


II. RELATED WORK

Sampling-based motion planning has offered a practi-

cal and efficient approach to find motion plans in high-

dimensional space [16], [4], [17], [18], [19]. However, these

approaches are only probabilistically-complete and thus can-

not identify cases when motion planning is infeasible. Our

work directly addresses the challenge of proving motion

planning infeasibility.

Some prior work has addressed special cases to prove

path non-existence. Several approaches provide infeasibility

for single, rigid bodies. [20] proves disconnection for a

rigid body attempting to pass through gates. [21] proves

path non-existence using alpha shapes in collision space.

By constructing disconnected sets of 3-simplices in free

configuration space from the exterior of the alpha shapes,

if the start point and goal point are in different simplex

sets, it proves no collision free path exists. In this work,

scaling to higher dimensions depends on high dimensional

α-shapes, which is still an open research question. [1]

combines cell decomposition with a sampling based method

to take advantage of both approaches. [2] identifies path

non-existence by decomposing the configuration space into

small rectangular cells and checking if a path exists entirely

in collision-free cells. These methods are also only applied

to 3-DOF robots because of the cost of decomposing the

entire configuration space. [22] relates path non-existence

for single, rigid objects in 2D or 3D workspace to the

problem of caging. An approximation of the obstacle region

is constructed to check whether an objects is caged, which

proves path non-existence. [23] solves the motion planning

problem where the workspace obstacles are polyhedral. They

decompose the workspace into a set of polytopes and then

setup a linear program to determine the feasibility of sub-

plans when transitioning from one polytope to another.

Some other works focus on developing complete mo-

tion planning methods. [24] integrates PRMs (Probabilistic

Roadmaps) with complete planning for discs moving in the

plane. [25] constructs a road map based on star-shapedness

which can terminate early when a feasible path is impossible.

These methods decompose the search space, which may scale

poorly. In contrast, our approach depends on filling only

enough of the obstacle region to separate the start and the

goal.

Other works have addressed problems related to motion

planning infeasibility. [9] offers an asymptotically optimal

algorithm to remove the minimum constraints (i.e., obstacles)

to ensure that the motion planning problem is feasible. [26]

provides a probability bounds on finding an optimal motion

planning solution. Some approaches for task and motion

planning (TMP) have developed approximate or heuristic

estimates of motion planning feasibility [10], [8], [27].

Compared to these works, we directly address the challenge

of proving that a particular motion planning problem is

infeasible.

III. ALGORITHM

A. Problem Description

We address the problem of proving motion planning

infeasibility. A motion planning problem consists of a con-

figuration space C of dimension n, a start configuration qstart

and a goal configuration qgoal. The configuration space C is

the union of the disjoint obstacle region Cobs and free space

Cfree. Both qstart and qgoal are in Cfree. When a feasible

plan exists, our approach will produce a plan σ such that

σ[0, 1] ∈ Cfree, σ[0] = qstart, σ[1] = qgoal. When there is

no feasible plan, our approach will produce a proof of such.

B. Algorithm Overview

The algorithm generates a proof that the start and goal

are in disconnected components of Cfree. The proof has two

requirements: (1) a closed polytope whose facets are entirely

within the Cobs and (2) qstart and qgoal are not both inside

or both outside the polytope. In other words, the polytope

separates the start and goal into separate components of Cfree.

We look for the separating polytope in conjunction

with building a search tree in a sampling-based planner—

specifically, in conjunction with RRT-Connect [17], though

other sampling-based methods would also be applicable. The

algorithm has two broad steps.

1) Generate a collision volume graph (CVG): Each time

a configuration is sampled in the Cobs, we generate a

new collision ball and add it to the CVG. The collision

balls represent a configuration space volume contained

entirely in Cobs. Within each ball, we identify n points,

which provide a candidate facet for the separating

polytope in the n dimensional space.

2) Construct the polytope: Given the CVG, we define

a linear constraint satisfaction problem (LCSP) to

identify the separating polytope. The constraints ensure

that the polytope is closed and that it separates the start

and goal. A solution to this LCSP proves that the start

and goal are disconnected.

C. Construct the Collision Volume Graph (CVG)

Within the sampling-based planner, we use sampled con-

figurations in the obstacle region Cobs to grow the CVG

according to algorithm 1. We construct new balls based on

two requirements: (1) fill as much of Cobs as possible and

(2) intersect with the existing balls so that we can close

the separating polytope. The idea of growing volumes in

configuration space comes from [19].

Every vertex of the CVG is a ball. The vertex has four

fields, the ball center, the radius, a set of n points in ball, and

n sets of intersecting balls. The n points in the ball define a

candidate facet of the separating polytope. The intersecting

balls contain facets sharing a hyper-edge with the facet in

the current ball. In n dimension, there are n different hyper-

edges (choose n− 1 from n) for each ball. If a hyper-edge

of the current ball does not have an intersecting ball, we call

this edge an open edge. If a ball has open edges, we call this

ball an open ball.

6705



Theorem 1: A polytope in R
n space is closed if and only

if every facet of the polytope has an adjoining facet on each

of its hyper-edges.

Proof: We prove by contradiction. If there exists one

facet of a polytope with no adjoining facets on one of its

edges, then the facet’s inside and outside are connectable

around this open edge. Since the inside and the outside of

this polytope are connected. The polytope is not closed.

We use this requirement for closed polytopes to guide

growth of the CVG in algorithm 1. We use a sample point

to construct a collision ball only if it is in Cobs (line 1). If

it is the first point sampled in the CVG, the algorithm finds

an optimal start ball (line 2-5). The process of finding the

optimal start impacts efficiency. A start ball that is too small

will increase the number of balls and corresponding run time

needed to form the polytope. We find an optimal start ball via

a nonlinear optimization problem to maximize penetration

depth (the distance to the nearest point on obstacle region

boundary).

If the CVG is not empty, the algorithm first finds the ball

in the CVG that is closest to the sampled point. Starting from

the closest ball, we search for the first open ball and open

edge (line 6-7). The new ball must include all points of the

open edge. After finding an open ball/edge, there are three

possible ways to generate new balls. The highest priority is

to fill holes (line 8-11). A hole is a set of n points. Each

of its n − 1 points combinations is a hyper-edge of some

balls, but the n points do not belong to any ball. If we find

a hole containing all the edge points, we can create a new

ball using the n points. After a hole ball is created, it needs

to check all possible edge connections before returning.

If a hole cannot be found, we generate a new ball (line

12). To find the optimal ball center, we solve the following

non-linear optimization problem:

min
cnew,rnew

dist(cnew, line(pemean, pc))− C ∗ rnew

s.t. dist(pei, cnew) < rnew, i = 1, 2, . . . , n− 1

penetration-dist(cnew) > rnew

where cnew and rnew are the new ball’s center and radius,

pei are the edge points of the open edge, pemean is the mean

of edge points and pc is the sampled point in collision. The

first constraint ensures that all the edge points are in the new

ball. The second constraint ensures the new ball radius is not

larger than its penetration depth, thus the new ball is entirely

in collision. The goal is to minimize the distance from the

new ball center to the line connecting pemean and pc, so that

the new ball can grow onto the sampled direction as much

as possible. At the same time, we want to maximize rnew.

The constant C captures how much we want to prioritize

growing larger balls.

After the new ball is generated, the ball contains n − 1
points. There are two ways to add the last point. If there

are existing points inside the new ball, use the closest one

and check for all possible edge connections (line 13-18).

Otherwise, generate a new point inside the ball (line 19).

The new point generation uses the penetration vector (the

vector connecting a point in collision and the closest point

on the collision boundary). The new point needs to make the

facet in the ball as perpendicular to the penetration vector

as possible and being as far away to the existing points as

possible. The final steps are to add edges between the new

ball and the open ball, and add the new ball to the CVG (line

20-23).

Algorithm 1: Grow-Collision-Graph (pc, Gc)

Result: A collision ball graph

1 if pc 6∈ Cobs then return;

2 if Gc is empty then

3 vnew.c, vnew.r ← find-optimal-start-ball(pc);

4 Gc.add-node(vnew);
5 return;

6 vclosest ← find-closest-ball(Gc, pc);

7 vopen ← find-open-ball(vclosest, Gc);

8 fill-holes(vopen, Gc);

9 if a hole is filled then

10 check-edge-connection(Gc);

11 return;

12 vnew.c, vnew.r find-new-ball(pc, vopen.c);

13 for v in Gc do

14 pin.add(intersection-points(v, vnew));

15 if ‖pin‖ ≥ 1 then

16 pnew ← find-closest-intersection-point(pin, pc);

17 check-edge-connection(Gc);

18 else

19 pnew ← generate-new-points(vnew)

20 vnew.add-point(pnew);

21 vnew.add-edge(vclose);

22 vclose.add-edge(vnew);

23 Gc.add-node(vnew);

D. Configuration-space penetration depth

The collision balls represent configuration-space collision

volumes; however, existing collision detection approaches

can only help us identify collision information such as

penetration depth in the Cartesian workspace [28]. To gen-

erate the collision balls, we need penetrations depths and

vectors in configuration space. We define the workspace

to configuration space collision relationship as a nonlinear

optimization problem to minimize the distance between the

point in collision and the collision boundary point,

min
q

dist(qc, q)

s.t. ssd(~xm(q)− ~xo) = 0 , (1)

where qc is the configuration in collision, q is the collision

boundary configuration we want to find, ~xm is Cartesian

point of maximum penetration on the robot, ~x0 is the

Cartesian boundary point on the obstacle. The optimization

goal is the shortest configuration space distance, subject to

the sum of squared distance (ssd) between the point on the

6706



robot and the point on the obstacle being zero. We use a

local search to solve this optimization problem.

E. Constructing a closed polytope

The first step of constructing the separating polytope is

ensuring the selected facets form a closed polytope. Accord-

ing to Theorem 1, each hyper-edge of each facet must be

adjoined by another facet. For the CVG, we can thus say

that for each ball bi, the polytope must also contain one ball

from each of bi’s n sets of intersection balls,

bi =⇒



































bi11 + bi12 + . . .+ bi
1ni

1

= 1

. . .

bij1 + bij2 + . . .+ bi
jni

j

= 1

. . .

bin1 + bin2 + . . .+ bi
nni

n
= 1

, (2)

where bi indicates a ball is used to form the polytope and

bijk indicates that a ball intersecting bi is used to form the

polytope. bij1, bij2, ..., bi
jni

j

are the jth intersection set of ith

ball. ni
j is the number of balls in the jth intersection set.

We rewrite (2) as linear inequality constraints. For each

intersection set we have,

(1− bi) + (bij1 + bij2 + . . .+ bi
jni

j

) > 0 (3)

and

bij1 + bij2 + . . .+ bi
jni

j

≤ 1 + (1− bi)m, (4)

where m is the number of balls.

Equation (3) ensures that if bi is chosen, at least one ball

must be chosen from each of its intersection set. Equation (4)

ensures that if bi is chosen, then the total number of balls

is less than or equal to 1. These two inequalities together

ensure one and only one ball from each intersection set. At

the same time, if bi is 0, there is no requirement to include

balls from the intersection sets.

In addition, we need at least n+1 balls to form a polytope,

which gives us:

b1 + b2 + . . .+ bm ≥ n+ 1 . (5)

There are 2n inequalities for each ball. The total number

of inequalities is 2nm.

F. Separating the start and goal

Next, we ensure that the polytope separates the start and

goal configurations by applying the Ray casting algorithm

[29]. We find the line segment between the start and goal

and count the intersections between the line segment and the

polytope facets. If there is an odd number of intersections,

one point must be inside the polytope and the other outside.

Thus, we know that the polytope separates the start and goal.

Each polytope facet lies in a hyperplane in R
n,

a1x1 + a2x2 + . . .+ anxn = 1 . (6)

The point set in a ball bi is pi1, pi2, . . . , p
i
n, and each point

is an n vector, pij = [pij1, p
i
j2, . . . , p

i
jn]

T . We find the

hyperplane from the points:

(ai1p
i
j1 + ai2p

i
j2 + . . .+ ainp

i
jn) = 1, j = 1, . . . , n , (7)

where ai1, . . . , a
i
n are the parameters for the hyperplane in

the ith ball.

In n dimension, the line connecting qstart and qgoal is,

x1 − q
1
goal

q
1
start − q

1
goal

=
x2 − q

2
goal

q
2
start − q

2
goal

= . . . =
xn − q

n
goal

q
n
start − q

n
goal

,

(8)

with qstart = [q1
start, q

2
start, . . . , q

n
start]

T and qgoal =
[q1

goal, q
2
goal, . . . , q

n
goal]

T . The line definition gives us n− 1
equations, together with the hyperplane equation, we have

a total of n equations to solve for the intersection point

xi = [x1
i , . . . , x

n
i ] between the line and the hyperplane in

the ith ball.

First, we determine whether the intersection between the

line and hyperplane lies on the segment between qstart and

qgoal:

xi − qstart = li
qgoal − qstart

‖qgoal − qstart‖

li < ‖qgoal − qstart‖

li > 0 . (9)

Second, we ensure the intersection point lies within the

facet bounds, i.e., which is the area enclosed by points used

to define the hyperplane (i.e., the ball’s point set becomes the

facet’s vertices). Each hyperplane is formed by n points. On

the hyperplane, the points can be considered as points in n−1
dimensional space. By reducing one dimension, the problem

of a point inside the hyperplane area in n dimensional space

can be converted to the problem of a point inside a polytope

in n− 1 dimensional space. Since we have n points on the

hyperplane, we have n points in the n−1 dimensional space,

which form a simplex. To determine if a point is inside a

simplex, we apply Carathéodory’s theorem [30] and calculate

Barycentric coordinates. A point p in n − 1 dimension is

inside a n-1-simplex formed by n points [v1, v2, . . . , vn] if

all of its Barycentric coordinates are positive and the sum of

the coordinates is less than or equal to 1. We calculate the

Barycentric coordinates can by,

λ = T−1(p− vn) , (10)

where T is ,

T = [v1 − vn, . . . , vn−1 − vn]
T , (11)

and the Barycentric coordinates are,

λ = (λ1, . . . , λn−1),

λn = 1−
n−1
∑

i=1

λi .
(12)

Point p is inside the simplex if the Barycentric coordinates

satisfy,

λi ≥ 0, i = 1, . . . , n . (13)

6707







[10] F. Lagriffoul and B. Andres, “Combining task and motion planning: A
culprit detection problem,” International Journal of Robotics Research,
vol. 35, no. 8, pp. 890–927, 2016.

[11] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:
Real-time reasoning in complex environments,” International Journal

of Humanoid Robotics (IJHR), vol. 2, no. 04, pp. 479–503, 2005.
[12] N. T. Dantam, S. Chaudhuri, and L. E. Kavraki, “The task motion

kit,” Robotics and Automation Magazine, vol. 25, no. 3, pp. 61–70,
2018.

[13] H. Kautz and B. Selman, “Blackbox: A new approach to the applica-
tion of theorem proving to problem solving,” in AIPS98 Workshop on

Planning as Combinatorial Search, vol. 58260, 1998, pp. 58–60.
[14] J. Rintanen, “Engineering efficient planners with SAT,” in Eu. Con-

ference on Artificial Intelligence (ECAI), 2012, pp. 684–689.
[15] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,

S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” International

Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.
[16] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[17] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Intl. Conference on Robotics and

Automation, vol. 2. IEEE, 2000, pp. 995–1001.
[18] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” Robotics & Automation Magazine (RAM), vol. 19, no. 4, pp.
72–82, 2012.

[19] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes
in configuration space,” arXiv:1109.3145v1 [cs.RO], 2011.

[20] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in International Conference on Robotics

and Automation, vol. 2. IEEE, 2001, pp. 1765–1772.
[21] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence

using sampling and alpha shapes,” in International Conference on

Robotics and Automation. IEEE, 2012, pp. 2563–2569.
[22] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging

and path non-existence: a deterministic sampling-based verification
algorithm,” in Robotics Research. Springer, 2020, pp. 589–604.

[23] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable lazy smt-based motion
planning,” in 2016 IEEE 55th Conference on Decision and Control

(CDC). IEEE, 2016, pp. 6683–6688.

[24] S. Hirsch and D. Halperin, “Hybrid motion planning: Coordinating two
discs moving among polygonal obstacles in the plane,” in Algorithmic

Foundations of Robotics V. Springer, 2004, pp. 239–255.

[25] G. Varadhan and D. Manocha, “Star-shaped roadmaps-a determinis-
tic sampling approach for complete motion planning.” in Robotics:

Science and Systems, vol. 173. Citeseer, 2005.

[26] A. Dobson, G. V. Moustakides, and K. E. Bekris, “Geometric prob-
ability results for bounding path quality in sampling-based roadmaps
after finite computation,” in International Conference on Robotics and

Automation. IEEE, 2015, pp. 4180–4186.

[27] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learn-
ing feasibility for task and motion planning in tabletop environments,”
IEEE robotics and automation letters, vol. 4, no. 2, pp. 1255–1262,
2019.

[28] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in International Conference on

Robotics and Automation (ICRA). IEEE, 2012, pp. 3859–3866.

[29] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A character-
ization of ten hidden-surface algorithms,” ACM Computing Surveys

(CSUR), vol. 6, no. 1, pp. 1–55, 1974.

[30] H. G. Eggleston, Helly’s Theorem and its Applications, ser. Cambridge
Tracts in Mathematics. Cambridge University Press, 1958, p. 33–44.

[31] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[32] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337–340.

[33] N. T. Dantam, “Practical exponential coordinates using implicit dual
quaternions,” in Workshop on the Algorithmic Foundations of Robotics,
2018.

6710


