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Abstract—Radio spectrum is a limited natural resource under
a significant demand and thus, must be effectively monitored
and protected from unauthorized access. Recently, there has
been a significant interest in the use of inexpensive commodity-
grade spectrum sensors for large-scale RF spectrum monitoring.
These sensors being inexpensive can be deployed at much higher
density, and thus, can provide much more accurate spectrum
occupancy maps or intruder detection schemes. However, these
sensors being inexpensive also have limited computing resources,
and being independent and distributed can suffer from clock
skew (i.e., their clocks may not be sufficiently synchronized).

In this paper, we are interested in the problem of detection
and localization of multiple intruders present simultaneously, in
the above context of distributed sensors with limited resources
and clock skew. The key challenge in addressing the intruder lo-
calization problem using sensors with clock skew is that it is very
difficult to even derive an observation vector over sensors, for
any (absolute) instant. In this work, we propose Group-Based
Algorithm, a skew-aware multiple intruders localization method
that essentially works by extracting observations across sensors
for certain small sets of transmitters. Our results show that
Group-Based Algorithm yields significant improvement of ac-
curacy over relatively simpler approaches.

1. Introduction

Radio spectrum is a limited resource and is in extreme
demand because of exponential growth in wireless applica-
tions. Shared spectrum can be vulnerable to unauthorized
transmissions and thus, must be protected against unauthorized
users (intruders). This issue has recently been exacerbated by
the increasing affordability of software-defined radio (SDR)
technologies making RF transmissions of arbitrary waveforms
in arbitrary spectrum bands more practical than ever before.
Popular among such attacks include misguided road navigation
using GPS spoofing [1], crashing aircraft instrument landing
systems [2], etc. Detecting and localizing such spectrum
offenders is a challenging problem that has been recently
tackled in multiple dimensions [3].

One way to protect spectrum is via large-scale spectrum
monitoring [4]. One issue in such efforts is that lab-grade
spectrum sensors are large and expensive both to procure and
operate. This issue has recently been addressed by promot-
ing the use of small and inexpensive spectrum sensors that
can potentially be crowdsourced [5]. In such crowdsourced
architectures formed of large number of spectrum sensors, a
typical architecture involves a centralized entity (aka spectrum
manager, or a fusion center) collects spectrum data from the
deployed, and processes the data received for a collective de-
cision on detecting and localizing the intruders accurately [6].

However, one concern in the context is that these inex-
pensive sensors can suffer from clock drift/skew, resulting
in skewed-observations at the fusion center. This problem
is exacerbated by the fact that these sensors are heteroge-
neous with varying processing speeds and communication
capabilities [7]—these can introduce further time-offset in the
observations of these sensors. Despite the accuracy of well-
known clock synchronization techniques [8], [9], the sensors
can have a clock drift of as much as a few tens of usecs.
Overall, we have observed the offset between observation
timestamps to be as high as 100s of microseconds. As a result,
the signals from neighboring sensors are misaligned and can
lead to poor localization accuracy. A recent work has already
shown such signal alignment problem and tackled in a different
context [10], [11].

Our goal in this work is to address the multiple intruder
localization problem in the above context, design schemes that
are able to circumvent the localization inaccuracy introduced
due to the time-offset observations from distributed sensors,
and evaluate their performance for varying parameters. In our
setup, an intruder can generate tones/pulses of few 10s of
usecs and/or change its power every 10s of usecs. Localizing
the intruders transmitting such intermittent pulses of duration
that are of the same order as the time-offset among the sensors,
poses a significant challenge while fusing the observations
from the distributed sensors to localize intruders.

In this paper, we present Group-Based Algorithm, a
scheme that attempts to localize intruders in the above setup
and achieve accurate localization of multiple intruders simul-
taneously. Group-Based Algorithm relies on the fact that
a some distributed sensors will likely receive power from the
same set of transmitters. Thus, the Group-Based Algorithm
works by dividing sensors into groups such that each group is
receiving signal from the same set of intruders!. Using these
groups, Group-Based Algorithm extracts sufficient observa-
tion sequences to localize minimal-sized sets of transmitters
independently.

We evaluate the Group-Based Algorithm using a small
scale real data and large scale simulations. For real experi-
ments, we create an indoor lab test-bed that consists of 4 sen-
sors and 2 transmitters, with USRP [12] SDRs as transmitters
and RTL-SDRs [13] as sensors. The SDRs are interfaced with
Odroid boards [14] to provide compute and network capability.
Our experiments on the data from real test-bed shows that

'We use the words intruders and transmitters, interchangeably.
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these sensors have an average offset of 100 us (§IV-A). Using
these real offset measurements, we evaluate Group—-Based
Algorithm under diverse conditions such as different skew
ranges, number of intruders and sensors. We find that our
Group—-Based Algorithm can achieve 23% less false alarm
rate compared a Naive algorithm under real data with two
intruders (§1V-A). With extensive simulations, we also show
that our Group-Based Algorithm can perform 2-4x better
than the Naive algorithm under various settings (§1V-B).

II. Problem Formulation and Related Work

Localization Using Skewed Observations (LUSO) Problem.
Consider an shared spectrum region, where we are interested
in localizing any intruders/transmitters present. The intruders
may transmit an arbitrary signal with varying power, but we
assume that each power level is maintained for a few 10s
of microseconds.? To localize such intruders, we have a set
of spectrum sensors that have been deployed a priori over
the region. Each sensor ¢ records 1Q samples over sensing
windows of say 10 usecs, and report the received power in the
channel of interest (we assume a single channel of interest, for
simplicity). We assume that each sensor makes observations
at the same frequency, and denote the j** observation by the
it" sensor by 0;;. Due to the skew across sensors, note that
0;;’s for a particular j may not correspond to observations at
the same absolute instant. We do not make any assumptions
about the channel propagation model, i.e., we assume the path
loss between a pair of points to be a Gaussian distribution of
arbitrary mean and standard deviation. The sensor observations
are periodically sent to a fusion center, which collects all the
observations over a period, and processes them in some man-
ner to determine locations of the intruders with high accuracy.
Since the number of intruders is not known, the localization
result may yield many misses and/or false alarms. The focus of
our work is on circumventing the challenge of skewed obser-
vations and not the well-studied multiple-intruder localization
problem, and thus, we use the state-of-the-art multiple intruder
localization scheme SPLOT [3] as an available procedure.

At a high-level, any localization scheme effectively uses
a single observation vector (01,02,...,0,), where o; is an
observation of i sensor, to localize intruders. The key point
here is that the observations o; are of the same absolute
instant or the intruders are continuously transmitting. In our
context, due to the skewed observations and the intruders
transmitting short duration pulses, a direct application of a
standard localization scheme is not effective.

Related Work. Localization of a transmitter or an intruder
in a field using sensor observations has been widely studied,
with the majority of works having focused on localization of
a single transmitter [15]. To localize multiple intruders, the
main challenge comes from the need to “separate” powers

>This assumption is due to the “sensing window” being of size 10
microseconds as defined later, and is needed to be able to "perfectly align”
similar signals from different spectrum sensors, as discussed towards the end
of §III.
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Fig. 1: Transmitted pulses from two intruders, and received
signal at four sensors (with skewed clocks).

at the sensors, and in absence of blind separation methods,
there have been few works that have directly addressed the
multiple intruder localization problem. Recently, [3], [16] have
presented interesting techniques for the problem. We have used
the best of these approaches, i.e., SPLOT [3], as a procedure
within our developed techniques. The focus of this work is
on addressing the challenge that arises due to time-skewed
observations from the sensors; to the best of our knowledge,
ours is the first work to address this issue, especially in the
context of multiple intruder localization.

Naive Approach. To illustrate the problem challenges, let us
describe a simple approach to solve the above problem. Given
the observations o;; for 1 <4 <m and 1 < j < m, where n
is the number of sensor and m is the number of time instants,
the Naive algorithm essentially consists of two steps:

1) For each j, Solve the multiple-intruder localiza-
tion problem using the observation vector O; =
(01j,02,---,0n;). Let the ser of intruder locations
returned be L.

2) Cluster the set of locations in | ; Lj. We use k-means
method, which requires a known number of clusters. In
our evaluations, we vary the range of number of clusters
that is given to the algorithm.

LUSO Example. Consider an area with four sensors and
two intruders, 7X1 and 7T'X2. Figure 1 shows the pulses
transmitted by the intruders in absolute time. In particular,
T X1 sends two pulses (in blue) of length 20us and 10us at
absolute times 0 and 20 ps, and 7X2 send a single pulse
(in red) of length 10us at 20us. The figure also shows the
pulses received by the sensors, based on their local timestamps.
Without any information about the skew, the Naive algorithm
would create 8 observation vectors of 4 observations each.
Note that for an observation vector to yield any localization
output, at least 3 values in the vector must be non-zero value
(as at least three sensors are required to localize an intruder).
Here, only two observation vectors (at 30-40us and 40-50415)
consists of non-zero values from three sensors—and that
formed of observations from different absolute times. Thus,
this example shows that the localization based on observation
vectors as done by Naive is likely to be very inaccurate.
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III. Group-Based Algorithm

In this section, we describe our proposed algorithm, referred
to as Group-Based Algorithm, for solving the LUSO prob-
lem effectively. We start with giving a high-level idea and
intuition behind our proposed technique.

As in the previous section, let n be the number of sensors,
and let o;; denote the j*" observation of the i'" sensor. We
assume the sensor locations are known. In the previous section,
we presented the simple Naive approach. At a high-level, the
idea of the Naive approach is to localize based on observation
vectors for each time instant. Such a scheme does reasonable
well if the observations have no skew; however, with time-
skewed observations, the Naive approach can result in high
inaccuracy, as observed in our simulations (see §IV-B).

Basic High-Level Idea. Let us assume a skew of of at most
between any pair of sensors. The key idea behind our proposed
Group-Based Algorithm approach is to partition the sensors
into disjoint groups such that each group consists of sensors
that “receive” transmission (i.e., receive a power more than
noise) from the same set of intruders (note that not every
sensor receives transmission from every intruder, due to the
signal attenuation, and a particular sensor may receive trans-
mission from multiple intruders). Once such groups have been
formed, we consider the groups that correspond to the smallest
set of intruders and for each group g independently, we use
the observations of sensors in g to localize the corresponding
intruders. Thus, our above approach can be looked upon as
a divide and conquer approach. More formally, our algorithm
can be described as a sequence of following steps.

1) Creating Groups of Sensors. Partition the set of sensors
S into groups Gi,Ga,...,Gy such that two sensors
s, and s, are in the same group if and only if their
observation sequence can be perfectly aligned, i.e., they
are receiving pulses from the same set of intruders, and
hence, are in the “vicinity” of the same set of intruders.
In particular, to check if observation sequences of two
sensors s, and s, can be perfectly aligned, we compare
the observation sequence of s, with the observation
sequence of s, shifted by z units for all z less than the
maximum skew. We discuss how to do this comparison
later. Note that the number of groups is at most equal to
the number of sensors. For each group G,., we denote
the set of intruders whose pulses are received by the
sensors in G, by I,.

2) Directed Graph Over Groups. Create a partial order
over the above groups based on the intruder-subset
relationship, i.e., create a directed graph (partial or-
der) G over nodes G1,Go,...,G with directed edges
(G, G,) if and only if for the corresponding set of
intruders I, C I,. We discuss later how to determine
the edges in the above graph.

3) Expand the Directed Graph G. We then expand the
graph G by adding additional “virtual” nodes. We dis-
cuss this step in further detail below, but the purpose is

to create new groups that represent other sets of intruders
not already captured in G.

4) Localizing Intruders Corresponding to Source
Groups. Note that G is a DAG. For each node G, in G
that is a source (i.e., no incoming edges), localize I,. by
using observations of [, in GG, as well G,.’s ancestors in
G. We discuss this step in further detail below. Let L,
be the set of locations obtained by localizing intruders
from observations in G,.

5) Final Result. Since the source groups considered above
correspond to disjoint sets of intruders, we return the
union of L,’s as the final result.

We now discuss some of the details skipped in the above
description.

Steps (1) and (2) Details. Comparing Received Signals.
Now, we explain how we compared received signals of two
sensors and check if they both receive powers from the same
set of transmitters. First, let us assume that there is only one
transmitter. In this simple case, sensors that are able to receive
power from the transmitter, will receive “approximately” the
same signal, though with some path loss attenuation. The
fact that sensors use a sensing window of 10us would only
result in some approximation of the transmitted signal, since
the transmitter maintains every power level for sufficiently
long time (at least a few 10s of microseconds). Now, if there
are multiple non-overlapping (see below) transmitters, then
the received signals is just a simple “combination” of the
signals due to each transmitter. Now, to check if two sensors
receive power from the same set of transmitters, we shift
one of the sensors’ signal by all values less than the skew,
and for each value, calculate the normalized cross-correlation
between the signals. For two signals to be from the same set
of transmitters, the correlation value should be close to one for
at least one shift. Now, finally, let’s relax the assumption of
non-overlapping signals. If transmitters can have overlapping
transmissions, then the received signal at a sensor can potential
have power level changing at an unbounded rate and the above
technique may not work due to the sensing window being of
10 microseconds. However, for a sufficiently large observation
window (depending on the maximum number of transmitters
around a sensor), with high probability there will always be
a part of the signal that does not exhibit the above rogue
behavior—and this is sufficient for our purposes. We omit the
tedious details.

Step (3) Details. Expanding G. Consider two nodes G, and
G5 in G such that the corresponding sets of intruders I,
and I; are not disjoint and one is not a subset of other.
In this case, we create a virfual group G, corresponding
to the set of intruders I, N I,. This virtual group did not
exist in the original graph G, since there are no sensors that
observe just the set I, N Iy of intruders. However, we can
still create and make use of such virtual groups, if we are
able to extract/derive observation sequence(s) received from
I. N I. These observation sequences for these virtual groups
can actually be extracted by finding the observations that are
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Fig. 2: Localization performance vs. Skew in localizing 7
intruders, Percentage of miss and false alarms(above). The
filled region in each bar represents the misses and unfilled
region represents false alarm, Localization error(bottom).

common in the sensors of G, and G,. More precisely, for
every sensor s; in G,.UGj, we “align-intersect” its observation
sequence O; with the observation sequence of some sensor in
G, — to derive an observation subsequence O)°. The set of
such observation subsequences O;° correspond to the virtual
group G,s. Above, by “align-intersection” of an observation
sequence O; with an observation sequence O;, we mean the
following: First, we align the two sequences O; and O;, and
then extract the pulses from O; that has a corresponding pulse
in O; at the same time instant (after alignment).

Step (4) Details. Localizing Intruders Corresponding
to Source Groups. First, note that each source node G,
in G clearly has a minimal set of transmitters. Now, to
localize intruders in I, as accurately as possible, we first
try to extract as many observation sequences as possible
corresponding to the intruders in I,.. We do this by extracting
appropriate observation subsequences from sensors in the
groups/nodes G such that there is a path from G, to G in
G (and thus, I is a superset of [,.). Finally, we use the set
of these subsequences to localize I, (by first aligning them
near-perfectly, localizing for each of the aligned observation
vectors, and then clustering the results).

IV. Evaluation

We evaluate Group-Based Algorithm on a small test-
bed as well as over a large scale simulation environment, and
compare it with two versions of the Naive scheme of §II.

Performance Metrics. We evaluate the localization perfor-
mance of the schemes in terms of the following metrics: in
terms of three metrics: Localization error (in meters), and
number of misses and false alarms as a percentage of actual
number of intruders. For a given solution S of predicted
intruder locations and the actual ground truth 7' of actual
intruder locations, we compute these metrics as follows: For
each intruder ¢t € T', we find the closest predicted intruder in
S and if this intruder is within a certain threshold, then we
report the difference as the localization error. The number of

TABLE I: Localization performance on real data.

Algorithm Misses (%) | False Alarm (%)
Naive 28 9
Group-Based 5 6

TABLE II: Initialize Parameters

Parameters Values
grid size 50m*50m
cell size Im*1m
# of cells 2500

# of sensors 100

arrival rate(Poisson distribution) A=38

pulse length
pulse power

[20s, 30us]
[-36dBm, -32dBm]

noise floor -80dBm
path loss coeff 4.9

# pulses for intruders [10, 15]
window size(for doing FFT) 10us

intruders in .S that do not find a match as above are reported as
misses, and the unmatched predictions in 7" are false alarms.

Schemes Compared. We compare our Group—-Based Al-
gorithm with Naive (§II) and a variant of Naive al-
gorithm called Naive+aligned algorithms which differs
from Naive in that it is given fully aligned observation
sequences of sensors. Note that Naive+aligned is not a
fair algorithm for comparison, since it is essentially given a
fully-aligned input, but our purpose behind comparing with
Naive+aligned is to separate the reasons behind the good
performance of Group-Based Algorithm.

A. Real Testbed Experiments

We set up a small test-bed with two transmitters and four
sensors in a university campus lab. We use RTL-SDR [13] and
USRP [12] boards as sensors and transmitters respectively. The
transmitters generate an intermittent tone of 10us in 915MHz
ISM frequency band. The sensors are tuned this center fre-
quency with a sampling rate of 1Msps. The key result from
the test-bed experiments is that the average skew among these
sensors is as high as 100us. We next study the localization
performance using these skewed sensors. Table I shows the
average localization performance in terms of error, miss and
false alarm. The results shows that our Group-Based Algo-
rithm performs significantly better than Naive algorithm.

B. Large-Scale Simulations

We study the performance of our Group-Based Algo-
rithm on a large-scale simulation platform based on synthetic
data for more practical scenarios such as large number of
sensors, intruders, and varying values of skew. To this end,
we create simulator that operates on a grid of 50mx50m
environment with parameters as described in Table II.

Clearly, the performance of a localization is a function of
key factors such as the amount of skew among the sensors, the
number of intruders and sensors in the field, and the range of
number of intruders given to the Naive schemes (note that
Naive schemes depend on k-means clustering, and require
the range of number of intruders as an input). We experiment
by varying each of these parameters to understand their
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Fig. 3: Percentage of miss and false
alarms vs. ranges of transmitters input.

impact on localization performance. For all the experiments,
the intruders transmit at least 10 pulses with random length
between 20-30us. We use Poisson distribution of A = 8 for
arrival rate of pulses.

Varying Skew. Figure 2 shows the localization performance
against different skew values from 10-90us. The key
takeaway here is that Group-Based Algorithm performs
significantly better than two other algorithms. For example,
irrespective of the skew, Group-Based Algorithm results
in no more than 10% of misses and false alarm together.
On the other hand, the miss and false alarm performance of
the Naive algorithm increased from 20% to to more than
80% when the skew is increased from 10us to 90us. Note
that the performance of the Naive+aligned algorithm is
also slightly worse than Group-Based Algorithm, which
suggests that, in addition to handling misaligned observations,
Group-Based Algorithm’s method of localization is also
superior than that of Naive algorithm.

The localization error of all schemes is almost similar, with
Group-Based Algorithm still performing slightly better than
the other schemes. This is likely because the underlying
localization approach is the same for all the methods. Also,
note that Group-Based Algorithm specifically targets to
improve the accuracy in detecting the number of intruders.
For the following experiments, the localization error plot show
the similar relative performance, thus, we do not show the
localization error plots, in interest of space.

Varying Input Range of number of Intruders, Number
of Intruders, and Sensor Density. Figure 3 shows the
percentage of miss and false alarms under different ranges of
transmitters as input. As described in §II, the performance of
the Naive algorithm gets significantly affected if we do not
provide enough information about the number of intruders.
On the other hand, Group-Based Algorithm consistently
achieves less than 10% miss and false alarms together even
if the input cluster range is high as 1-14. These significant
benefits come from filtering the individual (or minimal-sized
sets of) intruders and localizing them independently (see §III).

Finally, Figure 4 and 5 show the performance for varying
number of intruders and sensors with 50us skew. As expected,
the Naive algorithm suffers significantly with more intruders
and fewer sensors. For example, the miss and false alarm
percentage is more than 75% and 80% with 15 intruders
and 100 sensors respectively. Even with 300 sensors, the
Naive algorithm results in more than 30% miss and false

Number of intruders

Fig. 4: Percentage of miss and false
alarms vs. different number of intruders.

Number of Sensors

Fig. 5: Percentage of miss and false
alarms vs. different number of sensors.

alarm percentage. In contrast, our proposed Group-Based
Algorithm needs as few as 50 sensors to localize all the
intruders with the miss and false alarms percentage at most
25%, which comes down to less than 4% with the increase in
the number of sensors to 300.

V. Conclusion

In this paper, we have addressed the problem of multiple-
intruder localization in face of time-skewed sensor observa-
tions; to the best of our knowledge, ours is the first work on
this problem, which arises naturally in the context of crowd-
sourced spectrum monitoring using inexpensive distributed
sensors. We believe that our work can have implications
on better provisioning and efficient deployment of spectrum
sensors for spectrum patrolling. In our future work, we plan to
address other challenges and problems that arise due to time-
skewed observations by spectrum sensors, e.g., in creation of
spectrum occupancy maps in a dynamically changing spec-
trum [17], real-time localization, and localization of mobile
intruders.
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