U^2} \quad (2)$$

246 where p is the instantaneous pressure, p_{ref} the reference pressure, ρ the density
247 of the air and U the reference velocity at roof height. The mean, rms and peak
248 pressure coefficients are given by:

$$C_P = \frac{P}{\frac{1}{2}\rho U^2}, \quad C'_p = \frac{\sqrt{p'^2}}{\frac{1}{2}\rho U^2}, \quad \check{C}_p = \frac{\check{p}}{\frac{1}{2}\rho U^2} \quad (3)$$

249 where P and p' represent the mean and fluctuating pressures, respectively, and
250 \check{p} is the peak pressure calculated using the Cook and Mayne method [16]. The
251 peak values relative to a 22% probability of exceedance will be reported; they
252 are calculated by dividing the time-series of C_p in 6s windows, extracting the
253 most negative peak from each window, and fitting a Gumbel distribution to the
254 extreme values.

255 The quantity that ultimately determines the dimensioning of the panels in
256 cladding design, is the area-averaged pressure coefficient:

$$C_{p,AA}(t) = \frac{\sum_i C_{p,i}(t) A_i}{\sum_i A_i} \quad (4)$$

257 where $C_{p,i}$ is the pressure coefficient measured by tap i and A_i is the area of
258 influence of tap i . From both experimental and LES data, we compute $C_{p,AA}$
259 for panels of different size and apply the Cook and Mayne method as described
260 above, to calculate the design pressure coefficient of the panels $\check{C}_{p,d}$, relative to
261 a 22% probability of exceedance.

262 **4. Results**

263 In this section, we first present an initial analysis of the LES simulation with
264 the mean inflow parameters. This analysis focuses on comparing the spectra and

characteristics of the time series and peak events of the pressure coefficients to the wind tunnel data to confirm that the energy-containing turbulence scales are sufficiently resolved by the LES. Subsequently, we analyze the ABL velocity statistics at the building location in all 27 LES, to confirm that the ensemble of simulations can represent the uncertainty in the inflow conditions of the wind tunnel experiment. Finally, we present the results for the pressure coefficients obtained from the ensemble of LES. Predictions for the mean, rms, peak and design pressure coefficients are compared to the wind tunnel data for validation, and analyzed to identify the relative importance of the uncertain inflow parameters.

4.1. Analysis of baseline LES pressure coefficient spectra, time-series, and peak events

Figure 5 shows an instantaneous snapshot of the velocity magnitude field obtained from the baseline LES simulation with the mean inflow parameters. Turbulent structures are produced at the inflow generation plane and advected downstream to the building model. A stagnation region is formed just upstream of the windward façade; there is separation on the lateral façades and a wake forms behind the building. The top view of Figure 5 indicates the presence of vortex shedding, but the high turbulence intensity of the inflow prevents pronounced periodic behavior. The remainder of this section analyzes the predictions for the pressure coefficients on the building lateral façade, to verify that the LES can adequately resolve the turbulent wind pressure field. First, we present pressure spectra and time-series of pressure coefficients, measured at pressure taps in locations where strong negative pressure peaks occur. Subsequently, contours of instantaneous C_p over a panel next to the top corner of the building during a pressure peak event are plotted, and related to the presence of coherent turbulence structures in the flow.

Figure 6 shows the non-dimensional power spectra of the pressure coefficient measured at four pressure taps near the corners of the building, computed using Welch method [41]. The result of the baseline LES is compared to the wind tunnel measurements. The spectra compare well in the energy-containing range

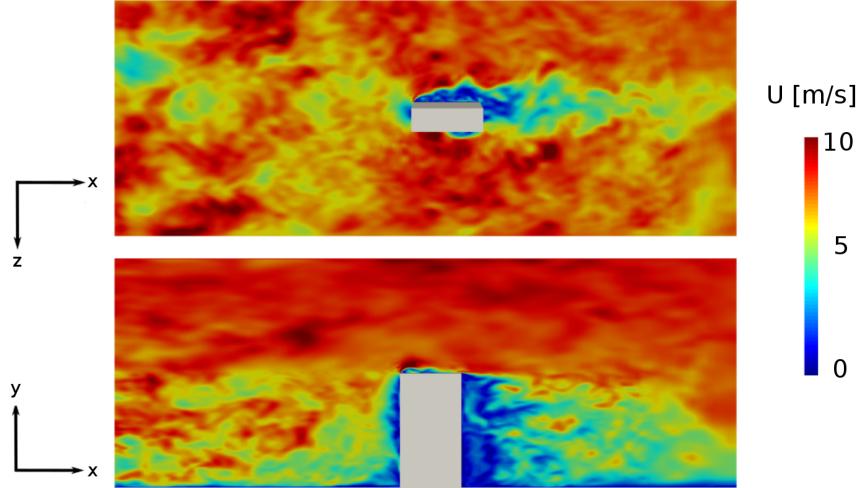


Figure 5: Contour plot of instantaneous velocity magnitude from the baseline LES simulation.

and in the first part of the inertial subrange. At non-dimensional frequencies $\frac{fB}{U} > 1$ (where f is the dimensional frequency, B the width of the building and U the reference velocity at roof height), the energy in the LES simulation drops, indicating that these higher frequencies can not be resolved. The pressure tap at mid-height near the downwind corner of the model (Figure 6f), exhibits a peak in the power spectrum of both the experiment and the LES, at $\frac{fB}{U} \sim 0.15$; this is likely related to vortex shedding.

Figure 7 plots a 50s time-series of the pressure coefficient recorded at a pressure tap next to the windward top corner of the building; this is where the strongest suction peaks occur for the wind direction under consideration. The two time-series exhibit very similar behavior, characterized by the occurrence of several negative pressure coefficient peaks. Specifically, 6 and 3 peaks lower than $C_p = -2$ are experienced in the LES and the experiment respectively. The strongest negative peak recorded by the selected pressure tap is ~ -2.8 in the LES and ~ -2.7 in the experiment. When considering the full 300s duration of the experiment, the largest negative peak measured at the same pressure tap is ~ -3.5 . In section 4.3, the peak values for a 22% probability of exceedance will be calculated using the Cook and Maine method to enable a statistically

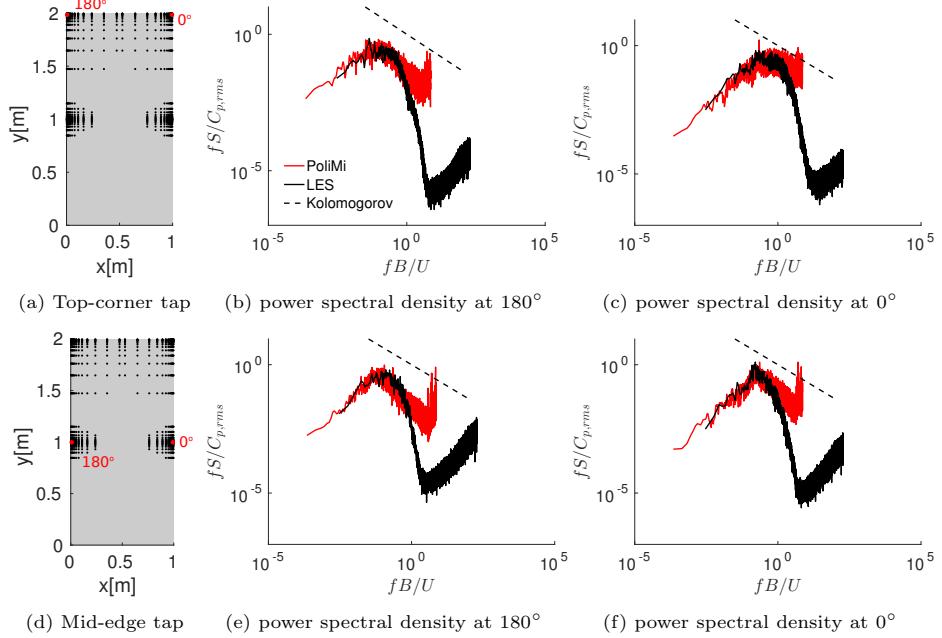


Figure 6: Power spectral density on top-corner and mid-edge taps.

meaningful comparison of the peak values.

To visualize the nature of the pressure peak events, Figure 8 shows the distribution of the instantaneous C_p near the windward upper corner of the building during a peak event. The time-series of C_p measured by two taps near the location of the peak event are also plotted and compared to the area-averaged C_p of a $2 \times 3\text{m}^2$ panel. The plots demonstrate the similar nature of the pressure peak events in the wind tunnel experiment and the LES simulation. A region of pressure coefficients lower than -2.5 appears next to upper corner of the windward edge of the building, around the same pressure tap (*tap1*). The time-series of C_p measured by *tap1* reaches a negative value of ~ -2.8 , in both the LES and the experiment (Figures 8b and 8e). The duration of the peak event is $\sim 395\text{ms}$ in the LES simulation, while it is $\sim 188\text{ms}$ in the experiment. The LES signal is smoother than the experimental one, which confirms the observation from the spectra (Figure 6) that the LES cannot resolve the smallest turbulent scales observed in the experiment. When calculating the

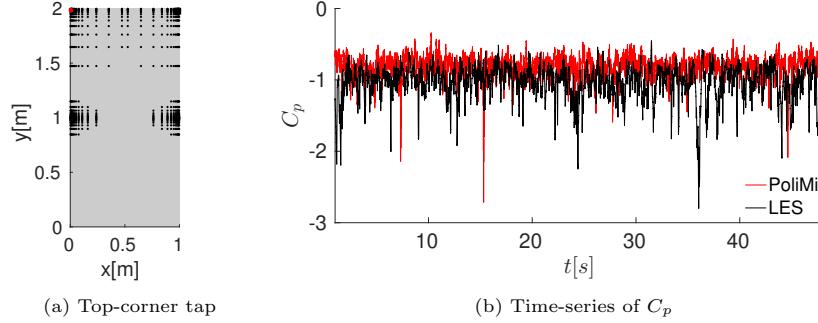


Figure 7: Time-series of pressure coefficient on top-corner tap.

329 area-averaged values of C_p , the peak values drop from ~ -1 to ~ -1.6 in both
 330 the LES and the experiment; this indicates the importance of considering the
 331 pressure loads averaged over an area of interest in addition to the local peak
 332 values.

333 Lastly, Figure 9 relates the peak pressure events to the flow features by
 334 plotting the instantaneous C_p distribution on the entire side wall together with
 335 the simultaneous contour of the second invariant of the velocity gradient tensor
 336 Q [42]. Coherent structures corresponding to $Q = 2,000\text{s}^{-2}$ are presented and
 337 colored by the instantaneous C_p . They visualize how the shear layer formed
 338 near the upwind corner of the model separates and rolls up into large vortices,
 339 which cause regions of relatively strong suction further downstream [43]. This
 340 effect is strongest near the top of the building, where the interaction between
 341 shear layers originating from the upwind and top corners generates the highest
 342 suctions.

343 *4.2. ABL velocity statistics*

344 In Figure 10, we compare the 27 LES results for the turbulent velocity
 345 statistics at the building location to the wind tunnel measurements. The spread
 346 of the profiles is significant, especially in terms of the turbulence kinetic energy
 347 and integral time-scale (Figures 10b and 10c). The ensemble of LES profiles
 348 provides a good representation of the spanwise variation in the wind tunnel
 349 experiment above 0.25m height. Closer to the ground, the turbulence kinetic

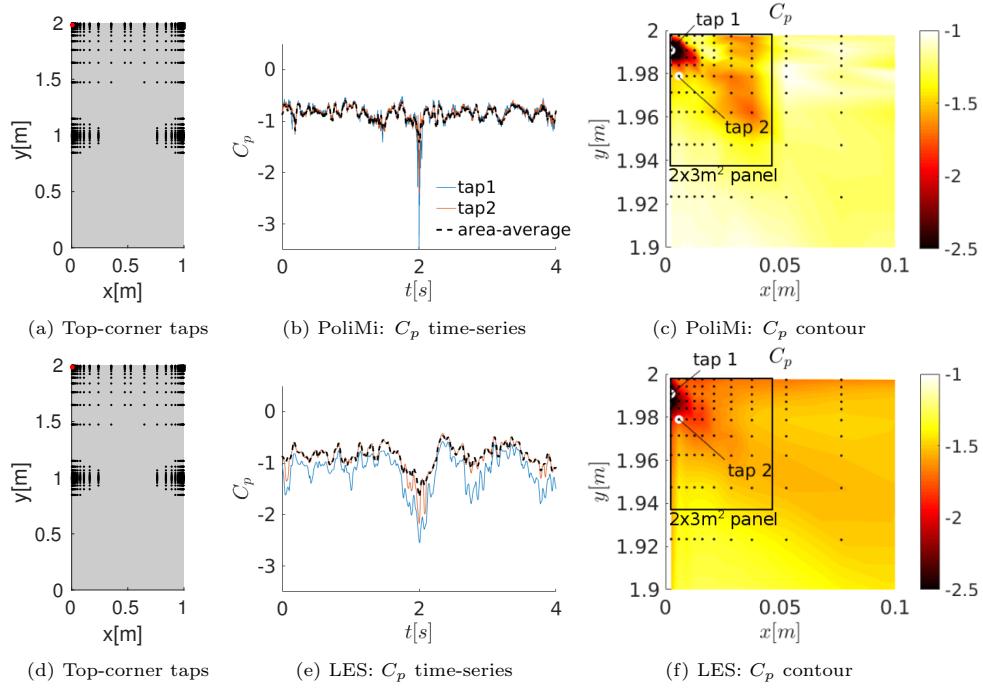


Figure 8: Time-series of pressure coefficient on top-corner tap and pressure coefficient distribution on the tile at the time instant of the negative peak.

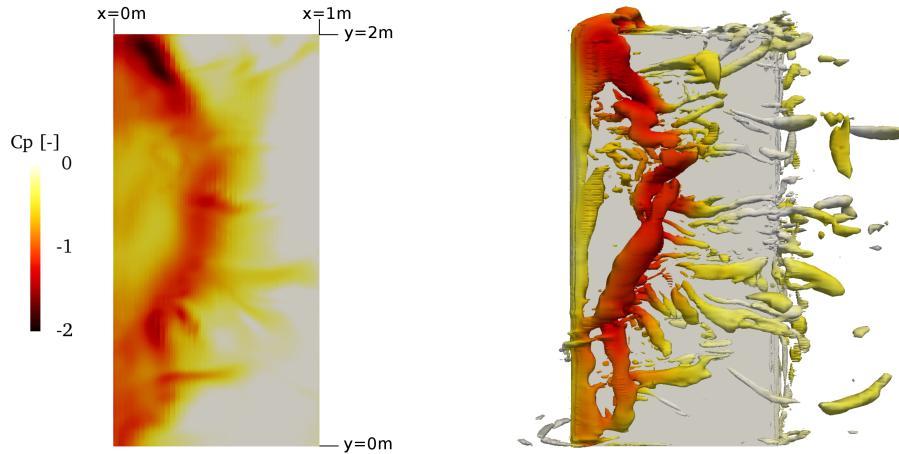


Figure 9: Contours of instantaneous pressure coefficient and iso-surface of the second invariant of the velocity gradient tensor $Q = 2,000\text{s}^{-2}$, colored by the instantaneous pressure coefficient.

350 energy is underpredicted, while the integral time-scales are overpredicted. The
 351 former can be explained by the fact that the experimental uncertainty in the
 352 turbulence kinetic energy significantly increases next to the ground, while the
 353 latter by the fact that the inflow generation method assumes profiles of integral
 354 time-scales that are constant over height. The behavior is similar to the one
 355 observed in [31]

Figure 10: Turbulence statistics at the building location from the ensemble of LES.

356 To identify the main effect associated with each input parameter, Figure 11
 357 shows the profiles obtained by averaging the results of the simulations that have
 358 a fixed value for one of the uncertain inflow parameters. For example, in the top
 359 row of Figure 11, the blue profiles are obtained by averaging the results of the 9
 360 simulations that use the minimum value for the roughness length; similarly, the
 361 black and red profiles represent the average of the velocity statistics across the
 362 9 simulations with the mean and maximum values for y_0 , respectively. In the
 363 mid and bottom rows of Figures 11, analogous plots are obtained for different
 364 inflow values of the turbulence kinetic energy and the integral time-scale.

365 The roughness length of the terrain produces the expected effect on the
 366 mean velocity profiles (Figure 11a): lower roughness corresponds to higher ve-
 367 locity next to the ground. The terrain roughness has almost no effect on the
 368 velocity fluctuations at the building location, as evident from the almost over-
 369 lapping profiles of Figures 11b and 11c. In contrast, the turbulence kinetic
 370 energy and integral time-scale specified at the inflow have a negligible effect on
 371 the mean velocity profiles (Figures 11d and 11g), but they affect the turbulence

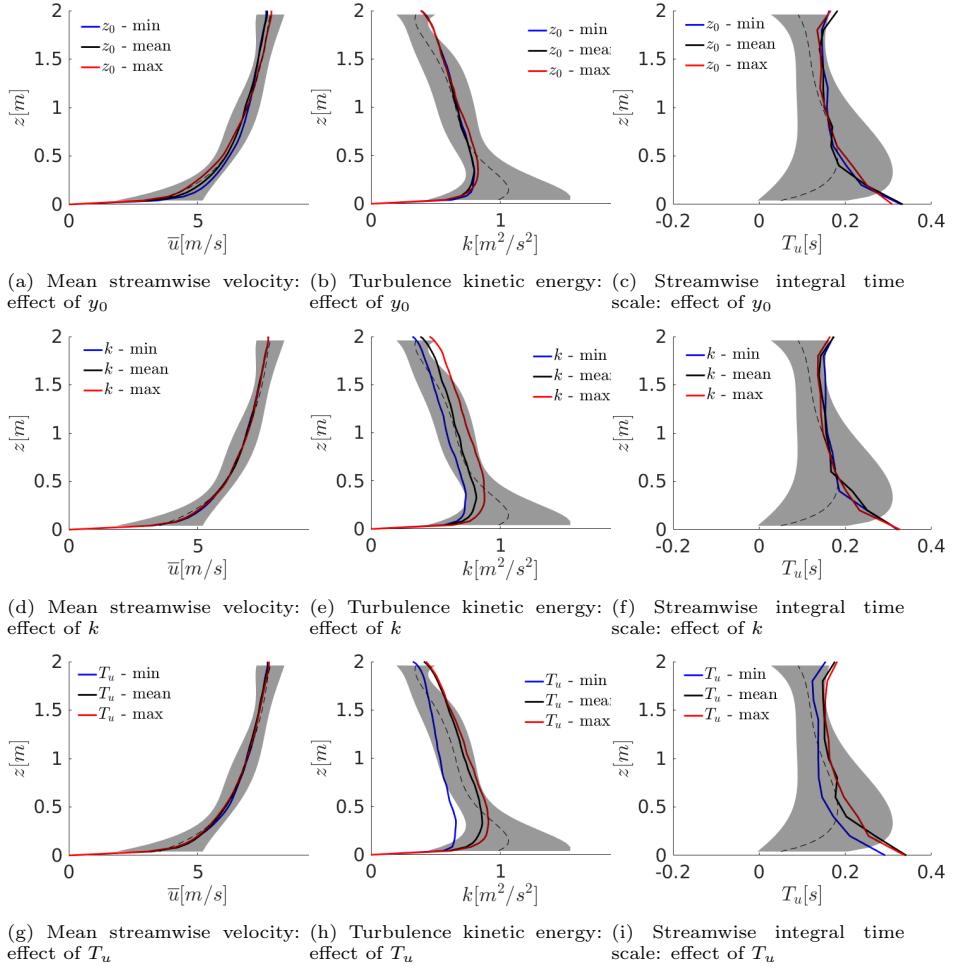


Figure 11: Effect of the different uncertain inflow parameters on the turbulence statistics at the building location, visualized using profiles averaged over nine simulations with a fixed value for one of the parameters. Comparison to the spanwise-average (dashed line) and the spanwise variation (gray region) of the measurements.

characteristics at the building. Figures 11e and 11f indicate that the level of turbulence kinetic energy can be modified without affecting the integral time scales, while Figures 11f and 11i show that the integral time-scale has a strong interaction effect. This interaction effect should be taken into account when analyzing the results; any variation in the results between the simulations with different time-scales is likely to be strongly affected by the corresponding variation in turbulence kinetic energy at the building location. All observed effects are monotonic: a higher turbulence kinetic energy or time-scale at the inflow results in higher values further downstream. For the integral time-scale there appears to be an upper limit, since an inflow value higher than the experimental mean has little effect on the turbulence statistics further downstream.

4.3. Pressure statistics

4.3.1. Mean pressure coefficient

Figure 12 shows the mean pressure coefficient distribution on the building’s lateral façade from the wind tunnel experiment and the baseline LES. To quantify the sensitivity to the inflow conditions, the discrepancy between the minimum and maximum values recorded across the 27 LES simulations is shown. The wind tunnel and LES data exhibit the same qualitative features: the flow separates at the windward edge of the building, generating a region of relatively strong suction in the separated flow region (red region of Figures 12a and 12b); further downstream, the flow reattaches, reducing the strength of the suction (yellow region of Figures 12a and 12b). The maximum difference in the C_p values predicted from the ensemble of LES simulations occurs in the separation region, next to the top edge, where it reaches ~ 0.16 (Figure 12c). This corresponds to a $\sim 20\%$ difference in the predicted mean C_p in this region, indicating that the uncertainty in the inflow conditions has a non-negligible effect on the mean pressure distribution in regions of flow separation

To provide a more quantitative comparison, profiles of the mean pressure coefficient along two rows of taps on the top portion of the model are plotted in Figure 13. The baseline LES result and the sensitivity interval, i.e. the minimum and maximum values across the 27 LES simulations, are compared to the wind

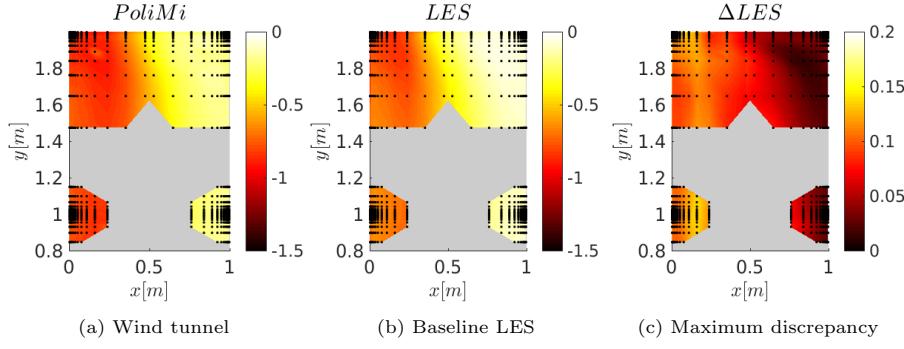


Figure 12: Mean pressure coefficient distribution on the building’s lateral façade.

403 tunnel measurements. The ensemble of LES simulations seems to slightly under-
 404 predict the magnitude of the mean C_p (Figure 13); the maximum discrepancy
 405 between the minimum value of the sensitivity interval and the measurements
 406 along the rows of taps considered, is 0.09 on tile A (Figure 13a) and 0.12 on tile
 407 B (Figure 13b). The size of the sensitivity intervals confirms that the mean C_p
 408 is more sensitive to the inflow uncertainty in the regions of flow separation; in
 409 the rear portion of the model, where the flow is attached, the inflow uncertainty
 has a negligible effect on the quantity of interest.

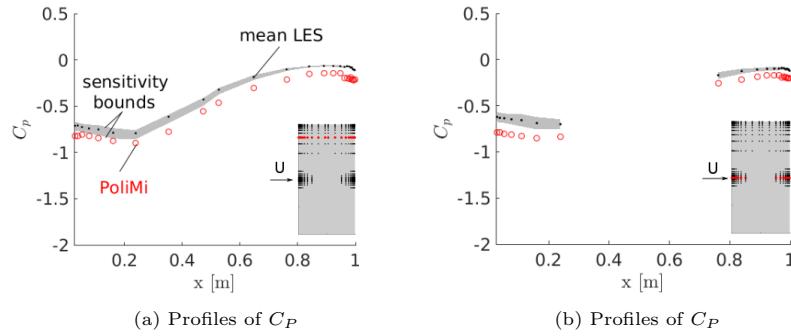


Figure 13: Mean pressure coefficient profiles: baseline LES (black dots) and sensitivity intervals (gray area) compared to the wind tunnel data (red circles).

410
 411 To identify the main effect associated with each uncertain inflow parameter,
 412 Figure 14 shows the profiles of the mean pressure coefficients obtained by aver-
 413 aging across simulations that have a fixed value for one of the uncertain inflow

414 parameters. Figures 14a and 14b compare profiles of C_p averaged across the
415 simulations with the same values of y_0 . The largest effect of the roughness length
416 occurs inside the separation region, where C_p experiences a maximum variation
417 of ~ 0.06 (i.e. $\sim 8\%$), in both rows of taps considered. In general, lower values
418 of y_0 are associated with higher negative values of mean C_p . The sensitivity of
419 the mean C_p on the turbulence kinetic energy and integral time-scale appears
420 negligible.

421 *4.3.2. Rms pressure coefficient*

422 Figure 15 plots the distribution of the rms pressure coefficient. Both the
423 experiment and the baseline LES manifest an increase in C'_p where reattachment
424 occurs in the mid portion of the model (Figures 15a and 15b). The highest value
425 of C'_p occurs near the upper edge of the model, where a maximum value of ~ 0.29
426 and ~ 0.31 are computed by the experiment and baseline LES, respectively.
427 The maximum discrepancy across the ensemble of 27 LES, shown in Figure
428 15c, is again largest inside the separation region. The plots indicate that the
429 inflow parameters have stronger influence on C'_p , compared to the mean C_p :
430 the maximum variation of ~ 0.16 across the 27 LES simulations corresponds to
431 $\sim 50\%$ difference.

432 Figure 16 further quantifies the results, showing rms pressure coefficient
433 profiles along the two rows of taps on tiles A and B. The baseline LES and the
434 sensitivity intervals are compared to the wind tunnel measurements. The C'_p
435 obtained in the PoliMi experiment is fully encompassed by the LES sensitivity
436 intervals in both rows of taps considered. The size of the intervals confirms
437 the high sensitivity of the rms pressure coefficients to the inflow uncertainty.
438 The effect is larger inside the separation and reattachment regions of the flow,
439 compared to the rear portion of the model, where the flow is attached. However,
440 differently from the mean C_p , the effect of the inflow uncertainty on the rms C_p
441 appears non-negligible in all locations.

442 To identify the main effect associated with each uncertain inflow parameter,
443 Figure 17 again shows the profiles obtained by averaging across simulations that

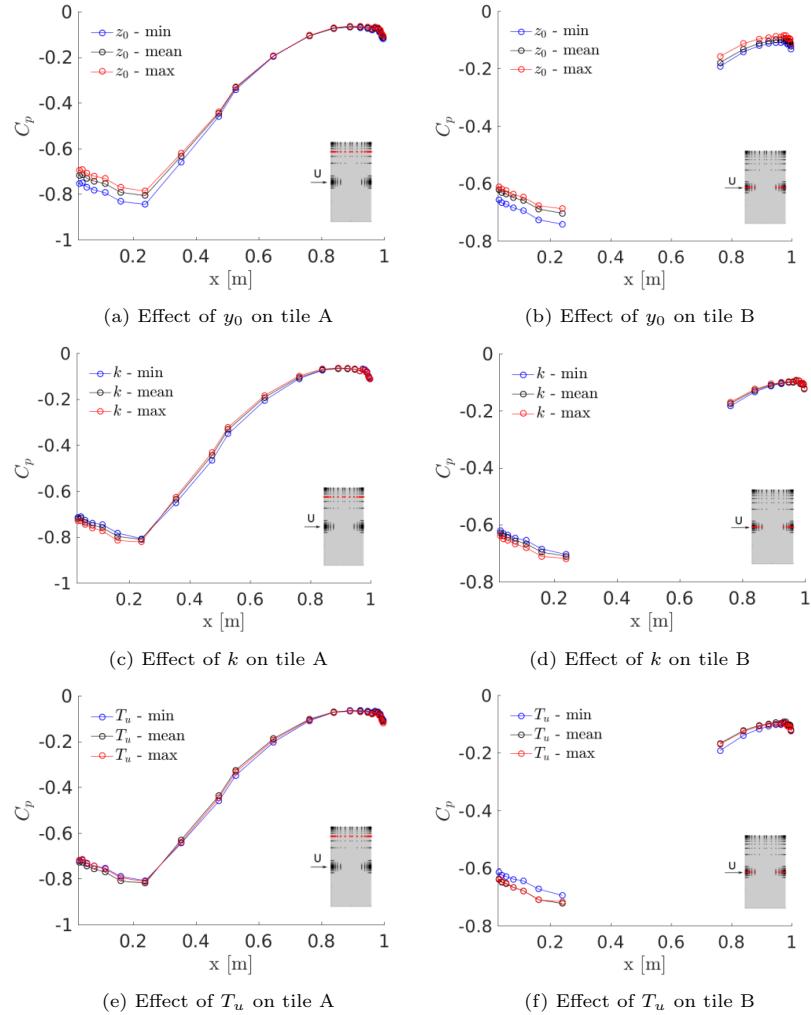


Figure 14: Effect of the different uncertain inflow parameters on the mean pressure coefficient profiles. The profiles are obtained by averaging the results of the simulations with a fixed value for one of the parameters, reported in the corresponding label in the legend.

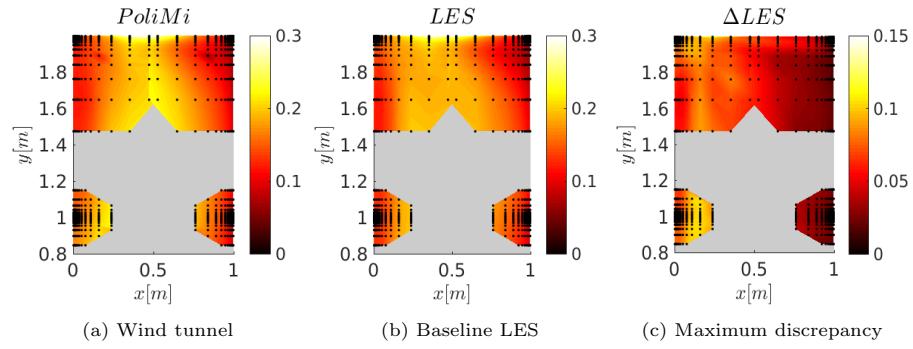


Figure 15: Rms pressure coefficient distribution on the building's lateral façade.

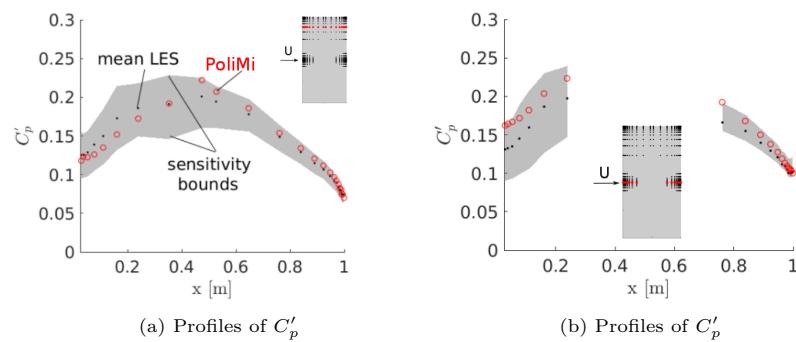


Figure 16: Rms pressure coefficient profiles: baseline LES (black dots) and sensitivity intervals (gray area) compared to the wind tunnel data (red circles).

444 have a fixed value for one of the uncertain inflow parameters. Figures 17a and
 445 17b compare profiles of C'_p averaged across the simulations with identical values
 446 of y_0 . The profiles on tile A mostly overlap; the maximum variation is ~ 0.01
 447 and occurs in the region of flow reattachment. On tile B, the the maximum
 448 difference is slightly higher (~ 0.02), and it arises in the rear portion of the
 449 model. Figures 17c and 17d show that the uncertainty in the turbulence kinetic
 450 energy primarily influences the C'_p in the front portion of the model, i.e. inside
 451 the separation region. Higher values of C'_p are associated with higher values of
 452 k , and the maximum variation across the profiles is ~ 0.03 . The effect of k is
 453 negligible in the rear portion of the model, where the flow is attached. Lastly,
 454 Figures 17e and 17f indicate that the integral time-scale imposed at the inflow
 455 causes the largest uncertainty in the C'_p , especially inside the separation region.
 456 This result has to be interpreted with care: Figures 11h and 11i indicate that the
 457 difference in C'_p is a result of the combination of the increased turbulence kinetic
 458 energy and the increased integral time scale at the location of the building.
 459 This combined effect indicates the importance of accurately quantifying the
 460 turbulence statistics at the building location in LES of wind loading.

461 *4.3.3. Peak pressure coefficient*

462 Figure 18 shows the distribution of the peak pressure coefficients relative
 463 to a 22% probability of exceedance. Figures 18a and 18b indicate qualitatively
 464 good agreement between the experiment and the LES: the largest negative \check{C}_p
 465 values are experienced inside the separation region and near the upper edge of
 466 the building. Quantitatively, the baseline LES under-predicts the magnitude of
 467 the peak pressure coefficients: the minimum \check{C}_p is -2.5 , compared to ~ -2.7
 468 measured in the wind tunnel experiment. However, the minimum values of \check{C}_p
 469 across the 27 LES simulations, shown in Figure 18c, reaches values as negative as
 470 those found in the experiment, with a minimum \check{C}_p of ~ -3.1 . Figure 18d plots
 471 the local difference between the minimum and maximum values recorded across
 472 the 27 LES simulations. The largest uncertainty occurs inside the separation
 473 region and next to the upper edge of the building, i.e. in the regions that

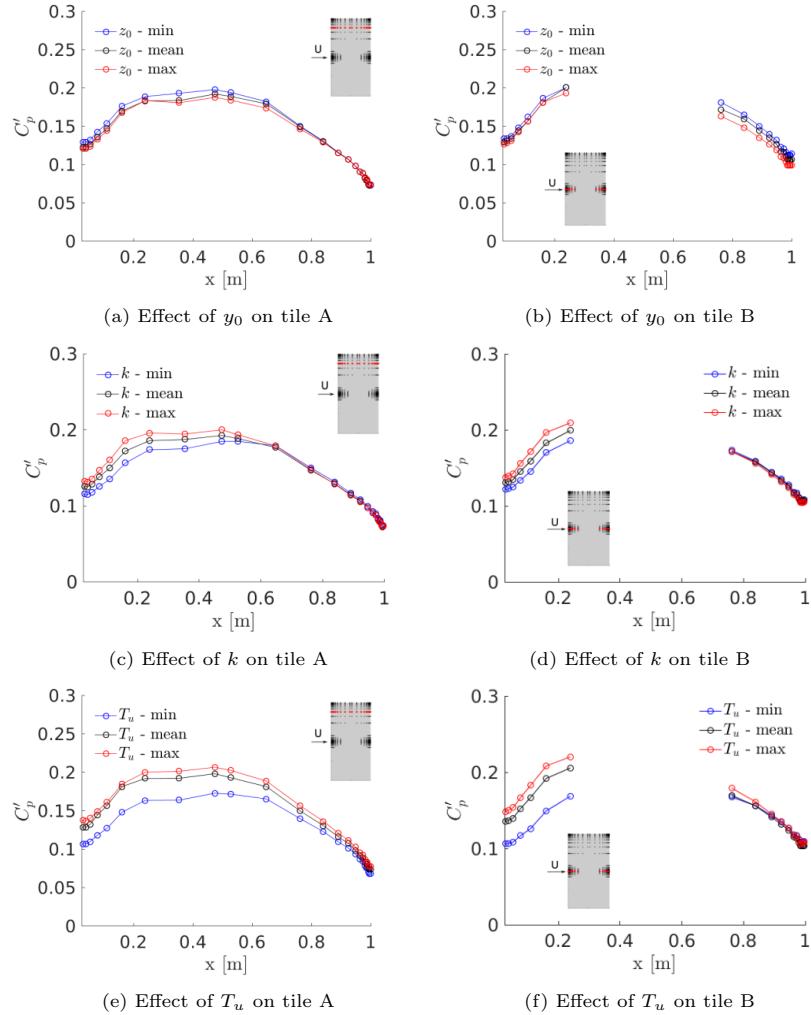


Figure 17: Effect of the different inflow parameters on the rms pressure coefficient profiles. The profiles are obtained by averaging the results of the simulations with a fixed value for one of the parameters, reported in the corresponding label in the legend.

474 experience the highest pressure peaks. Here, the inflow uncertainty can cause
 variations in \check{C}_p of up to 1.14.

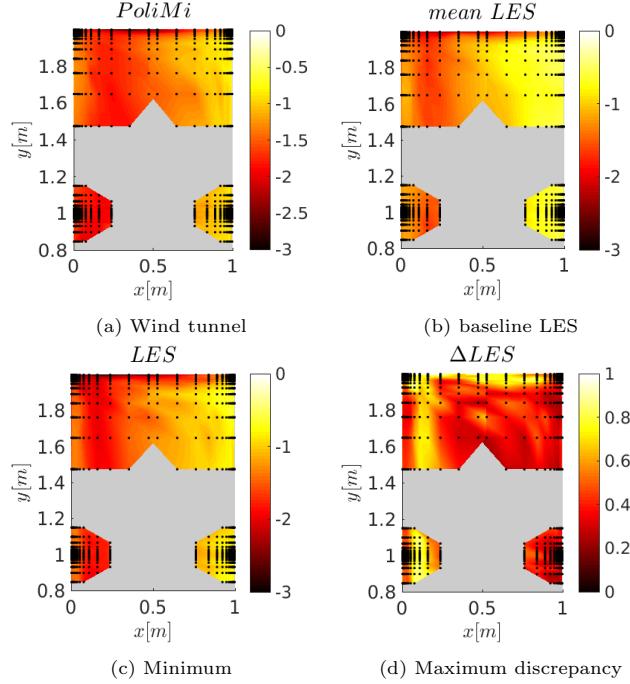


Figure 18: Distribution of peak pressure coefficient relative to a 22% probability of exceedance on the building's lateral façade.

475
 476 Figure 19 further quantifies these results by comparing \check{C}_p profiles along
 477 two rows of taps on the building's side wall. The baseline result and the sensi-
 478 tivity intervals are compared to the wind tunnel measurements. The width of
 479 the sensitivity intervals indicates that the uncertainty in the inflow conditions
 480 significantly affects the \check{C}_p prediction in all locations on the building's lateral
 481 façade. Overall, $\sim 60\%$ and $\sim 5\%$ of the data along the profiles on tiles A
 482 and B are encompassed by the sensitivity intervals, respectively. The highest
 483 discrepancy between the most negative interval bound and the experimental
 484 data is ~ 0.18 along the top row and ~ 0.35 along the mid row, which corre-
 485 spond to $\sim 15\%$ and $\sim 20\%$ of \check{C}_p , respectively. This under-prediction of the
 486 magnitude of local peak values should be expected, since the combination of
 487 the filtering operation and numerical dissipation will decrease the peak values

488 calculated from the resolved turbulent pressure signal. This could potentially
 489 be addressed by including the contribution of subgrid fluctuations.

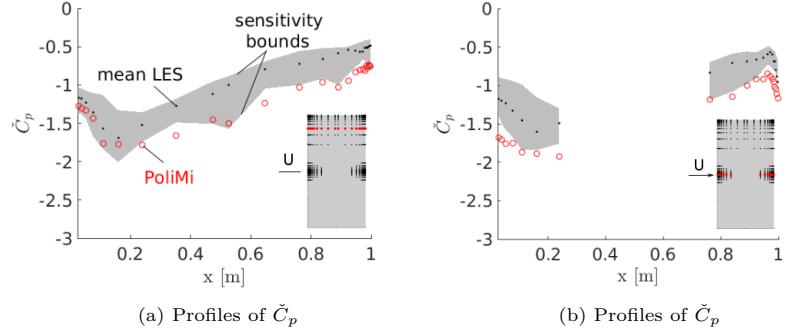


Figure 19: Profiles of peak pressure coefficient relative to a 22% probability of exceedance: baseline LES (black dots) and sensitivity intervals (gray area) compared to the wind tunnel data (red circles).

490 To identify the main effect associated with each uncertain inflow parameter,
 491 Figure 20 compares profiles of \check{C}_p averaged across simulations that have a fixed
 492 value for one of the uncertain inflow parameters. The effect of the roughness
 493 length, shown in Figures 20a and 20b, is analogous to its effect on the mean
 494 pressure coefficient. Variations in y_0 can cause up to ~ 0.14 (i.e. $\sim 10\%$)
 495 variations in the \check{C}_p , inside the separation region of the flow. In general, lower
 496 y_0 values are associated with more negative values of \check{C}_p . Figures 20c, 20d,
 497 20e and 20f indicate that the turbulence kinetic energy k and integral time-
 498 scale T_u cause a maximum variation of ~ 0.18 and ~ 0.26 , respectively. As
 499 for the rms C_p , higher values of k or T_u are associated with higher absolute
 500 values of peak pressure coefficient. Again, the effect of T_u has to be interpreted
 501 with care: Figures 11h and 11i indicate that the difference in \check{C}_p is a result of
 502 the combination of the increased turbulence kinetic energy and the increased
 503 integral time scale at the location of the building.

504 *4.3.4. Design pressure coefficient*

505 The point-wise values for \check{C}_p are not the main quantity of interest for cladding
 506 design; instead, the main quantity of interest is the design pressure coefficient $\check{C}_{p,d}$
 507 of the panels. $\check{C}_{p,d}$ can be calculated by applying the Cook and Mayne method

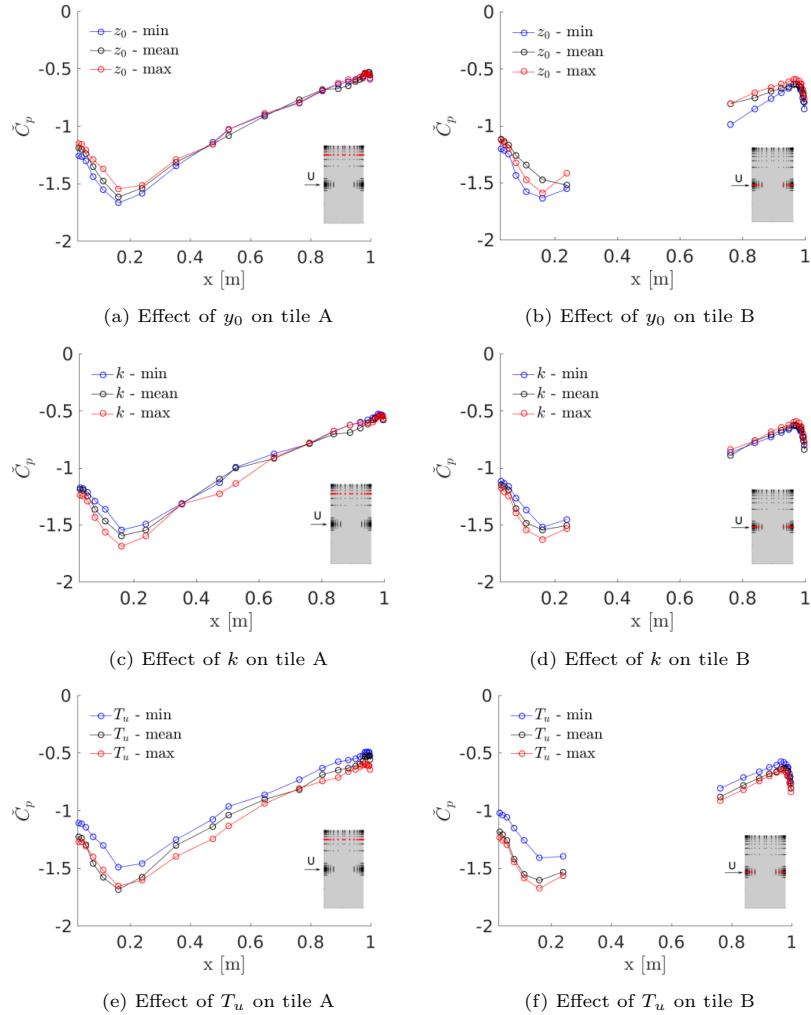


Figure 20: Effect of the different inflow parameters on the peak pressure coefficient profiles. The profiles are obtained by averaging the results of the simulations with a fixed value for one of the parameters, reported in the corresponding label in the legend.

[16] to the pressure coefficient averaged over the panel area. Figure 21 plots the resulting extreme value distributions of C_p averaged over a typical $2 \times 3\text{m}^2$ panel, at the top-windward corner of the model, i.e. the most critical region for the considered wind direction. The spread of the cumulative density functions (CDFs) of Figure 21 highlights the importance of the uncertainty in the inflow conditions. The resulting horsetail plot, formed by the ensemble of LES distributions, fully encompasses the experimental distribution. This means that the ensemble of LES can provide an upper and lower bound on the measurement result for any desired probability of exceedance.

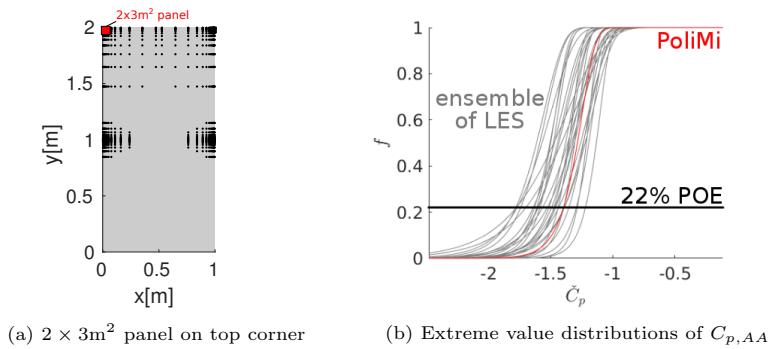


Figure 21: Cumulative density functions of the extreme values of the pressure coefficient averaged over a $2 \times 3\text{m}^2$ panel.

Lastly, Figure 22b shows the design pressure coefficient relative to a 22% probability of exceedance for panels of increasing dimension, located at the top-windward corner of the building (Figure 22a). For all panel sizes considered, the design pressure coefficient is within the sensitivity intervals predicted by the LES. The magnitude of $\check{C}_{p,d}$ decreases with increasing panel area, meaning that the area-averaging procedure is increasingly filtering out more localized strong negative pressure peaks. These results for $\check{C}_{p,d}$ demonstrate that the effects of the filtering operation and any numerical dissipation in the LES do not deteriorate the prediction of the main quantity of interest for cladding design.

To identify the main effect of each individual uncertain inflow parameter, Figure 23 compares the values for $\check{C}_{p,d}$ as a function of panel size, computed by averaging the results across the simulations that have a fixed value for on of

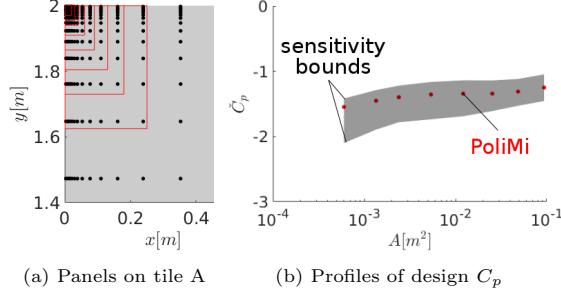


Figure 22: Design pressure coefficients as a function of panel size.

529 the inflow parameters. The uncertainty in the roughness length y_0 can cause up
 530 to ~ 0.27 variation in $\check{C}_{p,d}$. The trend is similar to that observed for the peak
 531 pressure coefficient: lower terrain roughness is associated with higher absolute
 532 values of $\check{C}_{p,d}$. Variations in turbulence kinetic energy produce a maximum
 533 variation of ~ 0.16 for the selected panel sizes, while the effect of changing
 534 the turbulence integral time-scale at the inflow causes a maximum variation of
 535 ~ 0.22 . As before, higher values of the turbulence kinetic energy and integral
 536 time-scale at the inflow result in higher absolute values of $\check{C}_{p,d}$; once again,
 537 the difference in $\check{C}_{p,d}$ due to a change in the inflow value of T_u is the result
 538 of a combination of the increased turbulence kinetic energy and the increased
 539 integral time scale at the location of the building.

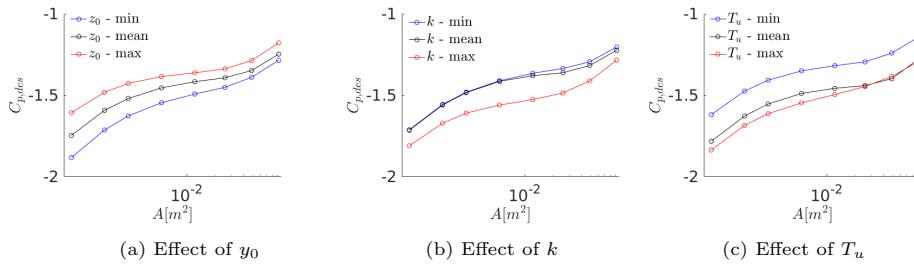


Figure 23: Effect of the different inflow parameters on the design pressure coefficient profiles. The profiles are obtained by averaging the results of the simulations with a fixed value for one of the parameters, reported in the corresponding label in the legend.

540 **5. Conclusions and future work**

541 We have performed 27 LES simulations of a wind tunnel experiment of a
542 high-rise building to analyze sensitivity of the results to uncertainty in the in-
543 flow conditions. We identified three uncertain parameters in the inflow condi-
544 tions, i.e. the roughness length of the terrain, the turbulence kinetic energy and
545 the streamwise integral time-scale. By analyzing measurements performed at
546 different spanwise locations on the wind tunnel turntable, we defined minimum,
547 mean and maximum values for these three parameters, resulting in 27 different
548 inflow conditions. The analysis of the result focused on determining the effect of
549 the inflow conditions on the mean, rms and peak pressure coefficients distribu-
550 tion on the building, and on the design pressure coefficient for cladding panels
551 of different sizes.

552 Initial analysis of the baseline LES indicates that the LES does not capture
553 as small scales as the experiment, but it does produce strong negative pressure
554 peaks with a similar magnitude and spatial characteristic as the experiment.
555 Simultaneous visualizations of the instantaneous pressure coefficient distribution
556 and coherent structures in the flow showed a correlation between peak events
557 and the presence of turbulent structures.

558 Subsequently, we analyzed the effect of the inflow conditions on the turbu-
559 lence statistics at the building location. It was shown that the 27 simulations
560 are representative of the uncertainty in the wind tunnel measurements. The
561 terrain roughness length primarily affects the mean velocity at the building lo-
562 cation, while changes in the turbulence kinetic energy and integral time-scale at
563 the inflow, primarily affect the velocity fluctuations further downstream. Im-
564 portantly, changes in the integral time-scale at the inflow were shown to affect
565 both the value of the turbulence kinetic energy and the integral time-scale at
566 the building location.

567 The comparison of the mean and rms pressure coefficients showed good
568 agreement between the experiment and numerical simulations, despite a slight
569 under-estimation of the magnitude of the mean pressure coefficient. To study

570 the main effect of the inflow parameters, we averaged the results across simula-
571 tions with a fixed value for one of the uncertain parameters. This highlighted
572 that the roughness length primarily affects the mean pressure coefficients, while
573 the turbulence kinetic energy and integral time scale primarily affect the rms
574 pressure coefficients. In particular, lower terrain roughness is associated with
575 more negative mean pressure coefficients, while a larger turbulence kinetic en-
576 ergy or integral time-scale produce higher rms pressure coefficients. In both
577 cases, the effects are strongest in the separation region and near the point of
578 reattachment. It was noted that the effect of the integral time-scale on the rms
579 pressure coefficients is a result of the combination of the increased turbulence
580 kinetic energy and the increased integral time scale at the location of the build-
581 ing. This combined effect indicates the importance of accurately quantifying
582 the turbulence statistics at the building location, rather than at the inflow, in
583 LES of wind loading.

584 Lastly, we performed extreme value analysis to compute the distribution of
585 the peak pressure coefficient on the building’s façade, and the design pressure
586 coefficients for cladding panels of different size. By accounting for the uncer-
587 tainty in the inflow conditions, the LES can predict values of peak pressure
588 coefficient as negative as the ones found in the experiment, although the mag-
589 nitude of the local peak pressure coefficients is on average under-predicted by
590 12%. This under-prediction can be explained by the effect of the filtering oper-
591 ation and numerical dissipation in the LES. When considering design pressure
592 coefficients on cladding panels of different sizes located at the upper-windward
593 corner of the building, these effects become less important: the LES sensitiv-
594 ity analysis provides an interval that encompasses the experimental result. It
595 was shown that all inflow parameters significantly contribute to the uncertainty
596 in the peak and design pressure coefficients. The importance of the roughness
597 length can be explained by its effect on the shear in the mean velocity profile,
598 and consequently on the mean pressure coefficient. The effect of the turbulence
599 kinetic energy and the integral time-scale is analogous to their effect on the rms
600 pressure coefficients.

601 In summary, we can conclude that uncertainty in the ABL inflow statistics,
602 such as those occurring during well controlled wind tunnel experiments, can
603 cause significant uncertainty in the mean, rms and peak pressure distributions
604 and in the design pressure coefficients on high-rise buildings' façades. By ac-
605 curately characterizing the LES ABL statistics at the building location, and
606 accounting for inflow uncertainty when performing validation against experi-
607 ments, the confidence in LES predictions for wind loading could be drastically
608 increased. Future work will focus on the potential benefits of using a more
609 advanced subgrid model, such as the dynamic k -equation model, particularly
610 when considering local peak pressure coefficients. Furthermore, we plan to per-
611 form additional LES simulations for different wind directions, including those
612 for which the wind tunnel experiment observed the occurrence of very strong,
613 localized pressure peak events.

614 **6. Acknowledgements**

615 This material is based upon work supported by the National Science Foun-
616 dation under Grant Number 1635137, and used the Extreme Science and En-
617 gineering Discovery Environment (XSEDE), which is supported by National
618 Science Foundation grant number CI-1548562.

619 [1] JD Holmes. Non-gaussian characteristics of wind pressure fluctuations.
620 *Journal of Wind Engineering and Industrial Aerodynamics*, 7(1):103–108,
621 1981.

622 [2] D Surry and D Djakovich. Fluctuating pressures on models of tall buildings.
623 *Journal of Wind Engineering and Industrial Aerodynamics*, 58(1-2):81–112,
624 1995.

625 [3] Dae Kun Kwon and Ahsan Kareem. Peak factors for non-gaussian load
626 effects revisited. *Journal of Structural Engineering*, 137(12):1611–1619,
627 2011.

628 [4] Fahim Sadek and Emil Simiu. Peak non-gaussian wind effects for database-
629 assisted low-rise building design. *Journal of Engineering Mechanics*,
630 128(5):530–539, 2002.

631 [5] Xinlai Peng, Luping Yang, Eri Gavanski, Kurtis Gurley, and David Prevatt.
632 A comparison of methods to estimate peak wind loads on buildings. *Journal*
633 *of wind engineering and industrial aerodynamics*, 126:11–23, 2014.

634 [6] Nicholas J Cook. on the gaussian-exponential mixture model for pressure
635 coefficients. *Journal of Wind Engineering and Industrial Aerodynamics*,
636 153:71–77, 2016.

637 [7] D Surry and T Stathopoulos. An experimental approach to the economical
638 measurement of spatially-averaged wind loads. *Journal of Wind Engineer-
639 ing and Industrial Aerodynamics*, 2(4):385–397, 1978.

640 [8] WH Melbourne. Comparison of measurements on the caarc standard tall
641 building model in simulated model wind flows. *Journal of Wind Engineer-
642 ing and Industrial Aerodynamics*, 6(1-2):73–88, 1980.

643 [9] JD Holmes. Distribution of peak wind loads on a low-rise building. *Journal*
644 *of Wind Engineering and Industrial Aerodynamics*, 29(1-3):59–67, 1988.

645 [10] J E Cermak. Wind-tunnel development and trends in applications to civil
646 engineering. *Journal of wind engineering and industrial aerodynamics*,
647 91(3):355–370, 2003.

648 [11] F Cluni, V Gusella, SMJ Spence, and G Bartoli. Wind action on regular
649 and irregular tall buildings: Higher order moment statistical analysis by
650 hffb and smpss measurements. *Journal of Wind Engineering and Industrial*
651 *Aerodynamics*, 99(6-7):682–690, 2011.

652 [12] W Kim, Y Tamura, and A Yoshida. Interference effects on local peak pres-
653 sures between two buildings. *Journal of Wind Engineering and Industrial*
654 *Aerodynamics*, 99(5):584–600, 2011.

655 [13] MF Huang, W Lou, C M Chan, N Lin, and X Pan. Peak distributions and
656 peak factors of wind-induced pressure processes on tall buildings. *Journal*
657 *of Engineering Mechanics*, 139(12):1744–1756, 2013.

658 [14] JW Zhang and QS Li. Field measurements of wind pressures on a 600
659 m high skyscraper during a landfall typhoon and comparison with wind
660 tunnel test. *Journal of Wind Engineering and Industrial Aerodynamics*,
661 175:391–407, 2018.

662 [15] TV Lawson. The design of cladding. *Building and Environment*, 11(1):37–
663 38, 1976.

664 [16] NJ Cook and JR Mayne. A refined working approach to the assessment of
665 wind loads for equivalent static design. *Journal of Wind Engineering and*
666 *Industrial Aerodynamics*, 6(1-2):125–137, 1980.

667 [17] John Dean Holmes. Equivalent time averaging in wind engineering. *Journal*
668 *of Wind Engineering and Industrial Aerodynamics*, 72:411–419, 1997.

669 [18] L. Amerio. *Experimental high resolution analysis of the pressure peaks on*
670 *a building scale model façades*. PhD thesis, Politecnico di Milano, 2018.

671 [19] Stephen B Pope. Turbulent flows, 2001.

672 [20] Luca Bruno, Maria Vittoria Salvetti, and Francesco Ricciardelli. Benchmark
673 on the aerodynamics of a rectangular 5: 1 cylinder: an overview after
674 the first four years of activity. *Journal of Wind Engineering and Industrial*
675 *Aerodynamics*, 126:87–106, 2014.

676 [21] Marie Skytte Thordal, Jens Chr Bennetsen, and H Holger H Koss. Review
677 for practical application of cfd for the determination of wind load on high-
678 rise buildings. *Journal of Wind Engineering and Industrial Aerodynamics*,
679 186:155–168, 2019.

680 [22] Hee Chang Lim, TG Thomas, and Ian P Castro. Flow around a cube in
681 a turbulent boundary layer: Les and experiment. *Journal of Wind Engi-*
682 *neering and Industrial Aerodynamics*, 97(2):96–109, 2009.

683 [23] Agerneh K Dagnew and Girma T Bitsuamlak. Computational evaluation
684 of wind loads on a standard tall building using les. *Wind and Structures*,
685 18(5):567–598, 2014.

686 [24] H. Aboshosha, A. Elshaer, G. T. Bitsuamlak, and A. El Damatty. Consistent
687 inflow turbulence generator for les evaluation of wind-induced re-
688 sponses for tall buildings. *Journal of Wind Engineering and Industrial*
689 *Aerodynamics*, 142:198–216, 2015.

690 [25] L Patruno, M Ricci, S De Miranda, and F Ubertini. Numerical simulation
691 of a 5: 1 rectangular cylinder at non-null angles of attack. *Journal of Wind*
692 *Engineering and Industrial Aerodynamics*, 151:146–157, 2016.

693 [26] M Ricci, L Patruno, I Kalkman, S de Miranda, and B Blocken. Towards les
694 as a design tool: Wind loads assessment on a high-rise building. *Journal*
695 *of Wind Engineering and Industrial Aerodynamics*, 180:1–18, 2018.

696 [27] Shenghong Huang, QS Li, and Shengli Xu. Numerical evaluation of wind
697 effects on a tall steel building by cfd. *Journal of Constructional Steel Re-*
698 *search*, 63(5):612–627, 2007.

699 [28] Steven J Daniels, Ian P Castro, and Zheng-Tong Xie. Peak loading and
700 surface pressure fluctuations of a tall model building. *Journal of Wind*
701 *Engineering and Industrial Aerodynamics*, 120:19–28, 2013.

702 [29] A. Keating, U. Piomelli, E. Balaras, and H.J. Kaltenbach. A priori and a
703 posteriori tests of inflow conditions for large-eddy simulation. *Physics of*
704 *Fluids*, 16(12):4696–4712, 2004.

705 [30] N Jarrin, R Prosser, J-C Uribe, S Benhamadouche, and D Laurence. Re-
706 construction of turbulent fluctuations for hybrid rans/les simulations using
707 a synthetic-eddy method. *International Journal of Heat and Fluid Flow*,
708 30(3):435–442, 2009.

709 [31] G. Lamberti, C. García-Sánchez, J. Sousa, and C. Gorlé. Optimizing
710 turbulent inflow conditions for large-eddy simulations of the atmospheric
711 boundary layer. *Journal of Wind Engineering and Industrial Aerodynam-*
712 *ics*, 177:32–44, 2018.

713 [32] Y. Kim, I. P. Castro, and Z. T. Xie. Divergence-free turbulence inflow con-
714 ditions for large-eddy simulations with incompressible flow solvers. *Com-*
715 *puters & Fluids*, 84:56–68, 2013.

716 [33] G. Lamberti, L. Amerio, G. Pomaranz, A. Zasso, and C. Gorlé. Compar-
717 ison of high resolution pressure measurements on a high-rise building in
718 a closed and open-section wind tunnel. *Journal of wind engineering and*
719 *industrial aerodynamics*, (under review).

720 [34] J Smagorinsky. General circulation experiments with the primitive equa-
721 tions: I. the basic experiment. *Monthly weather review*, 91(3):99–164, 1963.

722 [35] Jörg Franke. *Best practice guideline for the CFD simulation of flows in the*
723 *urban environment*. Meteorological Inst., 2007.

724 [36] W Cabot and P Moin. Approximate wall boundary conditions in the large-
725 eddy simulation of high reynolds number flow. *Flow, Turbulence and Com-*
726 *bustion*, 63:269–291, 1999.

727 [37] Z. T. Xie and I. P. Castro. Efficient generation of inflow conditions for large
728 eddy simulation of street-scale flows. *Flow, turbulence and combustion*,
729 81(3):449–470, 2008.

730 [38] PJ Richards and BS Wanigaratne. A comparison of computer and wind-
731 tunnel models of turbulence around the silsoe structures building. *Journal*
732 *of Wind Engineering and Industrial Aerodynamics*, 46:439–447, 1993.

733 [39] A. Parente, C. Gorle, J. van Beeck, and C. Benocci. Improved kappa-
734 epsilon model and wall function formulation for the RANS simulation of
735 ABL flows. *Journal of Wind Engineering and Industrial Aerodynamics*,
736 99:267–278, 2011.

737 [40] G. I. Taylor. The spectrum of turbulence. In *Proceedings of the Royal*
738 *Society of London A: Mathematical, Physical and Engineering Sciences*,
739 volume 164, pages 476–490. The Royal Society, 1938.

740 [41] Peter Welch. The use of fast fourier transform for the estimation of power
741 spectra: a method based on time averaging over short, modified peri-
742 odograms. *IEEE Transactions on audio and electroacoustics*, 15(2):70–73,
743 1967.

744 [42] V. Holmén. Methods for vortex identification. *Master’s Theses in Mathe-*
745 *matical Sciences*, 2012.

746 [43] PJ Saathoff and WH Melbourne. The generation of peak pressures in
747 separated/reattaching flows. *Journal of Wind Engineering and Industrial*
748 *Aerodynamics*, 32(1-2):121–134, 1989.