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ABSTRACT: Dampness or water damage in buildings and human
exposure to the resultant mold growth is an ever-present public
health concern. This study provides quantitative evidence that the
airborne fungal ecology of homes with known mold growth
(“moldy”) differs from the normal airborne fungal ecology of
homes with no history of dampness, water damage, or visible mold
(“no mold”). Settled dust from indoor air and outdoor air and > -
direct samples from building materials with mold growth were pd 0
examined in homes from 11 cities across dry, temperate, and ] ] LI

continental climate regions within the United States. Community — ‘

analysis based on the sequence of the internal transcribed spacer Yod' oM

region of fungal ribosomal RNA encoding genes demonstrated

consistent and quantifiable differences between the fungal ecology of settled dust in homes with inspector-verified water damage and
visible mold versus the settled dust of homes with no history of dampness, water damage, or visible mold. These differences include
lower community richness (p,q = 0.01) in the settled dust of moldy homes versus no mold homes, as well as distinct community
taxonomic structures between moldy and no mold homes (ANOSIM, R = 0.15, p = 0.001). We identified 11 Ascomycota taxa that
were more highly enriched in moldy homes and 14 taxa from Ascomycota, Basidiomycota, and Zygomycota that were more highly
enriched in no mold homes. The indoor air differences between moldy versus no mold homes were significant for all three climate
regions considered. These distinct but complex differences between settled dust samples from moldy and no homes were used to
train a machine learning-based model to classify the mold status of a home. The model was able to accurately classify 100% of moldy
homes and 90% of no mold homes. The integration of DNA-based fungal ecology with advanced computational approaches can be
used to accurately classify the presence of mold growth in homes, assist with inspection and remediation decisions, and potentially
lead to reduced exposure to hazardous microbes indoors.
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B INTRODUCTION and public health researchers when making decisions regarding
the health-based need for remediation.

Building dampness caused by a water inundation event or high
Prior culture- and DNA sequence-based studies on mold

humidity is a common, global occurrence. Climate-driven

shifts in regional and seasonal precipitation patterns and sea and dampness have revealed a useful baseline of mold taxa that
level rise are expected to compound this problem in many commonly grows on a variety of building materials under
areas of the world."”” The presence of dampness, mold odors, variable water activities. Important examples of fungi known to
or visible mold growth on building materials has been grow on damp wood, sheetrock, and ceramic materials include
consistently associated with adverse health outcomes, includ- members of the genera Acremonium, Penicillium, Stachybotrys,
ing respiratory sgrmptoms and the exacerbation and develop- Ulocladium, Arthrinium, Aureobasidium, Aspergillus, and
ment of asthma.™ Mucor.”” However, detection of these taxa in the air of

Our current understanding of the specific taxa or ecological buildings, where exposure occurs, has not reliably indicated the

characteristics associated with health impacts attributable to
water damage and mold indicators (e.g. visible mold, mold
odor) may be improved by identifying the fungal ecologies
differentially present in the air of “dry” versus “damp/moldy”
buildings. These differences can then be leveraged to reveal if
water damage and mold growth result in detectable airborne
exposures that diverge from a building’s normal fungal
ecology” or indicate if a home’s indoor air has been impacted
by mold growth from hidden spaces. Such evidence is essential
for homeowners, as well as environmental building inspectors

presence of dampness and mold.*” All of the above taxa
naturally occur in the outdoor environment and can thus be
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transported into the indoor environment.'’ Moreover, the list
of mold taxa observed on building materials may extend far
beyond those originally identified in culture-based experi-
ments. Setting concentration thresholds for specific taxa or
groups of taxa is hampered by the dearth of human dose—
response data for mold as well as the temporally dynamic
concentrations of fungi in indoor air that are caused by
patterns of occupancy, human activity, and building
operation.' "> Thus, databases or descriptions on what
constitutes a normal fungal ecology of a building have not
been rigorously established. These must include natural fungal
ecology at different climates'”'® and reflect the full taxonomic
resolution that is afforded by DNA-sequencing approaches.

The purpose of this study was to determine the differences
in fungal ecologies between the settled dust of inspector-
confirmed homes with reported water damage and visible mold
observations (“moldy” homes) versus homes with no known
history of dampness or mold observations (“no mold” homes).
A home sampling campaign was conducted from diverse
geographic and climatic regions throughout the U.S. using
high-throughput DNA sequencing to identify quantitative
fungal ecological differences between the indoor air of no mold
versus moldy homes. The resultant microbial community
databases were used to develop and validate a machine
learning approach to classify a home’s fungal ecology as moldy
or normal (no mold).

B METHODS

Detailed methods are also presented in the Supporting
Information.

Sampling Campaign. Samples were collected from
diverse climatic regions across the U.S. by local, professional
building inspectors. Homes in 11 cities (Atlanta, GA; Orlando,
FL; Tulsa, OK; Denver, CO; Phoenix, AZ; Minneapolis, MN;
Portsmouth, NH; Portland, OR; Chicago, IL; Boulder, CO;
Philadelphia, PA) were further binned into continental (Dfa,
Dfb), temperate (Cfa, Csb), and dry climates (Bsh, Bsk, and
Bwh) based on their known membership in Koppen climate
groups.'”*

Between S and 10 single family homes were selected by a
building inspector in each city and included both homes with
inspector-confirmed water damage and visible mold (“mold”
samples), and homes with no history of dampness, water
damage or visible mold (“no mold” samples). For each home,
the following metadata were collected: home age, home
location, home size, brief description of room type where
sample was collected, distance between the sample and nearest
direct mold (mold homes only), type of building material
sampled, observation of odor, current moisture condition of
moldy building, area of direct mold, and area of water damage.
Evaluation of each home was commensurate in scope with a
qualified home inspection by an experienced mold inves-
tigation firm. Moldy homes all had verified water damage with
visible mold, whereas no mold homes had no signs or known
history of dampness, water damage, mold growth, or mold
odor.

All samples were collected from surfaces using sterile cotton
tipped swabs moistened with filter-sterilized 0.15 M NaCl,
0.1% Tween solution. Two types of samples were taken, and
settled dust samples from the tops of doorframes and surface
swab samples directly from mold growth on materials were
included. A total of four samples were collected in each “no
mold” home, with three swab samples collected from the tops

of door frames within the home and one sample collected from
the outdoor side of a door frame. In “mold” homes, up to nine
swab samples were collected in each home, including three
indoor doorframe samples, one sampled collected from the
outdoor side of a doorframe, and up to five “direct mold”
samples collected from the surface of the material(s) with
mold growth. Samples were stored at —80 °C within 24 h of
receipt and sequenced within 6 months of the sample date.

Fungal Community (Amplicon) Sequencing and
Processing. The DNAeasy PowerSoil Kit (Qiagen Inc,
Germantown, MD) was used to extract DNA from the cotton
swabs."® The fungal internal transcribed spacer (ITS) region
was amplified using ITS-1F and ITS2 primers.'® The
University of Texas Genomic Sequencing and Analysis Facility
(UT GSAF, Austin, TX, USA) carried out library preparation,
sequencing, and demultiplexing of fungal sequences, generating
250 base-pair paired end reads. Prior to sequencing, sample
DNA concentrations were normalized to an equal concen-
tration, the PCR step in sequence preparation was performed
in triplicate, and resulting amplicons were pooled. No template
negative controls were included with all sample submissions,
and no sequences were returned from these negative controls.

Raw reads were trimmed and filtered and amplicon sequence
variants (ASVs) were created using the R software package
DADA2."” Overall, 288 samples collected from 67 homes
passed filtering and were utilized in this study. This included
58 outdoor air-settled dust samples, 59 indoor air-settled dust
samples from no mold homes, 58 indoor air-settled dust
samples from mold homes, and 113 direct mold samples
(Table S1). ASV sequences were then BLASTed against the
UNITE database and taxonomic identifications assigned using
FHIiTINGS, version 1.4."%'" A modified DESeq protocol was
used to identify taxa that are differentially abundant between
mold and no mold indoor air samples.”

Random Forest Classification. To classify each indoor
door frame sample based on whether its fungal community was
more similar to one from a home with or without mold
damage, Random Forest (RF) models were created in R using
default parameters and 20-fold cross-validation (see the
supplemental methods for more details). The first set of RF
models was created using the relative abundance data for all
taxa. For each iteration, 70 % of the data was used for model
development and 30 % of the data was retained for validation
to assess the sensitivity of the prediction to the training set. A
second RF model using only those taxa that were found to be
differentially abundant between mold and no mold was then
built using the same process. This second model was used for
all subsequent analyses because of improved accuracy for no
mold classification. Minimal depths were calculated for each of
the 20 cross-validation iterations of the RF model. Any taxa
with a minimal depth under the mean minimal depth in at least
19 of the 20 RF iterations was considered an important taxa for
the RF classifier.”!

B RESULTS

Homes across six Koppen climate zones (Cfa, Dfa, Dfb, Bsh,
Bsk, and Bwh) were sampled. Four categories of samples were
collected, including (1) indoor air-settled dust from homes
with no history of water damage or visible mold (“no mold”),
(2) indoor settled dust from homes with inspector
documented water damage and visible mold (“mold”), (3)
outdoor settled dust from all homes (“outside”), and (4) direct
surface samples from building materials (e.g., wood, ceramic,
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sheet rock) with visible fungal growth (“direct mold”). See
Figure S1 for a map illustrating the sampling campaign
locations.

Richness and Dominant Taxa. We observed differences
in a-diversity between the sample types, with mold and direct
mold-settled dust samples having a lower richness than no
mold and outdoor air-settled dust. Statistically significant
differences in the median richness levels (Tukey’s test, Pagy <
0.001) were found between the settled dust samples (outside,
no mold, and mold samples) and the direct mold samples
(Figure 1). Within the settled dust samples, median richness in
mold was lower than no mold and outdoor air samples
(Tukey's test, Pagj < 0.05).
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Figure 1. Fungal richness scatterplot based on ASV count. Boxplots
(25th quartile, median, 7Sth quartile) are overlaid with each
scatterplot. Samples are colored by their sample type: direct
mold—gray, mold—orange, no mold—Dblue, and outside—green.

Direct mold samples tend to be dominated by a single,
highly abundant taxa (ASV) (Figure S2a). The median relative
abundance of the top-ranked ASV is 69% for direct mold and
64% for mold, dropping to 45% for outside and 32% for no
mold. A total of 54 different genera were the top taxa in at least
one sample. Across all sample types, Aspergillus, Cladosporium,
Penicillium, Alternaria, and Stachybotrys are the five most
common top ASV genus annotations (Figure S2b). In addition
to commonly being the top ASV within a sample, these five
taxa were also the top five most common genus annotations
among all samples (Figure S3). For the average sample, 32% of
the direct mold reads, 35% of mold reads, 14% of no mold
reads, and 20% of outside reads are represented by these five
genera. The proportion of reads annotated as these five genera
was statistically lower in no mold than either direct mold or
mold (Tukey’s test, p,q; = 0.006 and p,q; = 0.002, respectively).
Stachybotrys was the only genera that was the top annotation in
only one sample type (direct mold). Aspergillus and Penicillium
were more commonly (by ~ 2 times) the top genera in mold
compared to no mold samples. The difference in relative
abundance between mold and no mold is statistically
significant for the samples where Aspergillus was the top
genera (Tukey’s test, p,q; = 0.05), but not when Penicillium was
the top genera (Tukey’s test, Pagj = 0.31).

A quantitative comparative analysis revealed several ASVs
that were differentially enriched between no mold and mold-
settled dust (Figures 2 and S4, Tables S2 and S3). A total of 11
ASVs, all Ascomycota, were statistically overabundant in the
mold homes, while 14 distinct ASV, covering Ascomycota,
Basidiomycota, and Zygomycota, were statistically overabundant
in no mold homes. The genera Aspergillus, Penicillium, and
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Figure 2. Heatmap of the statistically significant log, fold (log,F)
changes between mold and no mold indoor air-settled dust (1:7361j <
0.01): (A) ASVs that were more abundant among the mold samples
than the no mold samples and (B) ASVs that were more abundant
among the no mold samples than the mold samples. Heatmap is
colored by the log), relative abundances with the most highly
abundant taxa in yellow and those taxa not present in a sample in

black.

Cladosporium have ASVs that are differentially expressed in
opposite directions (Figure S4). For Penicillium, ASVs 4 and 13
(ambiguous at the species level) and ASV 261 (top BLAST hit
Penicillium aurantiogriseum) were found to be more common in
mold than no mold, with relative abundance (mold/no mold)
log, fold changes (log,F) of 3.4, 3.5, and 3.1, respectively.
ASVs 29 and 32 (Penicillium oxalicum top BLAST hit for both)
were found to be more common in no mold than in mold, with
(mold/no mold) log,;F changes of —5.9 and —11.0,
respectively. For Cladosporium, ASV 8 (top BLAST hit
Cladosporium halotolerans) was more highly abundant in
mold than no mold, with a 5.3 (mold/no mold) log,F change,
while ASV 112 (top BLAST hit Cladosporium sphaerospermum)
was more abundant in the no mold than the mold samples with
a (mold/no mold) —6.4 log,F change. For Aspergillus: ASVs 1,
16, and 67 (top BLAST hits Aspergillus niger, Aspergillus piperis,
and Aspergillus subversicolor, respectively) were found to be
more common in mold than no mold, with relative abundance
(mold/no mold) log,F changes of 8.4, 2.9, and 4.3,
respectively.

Fungal Communities Cluster by Sample Type.
Ordination plots based on Bray—Curtis dissimilarities demon-
strate differences in fungal community composition for
different sample types (ANOSIM R = 0.11, p = 0.001) (Figure
S5). No mold, outdoor, and direct mold samples also
demonstrated distinct differences based on Koppen Region
(dry—Bsh, Bsk, Bwh, temperate—Cfa, and continental—Dfa,
Dfb) (ANOSIM p < 0.001); however, mold samples did not
(ANOSIM p = 0.215) (Figure S6).

Bray—Curtis dissimilarity ordination plots (Figure S7A) also
revealed community differences between mold and no mold
samples (ANOSIM R = 0.15, p = 0.001). Additional
comparisons based on settled dust comparisons using only
those taxa that were differentially abundant between mold and
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no mold (Tables S2 and S3) improved the clustering (Figure
S7B) (ANOSIM R = 0.17, p = 0.001). When separating by
Koppen climate region, distinction between mold and no mold
communities retained their statistical significance (ANOSIM p
< 0.01) for each region (Figure S7 C—E).

Intrahome Comparisons. Intrahome comparisons control
for climate and the myriad home-specific factors including but
not limited to occupancy, construction type, home age,
cleaning practices, and ventilation. The indoor air-settled
dust ecology of moldy homes is expected to be influenced by
both direct mold and outdoor air mold, while the indoor air-
settled dust of no mold homes should have no influence from
direct mold taxa. Figure 3A demonstrates that the number of
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Figure 3. Comparing the influence of direct mold and outside air on
indoor fungal communities. (A) Boxplot overlaid with a scatterplot of
the number of ASVs in common for each indoor dust sample with the
corresponding outdoor dust sample from the same home. There was a
statistically significant difference between mold-outside and no mold-
outside (Wilcoxon p < 0.001). (B) Boxplot overlaid with a scatterplot
of the number of ASVs in common between mold and direct mold, as
well as outside and direct mold for each house with mold damage.
There was a statistically significant difference between mold-direct
mold and outside-direct mold (Wilcoxon p = 0.03). (C) Scatter plot
of the number of mold home air taxa also found in a direct mold
sample from that home versus proximity to the nearest mold sample.
The plot was overlaid with a line representing a linear model of the
number of ASVs in common versus mold proximity. The equation of
the line was found to be y = —0.3x + 5.9 (adjusted R? =0.05, F(1,53)
=3.8, p = 0.05).

ASVs in common between a given inside sample and that
home’s outside sample is higher for no mold compared to
mold homes (Wilcoxon rank sum test, p < 0.001). Within
mold homes, there are more ASVs in common between mold
and direct mold-settled dust than between outside air and
direct mold (Wilcoxon rank sum test, p = 0.03) (Figure 3B). A
linear regression model of the number of ASVs in common
between direct mold and mold-settled dust samples versus
proximity of a mold sample to direct mold reveals that the

15971

effect of direct mold on settled dust decreases only slightly
with distance from mold damage (R* = 0.05; F(1,53) =3.8; p =
0.05) (Figure 3C). Finally, multiple direct mold, mold, and no
mold samples were taken for each home, allowing for intra-
versus interhome comparisons of variability. Based on Bray—
Curtis dissimilarities between samples, variability between
similar sample types from the same home (intrahome) is
statistically lower (t-test, p < 0.001) than the variability
between similar sample types in different homes (interhome)
(Figure S8).

RF Model Development and Optimization. The large
ecology data sets and the potentially subtle differences that
have been identified in fungal ecology between homes with
visible mold and no mold homes suggest that the task of
classifying a home as a moldy ecology or a normal (no mold)
ecology is well-suited to machine learning algorithms, such as
RF.”>*® An initial cross-validated RF model built using all taxa
had an average classification accuracy of 82 + 10% across all
samples, and the majority (68%) of the samples are accurately
assigned each time they are in the test set during the 20-fold
cross-validation (Figure 4A). The greatest source of error
originates from misclassifying no mold samples as mold; the
average accuracy for the mold samples is 86 + 8 and 70 + 12%
for the no mold samples. Using only the differentially abundant
taxa in the machine learning training sets improves the
classification accuracy of the RF model (Figure 4B) for no
mold homes from 70 + 12 to 83 + 9%.

Of the total 22 homes that contained at least three settled
dust samples, 21 are correctly classified as moldy or no mold
using the RF model based on the differentially abundant taxa
and the requirement that at least two out of the three settled
dust samples for that home are correctly classified. All (12 of
12) of the moldy homes were correctly classified when using
this benchmark (Figure SA), while most (9 of 10) of the no
mold homes were correctly classified (Figure SB). Focusing on
the no mold home (Minneapolis-3) that was misclassified in
more than 50% of the 20-fold validation RF models for two of
the three samples in that home, the misclassified samples have
an abundance of ASVs (e.g,, ASV 4 and ASV 13) ascribed to
mold homes.

Minimal depth of variables was used to determine which
taxa were most important for classifying between mold and no
mold samples (Figure S9). Eight ASVs were deemed important
in sufficient model iterations: Pestalotiopsis (ASV 149),
Neurospora (ASV 11), Penicillium (ASV 29), and Malassezia
(ASV 98) which were more abundant in no mold than mold
and Aspergillus (ASV 1), Penicillium (ASVs 13 and 4), and
Cladosporium (ASV 8) which were more abundant in mold
than no mold.

The RF model output sufficient results (Figure 4A) to
explore ecological patterns that may underlie these incorrect
predictions. Classification accuracy is influenced by patterns
for top ASV count, number of ASVs in a sample, and degree of
overlap with outside settled dust. For the samples accurately
classified in more than 75% of the cross-validation models, the
relative abundance of the top ASV (top ASV count) was higher
in mold than no mold (t-test, p = 0.001). Conversely, a higher,
but not statistically significant (¢-test, p = 0.12) top ASV count
was observed in no mold than mold for the samples that the
RF model predicts accurately less than 25% of the time.
Richness was higher in the no mold versus mold for the
samples that the RF model predicts correctly more than 75% of
the time (t-test, p < 0.001), while no difference richness was
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detected for the samples that the RF model classifies accurately
less than 25% of the time (t-test, p = 0.68). Regarding overlap
with outdoor air, a higher number of ASVs are in common
between the inside dust sample and corresponding outside
sample in the no mold-settled dust than in the mold-settled
dust samples, when considering samples that the RF model
predicts correctly more than 75% of the time (t-test, p <
0.001). Mold and outside are equally similar for those samples
that the RF accurately classifies less than 25% of the time (t-
test, p = 0.66). Each of these trends in RF prediction reflects
observations from the comparative DNA sequence analysis.
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B DISCUSSION

This study uniquely integrates DNA sequence-based ecological
approaches with modern computational biology and a
multiclimate sampling design to determine the ecological
differences between fungi settled from air of inspector-verified
moldy and not moldy homes. Quantitative ecological differ-
ences between mold and no mold indoor settled dust samples
were leveraged to train a RF machine learning model that
accurately classified a home’s airborne fungal exposure as
moldy versus normal. This study design and resultant finding
on the ecological differences between inspector-identified
moldy and not moldy homes is novel and represents two
significant advances for preventing human health impacts from
damp or water-damaged buildings. First, our comparative
approach identified the complex airborne microbial commun-
ity differences between homes with visible mold and homes
with no water damage or visible mold and also defined
characteristics of the normal fungal ecology in home with no
water damage or visible mold. Second, the tools and insights
derived can be practically applied by mold inspection and the
remediation industry for improved guidance to determine if
the fungal exposures in buildings are associated with hidden or
visible mold growth on damp or water-damaged building
materials.

Unique Fungal Community Characteristics Common
to Moldy Homes. Results from this study demonstrate how
mold growth on damp or water-damaged building materials is
reflected in indoor air, where human exposure occurs and how
these exposures differ from a normal fungal ecology. Indoor air
samples in mold homes had a lower richness than no mold
samples and were more likely to contain highly abundant taxa.
These patterns are consistent with recent studies on the indoor
air of a single homes™ and direct mold from damp building
materials,”””" that suggest that the presence of mold growth
on damp materials depresses the richness of airborne fungi that
occupants are exposed. Exposure to low fungal and bacterial
richness in early life has been empirically associated with
asthma development.”*™>* The presence of visible mold,
dampness, and mold odors has also been associated with
asthma development.””” The observation herein of reduced
fungal richness in moldy versus not moldy homes links the low
diversity—asthma associations to mold—asthma associations.

The dominant genera in mold samples belonged mostly to
fungi that have commonly been identified in prior culture-
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based studies and include Aspergillus, Penicillium, Stachybotrys,
Cladosporium, and Alternaria.”® ASV-level analysis allowed for
deeper insights: the three most common genera (Aspergillus,
Penicillium, and Cladosporium) were highly abundant in all
sample types, but specific ASVs were differentially abundant
between mold and no mold samples. Many of the taxa highly
enriched in mold homes (all Ascomycota) have demonstrated
public health si§niﬁcance; they are known allergens,’’ produce
mycotoxins,”>* and (in the case of Penicillium®*) have been
implicated as important for asthma development. The taxa
highly abundant in no mold homes included members of
Ascomycota, Basidiomycota, and Zygomycota. No mold ASV’s
are commonly found on human skin (Malassezia) or are
known to be common in the outdoor environment (e.g,
Phoma,Cladosporium, and Pestalotiopsis), thus comprising
important members of a building’s normal ecology.

Beta diversity analysis demonstrated fungal community
membership differences between mold and no mold homes,
strong differences between direct mold and outdoor air, and
the importance of considering climate zone. Climate (temper-
ate, dry, and continental) appeared to impact fungal ecology,
not only in outdoor air, but for indoor air in homes without
mold damage, and even direct mold. There is precedent for
observing different fungal communities in buildings and
outdoor air based on geography.'”'""* These differences are
believed to exist because of climate-specific outdoor plants and
their associations with fungal endophytes, mycorrhizae,
pathogens, or saprophytes. The community differences
between mold and no mold homes were consistent, even
when accounting for the three climate regions considered.
However, differences between mold and no mold communities
were slightly stronger when the data were stratified into
continental, temperate, and dry climates.

Tools for Classifying Homes as Moldy or Not Moldy.
The use of a small, inflexible set of indicator taxa to classify the
moldiness of a building can lead to misclassifications. For
example, building inspectors commonly utilize the abundance
of Aspergillus or Penicillium/Aspergillus to assess whether a
harmful mold exposure exists. Xerophilic members of these
genera grow on building materials with elevated water activity,
have known allergic impacts on humans, and can be identified
via culture or direct microscopy. However, these tests typically
supply genus level identifications, and neither the Aspergillus (t-
test, p = 0.98) nor Penicillium genera (t-test, p = 0.42)
abundances were different between the mold and no mold
homes surveyed in this study. While Aspergillus and Penicillium
genera abundances are indistinguishable between mold and no
mold homes, both contain ASVs that are differentially
abundant between mold and no mold homes. The RF model
constructed here illustrates the benefit of considering the entire
variety of fungal taxa—either directly in the RF model or to
tune the RF model—and the necessity of moving beyond
genera level identification. Recent DNA-barcoding studies have
revealed that the fungal diversity of the built environment is
more diverse than previously accounted for by prior culture
approaches,'****® and RF is a common, highly robust machine
learning strategy particularly well-suited to classification
problems in ecology.”” The use of multiple predictions per
sample, multiple samples per home, and a selected group of
taxa allowed for independently and correctly identifying 100%
of mold homes and 90% of no mold homes. RF can be applied
to a large number of taxa and other sample characteristics
simultaneously and allows for the continued evolution of a
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classification tool as additional training data and fungal ecology
insights are made available.

Study Limitations. An important limitation of this study is
the inherent environmental and ecological differences from
home to home. We observed that the variability of intrahome
samples were significantly smaller that the interhome
variability. Multiple environmental variables, including the
presence and use of AC, pets, occupancy levels, flooring
materials, and outdoor land use’’™*” may influence the
mycology of a home, and these likely confound and may
have weakened the effect we observed between mold and no
mold. At the current level of understanding of how these
different factors influence fungal communities, accounting for
all of these potential dependencies in a classification model is
aspirational.

The RF model presented here, while developed based on a
diverse subset of homes, relies on underlying patterns in taxa
that may have different abundance patterns for regions not yet
surveyed. Whether the classification model presented has
broader utility beyond the cities sampled depends on its
performance on samples from additional locations, particularly
ones that are from Koppen regions not represented in this
sampling campaign. The studies of comparative analyses and
investigation of incorrect classifications also suggest that
incorporating ecological characteristics, such as richness or
indoor air taxa overlap with outdoor air or direct mold, may
lead to a more robust and broadly applicable platform by
leveraging the additional ecological differences observed
between mold and no mold indoor air that do not rely on
specific taxa identification and comparisons. Finally, we
acknowledge some inherent uncertainty and ambiguity in the
inspector-based classification of homes as moldy or not moldy.
While inspection can accurately classify a home as moldy based
on visible mold, the history or extent of that mold may not be
well documented. The classification of a no mold homes relies
upon occupant interviews and inspection at the time of
sampling. The complete history of water damage, especially in
an older home, may not be known.

Summary. Historically, it has been difficult to classify the
mold status or health risks of a home based on measurements
of indoor air fungal concentrations or characteristics. This
study used DNA-sequencing approaches to reveal the complex
ecological differences in fungal communities in professionally
inspected moldy and not moldy homes. These differences
motivated the development a machine learning-based tool to
classify the mold status of a home with approximately 95%
accuracy. This tool, coupled with an improved understanding
of the airborne fungal ecology characteristics that are
associated with the presence of building dampness or water
damage comprises a novel contribution toward identifying
buildings with fungal communities that may pose a health
hazard.
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