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ABSTRACT

We address the problem of localizing multiple intruders (unautho-
rized transmitters) using a distributed set of sensors in the con-
text of a shared spectrum system. In contrast to single transmitter
localization, multiple transmitter localization (MTL) has not been
thoroughly studied. In shared spectrum systems, it is important
to be able to localize simultaneously present multiple intruders to
effectively protect a shared spectrum from malware-based, jam-
ming, or other multi-device unauthorized-usage attacks. The key
challenge in solving the MTL problem comes from the need to “sep-
arate” an aggregated signal received from multiple intruders into
separate signals from individual intruders. Furthermore, in a shared
spectrum paradigm, presence of an evolving set of authorized users
(e.g., primary and secondary users) adds to the challenge.

In this paper, we propose an efficient algorithm for the MTL prob-
lem based on the hypothesis-based Bayesian approach called MAP.
Direct application of the MAP approach to the MTL problem incurs
prohibitive computational and training cost. In this work, we de-
velop optimized techniques based on MAP with significantly im-
proved computational and training costs. In particular, we develop
anovel interpolation method, ILDW, which helps minimize the train-
ing cost. We generalize our techniques via online-learning to the
setting wherein there may be a set of dynamically-changing autho-
rized users present in the background. We evaluate our developed
techniques on large-scale simulations as well as on small-scale in-
door and outdoor testbeds. Our experiments demonstrate that our
technique outperforms the prior approaches by significant margins,
i.e., error up to 74% less in large-scale simulations and 30% less in
real-world testbeds.
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1 INTRODUCTION

The RF spectrum is a natural resource in great demand due to
the unabated increase in mobile (and hence, wireless) data con-
sumption [3]. The research community has addressed this capacity
crunch via development of shared spectrum paradigms, wherein
the spectrum is made available to unlicensed users (secondaries)
as long as they do not interfere with the transmission of licensed
incumbents (primaries). E.g., in the recent years, the FCC has made
available the CBRS band, i.e., the 3550-3700 MHz band within the
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Figure 1: Overall approach to localize intruders in a shared
spectrum system.
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3.5 GHz band, for shared commercial use to allow other users to uti-
lize the otherwise low-usage band which was previously reserved
for incumbent users including US Navy radar operators.

The increasing affordability of the software-defined radio (SDR)
technologies makes the shared spectrums particularly prone to
unauthorized usage or security attacks. With easy access to SDR
devices [1, 2], it is easy for selfish users to transmit data on shared
spectrum without any authorization and potentially causing harm-
ful interference to the incumbent users. Such illegal spectrum usage
could also happen as a result of infiltration of computer virus or
malware on SDR devices. As the fundamental objective behind such
shared spectrum paradigms is to maximize spectrum utilization,
the viability of such systems depends on the ability to effectively
guard the shared spectrum against unauthorized usage. The current
mechanisms however to locate such unauthorized users (intruders)
are human-intensive and time-consuming, involving FCC enforce-
ment bureau which detects violations via complaints and manual
investigation [18]. Motivated by above, we seek for an effective
technique that is able to accurately localize multiple simultaneous
intruders and even in the presence of dynamically changing set of
authorized users. In the following, we begin with describing the
multiple transmitter localization problem.

Multiple-Transmitter Localization (MTL). The transmitter lo-
calization problem has been well-studied, but most of the focus has
been on localizing a single intruder at a time. However, it is impor-
tant to localize multiple transmitters simultaneously to effectively
guard a shared spectrum system. E.g., a malware or virus-based
attachment could simultaneously cause many devices to violate
spectrum allocation rules; spectrum jamming attacks would typi-
cally involve multiple transmitters. More importantly, a technique
limited by localization of a single intruder could then be easily
circumvented by an offender by using multiple devices. The key

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on January 04,2021 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.



challenge in solving the MTL problem comes from the fact that
the deployed sensor would receive only a sum of the signals from
multiple transmitters, and separating the signals may be impossible.
In addition, the other challenge that MTL in the context of shared
spectrum system poses is the presence of authorized users—e.g., the
incumbent users and the dynamic set of secondary users that have
been allocated spectrum by the manager. To the best our knowl-
edge, no prior localization work has considered the presence of
authorized users.

The state-of-the-art technique for the MTL problem is the re-
cent work [18], which essentially decomposes the MTL problem
to multiple single-transmitter localization problems based on the
sensors with the highest power readings in a neighborhood. How-
ever, the technique has a few shortcomings: (i) it implicitly assumes
a propagation model, and thus, may not work effectively in areas
with complex propagation characteristics, (ii) it is not effective in
the case of transmitters being located close-by, a key challenging
scenario for MTL problem, and (iii) most importantly, it can’t be
extended effectively to incorporate background authorized users, a
key requirement in the context of shared spectrum systems.

Our Approach. Transmitter localization is generally done based on
observations at deployed sensors. In particular, as in prior works [7,
18], we assume a crowdsourced sensing architecture wherein rel-
atively low-cost spectrum sensors are available for gathering sig-
nal strength in the form of received power. Our approach is a
hypothesis-driven Bayesian approach, viz. maximum a posteriori
(MAP) approach, wherein each hypothesis is a configuration (i.e.
a combination of (location, power) pair) of the potential intrud-
ers, and the goal is to determine the hypothesis that best explains
the sensor observations. This determination is done based on the
distributions (gathered during a training phase) of sensor obser-
vations for each hypothesis. The MAP approach is known to have
optimal classification accuracy, but (i) incurs prohibitive compu-
tation cost—exponential in number of potential intruders—when
applied to the MTL problem, and (ii) requires significant amount of
training cost. The focus of our work is to address these challenges,
and design a viable MAP-based approach. In particular, using MAP
as a building block, we develop an optimized approach that runs
in polynomial time with minimized training cost. We extend our
technique to work in presence of authorized users by incorporating
online (real-time) training.

Motivation for MAP. Our motivation for using a MAP-based approach
is multifold: First, with sufficient training data, MAP is known to
deliver optimal classification accuracy for the MTL problem [11].
Second, the MAP approach doesn’t assume any propagation model
and thus works for arbitrary signal propagation characteristics.
Third, it allows us to also estimate the intruder’s transmit power,
which can be very useful in some applications, e.g., where the
penalty is proportional to the extent of violation. Last but not the
least, it naturally extends to being able to handle a presence of an
evolving set of authorized users.

Training Cost and Optimization. The benefits of a MAP-based ap-

proach come at a cost: the MAP framework requires prior training to
build probability distributions (PDs) of sensor observations for each
hypothesis. However, most of the training occurs offline, one-time,
and can be automated e.g. via drones or robots. In our work, we
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develop strategies to minimize the training cost; in particular, we
reduce the number of PDs to be constructed via a novel interpolation
scheme suited to our unique setting, and evaluate the impact of re-
duced training on the localization accuracy. We note that the online
training to incorporate presence of authorized users is needed only
for the prevailing setting (of authorized transmitters and deployed
sensors) and hence incurs minimal cost (see §4).

Overall Contributions. The goal of our work is to develop an effi-
cient technique for accurate localization of simultaneously present
multiple intruders in a shared spectrum system. The raw data are
available at https://github.com/Wings-Lab/IPSN-2020-data. In this
context, we make the following four specific contributions.

(1) Design an efficient localization algorithm (MAP*) for the MTL
problem, based on an optimal hypotheses-driven Bayesian
approach. The designed approach predicts both locations
and transmit powers of the intruders, and does not assume
any propagation model and thus, works for arbitrary signal
propagation characteristics.

(2) Extend the designed algorithm (MAP**) to localize effectively
in the presence of background authorized users, i.e., pri-
maries with possibly unknown parameters (e.g., location
and transmit power) and an evolving set of secondary users.

(3) Develop an effective interpolation scheme (ILDW) for our
unique setting to reduce the one-time training cost of our
scheme, without impacting the localization accuracy much.

(4) Evaluate our techniques via large-scale simulations as well
as over two developed testbeds (indoor and outdoor), and
demonstrate the effectiveness of our developed techniques
and their superior performance compared to the best-known
techniques.

2 PROBLEM, RELATED WORK, AND
METHODOLOGY

In this section, we describe our model of the shared spectrum sys-
tems, formulate the MTL problem, and discuss related work. We
also describe the building block of our approach, viz., a hypothesis-
drived Bayesian localization approach (MAP).

Shared Spectrum System. In a shared spectrum paradigm, the
spectrum is shared among licensed users (primary users, PUs) and
unlicensed users (secondary users, SUs) in such a way that the
transmission from secondaries does not interfere with that of the
primaries (or secondaries from a higher-tier, in case of a multi-tier
shared spectrum system [29]). In some shared spectrum systems,
the location and transmit power of the primary users may be un-
available, as is the case with military or navy radars in the CBRS
band [29]. Such sharing of spectrum is generally orchestrated by
a centralized entity called spectrum manager, such as a spectrum
database in TV white space [19] or a central spectrum access sys-
tem in the CBRS 3.5GHz shared band [16]. The spectrum manager
allocates spectrum to requesting secondaries (i.e., permission to
transmit up to a certain transmit power at their location) based on
their location, spectrum demand, configurations of the primaries,
other active secondaries, prevailing channel conditions, etc.

Authorized and Unauthorized Users. Secondary users that have
been explicitly given permission to transmit at their location are
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termed as authorized users; the primaries users are also considered
as authorized users. Note that the set of authorized users evolve
over time, as more and more SUs are allocated spectrum and as
some SUs stop using the spectrum after a while. We can assume
that each SU is allocated spectrum for a certain duration of time,
after which it stops using the spectrum. Other users that transmit
without explicit permission (for that given time) are referred to as
unauthorized users or intruders.

Problem Setting and Formal Definition. Consider a geographic
area with a shared spectrum. Without loss of generality, we assume
a single channel throughout this paper (multiple channels are han-
dled similarly). For localization of unauthorized users, we assume
available crowdsourced sensors that can observe received signal in
the channel of interest, and compute (totel) received signal strength
indicator (RSSI)!. These sensors, being crowdsourced, may be at dif-
ferent locations at different times. At any given instant, the shared
spectrum area has some licensed primary users and some active
secondary users; the PU configurations may not be known as can
be the case for military users. The centralized spectrum manager
is aware of the set of active SUs at any time, as each SU request is
granted for a certain period of time. In addition to the authorized
users, there may be a set of intruders present in the area with each
intruder in a certain “configuration” (see §2.2).

The MTL problem is to determine the set of intruders with their
configurations at each instant of time, based on the set of sensor
observations at that instant. See Figure 1. The basic MTL problem
assumes no other transmissions (of authorized users) in the back-
ground. The more general MTL problem, where there may be an
evolving set of authorized users in the background, is referred to as
the MTL-SS problem. We address the MTL problem in §3, and then
address the more general MTL-SS problem in §4.

2.1 Related Work

Localization of an intruder in a field using sensor observations has
been widely studied, but most of the works have focused on local-
ization of a single intruder [6, 12]. In general, to localize multiple
intruders, the main challenge comes from the need to “separate”
powers at the sensors [24], i.e., to divide the total received power
into power received from individual intruders. Blind source separa-
tion is a very challenging problem; only very limited settings allow
for known techniques [20, 28] using sophisticated receivers. In our
context of hypotheses-driven approach, the challenge of source
separation manifests in terms of a large number of hypotheses, a
challenge addressed in §3. We note that (indoor) localization of a
device [4] based on signals received from multiple reference points
(e.g, WiFi access points) is a quite different problem (see [30] for a
recent survey), as the signals from reference points remain sepa-
rate, and localization or tracking of multiple devices can be done
independently. Recent works on multi-target localization/tracking
are different in the way that targets are passive [9, 15, 17], instead
of active transmitters in this work.

In absence of blind separation methods, to the best of our knowl-
edge, only a few works have addressed multiple intruder(s) localiza-
tion, and none of these consider it in the presence of a dynamically

!We do not use angle-of-arrival (AoA) measurements [32] as they require additional
and complex RF hardware.
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changing set of authorized transmitters. In particular, (i) [18] de-
composes the multi-transmitter localization problem to multiple
single-transmitter localization problems based on the sensors with
highest of readings in a neighbohood, (ii) [22] works by cluster-
ing the sensors with readings above a certain threshold and then
localizing intruders at the centers of these clusters, (iii) [23] uses
an EM-based approach. The techniques of [18, 23] assume a propa-
gation model, while that of [22, 23] require a priori knowledge of
the number of intruders present. We have compared our approach
with [18, 22] in §5, while [23] has high computational cost and has
also been shown to be inferior in performance to [18, 22] even for a
small number of intruders. Other related works include (i) [13] that
addresses the challenge of handling time-skewed sensors observa-
tions in the MTL problem, and (ii) [5] that addresses the sensor
selection optimization problem for our proposed hypotheses-based
localization approach.

2.2 MAP: Bayesian Approach for Localization

We localize intruders based on observations from a set of sensors.
Each sensor communicates its observation to a centralized entity,
the spectrum manager, which runs an appropriate localization algo-
rithm to localize the intruders. In particular, we use a hypotheses-
driven Bayesian approach, as described below, where intruders are
localized by determining the most-likely prevailing hypothesis; this
is done based on joint probability distributions of the sensors’ obser-
vations (constructed during a priori training). Below, we formalize
the above concepts, and the basic localization approach.

Observation; Observation Vector. Throughout this paper, we use
the term observation at an individual sensor to mean the received
power over a time window of certain duration, in the frequency
channel of interest (we assume only one channel). In particular,
received power is computed from the FFT of the I/Q samples in the
time window [6]. We use the term observation vector x to denote a
vector of observations from a given set of distributed sensors, with
each vector dimension corresponding to a unique sensor.

Hypotheses. Let Hy, Hy, ...,
Hy;, be the set of all hypotheses,
where each hypothesis H; rep-
resents a “configuration” of po-

(lll pl)

tential intruders. In this paper, i
we largely assume an intruder’s
configuration to be comprised
of just its location and transmit
(13, p3)

power, but the concept of con-
figuration is quite general and
could include any attributes (e.g.,
height, antenna direction, etc.)
that affects how its transmitted
signal is received at other locations. Moreover, for simplicity, we
assume that each intruder transmits at a fixed power (which may
be different for different intruders). Thus, in our context, a configu-
ration is simply the set of (location, transmit power) pairs of the
potential intruders. We assume a bounded number of intruders. We
use Hp to represent the hypothesis with no intruders. See Figure 2.

If there is only one intruder, then each hypothesis represents
the location and transmit power combination of the intruder, and

Figure 2: Illustration of
a hypothesis formed of
three transmitters.
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determining the hypothesis is equivalent to localizing the intruder
and estimating its power. If we allow multiple intruders at a time, the
number of possible hypotheses can be exponential in the number
of intruders; we will address this challenge in §3.

Inputs. For a given set of sensors deployed over an area, we assume
the following available inputs, obtained via a priori training, data
gathering and/or analysis:

e Prior probabilities of the hypotheses, i.e. P(H;), for each hy-
pothesis H;. Prior probabilities come from known knowledge
about area, intruder’s behavior, etc., and can be assumed to
be uniform in absence of better knowledge.

Joint probability distribution (JPD) of sensors’ observations
for each hypothesis. More formally, for each hypothesis Hj,
we assume P(x|H;) to be known for each observation x for
the set of deployed sensors. The JPDs can be obtained from
prior training, a combination of training and interpolation
(§3.3), or even by assuming a propagation model to remove
the training cost completely.

Maximum a Posteriori (MAP) Localization Algorithm. We use
Bayes rule to compute the likelihood probability of each hypothesis,
from a given observation vector x:

P(x|H;)P(H;)

PO = S oy P ()

(1)
We select the hypothesis that has the highest probability, for given
observations of a set of sensors. That is, the MAP Algorithm returns
the hypotheses based on the following equation:

(2)

arg m’%{ P(H;|x)
i=

The above MAP algorithm to determine the prevailing hypothesis
is known to be optimal [11], i.e., it yields minimum probability of
(misclassification) error. The above hypothesis-based approach to
localization works for arbitrary signal propagation characteristics,
and in particular, obviates the need to assume a propagation model.
However, the above MAP algorithm does incur a one-time training
cost to construct the JPDs.

3 MAP*: OPTIMIZING MAP FOR MTL

The MAP algorithm of §2.2 can be directly applied to localize mul-
tiple intruders with optimal localization accuracy. However, MAP
incurs prohibitive computational cost especially for a large number
of potential intruders. In particular, note that if there are L poten-
tial locations, up to T potential intruders, and W possible discrete
transmit-power levels, then the hypotheses-driven MAP algorithm
needs to consider (LW)” hypotheses—making its runtime complex-
ity exponential in number of potential intruders, and thus, making
it impractical for localizing even a moderate number of intruders
present simultaneously. In addition, MAP also incurs a high training
cost. In the following subsections, we develop an optimized algo-
rithm called MAP* based on MAP but with significantly improved
computational and training cost. We start with optimizing the com-
putation cost in §3.1. In the following subsection §3.2, we derive a
closed-form expression to efficiently estimate intruder’s power in
the continuous domain. Finally, we discuss optimizing the training
cost via a novel interpolation scheme ILDW.
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3.1 Optimizing Computation Time

Basic Idea. Note that the MAP’s exponential time complexity is
due to the exponential number of combinations of locations and/or
powers of the potential intruders. To motivate our proposed op-
timized approach, consider a simple example of 2 intruders with
fixed power p in a large area. Assume that the “transmission radius”
r for power p is much smaller than the area; we define the transmis-
sion radius as the range till which the received signal is more than
a certain noise floor. The key observation is that if the intruders
are far away (isolated) from each other (specifically, more than 2r
distance away), then they could be localized independently. If the
intruders are closer, then there is a need to separate aggregated
signal at some of the sensors and hence we must apply the stan-
dard MAP algorithm within that “subarea” however, since each such
subarea is small (a disk of 2r radius around each possible location),
the computation time is reduced significantly. However, since we
do not a priori know the configurations of intruders, we need to
consider appropriate possibilities.

In essence, our optimized approach is a divide-and-conquer ap-

proach, consisting of a sequence of two procedures each of which
is executed iteratively. The first procedure focuses on localizing
“isolated” intruders (if any) independently, while the second proce-
dure localizes the remaining intruders—by considering all possible
subareas as suggested above. The challenge lies in modifying the
MAP algorithm for each iteration of the above procedures—as the
hypotheses to consider across iterations of the procedures are not
disjoint. We now describe each of the procedures.
Procedure 1. Localize Isolated Intruders. Informally, in this pro-
cedure, we localize intruders that are sufficiently separated from
other intruders. In other words, we localize intruders x that are
surrounded by sensors that receive most of their received power
from x. More formally, we localize an intruder x at location [ if (i)
I’s “neighborhood” has at least 3 sensors that receive most of their
power from x, and (ii) there are no other intruders in the “vicinity”
of [. In essence, we iterate over all locations [, and localize an in-
truder at [ if the above conditions are satisfied with high enough
probability, based on the readings of sensors around I. The precise
definition of neighborhood above must depend on x’s transmis-
sion radius which depends on its transmit power; however, as x’s
transmit power is unknown, we iterate over smaller and smaller
neighborhoods.

We now formally describe the procedure. Let R, denote the
transmission radius for a transmit power of p. Let R denote the
maximum transmission radius, i.e.,

max R,.
) P

In the below description, we use a fractional value f to define a
neighborhood and vicinity size. We start f equal to 1, use a disk
of radius fR, as a neighborhood and R + fR;, as the vicinity, and
iterate over the procedure for reduced values of f.
(a) Let f =1.
(b) For each location and power pair (I, p), compute P(H] ,|x;, )
using a form of Equation 1 over appropriate JPDs. Here:
e Hj,j, represents the hypothesis that an intruder is at location
I and using p transmit power. We also implicitly assume
that there is no other intruder present within a distance of
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Figure 3: Illustration of Hypothesis % , in Step (b) of Pro-
cedure 1. Here, the intruder I at location / is transmitting at
power p, with no other intruder within a distance of R + R,
from I. The observation vector x; , consists of residual re-
ceived powers from R1 to R4, and “noise floor” from the re-
maining sensors.

R+ fRyp from I; this ensures that the observations in x; , are
only due to the intruder at [. See Figure 3.
X] p represents the observation vector for all sensors, but
the sensors that are within a radius of fR, around [ use
an observation of “residual” received powers, as defined be-
low, while the remaining sensors (outside the radius of fR;,
around /) use an observation of the “noise floor” (in essence,
we are “zeroing” the observations of the far-away sensors).
See Figure 3.

(c) Denote (I, p) pairs that have P(H] ,|x; ,) higher than a certain
threshold as peaks. If a location [ is a peak and there are no
other peaks within a distance of R + fR;, then localize an
intruder at [ with transmit power p.

(d) For each sensor s, define its residual received power (RRP) as
the total received power reduced by the sum of mean powers
received from already localized intruders; the desired mean
values are available from the given JPDs.

(e) Reduce f and go back to step #2 above, unless no new intruders
were localized in (c) above. In our experiments, we used f =
1,1/2,1/4 and 1/8.

The above procedure is partly inspired by the recent localization
work [22]. However, instead of discarding sensors based on their
individual power and clustering the rest as in [22], we “discard” sen-
sors based on their neighborhood readings (i.e., likelihood P(x|H;)
values) and then “cluster” the remaining sensors. Also, we “cluster”
iteratively, for smaller and smaller neighborhoods.

Procedure 2. Localize Intruders Situated Close-By. Once we
have localized separated intruders as above, we now localize re-
maining intruders, if any, by applying the general MAP algorithm
independently over “subareas” that still have some sensors with
high-enough RRP (residual received power), but no intruder local-
ized in the “vicinity” Formally, the procedure is as follows. Let T be
the maximum number of intruders allowed within a disk of radius
R, the maximum transmission radius.
(a) Let s be the sensor with highest RRP; if s’s RRP is below a
certain threshold (tantamount to noise), then quit.
(b) Fort=2toT:UseMAP (from §2.2) to try to localize ¢ transmitters
within a disk of radius R around s, using observations of sensors
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within a radius of 2R from s. We use a certain threshold for a
posterior probability, in a similar way as for Procedure 1.
(c) Update RRP of each sensor, and go to step (a) above.

Time Complexity. The worst-case time complexity of the first
procedure is O(LWGRg log(GR)), where L and W are the number
of potential locations (total grid cells) and transmit power levels
respectively, and Gg is the maximum number of grid cells within a
transmission range of an intruder. Here, the first term O(LWGR) is
the time to compute the likelihood values in each iteration, since the
number of sensors involved in each computation is at most Gg. Note
that the number of iterations is bounded by log(GR), as f is reduced
by a constant multiplicative factor. The worst-case time complexity
of the second procedure is O(Ggr(Gg)T) where T is the maximum
number of intruders allowed/possible in a transmission region (i.e.,
a circle of radius at most R). Thus, the overall time complexity of the
above localization algorithm is O(L.W.Gg. log(Gg) + Ggr.(Ggr)T).
Generally, we would expect T to be a small constant, as more than
3 intruders in a R-radius region with a R transmission range would
interfere with each other. If we also consider Gg as a small constant,
the overall time complexity can be considered to be O(L.W). In the
following subsection, we further reduce the time complexity by
removing the factor of W.

3.2 Intruder Power Estimation in the
Continuous Domain

In this subsection, we derive a closed-form expression to estimate
an intruder’s power in the continuous domain, for the special case
of single intruder and Gaussian probability distributions [14]. The
derived result essentially removes the assumption of discrete power
levels, and reduces the number of hypotheses to consider by a factor
of W. We use this result within Procedure 1 of previous subsection
to further optimize its time complexity and performance.

Estimating Intruder Power, Given a Location. Consider the
special case of a single intruder in an area. In this case, each hy-
pothesis can be represented as Hj, j,, for each location / and power
p of the potential intruder. Let us focus on a particular location [*
and the corresponding hypotheses #j: ,,. For a given observation
vector x, we wish to estimate the power P that corresponds to the
hypothesis with maximum likelihood among the hypotheses Hj« ,.

P = arg max, P(H+ ,|x)

The value P can be computed by computing P(H): , |x) for each p,
but our goal is to derive a closed-form expression for P from the
given JPDs; such an expression yield power estimate in continuous
domain without computing P(Hj- ,|x) for each possible discrete p.

For each sensor (location) j, let P(x;|H] ;) represent the prob-
ability distribution (PD) of j’s observations x; when the intruder is
at I* transmitting with power p*, the power used at training. For a
fixed I* and p”, the set of PDs P (x;|H+ ,+) are equivalent to the
JPDs defined in §2 under the assumption of conditional indepen-
dence?. Let us assume that the above PDs are Gaussian distribu-
tions [14], and thus, can be represented as P (x;|Hj+ p+) = N(u;, sz)
for a given I* and p*. In the above setting, the power value P that
PD P(x; |Hj, ) canbe computed P(x; | Hx ¢ ) for any p, as the path-loss can be as-

sumed to be independent of the transmit power, and JPD P (x|}~ ,) can be computed
as product of PDs P(x; | H}« p,) due to the conditional independence assumption.
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maximizes P(H}- ,|x) can actually be derived as a closed-form ex-
pression; we state the result formally in the below lemma.

LEMMA 1. Consider the special case of a single intruder in an
area. For a specific location I* and power p* (the only power used
during training), let P(x;|Hjs ) represent the PDs of the sensor
obversations at location j. Now, given the above PDs for various j and
an observation vector x, the power value P = arg maxp P(H}s p|x) is
given by:

33y L - pp)

R —

S X
2j:1 G_Jz

>

where y = I—[}g:1 crjz and S equals to the number of sensors in the
neighborhood of 1*. |

We omit the proof here, but give its intuition based on a special
case. Consider the special case wherein each o; is 1 for all j. In this
5 Ge—py)

s>
which implies that if each observation x; is ¢ more than its mean
j then P is also ¢ more than p*. We note that the above result does
not extend to the case of multiple intruders. In short, the proof is
a process of solving maximum likelihood esitmaion and multiple
intruders introduce transcendental functions, thus cannot derive a
closed-form solution.

special case, the Lemma’s equation reduces to P = p* +

Use of Lemma 1 in MAP*. For localization of multiple intruders,
Lemma 1 can only be used in Procedure 1 of §3.1, due to its assump-
tion of a single intruder. In particular, we can Procedure 1 of §3.1
as follows.

e We replace Rp, by R, the maximum transmission radius.

e For each location /, using Lemma 1, we first compute the
power p(I) such that the hypothesis % ,(;) has the most like-
lihood (among the hypotheses at [) using the observations
from sensors within a radius of R.

e Then, in the rest of the procedure, we only consider the
(location, power) pairs of the type (I, p(l)) for any 1.

Rest of the Procedure 1 remains unchanged. The above change has
two benefits. First, the powers predicted in Procedure 1 are now
continuous rather than discrete. Second, the above removes the
factor of W from the time complexity of MAP* and reduces it to
O(LGR log(GRr) + Gr(Gr)T) which becomes O(L) if we consider
Gg and T to be relatively small constants.

3.3 ILDW: Optimizing Training Cost

As in supervised machine learning algorithms, our Bayesian ap-
proach also needs training data. We use the term training to denote
the process of collecting data and building up the JPDs for the hy-
potheses. Note that this training phase is done only one-time,> and
hence, a certain cost is acceptable. The training cost incurred dur-
ing such data gathering depends greatly on the exact mechanism
used for such purposes, e.g., drones with appropriate routes can be
used to gather such data [26]. In general, the cost of training would

3JPDs depend on the channel state and hence, must be updated periodically to account
for any changes in the environment (e.g., terrain, buildings, etc.); however, such
environment changes are infrequent. Also, note that the online-training of §4 is done
repeatedly, but only for specific sensors and authorized users, and thus incurs minimal
cost. See [31] for spectrum sensing in both spatio and temporal domains.
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depend on the number of JPDs that need to be constructed, with the
cost reduced with reduction in the number of JPDs needed. In this
subsection, we design effective interpolation schemes that are useful
in reducing the number of JPDs gathered which in turn will reduce
the overall training cost. Note that reduction in JPDs constructed
from raw data is bound to negatively impact the accuracy—we will
evaluate this trade-off in our evaluations and show that impact
on accuracy is minimal even with significant reduction in training
cost.

Probability Distributions. First, we note that making the follow-
ing reasonable assumptions and observations can greatly reduce
the number of JPDs/PDs to be constructed.

o If we assume conditional independence of sensor observa-
tions, then JPDs can be computed from independently con-
structed probability distributions (PDs) of received powers
at individual sensors.

Since received power at a sensor location x due to multiple
transmitters is merely a sum of received powers [18, 27] due
to individual transmitters, we can compute PD at x for a
particular hypothesis involving a set S of intruders from PDs
due to each individual intruder in S.

Lastly, we need to only construct a PD for one transmit
power for each transmitter and sensor location pair, since
path-loss is independent of transmit power.

Based on the above observations, if there are L discrete locations
in an area for sensors or intruders, then a MAP-based approach
requires L? PDs. Below, we propose to minimize the number of PDs
to be constructed via data gathering/training, by estimating the
remaining unconstructed PDs via interpolation.

Minimizing Training Cost with Pre=-Q=-t-0=9-0Q
ILDW. Consider a particular loca- 1 1 H H
. % Sy T T T T
tion I* of a po.tentlal intruder. Our bdeddid
eventual goal is to compute the PD i i i i
. Iy 'y ' d

for each of the L possible sensor H TR e g
locations for this location I* of a Q-e--Q=—-¢-C—4-0Q
potential intruder; a PD may be . A H H
computed either by constructing i i i i
O--0=-O=-=-CO=e=-0

it directly from gathered sensor ob-
servations or by estimation via in-
terpolation from the constructed
PDs. In particular, for effective
interpolation, we construct PDs
at coarser-grid sensor locations,
and estimate via interpolation the
PDs at the remaining finer-grid lo-

Figure 4: Training for
PDs at coarse-grained
locations (yellow big-
ger dots), while esti-
mating PDs using inter-
polation at the remain-
ing fine-grained loca-

cations. See Figure 4. The exact tions (red smaller dots).

coarseness at which the PDs are

constructed is determined by the accuracy of the interpolation
scheme for a given area and/or the impact on localization accuracy
due to estimated PDs. Below, we describe the interpolation scheme
that we use for our purposes.

ILDW Interpolation Scheme. Consider a fixed transmitter location

I*, and let us assume locations Ry, Ry, - - - , R, for which we know
the path loss from I*. Now, consider a new point Ry for which
we wish to estimate the path-loss from [*. This is a traditional
interpolation problem and well-known schemes such as inverse
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distance weighting (IDW), Ordinary Kriging (OK), k-NN, etc. have
been evaluated even in the special context of signal strength or
received power [7]. However, our specific context has an unique
element. We know the location I* of the transmitter from which
the path-loss is being estimated—as we are in the training phase
wherein we are gathering observations with transmitter at [*. In
light of the above unique element of our setting, and the observation
of wireless signal characteristics, we use a custom interpolation
technique which is a nontrivial modification of the IDW scheme,
called inverse log-distance weighting (ILDW). The traditional IDW
interpolation scheme estimates the path loss at Ry by taking a
weighted average of the path-losses at Ry, Ry, - - , Ry, with the
weight being the inverse of the distance from Ry.

In our proposed ILDW scheme, we still estimate the path loss
at Ry as a weighted average of values at R;’s, but assign weights
differently. In particular, we assign the weight for the point R; as the
inverse of the “distance” between Ry and R; in the domain where
each point is represented merely by its logarithmic distance from
I*, the known transmitter’s location—i.e., each point R; is mapped
to a point log d(R;,1*) on a line. This mapping is motivated by the
expectation that the actual path loss would be somewhat similar
to the log-distance path loss. Thus, the weight for the point R; is
assigned to be

1
Y= Tlogd(Ri, 1) — log d(Ro, )]’

where d() is the Euclidean distance function and the path loss at
Ry is estimated as:
2 win

Zhawi’
where uj denotes the path loss at point R; from [*. In the above
equation for weights, if denominator is zero, then we assign w; to be
equal to the maximum of the weights among the given points (and
if all denominators are 0, each weight is assigned to be 1). For an
illustration of the above scheme, see Figure 5. In the IDW scheme,
R1 and Ry will get equal weights, but under the ILDW scheme they
will get weights of 5.57 and 8.00 respectively. More importantly, it
can be easily shown that, for log-distance path loss, ILDW estimates
the path loss for Ry accurately from two unknown points R; and
Ry, if d(Ry1,1*) < d(Ro, 1) < d(Ra, I*).

The above discussion has been on using ILDW for estimating
path-loss values. In general, it can be easily used to estimate PDs
from the PDs at neighboring points—essentially, we can use ILDW
to estimate both the mean and standard deviation of a Gaussian PD
from other means and standard deviations respectively.

ug =

4 MAP*: LOCALIZING IN PRESENCE OF
AUTHORIZED USERS

We have implicitly assumed till now that the only transmitters
present in the area are the intruders which need to be localized. In
this section, we adapt our MAP* approach described in the previous
section to the setting wherein there may be authorized transmitters
in the background and the localization technique must take their
presence into account. In particular, in a shared spectrum paradigm,
there are primary users and an evolving set of active secondary
users transmitting in the background. The key challenge comes
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Figure 5: Illustration of ILDW vs. IDW. (a) Transmitter (T),
points with known (R1 and R2) and unknown (RO) received
signal strength (RSS) values. (b) Log-normal RSS function
(= -10 - 30log;,(distance)) plotted for varying distance from
the transmitter T, along with IDW-estimated RSS value at a
point between R1 and R2. (c) Log-normal RSS function and
ILDW-estimated RSS value at a point between R1 and R2,
plotted on a logarithmic distance scale.

No localization
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Steps 2a, 2b Step 3

SU arrives/leaves

Figure 6: MAP**’s overall approach

from the fact that the set of authorized users is not static and
changes over time as allocation requests are granted and/or active
secondary users become inactive over time.

One simple way to handle background users is to just localize
every transmitter, and then remove the authorized users. However,
any localization approach (including ours) is susceptible to per-
formance degradation with increase in number of transmitters to
be localized, especially if some of them are situated close together.
Thus, this simple approach of localizing every transmitter is un-
likely to be effective, as shown in our evaluations, especially when
the number of primaries and active secondaries can be large. Thus,
here, we develop an approach based on learning PDs in real-time
in response to changes in the set of secondary users.

MAP**: Localizing with Authorized Users. Our problem is to local-

ize intruders in a shared spectrum system with fixed primaries and
changing set of secondaries. Our MAP** approach uses a combina-
tion of a priori (offline) and online training to construct JPDs for
appropriate hypotheses based on gathered observations, and then
use these JPDs to localize intruders in real-time using the MAP*
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approach described in the previous section. We start with defining
a few useful notations.

We use R to denote the set of (fixed) primaries, and K to denote
the set of secondaries at a given instant, and 7; to denote the j’ h
configuration of intruders (we can assume the zero-th configuration
to represent no intruders). We use 7 = R U K U J; to denote the
set to all transmitters (authorized and unauthorized) at a given
instant. Finally, we use P(x|(r = X)) to denote the joint probability
distribution (JPD) of observation vectors from the deployed sensors
when the prevailing hypothesis is that the set 7 of transmitters is
X. MAP** is the sequence of following steps.

1. (Offline Step.) Construct JPDs P (x|R) and P (x|r = (I; U R))
for all j. Since these JPDs are independent of the secondaries,
they do not change and can be done once a priori.

2. (Online Steps.) Whenever %K (set of secondaries) changes:

(a) Construct JPD P(x|r = (R U K)).

(b) Compute P(x|r = (R U Z; UK)) for all j, from above con-

structed JPDs, viz., P(x|R), P(x|r = (I; U R)), and P(x|r =
(R U K)). See the below observation.

. (Real-time Localization.) Periodically, each sensor sends its ob-
servation to a centralized entity (spectrum manager) which
uses MAP* to localize any intruders present. Here, localization
essentially means determining the most likely prevailing hy-
pothesis among the hypotheses 7 = (R U Z; U K), based on the
JPDs P (x|t = (R U I; U K)) constructed in earlier steps.

Note that steps 1 and 2a are essentially learning the authorized
users’ signal charecteristics and view them as the "background sig-
nals". If there are no authorized users, then the background signals
are "quite". Else, then the background signals have some "sound".
We now state the observation that forms the basis of JPD computa-
tion in Steps 2b; note that the noise due to sensor’s hardware gets
duplicated when “adding” two JPDs, but can be easily removed.

OBSERVATION 1. The JPD P(x|(r = AU B)) and be computed from
JPDs P(x|(r = A)) and P(x|(tr = B)). Similarly, JPD P(x|(t = A))
can be computed from the JPDs P (x|(r = AU B)) and P (x|(z = B)).

Blind Period due to Step 2. Note that the steps 2a and 2b construct
or compute the JPDs needed for localization, and thus, during their
execution, the localization cannot be done. Thus, it is important
that the duration of this “blind period” in minimal. Fortunately, step
2b being a simple mathematic computation takes only in the order
of milliseconds under efficient implementation, while 2a merely en-
tails gathering a sufficient number of observations to construct the
desired JPD which could take anywhere from milliseconds to a few
seconds, as an observation takes only a fraction of a millisecond [6].

Mobility of Users and Sensors. We note that MAP* works seam-
lessly for mobile intruders and sensors, due to the constructed PDs.
However, MAP** has the following limitation: the sensors must re-
main static in between two consecutive online-training periods (i.e.,
step 2 of above). If a sensor X moves, then either X’s observation
must be ignored, or that X needs to online-train itself in its new
location (and there should be no intruders during this individual
online-training phase). Note that active SUs are expected to remain
static anyway, as they are allocated spectrum for a specific location.
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5 LARGE-SCALE SIMULATION RESULTS

To evaluate our techniques in a large scale area (a few kms square),
we conducted simulations over a geographic area using path-loss
values from the Longley-Rice propagation model generated by open
sourse software SPLAT! [21]. We describe the simulation setting
below and discuss the results.

5.1 Settings

Generating Probability Distributions. To evaluate our techniques
over a large area with 100s of sensor nodes, we need to run simula-
tions with an assumed propagation model. We use the well-known
Longley-Rice [8] Irregular Terrain With Obstruction Model (IT-
WOM), which is a complex model of wireless propagation based
on many parameters including locations, terrain data, obstructions
and soil condition etc. and such. We consider an area of 4km X 4km
in the NY state and use the 800 MHz band for SPLAT! We discretize
the area using 40 vertical and 40 horizontal grid lines—yielding
1600 cells each of size 100m X 100m. To generate a probability dis-
tribution (PD) at a sensor location x due to a transmitter at location
[ transmitting at power p*, we compute the received power at x
using transmit power minus path-loss from SPLAT!, and use it
as the mean of the probability distribution. For the complete PD,
we assume Gaussian distributions and use a standard deviation
between 1 and 3, with higher values for pairs (x, [) with smaller
distance. As mentioned before, the PD due to multiple simultane-
ous transmitters can be computed as just a “sum” of the Gaussian
distributions due to individual transmitters [18, 27].

Algorithms Compared. For the MTL problem, we compare our
MAP* algorithm with SPLOT [18] and CLUS [22] (see §2.1). As men-
tioned before, [23] has been shown to be inferior in performance
to both SPLOT and CLUS in their respective works, and thus, not
evaluated here. CLUS uses k-means [25] for clustering, and needs
to be provided with the number of clusters. To do a somewhat
fair comparison, we provide CLUS with a range of the number of
intruders and use the elbow-point method to pick the best number
of clusters/intruders. In particular, the range of intruders passed to
CLUS is 1 to 2x, where x is the actual number of intruders present.
For SPLOT, we use the same set of parameters values as in [18]

Table 1: Simulation Evaluation Parameters.

Param. Value Description
Q; 0.6  Threshold for Procedure 1’s hypothesis posterior
Q, 0.1  Threshold for Procedure 2’s hypothesis posterior
R 1000 Transmission radius when power is p*, (m)
p* 30 Transmit power during training, (dBm)
Op 2 Range of intruders’ power is [p* — 8p, p* + Jp]

except that we use the confined area radius to be 800m for our large
area setting ([18] only considered small 15m X 15m areas; 800m
is roughly the maximum transmission radius in our large-scale
setting and other values yielded worse results). Table 1 gives the
main parameters of MAP* used in our evaluations. Recall that the
transmission radius is the distance between the TX and RX for
which the RX’s RSS is at the noise floor (we use -80dBm).
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Figure 7: Localization performance of various algorithms in
alarge scale area, for varying number of intruders

5.2 Five Evaluation Metrics.
We use the following metrics to evaluate the localization methods.

(1) Localization error (Leyy).
(2) Miss rate (My).

(3) False alarm rate (F;).

(4) Power error (Perr).

The above metrics are best explained using a simple example. Given
a multi-intruder localization solution, we first compute the Leyy
as the minimum-cost matching in the bi-partite graph over the
ground-truth and the solution’s locations, where the cost of each
edge in the graph is the Euclidean distance. We use a simple greedy
algorithm to compute the min-cost matching. The unmatched nodes
are regarded as false alarms or misses. E.g., if there are 4 intruders
in reality, but the algorithm predits 6 intruders then it is said to
incur 0 misses and 2 false alarms and if it predicts 3 intruders then
it incurs 1 miss and 0 false alarms. The M; and F; metrics are on
a per-intruder basis, so in the above two examples: M; is 0 and
1/4 and F; is 2/4 and 0. In the plots, we stack miss rate and false
alarm rate together to show the overall difference between the true
number of intruders and predicted number of intruders. Pey is the
average difference between the predicted power and the actual
power of the matched pair in the above bi-partite graph.

Finally for interpolation schemes, we use the metric (5) inter-
polation error (lerr) defined as the estimated path-loss minus the
ground-truth path-loss value.

5.3 Results

In this subsection, we evaluate the performance of our techniques
for varying parameter values, viz., number of intruders and sensors
in the field, and training cost. Here, the training cost is defined
relative (specifically, as a percentage of) to the full training scenario
wherein we construct each of the 1600 x 1600 PDs (one for each
pair of transmitter and sensor locations) directly from observations.
E.g., x% training cost indicates that we construct 1600 X (16x) PDs
directly, and interpolate the remaining 1600 x (1600 — 16x) PDs;
our proposed interpolation scheme only interpolates for sensor
locations. In general, when we vary a specific parameter, the other
parameters are set to their default values which are: 9% for training
cost, 5 for number of intruders, and 240 for number of sensors.
For each experiment, the said number of sensors and intruders are
deployed randomly in the field, with the intruders deployed in the
continuous location domain while the sensors deployed only at the
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Figure 8: Localization performance of various algorithms in
a large scale area, for varying sensor density

centers of the grid cells. Each data point in the plots is an average
of 50 experiments.

Varying Number of Intruders. First, we compare the localization
accuracy of various algorithms for varying number of intruders.
See Figure 7. We vary the number of intruders from 1 to 10. We
observe that the localization error of MAP* is the minimum across
the three algorithm. The localization error is 45% — 74% less than
SPLOT. In terms of the M, and F;, MAP* also performs others which
confirms the overall performance of MAP* to be the best among the
algorithms compared. In terms of absolute performance, note that
the localization error of 50-150m indicates an error of 1-2 grid cells,
and thus is minimal in the context of the large area of 4km by 4km
with 1600 cells and a sensor population of 240. Investigating further,
we observe that misses in MAP* are mostly due to the interpolated
PDs (note that only 9% of the PDs are constructed from the actual
sensor observations, and the remaining 91% are interpolated), while
SPLOT’s misses are mainly from the case of two or more intruders
being close to each other. This demonstrates the superior ability
of MAP* to localize intruders that are close-by via the designed
sequence of Procedures 1 and 2.

Table 2: MAP* Power Error (dB) Table 3: Running time (s)

#Intruu MAE ME #Intru. MAP* SPLOT CLUS
1 0.56 -0.07 1 0.55 0.56 0.03
3 1.02 0.89 3 1.07 1.02 0.11
5 1.31 0.97 5 5.74 1.35 0.23
7 1.52 1.16 7 8.14 1.63 0.30
10 1.47 1.04 10 16.50 1.89 0.41

Intruder Power Estimation, and Computation Time. Table 2 shows
the mean absolute error (MAE) and mean error (ME) of the in-
truder’s predicted power by MAP*. Note that CLUS and SPLOT do not
predict intruder’s power, and hence, not shown. We observe that
MAP* is able to predict intuder’s power quite accurately. The errors
increase with the increase in number of intruders. Also, the mean
error begins at near zero and then turns positive. Table 3 shows
the running time of various algorithms over an Intel i7-8700 3.2
GHz processor. We see that CLUS is the fastest, and the running
times of MAP* and SPLOT are comparable for small number of in-
truders, but for larger number of intruders, MAP* takes longer time
than SPLOT mainly because of more number of iterations of the
computationally-intensive Procedure 2.
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Figure 9: Estimation errors for interpolation schemes for
varying training data

Varying Sensor Density. We now vary the total number of sensors
in the field, and observe the impact on the performance of various
algorithms. See Figure 8, where the number of sensors is varied
from 80 to 400. We see that all algorithms perform better with
increasing number of sensors as expected, with MAP* performance
improving significantly (in both Le,r as well as f- + m,) as number
of sensors is increased from 80 to 160. More importantly, except for
very low number of sensors (i.e., 80), MAP* handily outperforms the
other two algorithms.

Varying Training Cost. Finally, we now investigate how the train-
ing cost (i.e., number of PDs constructed from raw observations)
affects the performance of our MAP* algorithm. Note that the other
algorithms do not depend on the training data, hence not shown.
We first evaluate the interpolation error of our ILDW scheme for
varying training cost (number of known PDs) by comparing with
the traditional IDW scheme on which it is based. See Figure 9,
which plots the mean absolute error (MAE) as well as mean error
(ME). As the interpolation error is substantially higher for points
that are closer to the transmitter, we plot MAE and ME as averaged
over all interpolated points as well as over just the points close (less
than 800m away) to the transmitter. Note that the PDs at sensor
locations closer to the transmitter would have a stronger bearing
on the localization accuracy, and thus, the MAE and ME values
for points closer to the transmitter are of more significance. We
observe here that as expected both MAE and (absolute value of)
ME decrease with increase in the training cost for both IDW and
ILDW, but MAE and ME of ILDW is significantly lower than that of
IDW especially for low percentages of training cost and when the
points are close to the transmitter.

We now plot the performance of MAP* for varying training data;
see Figure 10. As expected, the performance metrics show general
improvement with increase in amount of training. More impor-
tantly, we note that with 5-10% of training, MAP* achieves perfor-
mance comparable to that with 100% training, suggesting that our
interpolation scheme is largely effective as long as 5-10% of PDs
are constructed from raw observations.

In Presence of Authorized Users (MAP**). We now evaluate the
performance of our MAP** approach which is tailored to work in the
presence of authorized users. To evaluate MAP**, we place 5 autho-
rized users in the area—with 2 primary and 3 secondary users. The
primary users are placed at fixed locations, while the secondaries
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Figure 10: Localization performance of MAP* in a large scale
area, for varying training data

are put at random locations. We assign each authorized user a ran-
dom power in the range of 30 to 32dBm, while, as before, a random
power between 28 and 32dBm to the intruders. To ensure that these
5 authorized users do not “interfere” with each other, we ensure
that the distance between any two of these authorized users is at
least 1000m. We compare MAP** with the simpler approach called
MAP** that uses MAP* to localize all transmitters (authorized as well
as intruders) and then removes the predicted transmitters that are
closest to the authorized users. See Figure 11, which shows that
MAP** easily outperforms MAP** for varying number of intruders.
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Figure 11: Localization performance of MAP** and MAP** in
large-scale simulations with authorized users present, for
varying number of intruders

6 TESTBED IMPLEMENTATION

In this section, we implement our techniques over commodity de-
vices and evaluate them over two small-scale testbeds—one indoor
and one outdoor. Outdoor environment is a realistic setting for
our target application of shared spectrum systems, while the in-
door environment provides more challenging signal attenuation
characteristics due to walls and other obstacles.

Sensor and Transmitters Used. Our low-cost (sub $100, see [10]
for a measurement study of low-cost spectrum sensors) sensing
device is composed of a single-board computer Odroid-C2 with an
RTL-SDR dongle which connects to a dipole antenna. We deploy
18 of these sensing devices in our indoor and outdoor testbeds, and
configure them for low gain. For transmitters/intruders, we use
USRP B210 and HackRF devices powered by laptops; we place these
on a cart for mobility. These transmiter devices are uncalibrated,
and there is no way to assign a specific transmit power. However,
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Figure 12: Indoor testbed. (a) Our lab used for the indoor
testbed, (b) The lab’s floor plan.

(a) Outdoor parking lot environment (b) Satellite

Figure 13: Outdoor testbed. (a) Parking lot picture, (b) Satel-
lite image of the parking lot; the red box is the area of the ex-
periment, and the stars are the locations of sensing devices
during evaluation.

they have a configurable parameter called gain which is almost
perfectly correlated to power when the gain is in a specific range,
i.e., when the transmitter’s gain is increased by 1, the receiver’s
signal strength increases by 1dB. We thus use the gain parameter to
adjust transmit power in the USRP devices. For indoor experiments,
the location is manually derived, while for outdoor experiments,
we use GPS dongles connected to the laptops. For collecting sensor
observations, we implemented a Python repository in Linux that
measures spectrum in real time at 915MHz ISM band and 2.4Msps
sample rate. The repository collects I/Q samples fetched from the
RTL-SDR dongle and computes the RSS value, then record the RSS
along with timestamp and location. These three pieces of informa-
tion are sent to a server that runs the localization algorithms.

Testbeds. The indoor testbed is built in a lab of our Computer
Science building. Figure 12 depicts the lab with its floor plan. The red
box in the floor plan is the area where experiments are conducted.
The area is 9.6 x 7.2 m? (or 2177 square feet) large, with four rows
of desks. The middle two rows are separated by a wooden board.
The area is imagined to be divided into 48 grid cells each of size
1.2m X 1.2m, with the help of ceiling tiles each of which is 0.6m x
0.6 m. The outdoor testbed is over an open space parking lot. See
Figure 13. The area is 32m X 32m. We divide the area into 100 grid
cells with each cell representing an area of 3.2m X 3.2m. The GPS
device returns location in (latitude, longitude) and the program
converts it into coordinates. We use an outdoor WiFi router and
long power cords for network and electrical connection respectively.
During the evaluation, the 18 sensing devices are placed on the
ground and are randomly spread out.

Training. In both the testbeds, for training (i.e., constructing non-
interpolated PDs), we first pick 18 random grid cells and place
sensors in their approximate centers. Then, we manually move
the transmitter around in a cart through each of the grid cells.
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Figure 15: Localization performance of varies algorithms in
an outdoor testbed

For the USRP transmitter, we use a gain value of 45 in the indoor
environment and 58 in the outdoor testbed. We use a higher gain
for outdoors to allow the transmitter to have a larger transmission
range in a larger area. With each grid cell, the transmitter transmits
from 3 to 4 different points within each grid cell, and for each such
location of the transmitter, the sensors (at the 18 picked locations)
gather tens of signal strength readings. From these readings, we
construct a Gaussian probability distribution from each grid cell
location of the transmitter. More specifically, for a particular grid
cell location of the transmitter, we average over the readings from
multiple TX positions within that particular grid cell—this process
of averaging different positions of the TX inside a grid cell makes
the Gaussian distributions more robust to multipath fading and
shadowing. The overall training process takes an hour for indoors,
and about two and a half hours for outdoors.

Evaluation. For evaluation, in both testbeds, we place the 18 sen-
sors at centers of grid cells that are randomly chosen and are differ-
ent from the cells chosen for training above. The chosen locations
for the outdoor tested are shown in Fig. 13(b). We choose the in-
truder’s gain/power to be in the range of [p* — 1, p* + 1], where p* is
the gain/power used during the training phase as mentioned above.
Roughly half of our experiments involve close-by (in the same or
adjacent grid cells) intruders. Localization is done on a laptop which
listens to HTTP requests containing the sensors’ observations.

6.1 Results

Localization Metrics. Figure 14-15 show the localization results
for the indoor and outdoor testbeds respectively. Overall, the results
indicate that MAP* performs the best across all metrics, with the
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overall performance gap between MAP* and SPLOT increasing with
the increase in number of intruders. When the number of intruders
is 3, the performance of SPLOT is significantly worse than MAP* due
to a significantly higher (84% for indoors and 53% for outdoors) sum
of miss and false-alarm rates and 43% higher localization error. The
CLUS algorithm generally performs the worst, but its performance
doesn’t have a strong correlation with the increase in the number of
intruders; recall that CLUS is given the range of number of intruders
as an extra piece of information compared to the other algorithms.
In terms of absolute performance, we see that the localization error
of MAP* is roughly around 1 or less grid cell, and the sum of miss-
rate and false-alarm is between 5-15%.

Table 4: Interpolation Mean Absolute Error (MAE) and Mean
Error (ME) in dB for IDW and ILDW

IDW ILDW IDW  ILDW

Environment | (MAE) (MAE) (ME) (ME)
Indoor 2.6 1.7 1.7 0.25
Outdoor 6.2 2.7 5.8 0.48

Interpolation Error. Table 4 show the interpolation mean abso-
lute error (MEA) as well as mean error (ME) of IDW and ILDW when
the transmitter and receiver are close by (i.e., within a distance of
3 grid cells). When the transmitter and receiver are far away, the
difference of IDW and ILDW is small and thus not shown. We see that
when compared with IDW, our ILDW interpolation scheme decreased
the mean absolute error by 35 percent in the indoor environment
and 56 percent in the outdoor environment. In terms of mean error,
ILDW reduced the error compared to IDW by as large as 86 percent
and 92 percent respectively. This is because IDW mostly tends to
estimate the value to be larger than the ground truth, while ILDW’s
estimates are more even across the ground truth.

Table 5: Power Prediction Mean Absolute Error (MAE) and
Mean Error (ME) in dB for indoor and outdoor testbed

Indoor Outdoor Indoor Outdoor
# Intruder | (MAE) (MAE) (ME) (ME)
1 0.34 0.50 -0.02 0.02
2 0.57 0.63 0.10 0.54
3 0.77 0.90 0.49 0.76

Intruder Power. Table 5 show the errors in the predicted powers
of the intruders in MAP*. We see that the outdoors have a slightly
higher power prediction error, likely because of a larger number
of grid cells. We also note that with the increase in the number of
intruders, the error in predicted power increases.

7 CONCLUSIONS

In this paper, we have developed an efficient Bayesian approach
with a noval interpolation scheme to localize multiple transmitters
in presence of authorized users, and demonstrate its superior power
over large-scale simulations and smaller scale indoor and outdoor
testbeds. In our future work, we wish to extend our techniques to
allow a continuous location domain and design methods to further
minimize training cost. In addition, we will consider alternate signal
measurements such as angle-of-arrival (AoA).
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