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Abstract Recent advances in remote sensing and the upcoming launch of the joint NASA/CNES/CSA/
UKSA Surface Water and Ocean Topography (SWOT) satellite point toward improved river discharge
estimates in ungauged basins. Existing discharge methods rely on “prior river knowledge” to infer
parameters not directly measured from space. Here, we show that discharge estimation is improved by
classifying and parameterizing rivers based on their unique geomorphology and hydraulics. Using over
370,000 in situ hydraulic observations as training data, we test unsupervised learning and an “expert”
method to assign these hydraulics and geomorphology to rivers via remote sensing. This intervention, along
with updates to model physics, constitutes a new method we term “geoBAM,” an update of the Bayesian
At‐many‐stations hydraulic geometry‐Manning's (BAM) algorithm. We tested geoBAM on Landsat imagery
over more than 7,500 rivers (108 are gauged) in Canada's Mackenzie River basin and on simulated
hydraulic data for 19 rivers that mimic SWOT observations without measurement error. geoBAM yielded
considerable improvement over BAM, improving the median Nash‐Sutcliffe efficiency (NSE) for the
Mackenzie River from −0.05 to 0.26 and from 0.16 to 0.46 for the SWOT rivers. Further, NSE improved by at
least 0.10 in 78/108 gauged Mackenzie rivers and 8/19 SWOT rivers. We attribute geoBAM improvement
to parameterizing rivers by type rather than globally, but prediction accuracy worsens if parameters
are misassigned. This method is easily mapped to rivers at the global scale and paves the way for improving
future discharge estimates, especially when coupled with hydrologic models.

1. Introduction

In recent decades, remote sensing (RS) of rivers hasflourished as a subfieldwithinfluvial geomorphology and
hydrology. At the global scale, RS of rivers is changing current perceptions of rivers and their role in the Earth
system: Globally modeled hydrography at fine‐spatial scales (Lehner et al., 2008; Yamazaki et al., 2019), daily
runoff routed through almost 3million river reaches over 30 years (Lin et al., 2019), assessments of rivers and
climate (Yang et al., 2020), water quality (Ross et al., 2019), surface area (Allen & Pavelsky, 2018), and hydro-
logical connectivity (Grill et al., 2019) have all debuted recently. These manuscripts extend a continuation of
RS for hydrology going back several decades (see Lettenmaier et al., 2015, and Gleason & Durand, 2020, for
thorough reviews). These examples, along with similar recent work quantifying global fluvial geomorphic
patterns (e.g., Chen et al., 2019; Frasson, Pavelsky, et al., 2019; Lin et al., 2020), suggest that RS is coming
of age in its ability to provide global‐scale data that honors local differences in rivers. These ideas will be
further explored with the launch of the joint NASA/CNES/CSA/UKSA Surface Water and Ocean
Topography (SWOT) satellite in 2022, which is expected to provide measurements of water surface elevation
and extent at unprecedented spatial and temporal resolutions (Biancamaria et al., 2016).

A particular subset of this literature is showing that accurate global RS of river discharge (RSQ) is presently
possible with some gauging information in hand and should be globally possible in ungauged basins in the
near future (Gleason & Durand, 2020). In basins with stream gauges or extensive field measurements, RSQ
approaches frequently calibrate RS to local channel hydraulics (e.g., Brakenridge et al., 2007; LeFavour &
Alsdorf, 2005; Pavelsky, 2014; Pavelsky & Smith, 2009; Tarpanelli et al., 2013) or introduce RS data into
hydrologic or hydraulic models (e.g., Bjerklie et al., 2005; Chandanpurkar et al., 2017; King et al., 2018; Lin
et al., 2019; Neal et al., 2009; Silvestro et al., 2015; Siqueira et al., 2018; Zhang et al., 2016). These approaches
(i.e., merging in situ and RS data) yield good predictive accuracy and can extend existing gauge records in
space and time. In ungauged settings however, there are no gauge records to extend. Ground‐based knowl-
edge would improve RSQ accuracy in these scenarios, but in lieu of such information, these methods must
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produce reasonably accurate results without relying on in situ knowledge (Gleason & Durand, 2020). In
ungauged settings, standard practice is again to introduce RS data into hydrologic models (e.g., Emery
et al., 2018; Sun et al., 2015) or hydraulic models (e.g., Andreadis et al., 2007; Biancamaria et al., 2011;
Durand et al., 2008; Yoon et al., 2012). The most recent and sophisticated methods for assimilating RS into
hydraulic models (e.g., Oubanas, Gejadze, Malaterre, Durand, et al., 2018; Oubanas, Gejadze, Malaterre, &
Mercier, 2018) are highly accurate in ungauged settings but computationally burdensome for global applica-
tion (Gleason & Durand, 2020).

A recent branch of RSQ has emerged with global application, SWOT, and ungauged basins in mind. This
approach is termed mass conserved flow‐law inversion or McFLI (Gleason et al., 2017). McFLIs assume that
a river reach is mass conserved and then inversely solve for the unknown parameters in a flow law given
some set of RS observations. This means that no hydrologic or hydraulic model is necessary, and discharge
is exclusively estimated from RS by inverting basic geomorphic theories. McFLIs are therefore defined by
their flow laws. To date, all published McFLIs have used either Manning's equation (Andreadis et al., 2020;
Bjerklie et al., 2018; Durand et al., 2014; Garambois & Monnier, 2015; Hagemann et al., 2017; Sichangi
et al., 2018) or at‐many‐stations hydraulic geometry (AMHG; Feng et al., 2019; Gleason et al., 2014;
Gleason & Wang, 2015; Hagemann et al., 2017) as a flow law, where AMHG reflects relationships between
at‐a‐station hydraulic geometry (AHG) parameters along a river's course (Brinkerhoff et al., 2019; Gleason &
Smith, 2014). Regardless of the geomorphology driving McFLI, all McFLIs suffer from equifinality issues, as
multiple sets of flow law variables can solve the inversion in this ill‐posed estimation problem (Garambois &
Monnier, 2015).

At the core of McFLI inversion is a reliance on initial guesses for parameters not observable from RS, termed
“priors” in Bayesian parlance. For example, to invert Manning's equation, priors are generally needed for
discharge, channel roughness, and channel cross‐sectional area. These priors have previously been esti-
mated from global hydrologic model output (Bonnema et al., 2016; Durand et al., 2016; Feng et al., 2019)
and/or from external training data of geomorphic and hydraulic variables (e.g., Canova et al., 2016;
Hagemann et al., 2017). Priors take the form of a probability distribution of these RS‐unobservable para-
meters. If in situ data are available, then priors have extremely low variance, and the less certain we are
about a parameter a priori, the wider the distribution. Durand et al. (2016) found that McFLIs are sensitive
to their priors in a test of five McFLIs on simulated SWOT observations (as SWOT has not launched, McFLIs
are tested on “SWOT‐like” simulated data—section 2.3). In a similar comparison of algorithms using simu-
lated SWOT‐like data, Bonnema et al. (2016) found that AMHG inversion is particularly sensitive to its
priors, and Tuozzolo, Lind, et al. (2019) found that McFLI estimation bias is sensitive to the discharge prior
bias in the first test of McFLIs from airborne Ka band interferometry measurements of rivers. Finally,
Andreadis et al. (2020) found that an expert classification of river planformmorphology used to define chan-
nel shapes a priori yielded improved discharge prediction. This is logical—the more we know about a river,
the better we can invert discharge.

These findings indicate that priors play a pivotal role in McFLI discharge accuracy, yet despite the geo-
morphic foundations of the McFLI paradigm, present McFLIs have used the same set of geomorphic priors
for every river on Earth, regardless of differences in planform geometry, hydraulics, and river size (Bjerklie
et al., 2003, 2005; Bonnema et al., 2016; Durand et al., 2016; Hagemann et al., 2017). This means that McFLIs
use the same expectations for, for example, Manning's n, width/depth ratios, and AHG exponents in a
braided river and a canal. No study to date has explicitly explored the sensitivity of McFLIs to the quality
of their priors, where “quality” refers to the hydraulic and geomorphic representativeness of a prior for a
given river. High‐quality priors would give accurate, river‐specific knowledge that closely approximates field
measurements and contextualizes discharge inversion to the specific hydraulics of the river. While
Andreadis et al. (2020) did briefly address prior quality, their method was only applied to the channel shape
prior and, more importantly, was not scalable globally. Further, Lin et al. (2019) recently developed a global
modeling framework to provide global reach‐scale priors on river discharge. However, their work was lim-
ited to discharge, and globally implementable priors on channel hydraulics are still underdeveloped.

There are also troves of existing in situ data that can bemapped onto these global products to informMcFLIs.
The United States Geological Survey (USGS) makes periodic field measurements of discharge and other
hydraulic variables that are freely available, and these measurements are easily joined to existing
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hydrographic data sets. For example, Brinkerhoff et al. (2019) joined over 730,000 USGS in situ measure-
ments to the National Hydrography Dataset (NHD), building on earlier work (e.g., HYDRoSWOT;
Bjerklie et al., 2020; Canova et al., 2016).

This proliferation of in situ measurements is welcomed but is largely useless for ungauged RSQ if we cannot
map thesemeasurements to rivers using RS and havemethods capable of ingesting them as priors. Given this
context, we hypothesize that McFLI performance will be improved by acknowledging geomorphic differ-
ences between rivers by assigning different priors to different rivers, building on recent global RS of rivers
and decades of detailed in situ work mapped to global rivers via RS. Further, we hypothesize that this inter-
vention alone should be sufficient to improve accuracies, and no new RS‐observations or updates to McFLI
algorithm logic is needed to make better predictions of discharge. We use the Bayesian‐AMHG‐Manning's
(BAM) algorithm (Hagemann et al., 2017) as a case study for McFLIs. We provide BAMwith improved prior
river knowledge by (1) obtaining priors from the largest known repository of in situ data joined to hydrogra-
phy (Brinkerhoff et al., 2019) and (2) constructing a river classification framework to reduce hydraulic varia-
tion to geomorphically distinct river types. We test these interventions (hereafter termed the “geoBAM”
algorithm) to produce river discharge fromLandsat observations on 7,858 rivers in theMackenzie River basin
(validated at 108 gauges) and from SWOT‐simulated data representing 19 rivers from Durand et al. (2016).
Ultimately, we provide a method for improving discharge estimation that is globally scalable using only RS
observations and could theoretically be applied to any river on Earth with sufficient RS data.

2. Data

The goal of this study was to improve McFLI accuracy by improving the quality of its priors. This required
creating three distinct data sets: (1) in situ measured training data for generating new prior river knowledge
(section 2.1), (2) RS observations for RSQ in the Mackenzie River basin (section 2.2), and (3) modeled RS
observations for RSQ using SWOT‐simulated rivers (section 2.3).

2.1. Hydraulic Data Set Used for Prior River Knowledge

Our first task was to gather a comprehensive data set of measured river hydraulics to generate training data.
We started with Brinkerhoff et al.'s (2019) data set. This data set merges USGS surface water measurements
(NWIS; https://waterdata.usgs.gov/nwis/measurements) of channel discharge and geometry with the NHD
(https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus) and filters the data to include
only those rivers that have at least six stations of 20 measurements each to derive that river's AMHG. For the
present study, we further filtered their data to exclude impossible measurements (i.e., Q < 0) and measure-
ments identified by the USGS as “poor,” yielding 372,109 unique in situ hydraulic measurements at 1,409
cross sections in 190 rivers in the continental United States (Figure S1 in the supporting information). We
added to these data by calculating river and landscape geomorphic variables from the NHD for each observa-
tion in the training data. We then reduced this data set to “representative hydraulics” for each cross section
such that they did not vary with river stage. These variables were calculated by taking themedian and sample
variance of the observed values at each cross section. This amounted to the 24 features in Table 1, which were
the variables available to our ultimate training data set used to differentiate rivers. All features were contin-
uous, save “stream order” and “USGS waterbody type,” which were discrete.

This data set is built exclusively for the United States, and we acknowledge that the continental United States
is not reflective of all global landscapes. Further, we have also limited our data set to those rivers where there
are six or more stations to parameterize AMHG. However, this is to our knowledge the largest possible freely
available fluvial geomorphology data set that covers a wide range of geographies, and these data represent a
best‐case scenario for our analysis. Notably, our training data are missing observations in equatorial and
Arctic/subarctic regions. With the aim of improving global RSQ at the center of this study, we chose to
use one of these poorly represented regions as a case study to assess the generalizability of our approach:
the Mackenzie River basin in the Canadian Arctic.

2.2. RS Data for the Mackenzie River Basin

The Mackenzie River basin is representative of Arctic hydrology and is completely unrepresented in our
training data. It is also one of the largest watersheds in North America, relatively unregulated, and the
authors have previous experience in both field and RS work in the basin. Thus, it is a good test for
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applying our new prior river knowledge at the near‐continental scale. We use the Mackenzie as a test basin
using real satellite data (as opposed to modeled SWOT data, section 2.3). To do so, we needed RS
observations of river widths to drive the BAM/geoBAM algorithms. We extracted multitemporal widths
for 220,069 cross sections in the basin following Feng et al. (2019, Text S1). In short, we (1) used the
MERIT hydro river network product (Lin et al., 2019), which was vectorized from flow accumulation data
by Yamazaki et al. (2019), to define river centerlines and generate width measurement stations at varying
intervals along the centerlines based on river widths (Yamazaki et al., 2019, Table S1); (2) we constructed
orthogonal cross sections for every station following Yang et al. (2019); and (3) these orthogonal lines
were used as inputs to RivWidthCloud, an automated algorithm for river width extraction using the
Google Earth Engine (Yang et al., 2019). After filtering for clear‐sky images, RivWidthCloud classifies a
pixel as water using an algorithm detailed in Yang et al. (2019) and Text S1. The classified water mask
was intersected with the orthogonal lines to estimate wetted width at each cross section. We measured
widths this way at 220,069 cross sections for all rivers with a mean width >120 m from 7,858
Landsat‐visible reaches in the Mackenzie River Basin using Landsat imagery from 1984–2013. Finally,

Table 1
The 24 Geomorphic Variables Used to Define River Types in This Study

Variable Symbol Description Source

Median channel width W Observed channel width measured—NWISa

Median channel velocity V Observed mean channel velocity measured—NWISa

Median channel depth D Observed mean channel depth measured—NWISa

Slope S Observed slope measured—NHDb

Stream order SO Strahler stream order calculated—NHDb

Distance downstream Dd River kms from headwater calculated—NHDb

Sinuosity Sn Deviation from a path of maximum downslope calculated—Wieczorek et al. (2018)
Hydraulic residence time HRT Travel time spent in river reach or waterbody (at mean annual flow) calculated—NHDb

USGS waterbody type WB River/waterbody calculated—NHDb

Channel shape r Geometrically defined shape parameter (Dingman, 2007) calculated—NWISa

Drainage area DA Upstream catchment area calculated—NHDb

Median Froude number Fr Measure of hydraulic flow regime in open‐channel flow
(median of at‐a‐station values)

calculated—NWISa

Median shear stress τ Force of moving water against channel bed
(median of at‐a‐station values)

calculated—NWISa + NHDb

Median unit power Ω Energy dissipation against riverbanks, normalized by channel width
(median of at‐a‐station values)

calculated—NWISa + NHDb

Maximum grain size entrained De Largest bed material entrained and transported (Henderson, 1966)
(median of at‐a‐station values)

calculated—NWISa + NHDb

Median Manning's n n Roughness term for Manning's equation
(median of at‐a‐station values)

calculated—NWISa + NHDb

Variance of cross‐sectional
channel width

Var(W) Observed channel width (variance of at‐a‐station values) measured—NWISa

Variance of cross‐sectional channel
velocity

Var(V) Observed mean channel velocity (variance of at‐a‐station values) measured—NWISa

Variance of cross‐sectional channel
depth

Var(D) Observed mean channel depth (variance of at‐a‐station values) measured—NWISa

Variance of cross‐sectional Froude
number

Var (Fr) Measure of hydraulic flow regime in open‐channel flow
(variance of at‐a‐station values)

calculated—NWISa

Variance of cross‐sectional shear
stress

Var(τ) Force of moving water against channel bed
(variance of at‐a‐station values)

calculated—NWISa + NHDb

Variance of cross‐sectional unit power Var(Ω) Energy dissipation against riverbanks, normalized by channel width
(variance of at‐a‐station values)

calculated—NWISa + NHDb

Variance of cross‐sectional maximum
grain size entrained

Var (De) Largest bed material entrained and transported (Henderson, 1966)
(variance of at‐a‐station values)

calculated—NWISa + NHDb

Variance of cross‐sectional
Manning's n

Var(n) Roughness term for Manning's equation
(variance of at‐a‐station values)

calculated—NWISa + NHDb

Note. Note that we require a stage invariant geomorphic classification. Therefore, stage‐varying variables are defined using “representative hydraulics,” that is,
the median and variance of these variables at‐a‐station.
aUSGS (https://waterdata.usgs.gov/nwis/measurement). bEPA (https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus).
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these cross‐sectional river widths were binned by river reach using the MERIT Hydro river network
(Lin et al., 2019, median length 6.8 km).

For validation, we collected in situ daily discharge data for the Mackenzie River basin for all time periods
that gauges were operational from 1984–2013 from the Water Survey of Canada (WSC; https://waterof-
fice.ec.gc.ca/mainmenu/real_time_data_index_e.html). These gauge data are analogous to USGS gauging
data provided by the NWIS. WSC gauge stations were linked to our hydrography based on their geospatial
locations (distance within 500 m of a centerline) and drainage areas (i.e., difference within ±10% of a hydro-
graphy reach), resulting in 327 validation gauges. Of these 327 gauges, 108 coincide with Landsat‐visible
reaches and were ultimately used for validation. Together, these RS widths and completely independent
gauge validation data provide a platform to test McFLI improvements in an actual application setting, with
all inherent RS errors present in the data. We also use a “perfect” scenario to test our improvements without
the influence of real‐world errors, described next.

2.3. SWOT‐Simulated Rivers

Once SWOT launches, Manning's‐basedMcFLIs can be run globally from SWOT's novel simultaneous obser-
vations of river width and height. However, existing SWOT‐like data are limited to an airborne Ka band inter-
ferometric synthetic aperture radar (InSAR), which is currently available for less than five rivers globally with
only a handful of observations each (Tuozzolo, Lind, et al., 2019), or painstaking data fusion of altimetry and
imagery (Bjerklie et al., 2018). Therefore, authors typically use simulated SWOT data to test Manning's‐based
McFLIs. A SWOT simulator has been built by the Jet Propulsion Laboratory (JPL) to simulate the errors that
are expected to come with actual SWOT data (namely, radar layover errors and random noise) and has been
used to benchmarkMcFLIs before (e.g., Oubanas, Gejadze,Malaterre, Durand, et al., 2018). However, for this
studywe are interested purely in algorithmperformance and so seek a test scenario that assumes perfectmea-
surement conditions with no introduced errors. Satisfying data to achieve this are simple reach‐averaged
hydraulic model outputs with water surface heights and river widths labeled as “RS observations” (Durand
et al., 2016; Hagemann et al., 2017). For this test, we used 19 test rivers from Frasson, Durand, et al. (2019)
which were developed for benchmarkingMcFLIs by Durand et al. (2016) and outlined in Table S2. These riv-
ers cover the United States, Canada, Great Britain, France, Bangladesh, and Italy. Median discharge ranged
from 62–14,199 m3/s and “observation”windows ranged from 22–365 days over 3–16 reaches. All 19 models
solve either 1‐D or 2‐D St. Vernant equations using fieldmeasurements to construct channel bathymetry (see
Durand et al., 2016, for a more through overview). Twelve are HEC‐RASmodels (1‐D), one is a MASCARET
model (1‐D), one is a BreZo model (2‐D), one is a ProSe model (1‐D), two are LISFLOOD models (1‐D and
2‐D), and two are H2D2 models (2‐D). Simulated rivers mimic perfect measurement conditions and
represent better than the best‐case scenarios of what SWOT will provide to hydrologists. Specifically, these
river models provide “observations” of river width and water surface elevation, which are in turn used to
calculate water surface slope for use in a Manning's‐based McFLI.

3. Methods

With these data in hand, our methods are as follows (see Figure 1 for a flowchart of our methods):

1. Update BAM to reflect the latest geomorphic understanding of AMHG following Brinkerhoff et al. (2019)
and ingest geomorphic priors (section 3.1).

2. Generate new prior river geomorphology knowledge from our field hydraulics data set (section 2.1) and
categorize this information following different approaches: an “unsupervised” classification and an “expert”
classification (section 3.2).

3. Assign classified prior river knowledge to river reaches using an RS mapping scheme (section 3.3).

4. Compare geoBAMwith Hagemann et al.'s (2017) original BAM algorithm for the Landsat and SWOT cases
(section 3.4).

3.1. geoBAM and AMHG Physics

We performed McFLI RSQ from both the BAM and geoBAM algorithms. geoBAM does not update the logic
or computational aspects of BAM, and therefore, it is important to briefly outline how the original BAM algo-
rithm works and detail what makes BAM and geoBAM different. Readers are referred to Hagemann
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et al. (2017) for full details, and Figure S2 gives a flowchart detailing the workflow internal to BAM. In brief,
BAM is a McFLI that probabilistically estimates river discharge via Bayesian inference and a Hamiltonian
Monte Carlo sampling scheme given RS river widths and/or heights and priors on all non‐RS parameters
as inputs. BAM yields posterior probability distributions for all non‐RS parameters in the flow law
(including discharge) as a Bayesian technique and is a formal and intuitive way of achieving this
(Hagemann et al., 2017).

Figure 1. To develop geoBAM, we (1) generate new prior hydraulic data and classify this information, (2) generate
remotely sensed inputs, and (3) estimate discharge with BAM/geoBAM. In the final row of discharge products, green
outputs correspond to the Mackenzie River basin test (108 samples), and blue outputs correspond to the
SWOT‐simulated rivers (19 samples). These colors also align with boxplot colors in our results (Figures 3–6 and 8). Note
that the “remotely sensed inputs” are different for the SWOT case (widths and heights) versus Landsat case
(widths only). See Figure S2 for a flowchart explaining original BAM workflow (Hagemann et al., 2017), and section 3.1
for information on the updated flow law.
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BAM relies on two flow laws: Manning's equation and AMHG. Brinkerhoff et al. (2019) recently brought
theoretical closure to the previously empirical AMHG, and consequently, AMHG can now be written as a
function of known hydraulic variables. Brinkerhoff et al. (2019) found that AMHG is a direct mathema-
tical consequence of a river longitudinal profile's strength of fit in any slope‐roughness model. Further,
they showed that AMHG's empirical parameters (Wc and Qcw in Equations 1–3, see Brinkerhoff et al., 2019,
for definition), coexist with Dingman's (2007) hydraulic geometry model and thus are a valid hydraulic
tuple for the given river cross section. Overall, their analysis yielded a new AMHG expression
(Equation 1) defined by p (the generalized velocity‐depth relation exponent), K (the generalized rough-
ness coefficient), Wb (bankfull width), Db (bankfull depth), r (a channel shape term defined by
Dingman, 2007: r = 1 is a triangular channel, r = 2 a parabola, and r = infinity a box), and channel slope
S. We take this premise and derive a novel flow law (Equation 3) by first substituting Equation 1 into the
original AMHG flow law (Equation 2; Gleason & Wang, 2015) and substituting Manning's constants for
the generalized terms. In Equation 3, Q is river discharge, b is the width AHG exponent, and W is chan-
nel width for cross section i and time step t. n was defined previously as Manning's roughness coefficient.
Note that K is equal to 1/n when adhering to Manning's relation and consult Dingman (2007) for an
explanation of his generalizations of Chezy's and Manning's expressions for hydraulic geometry relations
that we follow here.

W1 þ r þ rp
c Q−1

cw ¼ KS
1
2

� �−1
Wr þ rp

b D− 1 þ pð Þ
b

r
r þ 1

� �−ð1 þ pÞ
(1)

Qt ¼
Wit

Wc

� � 1
bi
Qcw (2)

Qt ¼
Wit

WC

� � 1
bi

W
5r
3
bi
D

− 5
3

bi

ri
ri þ 1

� �−5
3

S
−1

2
it n

−1
i W

−
1þ 5ri

3ð Þ
c

 !−1

: (3)

It must be stressed that values for p and K (in Equation 1) have been shown to vary widely and not
always adhere to Manning's (or Chezy's) constants due to different river morphologies (e.g., Bjerklie
et al., 2005; Dingman, 2007; Dingman & Afshari, 2018; Dingman & Sharma, 1997; Ferguson, 2010;
Knighton, 1975). With that said, this new formulation of the AMHG flow law is flexible and in theory
allows for future generalized implementations. In summary, the AMHG flow law (Equation 3) is now
defined explicitly by fluvial geomorphology and when introduced to BAM, requires priors on river
channel hydraulics just like Manning's equation does (specifically, Q, Wb, Db, r, n, and Wc in
Equation 3).

Hagemann et al.'s (2017) BAM also uses a channel roughness prior (n) that is constant in space and time
across all sections of a river, which is known to be both physically inaccurate in many scenarios and poorly
reflective of the variation in roughness experienced in space and time (Ferguson, 2010; Tuozzolo, Langhorst,
et al., 2019). Thus, geoBAM should update this n prior to vary in space and time. We found this space‐and‐
time‐varying implementation significantly slowed geoBAM computations, and further, there was almost no
change in performance between space‐varying and space‐and‐time‐varying, but both improved on the
default prior in BAM.We deemed the lack of improvement in performance when instituting space‐and‐time
varying n not worth the significant computational burden it imposed. Thus, we implemented only the
space‐varying n prior into the version of geoBAM used in this study. Figure S3 shows the difference between
these results.

3.2. River Classification

Recall our hypothesis that defining priors for specific river types will improve McFLI performance. To test
this, we constrained prior river knowledge using expert and unsupervised statistical classifications to extract
geomorphically distinct river types.

Statistical learning is generally binned into unsupervised and supervised approaches (Hastie et al., 2009;
James et al., 2013). Both use a suite of variables extracted from a training data set to define a feature space
and then identify patterns in that space. Unsupervised learning identifies these patterns and then clusters
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observations solely from the training data given user guidance only on algorithm parameters, while super-
vised learning uses user‐defined predictors to model “target variables” that are known a priori. The familiar
concepts of regression (if the target variable is continuous), or classification (if it is discrete) are forms of
supervised learning. In this study, we lack a priori river types in the training data to take a supervised
approach to learning, and so instead, we implement both unsupervised learning and an expert
classification framework that forces specific knowledge on river geomorphology to guide statistical methods
of classification.
3.2.1. Unsupervised
As a representative unsupervised clustering approach, we used the “density‐based spatial clustering of appli-
cations with noise” (DBSCAN: Ester et al., 1996) algorithm. DBSCAN is a density‐based clustering algorithm
that groups observations in the multidimensional feature space using proximity. Distance between points is
determined using Euclidean distance. Unlike simpler unsupervised clustering algorithms, DBSCAN does
not assume that all clusters have a convex shape in the feature space and instead uses density to group obser-
vations. This means clusters can be arbitrarily shaped or completely surround other clusters. This also
permits DBSCAN to identify “noise” points which are outside of the dense areas of the feature space, differ-
ing in practice from other simple unsupervised learning methods (e.g., k‐means clustering will assign every
observation to a cluster). The user must provide a minimum number of points for a cluster and a maximum
cluster radius, and DBSCAN automatically determines the number of clusters, unlike simpler unsupervised
algorithms. We used a standard, “elbow”‐based approach to choose amaximum cluster radius of 0.5 (Text S2
and Figure S4) and a minimum cluster size of five river cross sections as a balance of interpretability,
within‐cluster variation, and number of resulting clusters. We ran DBSCAN on nondimensional forms of
the 24 geomorphic variables in Table 1, yielding seven clusters in approximately 95% of the cross sections,
with the remaining 5% classified as “noise.”
3.2.2. Expert
We also developed a bespoke expert classification framework for extracting river types, built specifically such
that river width is a predictor of these types. By using principal component analysis (PCA) as a guiding tool,
the approach follows similar methods used to extract global hydroclimatic river types (Dallaire et al., 2019)
and hydrologic flow regimes (Olden et al., 2012). Here, a PCA was used to dimensionally reduce our data set
and create multivariate, nondimensional principal components (PCs) responsible for some amount of
geomorphic variation across the feature space (and ultimately the United States). We ran a PCA on nondi-
mensional forms of the 24 geomorphic variables in Table 1 at all cross sections and selected the three most
influential PCs, cumulatively responsible for 54% of the variance in the feature space, as a subjective balance
between variance explained and interpretability. Selecting additional PCs would explain more variance but
limit our ability to map rivers from RS data and interpret the PCs. In order of most variance explained, these
PCs qualitatively represented (1) sediment transport, (2) river size, and (3) variation in velocity/Froude num-
ber (Table S3).

There are two parts to the expert classification. In the first, we used PC scores to assist in classifying cross
sections. PC scores were calculated for every cross section in the training data to locate each cross section
in the PCA subspace (or more formally, linear combinations of the normalized feature values multiplied
by their “loadings”). Each cross section has 24 PC scores associated with it. Because the loading vectors,
and thus the PC scores, are all normalized to the same global values (Hastie et al., 2009; James et al., 2013),
we simply summed the three PC scores for each cross section corresponding to PCs 1–3. This provides a sin-
gle value per cross section, where cross sections with similar aggregate PC values have similar geomorphol-
ogy (i.e., have similar values for the three most influential PCs and therefore similar geomorphology in the
PCA subspace). We then use this metric to classify all cross sections into river types by segmenting rivers into
15 classes using quantiles of the aggregate PC metric as class thresholds. Since this is an “expert” system, we
subjectively chose 15 classes to explicitly maintain river width as a predictor of river types while allowing for
diversity of river form in our class system. Adding more classes obscured differences between classes and
broke down the predictive relationship between river type and river width (section 3.3). This relationship
is essential, as width is easily obtained from RS and thus allows this expert classification to be mapped to
all global rivers.

The second part of the expert classification framework was designed to differentiate “big” rivers and “highly
width‐variable” rivers from the 15 classes. For some very large rivers (e.g., the Mississippi or St. Lawrence
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rivers), the training data had very few cross sections in rivers of similar size, and thus, hydraulics are ill
defined. We defined “big” rivers as those with a mean width greater than 665 m. This threshold was
subjectively chosen using the distribution of river widths for the widest river type (Type 15). We then
defined “highly width‐variable” rivers (Type 16 in Figure 2a) as those with a channel shape parameter
r < 1 (like Andreadis et al.,'s 2020, definition for braided rivers), which guarantees significant variability
in river width for both single channel and multichannel rivers (Dingman, 2007).

3.3. Mapping River Type From RS

The goal of this study is to improve discharge prediction at the global scale. Thus, river types must be assign-
able to rivers using only RS observations or other readily available geospatial data sets. However, our classi-
fications above are defined using in situmeasurements that are not remotely sensible. This presents a unique
supervised classification challenge necessitating width and water surface height (i.e., current synoptically
available fluvial parameters) as the sole predictors of the river types. Here, we use “river type mapping” to
refer to a final supervised classification where the target variables are our river types and the predictors
are river width and/or slope. This is a second classification step applied to both the unsupervised and expert
classifications already performed on the in situ data.

For the DBSCAN framework, neither width nor slope were strong predictors of river types. Therefore, we
needed a way to map RS observations at the scale of the Mackenzie basin (220,069 cross sections) to the
DBSCAN‐generated classes (which use no RS data). To do so, we turned to basic supervised statistical learn-
ing to assign river types, which has seen some success at the regional scale (Guillon et al., 2020). Using a clas-
sic validation‐set approach to model training, we trained a multiclass logistic regression classifier on 80% of
the training data using the median of cross‐sectional widths as the sole predictor. Logistic regression models
yield the probability of an observation being assigned some class, conditional on the observations in the data

Figure 2. (a) Median at‐a‐station river widths by expert river type for the training data. Median river width is a strong predictor of most “expert”‐classified rivers;
however, significant variation of widths within each river type is still observed. (b) Expert classification for over 7,500 reaches and discharge validation at
108 gauges. Increase in NSE from BAM to geoBAM‐expert is given as colored circles at the gauge locations. The Canadian Shield (black outline) and major lakes
(dark blue) are overlaid upon the classified hydrography (Lin et al., 2019; Yamazaki et al., 2019) to show clear class differences in the shield versus the rest
of the basin. Basemap made with Natural Earth and cities added to show the size of the basin.
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set (Hastie et al., 2009). While generally used to predict binary classes, multiclass logistic regression is pos-
sible and implemented here using a “one‐versus‐rest” classifier (Bishop, 2006). When tested on the remain-
ing 20% of the data, the classification accuracy was 87%. Note that this classifier can classify a river as
“unclassified,” that is, a noisy point outside of any clusters in the feature space (section 3.2.1). Thus, we
can reasonably reproduce our classification, which carries rich in situ prior information, solely from RS.

As previously stressed, the expert framework was developed explicitly such that river width was a strong pre-
dictor of river type as produced by the PCA. This is confirmed in section 4.1, where the median widths for
each river type exhibit a strong relationship with the river types. We acknowledge that within the river types
there is significant variation in river width. We ultimately assigned river class by selecting the class which
had a median characteristic width closest to the MERIT hydro width. We mapped the “highly width‐vari-
able” type to rivers using a minimum standard deviation of at‐a‐station width >1.87 m as the threshold.
Recall that “highly width‐variable” rivers were previously defined as having an r less than 1 in the training
data (section 3.2.2). We iteratively tested thresholds on the SWOT rivers and chose the minimum value that
preserved a large cluster of low variability (Figure S5).

3.4. Discharge Estimation

Ultimately, we produced two forms of geoBAM: geoBAM‐Unsupervised and geoBAM‐Expert, that compare
how pure statistical learning (geoBAM‐Unsupervised) compares with imposed prior knowledge of rivers
(geoBAM‐Expert). The only difference between these methods is their priors, and the RS inputs and dis-
charge physics are identical between them.

Recall that BAM/geoBAM can use two flow laws: The user chooses to invert Manning's equation, AMHG, or
a combination of both as its flow law. The user also chooses whether to run the algorithms at every cross sec-
tion or to use reach‐averaged observations in line with how SWOT will observe rivers. For this study, we ran
AMHG in the Mackenzie at the cross‐section scale and ran a “switch” flow law on the reach‐averaged
SWOT‐simulated data. This “switch” always inverts Manning's equation and inverts Manning's and
AMHG when AMHG it is deemed suitably strong (Hagemann et al., 2017). We defined “suitably strong”
AMHG differently than Hagemann et al. (2017), following Brinkerhoff et al.'s (2019) finding that when
observed slopes strongly fit a river‐wide slope model, AMHG is strong. Here, we use the regime theory model
defined by Henderson (1966) and reprinted as Equation 4 where Qb is bankfull discharge. Degree of fit is
defined by the coefficient of determination (r2—note that r2 is standard notation and not the square of the
channel shape parameter r), and strong fit was defined as an r2 > 0.90.

S ¼ 0:44D1:15
e Q0:46

b : (4)

To run geoBAM for Manning's and/or AMHG, the user provides water surface heights and/or widths from
RS observations, as well as priors on 34 parameters. These parameters define distributions for six hydraulic
variables (as well as discharge, flow law errors, and AMHG'sWc term) and are formalized within geoBAM as
truncated, lognormal distributions where ln(X)~Ν(μ,σ2) for λ< X< ε, usingmean (μ), standard deviation (σ),
and upper (ε) and lower bounds (λ) as parameters. The six hydraulic variables, following the geomorphic
updates made in section 3.2, are median cross‐sectional area (A0), bankfull width (Wb), bankfull depth
(Db), Manning's roughness term (n), a channel shape parameter (r), and an AHG exponent (b). For our tests
(see Figure 1 for a flowchart), we used geomorphic river types to redefine the prior river knowledge on the six
hydraulic terms in Figure 7 using the river mapping in section 3.4 to assign a river type to each BAM reach.

Prior parameters were extracted directly from the training data's distribution of each hydraulic variable once
a river type had been assigned. Wb and Db were calculated at each cross section using a return period of
2 years, acknowledging that Qb has been associated with a range of return periods given local geomorphol-
ogy (Petit & Pauquet, 1997; Williams, 1978). However, a 1.5‐ to 2‐year return period is a standard statistical
definition for bankfull flow and was used here to align with existing literature. b was defined empirically by
fitting, at each cross section, Equation 5. r was defined empirically following Dingman (2007) as f/b, where f
is the exponent calculated when fitting, at each cross section, Equation 6. Manning's n was calculated using
observed flow velocities and depths and following Equation 7.
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w ¼ aQb (5)

d ¼ cQ f (6)

n ¼ d

2
3S

1
2

v

(7)

Recall that geoBAM‐Expert includes a “big” river type and geoBAM‐Unsupervised can classify a river as
“unclassified” (section 3.4). For “big” and “unclassified” rivers with poor representation in our training data,
we followed the method outlined in Hagemann et al. (2017)—by using a global prior set that represents all
rivers in a single summary from our training data set (Figure S6). For the “AMHG switch,” Qb and De were
also predicted using this global method. For the expert framework, we further accounted for “big” rivers by
setting the bounds on some priors to larger values than produced by the global prior (Table S4). The prior
estimate on discharge was defined differently for our two tests: for the Mackenzie River basin, we used a
stream gauge when available and otherwise used the mean daily discharge estimate from GRADES (Lin
et al., 2019). For the SWOT‐simulated rivers, output from a water‐balance model (Wisser et al., 2010) was
used in line with Durand et al. (2016).

3.5. Validation Metrics

Error metrics (Table S5) to quantify RSQ accuracy followed Hagemann et al. (2017). rBIAS and RRMSE
define the range and central tendency of prediction errors, respectively. NRMSE is a normalized variant
of RRMSE to account for RRMSE's high sensitivity to errors in low flow estimation, and Nash‐Sutcliffe effi-
ciency (NSE) represents the amount of variance in the observed data that the model explains. An NSE
greater than 0 indicates that our model estimates better than guessing mean flow every time. Scores are
reported at the river scale for the SWOT‐simulated rivers and at the reach scale for the Mackenzie River
basin.

In order to independently validate our interventions on the American SWOT‐simulated rivers, we manually
removed all training data that corresponds to these SWOT‐simulated river reaches before building the clas-
sifications and training the logistic classifier for geoBAM‐Unsupervised. However, we use the entire training
data set for the Mackenzie basin as these reaches are all independent of the training data. Similarly, the clas-
sification results presented in section 4.3 use the entire training data set.

4. Results

We compare geoBAM validation scores against BAM scores across several tests. We first present the river
classification and discharge prediction for the Mackenzie River basin (section 4.1), followed by discharge
prediction accuracy for the SWOT‐simulated rivers (section 4.2). Then, we orient these results by exploring
the prior distributions (section 4.3) and additional RSQ error metrics (section 4.4).

4.1. Mackenzie River Basin

First, we visually confirm that river width was a strong predictor of Expert river type (Figure 2a—recall sec-
tion 3.2.2). Then, we map over 7,500 rivers in the Mackenzie River basin classified via the expert framework,
along with the increase in NSE from BAM to geoBAM‐Expert for all 108 validation reaches (Figure 2b).
Rivers mostly fall into two regimes composed of Type 1 and 2 rivers in the western half of the watershed,
and Types 16 and 7 in the eastern. These two regimes align nearly perfectly with the boundary of the
Canadian Shield, a particularly old, hard, exposed igneous rock that underlies thin soil, large lakes, and wet-
lands in the eastern portion of the basin (e.g., Spence & Woo, 2008). Meanwhile, the western portion drains
the Rocky Mountains—a fundamentally different landscape. Thus, the Expert classification qualitatively
reflects observed geomorphology patterns in the landscape of the Mackenzie River basin through its differ-
ent river types.

The clear manifestation of the Canadian Shield in our classification influences RSQ accuracy as well. All
validation reaches on the Shield showed an NSE improvement of at least 0.50, while any reaches with less
improvement, or even degradation, in NSE are not located on the Shield. This suggests that geoBAM is more
able to hydraulically represent the types of rivers present in “Shield‐like” landscapes than BAM. The only
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river reach with an NSE increase >5.0 is near the outlet of the basin. Finally, there is no clear relationship
between NSE improvement and stream order (Figure S7), suggesting that improvement is not a function
of river size (although slight decrease in the NSE improvement is seen from Order 1 to Order 5 streams,
Figure S7).

Next, we explore accuracy of predicted discharge using geoBAM. geoBAM predicted discharges are much
improved over BAM in the Mackenzie, regardless of the Expert or Unsupervised variant (Figure 3).
Despite no new RS observations, we have yielded an increase in the median NSE of 0.31 (Figure 3c) across
the 108 validation gauges when using geoBAM‐Unsupervised. Most reaches (78/108) improved NSE by at
least 0.1 (Figure 3c). Almost the entire improvement distribution is greater than 0 when we take the differ-
ence in NSE between geoBAM‐Unsupervised and BAM, and improvement is often greater than 1.0
(Figure 3c). The largest improvement occurs in reaches that were poorly estimated (approximately
NSE < 0) by BAM, and this area of largest improvement is the only region (Figure 3a) with notable differ-
ences between unsupervised and expert variants of geoBAM, with geoBAM‐Unsupervised performing
slightly better. BAM had positive NSE for less than half of the reaches (42%). geoBAM, however, has a posi-
tive NSE inmost reaches (80%Unsupervised and 79% Expert). Median NSE across all reaches improved from
−0.05 to 0.24 with geoBAM‐Expert and to 0.26 with geoBAM‐Unsupervised. Finally, the entire distribution
of NSE scores is higher andmore consistent with geoBAM: Themiddle 50% of scores increased and the inter-
quartile range (IQR) narrowed substantially (from 0.91 to 0.38 for geoBAM‐Unsupervised and 0.39
geoBAM‐Expert). The minimum geoBAM NSE is also −1.35, which is well within the whiskers for BAM
(compared to BAM's minimum NSE of −6.63). In sum, geoBAM's two primary interventions (a geomorphic
update to AMHG and differential prior distributions on geomorphic variables—sections 3.2–3.4)

Figure 3. NSE improvement for 108 validation reaches in the Mackenzie River basin: (a) empirical cumulative density functions (CDFs) of the NSE scores for
every reach, (b) boxplots of the same results, and (c) histogram of the change in NSE from BAM to geoBAM‐Unsupervised. Axes are truncated for
visualization's sake. We have provided arrows and number of rivers not plotted when necessary.
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substantially outperform BAM and its global‐scope priors (section 1 and Figure S6) in both the magnitude
and consistency of NSE scores over all 108 validation reaches.

While nearly all validation reaches showed improvement in NSE with respect to BAM (Figure 3c), there was
a range in the magnitude of this improvement, visualized by the hydrographs of predicted discharge
(Figure 4). To visualize, we binned all 108 validation reaches into three groups using the tertiles of the dis-
tribution of improvement in NSE from BAM to geoBAM‐Expert. We termed these bins “little improvement,”
“more improvement,” and “most improvement” and then randomly selected four reaches from each of these
bins for Figure 4. For the reaches with the most improvement (38969, 39161, 37865, and 33757) BAM could
not replicate the observed dynamics of streamflow, while geoBAM‐Expert was largely able to reproduce the
peak events and baseflow periods present in the observed hydrographs. For Reach 37865, both BAM variants
modeled baseflow accurately, but only geoBAM‐Expert successfully modeled peak flow events. For Reaches
38969 and 33757, BAM's modeled discharge was marked by periods of no discernable streamflow dynamics
and sudden jumps to other flow values. geoBAM‐Expert was able to more accurately reproduce the differ-
ences between baseflow and peak flow events in these reaches. For the “more improvement” reaches,
geoBAM‐Expert hydrographs also visually resemble the observed hydrographs, though the magnitude of
improvement was smaller than for the “most improvement” reaches. Sometimes (Reaches 37249 and

Figure 4. Twelve hydrographs from the Mackenzie River basin: observed discharge (dashed black) is plotted alongside BAM (light green) and geoBAM‐Expert
(dark green). Each column features four reaches randomly sampled from bins of 33% (“tertiles,” here called “little,” “more,” and “most” improvement) for
NSE improvement from BAM to geoBAM‐Expert.
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35489), BAM already modeled streamflow quite well. Here, geoBAM‐Expert largely produced the same
hydrograph as BAM, but with better accuracy in simulating the magnitude of the high flow events that
BAM was missing. While some of the “little improvement” reaches were poorly modeled by BAM and
continue to be poorly modeled by geoBAM‐Expert (Reach 37154), some were modeled well by both BAM
variants (Reach 35737). Finally, there is no discernable relationship between NSE improvement and the
size of the river, as a full spectrum of observed discharge, ranging from tens of m3/s to thousands of m3/s,
is evident across all improvement cases.

4.2. SWOT‐Simulated Rivers

There is continued substantial improvement in NSE for the 19 SWOT‐simulated rivers (Figure 5), though
there is less overall improvement than in the Mackenzie River test (Figure 3). geoBAM‐Unsupervised
yielded an increase in median NSE for all rivers of 0.27 (Figure 5c), as well as consistently better perfor-
mance: The IQR shrinks from 1.40 to 0.94 for geoBAM‐Expert and 1.13 for geoBAM‐Unsupervised
(Figure 5b). Most rivers (8/19) improved NSE by at least 0.1. While this improvement is lower than in the
Mackenzie River test, the median NSE across all 19 rivers significantly improved from 0.16 to 0.48 with
geoBAM‐Expert (Figure 5b). Most improvement in the SWOT rivers came from those with a middling
NSE (approximately −1 to 0.80—Figure 5a). Those rivers with very high NSE scores did not change at all
with our interventions, and some of the very poorly performing rivers got worse. geoBAM‐Expert slightly
outperformed geoBAM‐Unsupervised with respect to median NSE and the IQR of NSE scores; however,
geoBAM‐Expert produced more poorly performing outliers than geoBAM‐Unsupervised or BAM

Figure 5. NSE improvement for 19 SWOT‐simulated rivers: (a) empirical cumulative density functions (CDFs) of the NSE scores across rivers, (b) boxplots of the
same results, (c) histogram of the change in NSE using geoBAM‐Unsupervised. Axes are truncated for visualization's sake. We have provided arrows and number
of rivers not plotted when necessary.
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(Figure 5b). The cumulative density functions (CDFs) (Figure 5a) highlight this, where rivers with
NSE < −1.5 had degraded performance with geoBAM‐Expert.

Considering hydrographs, BAM performed quite well in low/baseflow periods across rivers, but much worse
in high flow events (e.g., Severn, Cumberland, and Seine). In some rivers, geoBAM‐Expert hydrographs
(Figure 6—dark blue lines) significantly improved from those estimated using BAM (light blue lines—for
example, St. Lawrence Upstream, Garonne Upstream, Cumberland, Connecticut, and Severn). In other riv-
ers, very little changed (e.g., Wabash, Mississippi Downstream, and Tanana). Both BAM and geoBAM pro-
duced hydrographs that visually resemble observed flow dynamics, but, similar to the Mackenzie River test
(Figure 4), geoBAM has “filled in” many errors in predicting the magnitude of peak events with varying

Figure 6. Hydrographs for the SWOT‐simulated rivers: Observed discharge (dotted black) is plotted alongside BAM (light blue) and geoBAM‐Expert (dark blue).
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degrees of success. For example, the Ohio River was mostly modeled correctly by BAM except for errors in
the three peak events (Figure 6—“Ohio”). geoBAM‐Expert has minimized the error in these peak events,
while continuing to accurately model the rest of the hydrograph. Some rivers with little to no change in
NSE scores (Figure 5) still appear to have partially “filled in” these discrepancies (e.g., Seine, Severn, and

Figure 7. Truncated, lognormal distributions of hydraulic geoBAM priors as defined using the unsupervised classification (left column) or the expert
classification (right column). CDFs with classes overlain on one another indicate the variable is not differentiable by class, whereas most variables are
differentiable by class.
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Cumberland). geoBAM‐Expert results for both the Sacramento Upstream and St. Lawrence Downstream
show visibly worsened reproduction of observed discharge than BAM.

4.3. Classification Comparison

Sections 4.1 and 4.2 show significant performance improvement in geoBAM discharge estimation when
defining prior river knowledge via geomorphic river types. However, geoBAM‐Expert and
geoBAM‐Unsupervised yielded functionally the same NSE performance in both the Mackenzie River basin
and the SWOT‐simulated rivers, despite being constructed very differently. Thus, we now turn to exploring
differences in the river types these classifications produced. Both classification frameworks feature funda-
mentally different classifications and yield fundamentally different hydraulic priors across river types
(Figure 7). Figure 7 plots truncated, parametric distributions of the six hydraulic terms calculated from
the training data needed to run geoBAM for both classifications. Distributions for all six hydraulic terms
are visually distinct for the unsupervised classification (left column), whileA0,Wb, andDb appear to increase
monotonically by expert river type (right column).

While these plots visually justify both classification frameworks as ways to extract differentiable prior distri-
butions for hydraulic terms, we confirmed the uniqueness of the classes by running two one‐way analysis of
variance (ANOVA) tests on themedians of the six hydraulic terms' distributions in Figure 7, grouped by river
type (Table S6). These ANOVA tests check whether there are statistically significant differences between the
centers of the prior distributions per river type and are reported as p values, where a value <0.05 is generally
considered statistically significant and a value between 0.05 and 0.1 is considered mildly significant. We note
that distribution centers are not the only criteria necessary to define truncated probability distributions and
that distributions can have similar centers but drastically different overall shapes. Still, this is a convenient
way to quantify one dimension of differentiability. For the expert framework,Wb, Db, n, and A0 were signif-
icantly different (p < 0.05), while other variables were not different by class. For the unsupervised frame-
work, b and r were marginally significantly different (p values between 0.05 and 0.10), while the other
hydraulics were not significantly different by class. Overall, Figure 7 and Table S6 confirm that both classi-
fication frameworks yield differentiable river types across these six hydraulic terms.

Using the parametric distributions in Figure 7, we qualitatively defined what these river types represent.
Based on the significantly different A0,Wb, and Db distributions for geoBAM‐Expert, we interpret these river
types as discrete representations of river size: channel area and bankfull geometry monotonically increase
with river type. Per the definition of r and b in the expert system, Type 16 (“highly width‐variable”) rivers
are fundamentally different from the other class distributions. The unsupervised river types are more diffi-
cult to qualitatively define, but the r distribution for River Type 7 appears strikingly similar to the expert sys-
tem's River Type 16, suggesting that the unsupervised method successfully identified the highly
width‐variable cross sections itself. The unsupervised system also identified a river type with exceptionally
high Manning's n values, distinct from the others. The center of this distribution is a Manning's n of 0.48,
which is extremely high and generally reserved for very rough, vegetal‐lined, artificial channels
(Chow, 1959). The remaining river types cover the full spread of channel geometries experienced in our
training data, but with varying degrees of certainty in the distribution centers.

4.4. Summary of Performance Metrics

Finally, we analyze RSQ accuracy across all experimental trials in this study using additional error metrics
(Figure 8). Again, differences between the two proposed classification frameworks for either test are mar-
ginal, but improvement fromBAM is stark. In the SWOT rivers, geoBAM‐Expert had a slightly better median
rBIAS score (−0.07 vs. −0.13), but otherwise, median performance scores were functionally the same across
both classification frameworks tested.

While the magnitude of scores is worse across the board for the Mackenzie than the SWOT rivers (a bypro-
duct of using of RS‐observed widths only), the improvement in NSE is largely similar for both tests
(Figure 8). The one notable difference between tests is the much smaller variation in scores (i.e., boxplot
IQRs in Figure 8) for the Mackenzie reaches than the SWOT rivers. The SWOT rivers exhibited large ranges
in predictive skill regardless of the BAM/geoBAM implementation.
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5. Discussion
5.1. RSQ in Ungauged Basins

We find that the quality of prior knowledge significantly influences RSQ accuracy, as evidenced through
large performance improvements from BAM to geoBAM (Figures 3–6 and 8). While algorithm developments
also continue to advance our understandings of McFLIs and discharge inversion, we have found that our
relatively simple interventions to prior estimation are easy to implement and did not require new inversion
logic within the algorithm.We highlight our improvements via real‐world RS observations in theMackenzie
River basin over a massive spatial scale for two reasons. First, all reaches used in this study are in the Arctic/
Subarctic, where our training data are unrepresentative (i.e., none of the field hydraulic measurements were
made there). The success of these interventions in a blind case study like this, with training data only from
the continental United States, suggests that this approach is implementable globally. Second, we have satis-
fyingly replicated Feng et al.'s (2019) BAM results that were run only on 11 Alaskan rivers. We have extra-
polated their RSQ workflow to thousands of reaches with geoBAM, relying on the globally available
GRADES (Lin et al., 2019) for reach‐explicit prior knowledge on discharge. These results corroborate the
aggregate use of Feng et al.'s (2019) width mapping method, geoBAM, and GRADES for big‐data RSQ and
functionally open the door for uncalibrated RSQ across global‐scale river networks.

5.2. “Local Relevance” of RSQ and SWOT Observations

Notably, we also achieved skill improvement without relying on new and computationally intensive data
assimilation schemes or hydraulic models (e.g., solving full Saint‐Venant equations). With that said, these

Figure 8. Comparison of geoBAM classifications for both the SWOT‐simulated rivers and the Mackenzie River basin.
Numbers reflect the number of SWOT rivers or Mackenzie reaches not plotted due to axis truncation.
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other approaches may yield much stronger predictive skill than ours, although with additional data and
computational requirements. The utility of geoBAM vis a vis its accuracy is therefore interesting in light
of other data intensive, higher skill approaches for discharge estimation. This “local relevance” of global
hydrology has been explored from multiple perspectives (e.g., Benstead & Leigh, 2012; Bierkens et al., 2015;
Brown et al., 2015; Fleischmann et al., 2019; Rajib et al., 2020). Specifically, Fleischmann et al. (2019) suggest
that for a global hydrodynamic model to be “locally relevant,” discharge estimates need to have an
NSE > 0.90. Otherwise, discharge is simply not accurate enough for application in flood forecasting for spe-
cific rivers. Others, including Brown et al. (2015), suggest that “local relevance” is not equivalent to high
model skill and that for data‐poor regions, any improvement in hydrologic knowledge is of local relevance
for water resource managers. geoBAM's median NSE in the Mackenize river basin is 0.25, which is far below
Fleischmann et al.'s (2019) definition of relevance. Thus, we acknowledge that our results are not sufficiently
accurate for flood work and similar applications at the local scale. However, the goal of the McFLI paradigm
is as one piece of a broader puzzle in ungauged basins where it is difficult to calibrate hydrodynamic models
because of a lack of data (due to physical, logistical, or political realities). McFLI estimates are also sparse in
space and time and are not a forward model, so they cannot predict or forecast hydrographs: McFLI by itself
can only estimate what happened when the satellite passed overhead. In isolation, geoBAM is therefore not a
tool that can or should be used for water resources planning.

However, we show that geoBAM can update understanding of river geomorphology, provide more accurate
hydraulic parameters, and provide discharge estimates with a positive NSE for completely ungauged basins.
These can then be used to better parameterize forward models needed for water resources, either via calibra-
tion or assimilation. Previous work has been performed on the effects of parameterizing more traditional
hydrodynamic models by river, rather than using global‐scope parameters (e.g., Altenau et al., 2017; Neal
et al., 2009). These studies, along with Andreadis et al. (2020) and Tuozzolo, Lind, et al. (2019), support
the general notion that river‐specific knowledge of a river will notably improve model skill, whether one
is explicitly parameterizing a full hydrodynamic model or simply using RS to infer discharge. Thus, while
we cannot argue that geoBAM discharges themselves are locally relevant per Fleischmann et al. (2019),
we can argue that geoBAM results (discharges and geomorphic parameters) can move global modeling
toward this local relevance, especially in ungauged basins. Notably, this capability should improve dramati-
cally with the launch of SWOT, per Figure 8.

Interestingly, for the SWOT rivers significant performance improvement is limited to NSE, with marginal
improvement seen for rBIAS and RRMSE (Figure 8). Conversely, the Mackenzie case exhibits noteworthy
improvement for NRMSE and rBIAS (on par with NSE) but worsened performance in RRMSE. RRMSE
and rBIAS generally track together and are easily inflated due to errors in baseflow prediction. Our interven-
tions alter baseflow predictions very little in both test cases (Figures 4 and 6) and because of this it is possible
that these two metrics are relatively insensitive to geoBAM's interventions in those rivers. In the Mackenzie
River basin, the switch from a negative to a positive rBIAS is likely the reason for an increasing RRMSE, per
these metrics' definitions (Table S5).

5.3. Comparisons and Improvements to McFLI Algorithms

We are aware of one other McFLI that has explicitly tested the influence of prior quality. Andreadis
et al.'s (2020) SWOT Assimilated Discharge (SAD) algorithm was developed to address parameter equifinal-
ity issues in McFLIs by constraining their parameter space for discharge inversion. To test this, they intro-
duced a suite of interventions to SAD, one of which was an expert geomorphic classification that defined
their prior on channel shape. While it is difficult to directly compare results across algorithms and with dif-
ferent interventions, when they isolated this intervention median NSE across 18 SWOT‐simulated rivers
increased by 0.35. Using geoBAM‐Expert, median NSE for our 19 SWOT‐simulated rivers increased by
0.27. Such similar results, for this one test, suggest that this degree of improvement occurs across McFLIs,
assuming the algorithm is flexible enough to ingest different definitions of prior river knowledge (like
BAM and SAD are). Despite the similarities, the SAD geomorphic classification is not globally scalable
because it relies on manual interpretation of a river's planform geometry, and classification is limited exclu-
sively to the channel shape parameter r. Further, SAD does not invoke AMHG like BAM does. Conversely,
geoBAM is globally scalable, can be used to extract distributions for any desired hydraulic term, and yields
equivalent improvement in discharge prediction.
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Future work should incorporate geoBAM's classification into SAD, and other McFLIs, to see if performance
further improves when using a geomorphic classification for all priors. It is unclear if this approach in
improving prior quality will work with all McFLIs. Hagemann et al. (2017) purposefully designed BAM to
be flexible in both the priors it ingests and the flow laws it inverts, allowing us to run this study in two dis-
parate settings: (1) using simulated altimetry data to invert Manning's equation and (2) using river widths to
invert AMHG. Our similar results in both settings (sections 4.1 and 4.2) suggest that the McFLI paradigm
would broadly benefit from improved prior quality, regardless of the flow law or RS observations used.
However, we exclusively tested this within BAM, meaning these interventions may not coexist with the
mathematical and/or computational setups in other McFLIs. In particular, other McFLI algorithms may
have priors that do not correspond to our in situ data or classes. Not all McFLIs are the same even though
many use Manning's equation: Each algorithm has its own unique prior set. Whether or not our classifica-
tions are useful to all McFLIs or just to BAM is left for future work.

For RSQ, classifying rivers to provide better priors will only yield improvements if the wrong class if
assigned. Because we reduce priors to look‐up tables with a set of priors assigned to each river type, if the
wrong class assigned to a river, then RSQ will considerably worsen. Andreadis et al. (2020) found a similar
result when their expert classification misclassified two rivers and yielded poor performance. When they
artificially assigned the correct river type, they improved RSQ accuracy. Similar behavior was identified in
this study: the St. Lawrence Upstream's NSE score was improved from −1.15 (BAM) to 0.45 (geoBAM‐
Expert) but degraded to −2.08 when using geoBAM‐Unsupervised. Clearly, there is room for improvement,
and in this example it appears that geoBAM‐Unsupervised is assigning an incorrect class, or the unsuper-
vised classes are unrepresentative of this river. This suggests that RSQ accuracy hinges on how river types
are defined and ultimately mapped to rivers, and the massive range of performance accuracy within river
types (section 4.2) suggests that there is substantial room to improve how river types are extracted and
mapped to RS data. We suggest that because our river type mapping procedure uses only river widths to pre-
dict types, we are missing crucial information on predicting “correct” river types which might reduce the
variance in performance within river types. Regardless, these errors occurred in only a few rivers (St.
Lawrence Upstream, St. Lawrence Downstream, Platte, and Sacramento Downstream). and both of our clas-
sification frameworks are globally scalable with much improved predictive accuracy and use just
time‐varying river widths as predictors.

Finally, the fact that the SWOT rivers are all very large might explain why Manning's‐based McFLIs gener-
ally perform well in these tests. Manning's equation simulates discharge in deeper, larger rivers quite well,
but not in shallower, smaller ones where n is underestimated relative to field measurements
(Ferguson, 2010). This is important in the SWOT context, as SWOT will be limited to a relatively coarse spa-
tial resolution and only observe rivers wider than 100 m (with a goal of 50 m wide rivers). Thus, SWOT will
miss small streams, making it impossible for global SWOT discharge retrievals via geoBAM (or any other
algorithm for that matter) to accurately represent small river hydrology by itself. However, geoBAM via
AMHG uses only river widths and can be reasonably run on any river that is “hydraulically visible,” that
is, exhibits a hydrological response via RS (Garambois et al., 2017). For instance, Feng et al. (2019) success-
fully ran BAM (not geoBAM) on rivers as narrow as 20m using PlanetLabs imagery, which has a spatial reso-
lution less than 3 m.

5.4. Classifying Global Rivers

It is useful to orient our classification workflow in the context of other global‐scale river classification frame-
works. Interestingly, geoBAM‐Unsupervised largely replicated the results using the bespoke geoBAM‐
Expert, signifying that stark differences in classification (Figure 6) did not manifest in discharge estimation.
The success of such simple unsupervised classification suggests that a generalized, global river geomorphol-
ogy framework is possible. There are currently very few of these frameworks (e.g., Dallaire et al., 2019;
Fernandez & Sayama, 2015; Haines et al., 1988; Puckridge et al., 1998), and only one is globally consistent
in coverage (Dallaire et al., 2019). Dallaire et al. (2019) clustered features explicitly associated with every
observation/river reach within HydroSHEDS (Lehner et al., 2008); however, fluvial geomorphology data
do not generally exist in this form at the global scale and so their analysis was largely limited to hydrocli-
matic river types. Conversely, Guillon et al. (2020) successfully used machine learning models to upscale a
priori geomorphic river types for the Sacramento River basin—defined using field geomorphology
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campaigns at 290 sites—to over 100,000 reaches. Our study presents a novel amalgamation of these two
methods, first using automated clustering of field data to define a geomorphic classification framework
and then using supervised learning to upscale river types to anywhere on Earth. section 4.4 shows that this
approach is viable in the Mackenzie River basin, where we accurately represent landscape geomorphology
through our river types (Figure 2b). However, more sophisticated methods will likely be needed to produce a
generalized, global river geomorphology framework that moves beyond RSQ.

Finally, Durand et al. (2016) noted the potential homogeneity of test rivers used for benchmarking McFLIs,
but until now there has not been a geomorphically explicit way to quantify this homogeneity. Using the
geoBAM‐Expert river types, we found that the SWOT‐simulated rivers are quite homogenous and large
(23/132 reaches were classified as “big” rivers and 52/132 reaches were assigned River Type 15, the widest
in the classification). Even more striking, geoBAM‐Unsupervised assigned 16/19 rivers the same river type.
These are not reflective of the global variation in hydraulics and geomorphology SWOT will encounter.
What is thus needed is a wider range of river types for validating and testing McFLIs before SWOT launches,
such that we can parse out specific river types that McFLIs model well, and those that McFLIs model poorly.

6. Conclusions

This study presents a first attempt at improving the quality of prior river knowledge for McFLI RSQ in two
distinct settings: on thousands of Arctic river reaches using Landsat imagery and on simulated rivers repre-
senting NASA/CNES/CSA/UKSA SWOT satellite outputs prior to its launch in 2022. Prior quality was
improved via two methods: (1) providing a larger and geomorphically varying training data set and (2) sta-
tistical mapping of priors to river types, using both unsupervised and expert methods. We found significant
improvement in the accuracy of discharge predictions for both test cases and using both classification meth-
ods, with a mean NSE improvement (from BAM to geoBAM‐Unsupervised) for the Mackenzie river of 0.64
and of 0.31 for the SWOT‐simulated rivers. Both classification methods yielded functionally the same
improvement in accuracy, despite vastly different constructions. These findings are significant and highlight
the importance of prior knowledge in a Bayesian mathematical setting, where we have shown that starting
from a more informed understanding of the river yields more accurate results. These priors may be imple-
mentable in any McFLI and will play a pivotal role in both current RSQ efforts in global river networks
and future global RSQ from SWOT.

Data Availability Statement

Results and code to reproduce our figures are available online (at http://doi.org/10.5281/zenodo.4073609).
geoBAM is available at GitHub (https://github.com/craigbrinkerhoff/geoBAMr). All other data used in this
study are freely available online.
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