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ABSTRACT
Geospatial data integration combines two or more data layers to
facilitate advanced querying, analysis, reasoning, and visualization.
In general, different layers (e.g., ZIP codes, census blocks, school
districts, and land use parcels) have different spatial partitions
and different types of associated semantic descriptors. In addition,
geospatial data may contain errors (e.g., due to imprecision in the
measurements or to representation constraints) causing uncertainty
that needs to be incorporated and quantified in the query answers.
In this paper, we leverage semantic descriptors in heterogeneous
information layers to build a data structure that enables efficient
processing of geospatial range queries by returning an estimate of
the answer together with an error bound.We present the processing
algorithms and evaluate our approach by means of experiments
that encompass large datasets, demonstrating the benefits of our
approach.
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1 INTRODUCTION
Geospatial data management is essential for applications in urban
planning [38], smart cities [1, 3], geology [16], agriculture [5, 28],
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disaster remediation [12], infrastructure management [11], epidemi-
ology [33], and many others. Geospatial vector data consists of
geometric shapes, such as a line representing a river or road, a poly-
gon representing the boundary of a farm, or a point representing a
school building.

Geospatial data integration combines two or more data layers
to facilitate advanced querying, analysis, reasoning, and visualiza-
tion [2]. In general, each layer has a different spatial partition into
regions, for example, ZIP codes, census blocks, school districts, and
land use parcels. Each region may be annotated with semantic de-
scriptors, which, for a land parcel, include Lake, Park, Commercial,
and Residential. Descriptor Residential can be further subdivided
into Single- andMulti-family residential. The hierarchy of land use
codes can be modeled using an ontology to facilitate reasoning.

Our main objective is to develop effective methodologies for
integrating different data layers, along with efficient querying al-
gorithms, which will enable acquisition of information in targeted
geospatial regions, as defined by range queries.

From the heterogeneity viewpoint, for each layer there may
be a different granularity, for example, municipality vs. county, a
different ontology, and a different format. In this paper we do not
focus on bridging across ontologies, a process called alignment [13–
15, 39], nor do we consider conversion between formats, which
a library like GDAL [21] can perform. We do, however, take into
account errors, and associated uncertainty, which are omnipresent
in spatial data due to measurement imprecision [23], representation
constraints [46], imprecise boundaries [34], and uncertainty of
moving objects [49]. In our work, we aim to reduce errors and their
propagation by considering more than one layer at a time. That is,
we want to increase the quantity of information given by one layer—
and therefore reduce uncertainty—by adding information about
another layer, or layers. At the same time, we want to quantify the
decrease in uncertainty.

Figure 1 shows two maps for the Lincoln Park neighborhood in
Chicago: the Census block layer of Figure 1(a) and the high rise
building layer of Figure 1(b). In each census block, most of the
population is located in high rise buildings, rather than in single
family homes. Therefore, by using both maps, one can more finely
define the regions in each block that are more densely populated.

In this paper, for concreteness, we consider the problem of esti-
mating the population within the region defined by a range query

https://doi.org/10.1145/3397536.3422271
https://doi.org/10.1145/3397536.3422271
https://doi.org/10.1145/3397536.3422271


SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA Goce Trajcevski et al.

Figure 1: Maps of the Lincoln Park neighborhood in
Chicago: (a) Census blocks [10]; (b) high rise buildings [9].

B1

B2 B3

B4

3000	people
2	sq	mi

QR

4000	people
2	sq	mi

(a)	Census	blocks

B1

B2 B3

B4

3000	people
2	sq	mi

QR

4000	people
2	sq	mi

pond

park

(c)	Integrated	layers

(b)	Land	use	parcels

pond

park

Figure 2: Querying two integrated layers.

using the census population data layer together with the land use
data layer.

For example, in Figure 2, we have the following layers:

(a) A layer of census blocks, where block 𝐵1 and 𝐵2 have area
2 square miles and population 4000 and 3000, respectively. No
measurement imprecision is considered in this example.

(b) A layer of land use parcels with two polygons corresponding
to a pond and a park.

Rectangle 𝑄𝑅 is the region for which we want the total population
count. For simplicity, we assume that exactly half of 𝐵1 and half
of 𝐵2 overlap with 𝑄𝑅 . Further, we assume a uniform population
density in these blocks. Hence, if we consider only the census
blocks layer, we estimate the total population within 𝑄𝑅 to be
4000 · 0.5 + 3000 · 0.5 = 3500. However, if we consider also the
land use parcels layer, we can derive a more accurate estimate
of the query result by incorporating the fact that the pond and
park intersect portions of the blocks and thus reduce the populated
regions of the blocks. In particular, note that a portion of 𝐵1 is
covered by the park and cannot be populated. Similarly, portions
of 𝐵2 are covered by the park and pond and cannot be populated.
Thus, assume that 𝑄𝑅 overlaps with 20% of the populated region
of 𝐵1 and 60% of the populated region of 𝐵2. We now estimate the

population within 𝑄𝑅 to be 4000 · 0.2 + 3000 · 0.6 = 2600, a more
accurate answer given our assumptions.

To solve this problem and related ones, we introduce a modified
R-tree, named Semantically Augmented R-tree, or SeA-RT, and a new
range query, named Semantically Augmented Range Query, or SeA-
RQ. Together with a few primitive spatial operations (such as the
intersection of any two shapes) and the ontologies of the descriptors,
we show how processing a SeA-RQ can be done more efficiently
(in terms of running time) in comparison to using a regular R-
tree to index only spatial shapes. In other words, the semantically
augmented nodes may enable earlier pruning while processing
the SeA-RQ to compute the expected value of the population in a
query range and a bound on the error. We evaluate our approach by
means of experiments that encompass large datasets and compare
our results with those of applicable baselines.

The main contributions of this paper are as follows:
• A novel data structure SeA-RT (Semantically Augmented
R-Tree) to index spatial and semantic attributes, including
errors, for heterogeneous geospatial datasets (Section 2).

• An efficient algorithm for the evaluation of a SeA-RQ (Se-
mantically Augmented Range Query), which incorporates
semantic descriptors with explicit error bounds (Section 3).

• An experimental evaluation based on real and synthetic large
datasets, demonstrating the tradeoffs between imprecision
and efficiency (Section 4).

In the rest of the paper, we review related work in Section. 5 and
present concluding remarks and discuss future work in Section 6.

2 DATA STRUCTURE
In this section, we provide basic background and notation and
introduce the proposed data structure, the Semantically Augmented
R-Tree (SeA-RT). A geospatial dataset, D, is a collection of regions.
Each region is described by a triple (oid, 𝐵, 𝑆), where:

• oid denotes the unique ID of the region;
• 𝐵 denotes the polygonal boundary of the region (i.e., spa-
tial extent), represented as a sequence of points in counter-
clockwise order;

• 𝑆 denotes the sequence of semantic descriptors of the region,
𝑆 = [𝑆1, . . . , 𝑆𝑚] (𝑚 ∈ N).

2.1 Semantic Descriptors
A semantic descriptor is a pair (𝑎, 𝑥), where 𝑎 is an attribute and 𝑥 is
the value of 𝑎. For brevity, we use the notation oid .𝑎 to denote the
value of attribute 𝑎 of the region with ID oid. An attribute can be
numerical, for example, (population, 850) or categorical, for exam-
ple, (land_use, commercial). We assume that area, which denotes
the numeric area of the region, is included among the semantic
descriptors. If no such attribute is explicitly provided, it can be
computed from the polygonal boundary.

Error. Associated with a numerical attribute, such as resident pop-
ulation count, there may be an error that characterizes the amount
of uncertainty or measurement imprecision when collecting the
data. To enable standard statistical error propagation analysis [41],
we assume that the error is the standard deviation of the underlying
attribute value.
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Figure 3: Example of land use ontology [9].

Ontology. For a categorical attribute, we assume its possible val-
ues are organized in an ontology. For example, Figure 3 shows an
ontology for the values of attribute land use [9]. In practice, numer-
ical codes may be used as a shorthand for categorical attributes. For
example, in the land use ontology of Figure 3, the attribute value
Residential is associated with numerical code 1100.
Attribute constraint and compatibility. In various real-world
scenarios, the values of certain attributes may determine or con-
strain the values of other attributes. For example, if the land_use
value is water, we expect the population count attribute to have
value 0. Also, land_use attribute value single-family is normally
associated with a lower population count thanMulti-family.

In building the SeA-RT data structure, we leverage ontologies
over attribute values and constraints between attributes to selec-
tively merge the categorical attributes of the child regions into those
of a parent region. This merge process is dictated by the notion of
compatibility of attribute values.

Definition 2.1. Given an ontology for the values of a categorical
attribute, let 𝑅 be a subset of unrelated values, that is, for any two
values in 𝑅, neither is descendant of the other in the ontology. We
call the values in𝑅, reference values.We say that two attribute values,
𝑣1 and 𝑣2 are compatible with respect to 𝑅, or, simply, compatible,
if there exists 𝑣 ∈ 𝑅 such that 𝑣1 and 𝑣2 are descendants of 𝑣 .

For example, in the land use ontology of Figure 3, let the subset of
reference values be 𝑅 = {Commercial,Residential}. We have that
attribute values Hotel-or-motel and Office are compatible since
they are in the subtree of Commercial. Also, attribute values Single-
family-attached and Multi-family are compatible since they are in
the subtree of Residential. However, Single-family-attached and
Office are not compatible.

2.2 Preprocessing: Overlay
The SeA-RT data structure is built from an input collection of het-
erogeneous geospatial datasets. Integrating heterogeneous spatial
datasets is a problem with a rich history [6, 25]. In a preprocessing
step, we leverage a standard technique called polygon overlay. The

overlay operation [24] involves super-imposing two or more the-
matic maps (or data layers), to produce a composite map derived
from the intersection of polygons in the individual data layers. The
attributes and respective values for each derived polygon in the out-
put layer are obtained by combining the corresponding attributes
and values from the input layers. Figure 4.c illustrates the effect of
overlaying the two input datasets from Figures 4.a and 4.b.
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Figure 4: Overlay of Census and land use datasets.

Broadly, overlays can be carried out using different functions [7],
depending on the geometry and the number of data layers (e.g.,
intersection, union, symmetric difference). Many GIS products, such
as QGIS [35] and ArcGIS [18], support overlay of multiple datasets.

The preprocessing step consists of an overlay computation that
involves additional work due to the presence of semantic descrip-
tors. The output of the preprocessing step is a new geospatial
dataset, denoted Dov , whose regions are the derived regions:

Dov = {(oid1, 𝐵ov1 , 𝑆ov1 ), · · · , (oid𝑛, 𝐵ov𝑛 , 𝑆ov𝑛 )} (1)

In Dov , the object ID of a region is the list of the object IDs of
its generating regions, that is, the regions from each input dataset
whose intersection is the derived region.

We now explain how semantic descriptors are combined in the
overlay process. For simplicity, we refer to the case of an overlay
involving two datasets, D1 and D2 (see, for example, Figure 4).

• The list of attributes for the regions of Dov is the union
of the lists of attributes of D1 and D2. For simplicity, we
assume that no value conflicts arise if some attributes are
present in both D1 and D2.

• Following the standard principle of areal interpolation, the
value of a numerical attribute of an input region is dis-
tributed to its derived regions proportionally to their areas
(each dataset includes attribute area). However, the distri-
bution method can be different when there are constraints
between attributes. For example, in the overlay of Figure 2,
Census block 𝐵1 with population 4000 has two derived re-
gions. Given the constraint that a park has no population, we
set population = 4000 for the derived region with land_use
Residential and population = 0 for the derived region with
land_use Park, instead of distributing the population propor-
tionally to the areas of the derived regions.
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N1

{  [ (lu_code,1200),  (area, 670.7) ],
[ (lu_code 1112, area: 986.5, 
population: 2500), (ℇpopulation, 100) ] }

N2

{ [ (lu_code,1100), (area, 1501.7), 
(population, 700), (ℇpopulation: 30) ], 
[ (lu_code, 1240), (area, 300) ] }

o11 B11 , (lu_code: 1210), (area, 34.2)}

o12 B12 , (lu_code, 1240), (area, 636.5)}

o13
B13 , (lu_code 1112, area: 986.5, 
population: 2500), (ℇpopulation, 100)}

o21
B21, , (lu_code,1111), (area,669.0), 
(population, 200), (ℇpopulation, 5)}

o22
B22, (lu_code: 1112), (area, 832.7), 
(population, 500), (ℇpopulation, 30)}

o23 B23, , (lu_code, 1240), (area, 300)}

MBR(o11) MBR(o12) MBR(o13) MBR(o21) MBR(o22) MBR(o23)

MBR(N1) MBR(N2)

Np
{  [ (lu_code,1200),  (area, 970.7) ],

[ (lu_code 1100, area: 2488.2, population: 3200), (ℇpopulation, 104) ] }

Figure 5: Example of a SeA-RT for the integration of a Census dataset with a land use dataset.

2.3 Semantically Augmented R-Tree (SeA-RT)
The R-tree [26] and its variants [20] are among the most popular
structures used for indexing spatial data. An R-tree of order (𝑚,𝑀)
has a root node with at least two entries (unless it is a leaf), and
the internal and leaf nodes can store between 𝑚 ≤ 𝑀/2 and 𝑀

entries. Internal nodes consist of a sequence of pointer 𝑝𝑡𝑟 to a
child node and the corresponding Minimum Bounding Rectangle
(MBR) enclosing all the entries contained in the sub-tree rooted in
that child. Each leaf node consists of pointers to actual data objects
and corresponding MBRs.

A semantically augmented R-tree (SeA-RT), illustrated in Figure 5,
is a height-balanced tree that extends the R-tree by incorporating
semantic information in its nodes. The tree indexes the overlay
of two or more heterogeneous datasets with semantic descriptors,
Dov (Equation 1).

The nodes of the SeA-RT are structured as follows. A leaf node
contains the polygonal boundary and list of semantic descriptors
of a region of Dov . The innovative aspect of the SeA-RT is how an
internal node aggregates the semantic descriptors of its children by
using categorical attributes to estimate the numerical attributes.

An internal node, 𝑣 , is associated with the region that is the
union of the regions of the leaves in its subtree. Node 𝑣 stores a
list of semantic descriptors for its region, which is obtained by
aggregating those of the regions of its children. In addition, node 𝑣
stores the MBR of each child.

Aggregation of attribute values. In the following, for simplicity,
we describe the process of aggregating semantic descriptors of the
children of a node 𝑣 for the case where there is a single categori-
cal attribute, 𝑎, and multiple numerical attributes, 𝑏1, · · · , 𝑏𝑘 . The
method can be easily generalized to multiple categorical attributes.

Recall that there is an ontology for the values of the categorical
attribute (see, for example, the ontology of Figure 3 for land use).
Also, we assume that we have selected a set of reference values in
the ontology so that the compatibility relation between values is
well defined (Definition 2.1). The aggregation method is as follows:

• Consider the values assumed by categorical attribute 𝑎 at the
children of 𝑣 . We partition these values into maximal subsets

of compatible values. For each such compatibility subset,
𝑋 , we store at node 𝑣 the semantic descriptor (𝑎, LCA(𝑋 )),
where LCA denotes the least common ancestor of the values
in subset 𝑋 in the ontology. Thus, the list of semantic de-
scriptors of node 𝑣 may have multiple values for the same
attribute.

• Each numerical attribute is aggregated by summing the val-
ues at the children over each compatibility subset of the
categorical attribute.

Overall, the aggregation process results in node 𝑣 storing a list
of descriptors comprising sublists ((𝑎, 𝑥𝑖 ), (𝑏1, 𝑦𝑖1), · · · , (𝑏𝑘 , 𝑦𝑖𝑘 )),
one for each value 𝑥𝑖 of attribute 𝑎 that results from aggregating a
compatibility subset.
Error aggregation. The aggregation of numerical attributes im-
plies a corresponding aggregation of their errors. In particular, we
rely on the theory of statistical error propagation in uncertain mea-
surements [41]. Let 𝑥1, 𝑥2, . . . , 𝑥𝑘 be values of a numerical attribute,
where 𝑥𝑖 has associated error (i.e., standard deviation) 𝜖𝑖 . We have
that the error 𝜖 associated with 𝑥 = 𝑥1 + 𝑥2 + . . . + 𝑥𝑘 is given by

𝜖 =

√
𝜖21 + ... + 𝜖2

𝑘
. (2)

Note that the error of the sum is always greater than or equal to
the error of each of its terms. Thus, as we aggregate numerical
attributes from children to parent in the SeA-RT, we increase the
associated error.
Example. An instance of SeA-RT is shown in Figure 5. Its re-
gions, 𝑜11 through 𝑜23, are the result of the overlay of two datasets:
(1) a land use dataset with attributes area (numerical) and lu_code
(categorical) with values from the ontology of Figure 3, where
𝑅 = {Commercial,Residential} is the subset of reference values
(see Definition 2.1); and (2) a Census dataset with numerical at-
tributes area, population, and 𝜖population, which denotes the error
associated with the population. The interior of the polygonal bound-
aries 𝐵11 through 𝐵23 are disjoint.

Node 𝑁1 is the parent of 𝑜11, 𝑜12, and 𝑜13. The land use values
of 𝑜11 and 𝑜12, Primary-retail-or-service (1210) and Cultural-or-
entertainment (1240) are compatible. Thus, they are aggregated
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into their LCA, Commercial (1200), in the land use ontology, and
the corresponding area values, 636.5 and 34.2, are aggregated into
their sum, 670.7. In contrast, 𝑜13 has land use value Single-family-
attached (1112), which is incompatible with those of 𝑜11 and 𝑜12.
Thus, its land use value and the corresponding area, population
and error values are carried over to 𝑁1.

Next, consider node 𝑁2. Children (𝑜21 and 𝑜22) have compat-
ible land use values, Single-family-detached (1111) and Single-
family-attached (1112), which are aggregated into their LCA, Single-
family-residential (1110). Regarding numerical attributes area and
population, their values are aggregated by summing them. Also,
the errors for attribute population are aggregated, yielding error√
52 + 302 = 30.4 (rounded to 30). The third child 𝑜23 has an incom-

patible land use value, which is carried over to 𝑁2.
Finally, node 𝑁𝑝 with children 𝑁1 and 𝑁2 aggregates separately

the attribute values compatible with Commercial (1200) and Res-
idential (1100), respectively, yielding a total population count of
3200 and an error of

√
1002 + 302 = 104.4 (rounded to 104).

Complexity. We close this section by analyzing the space com-
plexity of the SeA-RT. Let 𝑛 = |Dov | be the size of the integrated
dataset indexed by the SeA-RT and let 𝜏 denote the number of maxi-
mal subsets of compatible attribute values in the ontology. We have
that the space complexity of the SeA-RT is 𝑂 (𝜏 · 𝑛).

3 QUERY PROCESSING
We now describe the syntax and semantics of a SeA-RQ and discuss
its efficient processing using the SeA-RT data structure presented
in Section 2.

3.1 Syntax and Error Calculation
A query 𝑞 ∈ SeA-RQ is a conjunctive query over spatial data aug-
mented with semantic attributes, corresponding to Dov (Section 2).
For example:
SeA-RQ1: Retrieve the total park area and total population of the zones
intersecting a given region 𝑄𝑅 .

However, we recall that some of the numerical attributes in Dov

are associated with error due to imprecise measurement, implying
uncertainty which is propagated along the hierarchy of a SeA-RT.
As such, it needs to be explicitly captured in the syntax of the
query, as well as in the processing algorithms [43]. In our case, this
amounts to expressing the bounds on the error on certain numerical
attributes that the user is willing to tolerate.

The following query uses two categorical attributes (land use and
dominant political party) and one numerical attribute (population)
in a country with multiple political parties that are arranged in an
ontology with superclasses conservative and liberal:
SeA-RQ2: Retrieve the total population within a region𝑄𝑅 , with error
at most 200, living in single-family homes and in electoral precincts
where the dominant party is of type liberal.

Given the information in a SeA-RT, the bounds on the uncer-
tainty can enable earlier pruning of some nodes (and corresponding
sub-trees) when processing a SeA-RQ, which, as we will show in
Section 4, can yield more efficient processing.

A SeA-RQ on geospatial datasetDov (Equation 1) can be specified
as follows:

(𝑄𝑅, [𝑆𝑖 , 𝛼𝑖 , 𝑓𝑖 ]) (3)

where
(1) 𝑄𝑅 is the spatial region of interest;
(2) 𝑆𝑖 is the semantic attribute of interest;
(3) 𝛼𝑖 is the error tolerance threshold on 𝑆𝑖 which is applica-

ble only to numerical attributes and has a null value for
categorical attributes;

(4) 𝑓𝑖 is the query function that extracts the portions of the
geospatial objects within region 𝑄𝑅 and returns an estimate
of the aggregate summary of semantic attribute 𝑆𝑖 for the
union of the portions, subject to constraints on the other
semantic attributes and up to error tolerance 𝛼𝑖 ;

For example, in SeA-RQ1 above, we have three functions: 𝑓1 over
the categorical attribute land use (Park), 𝑓2 over the boundary of
the parks (area), and 𝑓3 which is (sum) over the numerical attribute
(Population), which is the only one associated with an error.

Area	=	2000
Population	=	4000
Error	=	100

Area	=	1000
Population	=	2000
Error	=	200

Area	=	3000
Population	=	6000
Error	=	300

QR

O1
O2

O3

Figure 6: Areal interpolation.

To calculate the value to be reported in the answer along with
the cumulative error from multiple regions with numeric attributes
that are intersecting 𝑄𝑅 , we use areal interpolation. Specifically,
we assume that the values of the numeric attributes and the errors
are uniformly distributed across the regions and we weight each of
them proportionally to the fraction of the area intersecting 𝑄𝑅 . For
clarity, in the rest of this section we focus on queries of the form:
SeA-RQ𝑝𝑐 : Retrieve the total population of the inhabited zones inter-
secting the region 𝑄𝑅 , with error at most 𝛼 .
Example. Consider the scenario shown in Figure 6, where objects
𝑂1, 𝑂2, and 𝑂3 of Dov have the same value for the categorical
attribute (e.g., land use is residential (1100)) and intersect query
region 𝑄𝑅 . Assume that 𝑂1 has 25% overlap with 𝑄𝑅 , 𝑂2 is fully
contained in 𝑄𝑅 , and 𝑂3 has 50% overlap with 𝑄𝑅 . Given the val-
ues for the area, population, and population error of each object
shown in Figure 6, we obtain the following aggregate values for
intersection of the objects with 𝑄𝑅 :

• Area∩𝑄𝑅
= 0.25·2000 + 1000 + 0.5·3000 = 3000

• Population∩𝑄𝑅
= 0.25·4000 + 2000 + 0.5·6000 = 6000

• Error∩𝑄𝑅
=

√
(0.25 · 100)2 + 2002 + (0.5 · 300)2 = 251.2

3.2 Efficient SeA-RQ Processing
In a nutshell, processing a SeA-RQ involves descending the SeA-RT
and determining the candidate nodes (i.e., the ones intersecting𝑄𝑅 ).
However, it also further refines each candidate node by using the
values of the semantic descriptors and associated errors, taking into
account the given error-tolerance 𝛼 .

Before we proceed with the details of the algorithm, we need
to define a few terms that are used when executing the respective
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Figure 7: The four different cases of populated land as con-
tained in the intersection of𝑀𝐵𝑅 and 𝑄𝑅 .

computations. Specifically, since the inner nodes (and the MBRs)
contain aggregated values for the numerical attributes and the
errors, we need to explain how those are obtained based on the
intersection of a particular MBR with 𝑄𝑅 .

We now show how to estimate the output of the query that
returns the population, 𝑃 , in the intersection of the query range,
𝑄𝑅 with the minimum bounding rectangle,MBR of a node 𝑁 . With
reference to Figure 7, let 𝐻 denote the inhabited portion of MBR,
that is, the union of regions whose land use attribute value is a
descendant of Residential. Also, let 𝐴𝐻 denote the area of 𝐻 . By
selecting Residential as a reference attribute value in the land use
ontology, we can keep track of 𝐴𝐻 in the SeA-RT, but not of the
exact boundary of 𝐻 . If we were to have a full knowledge of the
boundaries of the collection of all the nodes within the MBR of 𝑁
(clearly, a huge overhead of replication), then we could compute
the area of the inhabited portion in the intersection of MBR and
𝑄𝑅 , denoted 𝐴𝐻𝑄

, and we would estimate the query output as

𝐴𝐻𝑄
· 𝑃

𝐴𝐻
(4)

Since the exact value of 𝐴𝐻𝑄
is not known from the aggregate

information available at the current node, we estimate it by using
the following modified areal interpolation method:

𝐴𝐻𝑄
=
𝐴ℎmin +𝐴ℎmax

2
(5)

𝐴ℎmin = max(0, 𝐴𝐻 − Area(MBR −𝑄𝑅)) (6)
𝐴ℎmax = min(𝐴𝐻 ,Area(MBR ∩𝑄𝑅)) (7)

Namely, Equation 5 estimates 𝐴𝐻𝑄
as the average of its minimum

andmaximumpossible values. Equation 6, gives theminimumvalue,
ℎmin, for 𝐻𝑄 , as illustrated in Figure 7.a (𝐻𝑄 = 0) and Figure 7.b
(𝐻𝑄 = 𝐻 −Area(MBR−𝑄𝑅)). Equation 7, gives the maximum value,
𝐴ℎmax , for the area of 𝐻𝑄 , as illustrated in Figure 7.c (𝐻𝑄 = 𝐻 ) and
Figure 7.d (𝐴𝐻𝑄

= Area(MBR ∩𝑄𝑅)).
Thus, for any numerical attribute 𝑎num, its value in the the por-

tion of 𝑁 ’s MBR intersected with the query region 𝑄𝑅 , denoted
𝑎num
𝑄𝑅

, and the corresponding portion of the associated error, de-
noted 𝜖𝑎

num

𝑄𝑅
, are obtained via areal interpolation as follows:

𝑎num𝑄𝑅
=

(
𝑎num

𝐴𝑎num

𝐻

)
· 𝐴𝑎num

𝐻𝑄
(8)

𝜖𝑎
num

𝑄𝑅
= 𝜖𝑎

num
·
(
𝑎num
𝑄𝑅

𝑎num

)
= 𝜖𝑎

num
· ©«

𝐴𝑎num

𝐻𝑄

𝐴𝑎num

𝐻

ª®¬ (9)

The next step is to refine the entries in the candidate nodes based
on the function(s) 𝑓𝑗 specified in the query (Equation 3). The entries
are filtered based on the constraints on the semantic descriptors
(e.g., land use category is Residential). The algorithm checks each
entry in candidate nodes, and detects and prunes those entries that
do not satisfy the constraints specified in the query. If the query
involves retrieving the value of a numerical semantic descriptor
in the query region 𝑄𝑅 , the algorithm returns the corresponding
value 𝑎𝑛𝑢𝑚

𝑄𝑅
(Equation 8).

To describe query processing in a SeA-RT, consider a query that
estimates the total population inside query region 𝑄𝑅 with error
tolerance 𝛼 = 5. We illustrate in Figure 8 the processing of this
query at an inner node, 𝑁1, where land use codes are from Figure 3.
Let 𝐴MBR(𝑁1) = 10000. Since MBR(𝑁1) ∩𝑄𝑅 ≠ ∅, 𝑁1 is a candidate
node. Assume𝐴𝑄𝑅∩MBR(𝑁1) = 0.5·𝐴MBR(𝑁1) = 5000. There are two
sources of errors in the population count of 𝑁1. One is aggregated
from children 𝐶12 and 𝐶13 (

√
122 + 52 = 13), as their land use

attributes are compatible and merged into land use code 1200. The
other is carried over from 𝐶14, whose land use code (1130) is not
compatible with those of 𝐶12 and 𝐶13, and introduces a separate
error (4). Note that 𝐶11 does not have the population attribute.

Let 𝐴1200
𝐻

denote the area of the inhabited portion of MBR(𝑁1)
with land use code 1200 (i.e., due to 𝐶12 and 𝐶13). As shown in Fig-
ure 8,𝐴1200

𝐻
= 1225.6. Thus, we have𝐴1200

𝐻
< 5000 = 𝐴MBR(𝑁1)∩𝑄𝑅

=

𝐴MBR(𝑁1)\𝑄𝑅
. Using Equation 5, we estimate the populated area

with land use code 1200 insideMBR(𝑁1) ∩𝑄𝑅 , as 1
2 · (0 + 1225.6) =

1
2 ·𝐴

1200
𝐻

. By Equation 9, the error associated with the estimate of the
population for land use code 1200 in MBR(𝑁1) ∩𝑄𝑅 is 13 · 12 = 6.5.
Similarly, the corresponding error for land use code 1130 is 4 · 12 = 2.
Thus, the cumulative error for the estimated populated area inside

N1

C13

{(lu_code,1220), 
(area, 156.3),
(population, 158), 
(ℇpopulation, 12)}  

{(lu_code,1240), 
(area, 1069.3),
(population, 53), 
(ℇpopulation,5)}  

{(lu_code,1130), 
(area, 600),
(population, 28), 
(ℇpopulation,4)}  

{[(lu_code,1200), (area,1225.6), (population,211), (ℇpopulation, 13)], 
[(lu_code,1130), (area, 600), (population,28), (ℇpopulation, 4)],
[(lu_code, 2000), (area, 670.7)]}

{(lu_code, 2000), 
(area, 670.7)}  

QR
QRÇMBR(N1)C11

C14

C12

Figure 8: Processing an inner node of a SeA-RT.
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𝑄𝑅 ∩ MBR(𝑁1) from both land use codes is
√
6.52 + 22 ≈ 6.8, ex-

ceeding the tolerance error 𝛼 = 5. Thus, the algorithm proceeds
with examining the children of 𝑁1, whereby:

(1) TheMBR of𝐶11 intersects𝑄𝑅 , but𝐶11 is not a candidate as its
land use, Agriculture (2000), is incompatible with population.

(2) 𝐶12 is not a candidate as its MBR does not intersect 𝑄𝑅 .
(3) Each of 𝐶13 and 𝐶14 is a candidate, but they have incompati-

ble land use codes. Thus, we calculate their errors separately:
(a) For 𝐶13, 𝜖population = 5 as its MBR is entirely contained
within 𝑄𝑅 .

(b) For 𝐶14, assuming 𝐴MBR(𝐶14) = 900 and 𝑄𝑅 intersects
one third of it, the residential area (600) can be either
completely outside the intersection, or 50% inside of it.
Thus, the associated error is 1

2 (0 + 0.5) · 4 = 1 (Eq. 9)
The combined error from 𝐶13, and 𝐶14 is

√
52 + 12 ≈ 5.09,

which still exceeds the user’s tolerance. Thus, the algorithm
continues by processing the children of 𝐶13 and 𝐶14.

4 EXPERIMENTAL RESULTS
To quantitatively evaluate the benefits of SeA-RT on the efficiency
of SeA-RQ processing, we conducted a comprehensive set of ex-
periments using real census and land use datasets, and a syn-
thetic dataset that we generated. We examined two basic variants:
(1) queries involving attributes with numeric values, with and with-
out error bound (e.g., retrieve the population count inside 𝑄𝑅 , with
an error bound 𝛼); (2) queries involving attributes with categorical
values (e.g., retrieve all the single family homes inside 𝑄𝑅 ).

The experiments were run on macOS Sierra (version 10.12.1),
with an Intel Core i7 CPU (3.1GHz with 16GB RAM) for the census
and land use dataset, and on an AWS EC2 instance (t2.medium
with 4GB RAM) for the synthetic dataset. The code implementing
SeA-RT and the algorithms for processing the variants of SeA-RQ,
as well as the datasets used, are publicly available on GitLab [4].

Datasets. We used two datasets of different sizes (Table 1):

• DS1 (small). We started with three datasets with attributes
Census, Census Block Boundaries, and Land Use. Since spa-
tial attributes and population data are not available in a single
dataset, we integrated datasets Population by 2010 census
block and Boundaries - census blocks - 2010), obtained from
the City of Chicago’s open data portal [10]. The Land use
dataset is retrieved from CMAP’s land use inventory [9],
consisting of data for Northeast Illinois including the City
of Chicago. The land use polygons are derived directly from
parcel GIS files, which allows for greater accuracy compared
to the “polygon-based” inventory. The SeA-RT was built on
the overlay of the three data sources, resulting in an output
layer which contains more polygons than the input layers
combined [22, 32]. However, the space was far from the prod-
uct of the cardinalities of the individual inputs. For example,
overlaying 46311 polygons fromCensus Block Boundary and
506274 polygons from Land use, resulted in 552631 polygons.

• DS2 (large). We randomly generated 2 million records (rect-
angles, pentagons, hexagons and octagons) representing a
spatial unit corresponding to a census block. For the seman-
tic attributes associated with each polygon, we randomly

Dataset # Polygons Population Error
range

Land
categories

DS1 555,632 2,024,373 [9, 110] 59
DS2 2,000,000 73,975,267 [2, 20] 59

Table 1: Properties of datasets DS1 and DS2.

assigned values for population, land use (from the classifica-
tion scheme in CMAP’s land use inventory [9]), and error
on the population. The values for the areas were calculated
during the generation of the polygons.

We note that the respective size of the index files were: 71MB
for the SeA-RT and 38.9MB for the R-tree without any semantic
descriptors for DS1; and 555.2MB for the SeA-RT and 311.9MB for
the R-tree without any semantic descriptors for DS2.
Workload and Baseline. The experiments are based on executing
1000 queries with different parameters (𝑄𝑅 , error threshold, land
use), and the average of runs is reported. Specifically: (1) The query
regions were rectangles, with varying size in terms of the overall
spatial region covered by the datasets. (2) For selecting the tolerance
threshold in SeA-RQ, we scanned the error values in each dataset to
determine the interval of all the values. Then we randomly picked
values within a certain percentile from the intervals.

The baseline that we used for comparison is the (plain) R-tree (i.e.,
indexing only the polygons/spatial data). When processing a SeA-
RQ with an R-tree, we first determined the input polygons inter-
secting 𝑄𝑅 , and subsequently evaluated the other constraints (in
terms of 𝛼 and categorical attributes).

Figure 9 shows the comparison of execution times for SeA-RT
vs. R-tree as a function of the size of the query region𝑄𝑅 . The solid
polylines pertain to DS1 and the dashed ones to DS2, with a note
that the time scales are indicated on the right side and left side of
the Y-axis, respectively. The values for the error threshold were
uniformly chosen from the respective ranges in each of DS1 and
DS2. We observe that SeA-RT executes 2-3 times faster.

We also evaluated the number of nodes accessed by each of SeA-
RT and R-tree, using the same settings for the other parameters’
selection. The results are shown in Figure 10. We observe that
in Figure 10.b, where we also show 𝑄𝑅 of a size 80% of the total
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Figure 9: Average query time: R-tree vs. SeA-RT.
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Figure 10: Average number of node accesses by query region
size: R-tree vs. SeA-RT.

area, the ratio of nodes accessed by SeA-RT vs. R-tree is > 1
2 , not

quite matching the ratio of the respective running times shown
in Figure 9. However, there is an explanation for such behavior.
Namely, the R-tree will only check for intersections with 𝑄𝑅 , as
it does not have any descriptors embedded. Thus, in addition to
accessing the inner nodes, answering SeA-RQs with R-trees has
an additional overhead of checking the data objects for qualifying
with respect to the attributes’ values in the semantic descriptors.

Next, we report the impact of the error tolerance threshold on
the query execution time on the SeA-RT. Figure 11 shows that,
as expected, the execution time is proportional to the size of the
query region. However, for smaller query regions, the impact of the
error tolerance 𝛼 is less significant. As the size of 𝑄𝑅 increases, 𝛼
becomes more impactful in the sense that larger values imply faster
processing time as the descent down the SeA-RT can stop sooner.

Experiments providing further insight into the impact of error
tolerance 𝛼 are presented in Figure 12, which shows the number of
nodes accessed by SeA-RQs on dataset DS2 as a function of the size
of 𝑄𝑅 . Each of the four charts refers to a specific value of 𝛼 , hence
the range of values on the vertical axes varies (the larger 𝛼 the
fewer nodes are accessed). In these experiments, we have compared
the number of nodes visited when processing queries using the
SeA-RT, denoted actual, with the number of nodes that would be
visited if one were to access all the nodes that individually satisfy
both the spatial range and the semantic constraints, denoted total.
The experiments show that the aggregation along the hierarchy in
the SeA-RT enables visiting fewer nodes.

In particular, Figure 12.a reports on actual vs. total for 𝛼 = 0, that
is, when exact query answers are required. In this case, the total
number of accesses is the same as in the R-tree, hence the chart
compares the SeA-RT with the R-tree on exact query processing. It
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Figure 11: Impact of error tolerance on query time by query
region size in a SeA-RT.
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Figure 12: Impact of error tolerance on the number of node
accesses by query region size in a SeA-RT (dataset DS2).

is interesting that even in this case, the SeA-RT outperforms the
R-tree. This is due to the benefit of performing aggregation on the
categorical values in the ontology, a feature not available in the
R-tree.

We also considered separately the impact of semantic descrip-
tors with categorical values for the attributes on the efficiency.
Specifically, we used SeA-RQs with different values for the land
use, selected from the ontology of Figure 3. Figure 13 shows the
execution times for different values of 𝑄𝑅 on the X-axis, and the
comparative bars for the land use (LU) codes. As can be seen, if the
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Figure 13: Impact of categorical attributes on query time
(dataset DS2).

query goes to the level of detail 1100 (i.e., the Residential category),
which is the root of the (sub)hierarchy for the other values, due to
the nature of the augmentation in SeA-RT’s hierarchy, the execu-
tion time is fastest because the descent can terminate earlier in the
inner nodes.

We note that the difference between the land use codes of 1130 vs.
(1111 of 1112) is negligible for the smallest and largest values of𝑄𝑅 .
The reason is the proximity in the hierarchy, which is reflected
in the construction of SeA-RT. In smaller regions, there are fewer
merges of 1111 and 1112 codes in the hierarchy, whereas for large
regions, the processing will have to investigate many nodes.

5 RELATEDWORK
Our work touches on many subjects related to spatial data struc-
tures, querying, data integration, and uncertainty. We group related
work into two topics: Augmented spatial indexes, which includes
efficient query processing and uncertainty, and Combined geospatial
data for population estimation.
Augmented spatial indexes. Efficient processing of spatial and
spatio-temporal queries (e.g., range, nearest-neighbor) over uncer-
tain data has been investigated for over two decades [29, 42]. In
particular, the R-tree, the R∗-tree, and their extensions have been
widely used for spatial data querying. Starting with the classical
problem of map overlay, where efficient detection of intersecting
segments is key [47], the R-tree has been used in such a way that
more nodes are generated in areas with many edge segments, thus
adapting to non-uniform distributions [44]. To efficiently process
queries combining spatial and textual information for location-
based web search (e.g., find web content related to a given place or
region), the R∗ tree has been coupled with inverted files to enable
pruning in both the textual and spatial dimensions [50]. Also, com-
bining spatial and textual information for efficient query processing
has been supported by extending the R-tree with signature files, the
IR2 tree [19], and with motion attributes (e.g., bus, walk) associated
with a trajectory, the IRWI tree [27].

A variation of R–trees for probabilistic range queries over existen-
tially uncertain objects was presented in [17]. Efficient processing
of spatial range queries over multidimensional uncertain objects
using a new spatial data structure, the U-tree, was presented in [40].
It enabled early pruning of subtrees that either do not intersect with

the query region, or already satisfy a probabilistic threshold on the
error. Our SeA-RT also extends the R-tree with additional semantic
information. However, we allow for multiple types of semantic
descriptors, ontologies for categorical attributes, and the notion of
acceptable bound on the uncertainty due to the imprecision of the
data in both the index structure and the query processing algorithm.
Although less directly related to our work, other spatial indexes
have been extended with semantic/textual information, such as
combining inverted files with space-filling curves [8].
Combined geospatial data. The combination of disparate data
has been a “persistent and perplexing” problem [25]. Facets of this
problem include areal interpolation and polygonal overlay, which
we use in our paper.

The problem to obtain spatially disaggregated population esti-
mates has two sides: one where there is the absence of national
population (e.g., in low income countries) and the other where hous-
ing census is unreliable. In the former case, the process involves a
bottom up approach and, in the latter case, a top down approach.
Both use covariates such as distance to major roads to improve the
predictive accuracy [45]. Earlier work is based on areal interpola-
tion and statistical modeling [48] and on a dasymetric mapping
method, which transfers from a spatial unit system to another one
using ancillary datasets [30, 31]. Examples of ancillary datasets
include those captured by satellite remote sensing like land cover
data. LIDAR remote sensing is used to derive building volumes as
a population indicator thus using a third dimension, which is the
height of the buildings [36, 37].

We have used the land use ancillary dataset in addition to areal
interpolation to estimate population in a query region.

6 CONCLUSIONS AND FUTUREWORK
We have proposed semantically augmented range queries (SeA-RQ).
which enable retrieving geospatial data enriched with semantic
descriptors, organized in an ontology. Our approach integrates
different kinds of semantic descriptors, both categorical and nu-
merical, and incorporates the uncertainty of numerical values in
real-world data sources. For efficient processing of a SeA-RQ, we
have presented a novel indexing structure, the semantically aug-
mented R-tree (SeA-RT), which aggregates spatial shapes together
with semantic descriptor by leveraging ontologies and statistical
error propagation for efficiency. An experimental evaluation of our
approach has been conducted on real and synthetic datasets.

A first direction of future work is to extend our aggregationmeth-
ods and areal interpolation techniques datasets with nonuniform
spatial distributions. Another direction is to broaden the spectrum
of aggregation functions, such as median. We also plan to study
updates on a SeA-RT: insertions and deletions of objects originate
at the leaves and propagate up the tree, requiring methods to effi-
ciently update the semantic information at affected nodes. Finally,
a major challenge is to seamlessly integrate the notion of semantic
similarity in the construction of the SeA-RT and investigate its
impact on efficient processing of SeA-RQs.
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