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Abstract

The rates of liquid-phase, acid-catalyzed reactions relevant to the upgrading of biomass
into high-value chemicals are highly sensitive to solvent composition and identifying suitable
solvent mixtures is theoretically and experimentally challenging. We show that the complex
atomistic configurations of reactant-solvent environments generated by classical molecular
dynamics simulations can be exploited by 3D convolutional neural networks to enable accurate
predictions of Brensted acid-catalyzed reaction rates for model biomass compounds. We develop
a 3D convolutional neural network, which we call SolventNet, and train it to predict acid-catalyzed
reaction rates using experimental reaction data and corresponding molecular dynamics simulation
data for seven biomass-derived oxygenates in water-cosolvent mixtures. We show that SolventNet
can predict reaction rates for additional reactants and solvent systems an order of magnitude faster
than prior simulation methods. This combination of machine learning with molecular dynamics
enables the rapid, high-throughput screening of solvent systems and identification of improved

biomass conversion conditions.
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Introduction

The catalytic conversion of lignocellulosic biomass is a promising strategy to obtain
transportation fuels and high-value chemicals from renewable feedstocks.! The conversion of
biomass-derived molecules is typically facilitated by liquid-phase, acid-catalyzed reactions
(examples shown in Fig. 1a) that are hindered by low reactivity in aqueous solution. One method
to increase acid-catalyzed reaction rates is to modify the solvent composition by mixing organic,
polar aprotic cosolvents with water to create mixed-solvent environments; such environments have
been shown to improve reaction rates up to 100-fold compared to rates for the same reactions in
pure water.>* Unfortunately, identifying solvent environments that improve reaction rates by trial-
and-error experimentation is time-consuming, costly, and provides limited physical insight into
the physical basis of solvent effects. Instead, computational tools have been applied to understand
solvent effects on chemical reactivity and guide the design of solvent mixtures for efficient
biomass conversion processes.’

In the past decade, ab initio quantum chemical methods have been used to quantify solvent
effects on barriers to elementary steps for biomass conversion reactions.! > ¢ Using ab initio
molecular dynamics (MD) simulations, Mellmer ef al. found that the inclusion of organic
cosolvents increases biomass conversion reaction kinetics by lowering the activation energy due
to changes to the solvation environment around the acidic proton catalyst, the reactant, and charged
transition states (Fig. 1b).> The simulations revealed that hydrophilic reactants drive the formation
of water-enriched local domains in mixed-solvent environments that preferentially solvate the acid

catalyst and stabilize subsequent carbocation-like transition states.”* These findings suggest that
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Figure 1. Overview of solvent effects on acid-catalyzed reactions and model systems. (a) Two example
acid-catalyzed reactions: xylitol (XYL) dehydration and levoglucosan (LGA) hydrolysis. (b) Hypothesized
effect of mixed-solvent environments on the free energy landscape of acid-catalyzed reactions. The
schematic illustrates the formation of a local solvent domain (within the circular dashed line) around the
reactant in a mixed-solvent environment that modifies the reaction free energy landscape, thus affecting
reaction kinetics.** (¢) Organic, polar aprotic cosolvents modeled in this study, including dioxane (DIO),
y-valerolactone (GVL), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and
acetone (ACE). Molecules drawn in black were included in the training set. Molecules drawn in gray were
included in the test set. (d) Biomass-derived model reactants modeled in this study, including ethyl tert-
butyl ether (ETBE), fert-butanol (TBA), cellobiose (CEL), glucose (GLU), LGA, 1,2-propanediol (PDO),
fructose (FRU), and XYL. The color scheme follows part ¢, except TBA, PDO, and FRU were included as
part of some of the reactant-solvent combinations in both training and test sets.

the extent of water enrichment around the reactant is directly correlated with acid-catalyzed

reaction performance. Similar studies have used ab initio techniques to understand how the solvent



environment alters reaction kinetics for key acid-catalyzed reactions, >’ such as the conversion of
fructose to afford 5-hydroxymethylfurfural® ® (a platform chemical for polymer precursors and
transportation fuels).'® Unfortunately, while ab initio methods can directly probe mechanistic
details of reactions, their high computational expense renders the screening of multiple solvent
compositions infeasible.

Relative to ab initio MD, classical MD simulations can access longer timescales (ps) and
larger length scales (nm) with significantly reduced computational budgets, allowing a more rapid
characterization of complex solvent environments around even large reactants.!!"!* Classical MD
simulations are suitable for modeling the spatial organization of mixed-solvent environments that
emerges from the interplay of reactant-solvent-cosolvent interactions and may impact reaction
kinetics (e.g., due to preferential solvation of the reactant as described above) but may not be
captured by bulk solvent descriptors (e.g., the dielectric constant).> '* On the other hand, a key
limitation of classical MD simulations is their inability to directly model chemical reactions.
Nonetheless, we recently utilized classical MD simulations to understand and predict solvent
effects on experimental reaction rates for the conversion of biomass-derived model compounds in
aqueous mixtures of 1,4-dioxane (DIO), y-valerolactone (GVL), and tetrahydrofuran (THF).*
Based on the hypothesis that classical MD simulations could quantify the reactant-water-cosolvent
interactions that dictated reactivity in prior ab initio simulations,’> we developed an MD model
consisting of only reactant, water, and cosolvent molecules and calculated three simulation-derived
descriptors that quantified the extent of water-enrichment around the reactant, reactant-water
hydrogen bonding, and reactant hydrophilicity. We then derived a linear regression model that
used these three descriptors to predict experimental reaction rates and found good agreement in

DIO-water mixtures.* These findings showed that classical MD simulations can be used to predict



solvent effects on reaction rates without explicitly modeling the acid catalyst or the reaction
mechanism. The regression model was less accurate for GVL- and THF-water mixtures, indicating
that either descriptors computed with classical MD cannot quantify reaction rates in these systems
or that more complex descriptors must be defined to capture reactivity trends. However, designing
new descriptors of reaction kinetics based on human intuition is challenging, often requiring

1415 or three-

complex and time-consuming data analysis tools (e.g. solvation free energies
dimensional solvent mapping'? %) that cannot be readily generalized across a range of solvent
compositions.

As an alternative to designing descriptors via human intuition, machine learning methods
have been increasingly used to infer molecular properties by automatically extracting features from
complex sources of data.'®?> For example, convolutional neural networks (CNNs) can be used to
identify and quantify patterns within two-dimensional (2D) spatial datasets such as images.?* By
training on a suitable set of labeled image data, CNNs extract spatial features without requiring
human supervision and can then utilize these features to classify image contents. CNNs have been
shown to outperform other machine learning methods (e.g. fully connected neural networks and
support vector machines)** in the ImageNet Large-Scale Visual Recognition Challenge,? a contest
requiring a model to classify more than 1.2 million images. CNNs can be further generalized to
extract features from three-dimensional (3D) volumetric data,?® which can facilitate the analysis
of 3D molecular structures. For example, 3D CNNs have recently been used to detect protein
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functional sites,?” evaluate protein-ligand binding sites,?® and quantify protein-ligand binding

affinities?® by training on protein database structures. Based on these examples and our prior
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success using classical MD simulations to predict acid-catalyzed reaction outcomes, we



hypothesize that 3D CNNs can exploit the output of classical MD simulations to more accurately
predict solvent effects on acid-catalyzed reaction rates.

In this work, we developed 3D CNNss that utilize information on atomic positions obtained
from classical MD simulation trajectories to predict the rates of liquid-phase, acid-catalyzed
biomass conversion reactions in mixed-solvent environments. To develop our training procedure,
we use 76 experimentally determined reaction rates for 7 biomass-derived model reactants in DIO-
, GVL-, and THF-water solvent mixtures as labels. For each experimental reaction rate and
associated solvent mixture, we record configurations from a corresponding MD simulation
trajectory (each configuration contains the 3D positions of atoms in reactant, solvent, and water
molecules). Configurations collected from the simulation and their spatial rotations are used to
obtain multiple voxel representations that map to the same experimental reaction rate and are used
as input data for the 3D CNN. This procedure allows us to construct a rich training dataset that
consists of 18,240 voxel representations (over 240 distinct voxel representations mapping to each
of the 76 experimental reaction rates). This approach seeks to demonstrate that MD trajectory data
embeds rich information that explains reaction rates and develops early in the MD simulation to
drastically reduce computational time. We find that all 3D CNNs considered — including a new 3D
CNN that we developed, which we call SolventNet, and two previously developed 3D CNNs
(ORION?*® and VoxNet*!) — predict experimental reaction rates more accurately than models based
on human-selected, MD-derived descriptors*. SolventNet predictions generalize to a test set
consisting of 32 experimentally determined reaction rates obtained from the literature, including
rates for reactants in three additional polar aprotic cosolvents not included in model training -
dimethyl sulfoxide, acetonitrile, and acetone - with distinct properties (e.g., functional groups,

basicity, and polarizability) from the cosolvents used to train the model. We further find that



accurate reaction rate predictions with SolventNet require as little as 4 ns of classical MD trajectory
data, a 50-fold improvement from the original 205 ns of MD data used in models based on human-
selected descriptors.* We thus conclude that 3D atomistic configurations contain significant
information that explains reaction rates and that such configurations develop early in the MD
simulation. We envision that the computational efficiency associated with the combination of 3D
CNN s and classical MD simulations will enable the integration of these tools with process models
to screen solvents and optimize reactor conditions for biomass conversion processes.*

The manuscript is organized as follows. We first describe the set of 108 experimentally
determined reaction rates, each associated with a unique combination of reactant and mixed-
solvent environment, that are used as labels for the training set (76 reaction rates) and test set (32
reaction rates). We then describe the training and validation of baseline linear and nonlinear
models using data consisting of human-selected descriptors computed from MD trajectories, with
one trajectory and corresponding set of descriptors per label. We next describe an alternative input
data set generated by splitting each MD trajectory into 10 independent voxel representations for
interpretation by 3D CNNs. After data augmentation, this procedure yields 240 voxel
representations per label that are used to train and validate 3D CNNs for comparison to the baseline
models. We then assess the test set and leave-one-out cross-validation accuracy of SolventNet to
establish model generalizability. Finally, we visualize spatial features that influence SolventNet
accuracy using saliency maps.

Results and Discussion
Experimental reaction data used for model training and testing

108 previously reported, experimentally determined reaction rates for acid-catalyzed

dehydration or hydrolysis reactions in mixed-solvent environments were used as labels for the



training and testing of predictive models for acid-catalyzed reaction rates. Each reaction rate was
measured for a unique reactant-solvent combination (i.e., a reactant in a mixed-solvent
environment). 76 experimental reaction rates (70% of the labels) were taken from Ref. 4 and used
as labels for the training set. The training set includes rates for 7 biomass-relevant model reactants:
ethyl tert-butyl ether (ETBE), tert-butanol (TBA), 1,2-propanediol (PDO), levoglucosan (LGA),
fructose (FRU), cellobiose (CEL), and xylitol (XYL). Solvent systems include aqueous mixtures
with 25 wt%, 50 wt%, 75 wt%, or 90 wt% of one of three polar aprotic cosolvents: 1,4-dioxane
(DIO), y-valerolactone (GVL), and tetrahydrofuran (THF). 32 experimental reaction rates (30% of
the labels) were taken from Refs. 3 and 33 and used as labels for the test set. The test set includes
rates for 4 model reactants: TBA, FRU, PDO, and glucose (GLU). Solvent systems include
aqueous mixtures with dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and acetone (ACE).
Training set experiments were performed at temperatures between 343 K — 433 K and test set
experiments were performed at temperatures between 363 K —433 K. All experiments used triflic
acid as a catalyst, except for test set experiments from Ref. 33 (for FRU and GLU in aqueous
mixtures of ACE) which used hydrochloric acid. The test set labels thus consist of independent
reaction rates from different literature sources for reactants and cosolvents not included in the
training set but at comparable experimental conditions. Chemical structures of all reactants and
cosolvents are shown in Fig. 1c and Fig. 1d, respectively. Table S1 and Table S2 list the reaction
conditions for each label.

To compare the effect of the mixed-solvent environment on reaction rates in different
systems, Equation 1 defines the kinetic solvent parameter (o) as the log-ratio between the apparent
rate constant for the dehydration or hydrolysis of reactant r in a given mixed-solvent environment

(korg) and the apparent rate constant for the same reaction in pure water (k,';,zo):4



k‘)"
o =logy <ﬂ> (1)

Kh,0
o > 1 indicates that the reaction rate is faster in the mixed-solvent environment than in pure water
and o < 1 indicates the converse. All labels for the training and test sets were defined as o values

(Oexp) to facilitate the training of regression models.

Baseline prediction models for reaction rates using human-selected descriptors from classical MD

In prior work, we performed classical MD simulations of one reactant molecule in a mixed-
solvent environment to generate a single 205 ns simulation trajectory for each of the 76 reactant-
solvent combinations included in the training set.* Fig. 2a illustrates the general approach for
extracting descriptors from these MD simulations to predict experimental kinetic solvent
parameters. From each MD trajectory, we computed three physically motivated, human-selected
descriptors that capture reactant hydrophilicity and solvent interactions: the preferential exclusion
coefficient (I'), which quantifies the local enrichment of water in the spatial region near the
reactant; the hydrogen bonding lifetime between the reactant and water (t), which quantifies the
stabilization of a putative charged transition state by nearby water molecules; and the accessible
hydroxyl fraction (&), which quantifies reactant hydrophilicity by dividing the accessible surface
area (ASA) of the reactant’s hydroxyl groups by the ASA of the overall molecule. Descriptor
calculations are described in Ref. 4 and descriptor values are listed in Table S1.

Descriptor values were used as input data to train a linear regression model (Equation 2)

to predict values of the kinetic solvent parameter (0preq):

opred = A+ B(F) + C(®) + D(5) )
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Figure 2. Evaluation of human-selected multidescriptor models. (a) General approach for correlating
features from molecular dynamics (MD) simulations to experimental kinetic solvent parameters (0exp)-

The simulation configuration shows xylitol (XYL) in 90 wt% dioxane (DIO) as an example. (b) Schematic
illustrating 5-fold cross validation procedure used to train and validate models. (¢) Parity plot between
predicted (0preq) and experimental (geyp) kinetic solvent parameters for the multidescriptor linear model.
The best-fit slope and root-mean-squared error (RMSE) between 0preq and 0eyp, values are shown within
the plot. The solid black lines indicate perfect correlation (0preq = Texp), the dashed black lines indicate
approximate experimental error, and the dashed gray lines are drawn at ggy, = 0 and 0rcq = 0 as a guide
to the eye. (d) Parity plot for the nonlinear fully connected neural network model.

A, B, C, and D are regression coefficients and descriptors with a tilde are re-scaled between 0 and
1 by min-max scaling. Fig. 2b illustrates the 5-fold cross-validation procedure used to evaluate if
the linear model and all following models described in this work could generalize to new reactant-
solvent combinations not included in the training data.** In this procedure, the 76 labels in the
training set were randomly split into five folds, each containing approximately 20% of the labels.
All input data (i.e., descriptor values) associated with the labels in one of the five folds were used

as the validation set, the input data associated with the labels in the remaining four folds were used
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to train the model (i.e., regression coefficients were fit), and values of oy,..q Were calculated for

the validation set. This procedure was iterated five times such that each training set label was
included in the validation set exactly once.

Fig. 2¢ shows the parity plot between op,req and gy, for the linear regression model, with
each value of opreq corresponding to a validation set prediction from the 5-fold cross validation
procedure. We use the best-fit slope and root-mean-square error (RMSE) between 0p,req and 0eyy,
to evaluate model accuracy; a perfect model would have a slope of one and a RMSE of zero. Since
the RMSE of the experimental data is 0.10,* any predictive model with RMSE near 0.10 is
sufficiently accurate. The linear model has a slope of 0.49 and RMSE of 0.58; most outliers are
reactions occurring in THF-water (hollow symbols) or in 90 wt% cosolvent systems (diamond
symbols). Fitting the linear model using only data for DIO-water mixtures without 5-fold cross
validation leads to an RMSE of 0.23,* but this approach is less accurate for GVL-water (RMSE of
0.36) and THF-water (RMSE of 0.59) mixtures (SI, Table S3), indicating that the performance of
the linear model depends strongly on the cosolvent. This result suggests that the linear model has
limited generalizability across cosolvents. We also tested if a nonlinear model could improve upon
the predictions of the linear model using the same input data. We performed 5-fold cross-validation
to evaluate a fully connected neural network with three hidden layers, each with ten rectified linear
units (ReLU), followed by a linear unit for the regression task of predicting o using the three
human-selected descriptors as input. Fig. 2d shows the parity plot between oy eq and gyp, using
the fully connected neural network model. The behavior of the fully connected neural network
model was comparable to that of the linear model with a slope of 0.46 and RMSE of 0.62. We use

these multidescriptor models as a baseline for comparison to alternative models.
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These findings show that reaction rates predicted with the multidescriptor models lie in the
correct quadrants with few false-positive or false-negative o values and are accurate for some
cosolvents (i.e., DIO). The descriptors underscore the importance of spatial information: T’
quantifies the solvent composition in a region near the reactant, T describes the relative locations
of reactant hydroxyl groups and water molecules, and § is related to the relative surface areas of
hydrophilic and hydrophobic regions of the reactant. However, both models have significant
outliers for systems corresponding to larger values of gy, suggesting that the descriptors fail to
capture important information that may be encoded within the complex geometrical (3D) features
of the reactant-solvent environment. In addition, the identification of these descriptors requires

domain expertise and is time-consuming.

Generation of input data set for interpretation by 3D CNNs using classical MD data

To improve upon the human-selected multidescriptor models, we hypothesized that 3D
CNNs can be used to establish mappings between atomic positions sampled from classical MD
(which emerge from the combination of reactant-solvent, solvent-cosolvent, and reactant-
cosolvent interactions) to experimental reaction rates. We expect that 3D CNNs are appropriate
for analyzing these systems because: (i) CNNs can extract non-intuitive features of the reactant-
solvent environment by identifying spatial correlations in the input data, (if) liquid-phase systems
exhibit pronounced spatial correlations due to intermolecular interactions between solvent
molecules, (iii) the importance of spatial information encoded within the human-selected
descriptors suggests that spatial correlations are relevant to solvent effects, and (iv) 3D CNNs can
analyze atomic positions without transforming the domain to a 2D space (flattening), thereby

capturing the detailed geometry of the reactant and local solvation environment. 3D CNNs thus
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provide a natural framework for identifying complex features of reactant-solvent environments
that affect reaction rates but that may not be easily identified using human intuition.

We first developed a protocol for converting trajectory data of atomic positions of reactant,
solvent, and cosolvent molecules obtained from classical MD simulations into a data
representation that is suitable for 3D CNN analysis. 3D CNNs interpret data consisting of a series
of voxels arranged in a 3D grid, with each voxel containing normalized intensities in several
independent channels. The channels can convey different types of field information. The relative
positioning of the voxels in the grid confers spatial information. We thus converted the spatially
continuous atomic positions output by MD to voxels that record the normalized occurrences of
water, cosolvent, and reactant oxygen atoms within (0.2 nm)® volume elements. This data
representation is motivated by the physical intuition obtained from the success of the human-
selected multidescriptor models: the importance of the descriptor I suggests that the positions of
water and cosolvent atoms should be recorded to quantify preferential enrichment of solvent
molecules near the reactant while the descriptors 7 and § suggest that the positions of reactant
oxygen atoms should be recorded to quantify potential hydrogen bonding and reactant
hydrophilicity. The volume associated with each voxel was selected to be comparable to typical
atomic radii to ensure that molecular geometry could be resolved.

Fig. 3 illustrates the approach used to convert MD positions to a grid of voxels. For each
set of atomic positions corresponding to a single time sampled during a MD trajectory (i.e., a MD
configuration), we centered a 3D histogram on the center-of-mass of the reactant. The histogram
covered a cubic (4 nm)* volume (a volume smaller than the total simulation box size to avoid
crossing the simulation box boundaries) that was divided into a 20x20x20 grid of bins

corresponding to (0.2 nm)®> volume elements. For each bin, we calculated the normalized
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occurrence of water atoms by counting the number of water atoms within the bin and normalizing
by the maximum number of water atoms within any bin. The same procedure was separately
performed to calculate the normalized occurrence of cosolvent and reactant oxygen atoms in each

bin. The normalized water, reactant, and cosolvent occurrences were then stored in the “red, green,
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and blue” color channels, respectively (Fig. 3a) to obtain a 20x20%20x3 grid of voxels for a single
MD configuration.
To capture the preferential locations of solvent molecules relative to the reactant as they

diffuse within the cubic volume, and to prevent voxels from being unoccupied, we averaged grid

a Converting MD configurations to grid of voxels
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Figure 3. Input data representation for 3D CNNs. Approach for converting the atomic positions
obtained from a MD simulation to a voxel representation using xylitol in 90 wt% dioxane as an example.
(a) For each MD configuration (example at left), a (4 nm)® cubic box was centered on the reactant and a
20x20x20 grid of (0.2 nm)* volume elements was used to discretize space. The normalized occurrences of
water, oxygens of the reactant, and cosolvent atomic positions within each volume element were stored in
different channels to yield a 20x20x20%3 grid of voxels. Voxels are visualized by showing the water
channel in red, the reactant channel in green, and the cosolvent channel in blue. Half of the voxels are
transparent to illustrate the solvent distribution around the reactant. (b) Grids of voxels were averaged over
2 ns of MD data (200 MD configurations) to yield a 20x20x20x3 voxel representation. (¢) For each
reactant-solvent system, 20 ns of simulation data were used to generate 10 independent voxel
representations.
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values obtained from multiple consecutive MD configurations to generate a single averaged grid
of voxels that we define as a voxel representation. Specifically, each voxel representation was
generated by averaging grid values from 2 ns of MD data (corresponding to 200 consecutive MD
configurations) as illustrated in Fig. 3b. The 2 ns simulation time was selected as a balance between
maximizing model accuracy and minimizing computational expense. This simulation time is
substantially shorter than the 205 ns trajectories associated with each training label. Thus, we split
the first 20 ns of each trajectory into 10 independent 2-ns partitions and generated a voxel
representation for each partition, yielding 10 voxel representations per training label. These
choices were based on extensive robustness tests to determine the best-performing input data
representations as described in the Supplementary Information, Section S5 (Table S4). Because
3D CNNs are not rotationally invariant, we further augmented the training data by rotating each
voxel representation to generate 24 unique cube rotations per voxel representation (Fig. S1),

leading to 240 (augmented) voxel representations per training set label.

3D CNNs improve reaction rate predictions with less required simulation time

We next developed a 3D CNN model, which we call SolventNet, that inputs voxel
representations and outputs predicted kinetic solvent parameters. The SolventNet architecture
consists of four convolutional layers, two max-pooling layers, and three fully connected layers as
shown schematically in Error! Reference source not found.a. This architecture is based on the
previously developed VoxNet 3D CNN but replaces the final fully connected layer with two
convolutional layers, one max-pooling layer, and three fully connected layers.?! We also compared

SolventNet to the VoxNet*! and ORION?° 3D CNNs (SI, Fig. S4) to investigate how the 3D CNN
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architecture influences prediction accuracy. All three models include a final layer with a linear

activation unit for the regression task of predicting o.
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Figure 4. Architecture, training, and performance of 3D CNNs. (a) Architecture of SolventNet, a 3D
CNN that inputs a 20x20x20x%3 voxel representation (described in Fig 3) and outputs the predicted kinetic
solvent parameter (0). 3D CNNs were evaluated using the same 5-fold cross validation procedure described
in Fig. 2b. (¢) Parity plot between predicted (0preq) and experimental (0eyp,) kinetic solvent parameters
using SolventNet. opeq is the average prediction of 10 voxel representations per label. Error bars show the
standard deviation of these predictions. The best-fit slope and root-mean-squared error (RMSE) between
Opred and Oeyp values are shown within the plot. Solid and dashed lines follow the conventions of Fig. 2.

(d) Comparison of the RMSEs between 0preq and deyp, for the multidescriptor linear and nonlinear neural

network (NN) models and the 3D CNNs (ORION, VoxNet, and SolventNet) when performing 5-fold cross
validation.

The 3D CNNs were evaluated using 5-fold cross-validation, similar to the procedure used
for the human-selected descriptor models. For the 3D CNNs, the training data included all
augmented voxel representations for 80% of the labels (14,400 or 14,640 voxel representations)
and the validation data included only non-augmented voxel representations for the remaining 20%

of the labels (150 or 160 voxel representations). Fig. 4b shows the parity plot between gpreq and

Oexp Using SolventNet. Values and error bars of op,r¢q report the average and standard deviation
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of the values predicted for each of the 10 non-augmented validation set voxel representations per
label. Compared to the baseline human-selected multidescriptor models (Fig. 2), SolventNet
significantly improves the prediction of kinetic solvent parameters with a best-fit slope of 0.89 and
RMSE of 0.37. Fig. 4c further indicates that the RMSEs obtained using all three 3D CNNs
(SolventNet, VoxNet, and ORION) are comparable and outperform the multidescriptor models.
Moreover, the 3D CNNs were trained using only 20 ns of MD data per reactant-solvent
combination compared to the 205 ns of MD data per reactant-solvent combination used to compute
the three descriptors in Equation 2. The 3D CNNs required 1.6-2.4 hours to train using one GPU
and one CPU core (Table S3), whereas the MD simulations required ~216 hours for all 76 reactant-
solvent combinations using one GPU and 28 CPU cores, a substantially longer time. Therefore,
the ~10-fold reduction in MD data translates to a comparable decrease in real time required for
model training.

A potential issue when training CNNs is the large number of learned parameters, which
may lead to overfitting. We note, however, that the 3D CNNs used in this work are relatively
compact; SolventNet has 172,417 parameters compared to 33,601,345 parameters for VGG16, a
common 2D CNN* (Methods and Table S3). The ratio of parameters to the number of augmented
training voxel representations for SolventNet is 11.8-11.9; for comparison, the ratio of parameters
to the number of training descriptor sets for the fully connected neural network model is 4.4. The
small ratio of parameters to training examples for SolventNet is comparable to alternative 3D CNN
architectures and suggests that we should not expect significant overfitting during training. For
example, 3D CNNs have been used to assess the quality of protein tertiary structures with a ratio
of parameters to training examples of 34 (~5.4 million parameters, ~160,000 grids of voxels)*® and

85 (~170 million parameters, ~2 million grids of voxels).>” We also observe that increasing the
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amount of training voxel representations by a factor of 10 (by splitting 200 ns of MD data into 100
voxel representations) does not impact 3D CNN performance (Fig. S3). Moreover, the differences
in RMSE between ORION, VoxNet, and SolventNet show that CNN architecture minimally
affects model performance, even though ORION has nearly five times as many parameters as
SolventNet. Therefore, the specific 3D CNN architecture is not critical; rather, it is the use of a 3D
CNN to analyze MD simulations that yield improved model performance. We also tested
alternative neural network architectures (SI), including networks with both descriptors and voxel
representations as input, 2D CNNs, and 3D CNNs with alternative voxel representations, but did
not observe increases in accuracy. Together, these results show that 3D CNNs are more accurate
than prior models based on human-selected descriptors (Fig. 2) while requiring less MD data to
train, that the amount of training data used is sufficient, and that prediction accuracy does not
significantly vary with model architecture. For the remainder of the manuscript, we focus on
SolventNet because it has the median number of parameters and performs well when predicting

the test set as discussed in the next section (see Table S3 for model comparisons).

Generalizability of SolventNet predictions to new solvents and reactants

We next assessed the accuracy of SolventNet for the 32 reactant-solvent combinations
included in the test set. For each test set reactant-solvent combination, we performed new MD
simulations to obtain the 4 ns of simulation data necessary to generate two voxel representations
(following the same procedure illustrated in Figure 3). Only two voxel representations were used
to assess the ability of SolventNet to rapidly generalize to new solvent combinations with minimal

MD simulation data. The test set voxel representations were not augmented. We re-trained
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SolventNet using all training set data (76 labels and 18,240 augmented voxel representations) and
then predicted kinetic solvent parameters for the test set voxel representations.

Fig. 5 shows the parity plot between opreq and oeyp for the test set using SolventNet.
Values and error bars of gy,..q report the average and standard deviation of the values predicted
for each of the 2 test set voxel representations per label. The best-fit slope is 0.72 and RMSE is
0.48, indicating that while prediction accuracy slightly degrades compared to predictions for the
validation set, SolventNet still generalizes well. Notably, the test set accuracy exceeds the
validation set accuracy of the baseline multidescriptor models. The parity plot also shows high

linear correlation with Pearson’s » = 0.80 for the test set data. Thus, even for systems for which
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Figure 5. Generalizability of SolventNet to new reactants and cosolvents. Parity plots between
predicted (opreq) and experimental (0eyp,) kinetic solvent parameters for the test set. Predictions were made
using SolventNet after training with all training set data. opreq i the average prediction of 2 voxel

representations per label. Error bars show the standard deviation of these predictions. The slope and root-
mean-squared error (RMSE) between 0 and geypvalues are shown within each plot. Solid and dashed
lines follow the convention of Fig. 2.

SolventNet predictions are less accurate, the model still captures qualitative trends regarding
solvent compositions that improve reaction rates, despite including reactants (GLU), cosolvents
(MeCN, DMSO, and ACE), and organic weight fractions (44, 65, and 88 wt%) not present for any
of the reactant-solvent combinations in the training set. These findings suggest that SolventNet
extracted features of the reactant-solvent environment that are important to reaction performance
and that are generalizable across different reactant-solvent combinations. The reduced accuracy
may be due, in part, to the different literature sources for the test set data (which may introduce
experimental error) and the use of a hydrochloric acid rather than triflic acid catalyst in Ref. 33,

since chloride can impact reaction kinetics.’
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The test set results show that SolventNet performs well for DMSO-water mixtures with a
RMSE of 0.43. This result is somewhat surprising because DMSO is more basic than the
cosolvents used for training® and is known to compete against water for binding sites around
hydroxyl groups on hydrophilic reactants.'? '* In addition, we have previously found that reactant-
DMSO interactions can be favored over reactant-water interactions in DMSO-water mixtures,
whereas reactant-water interactions are favored in the other cosolvent-water systems.'> Despite
these unique behaviors, the features learned by SolventNet can translate to reaction rate predictions
for DMSO-water mixtures with accuracy comparable to predictions for all other systems tested.
Of the reactants in the test set, the worst prediction accuracy was obtained for GLU with a RMSE
of 0.88. Since GLU was not part of the training set, we expect that the prediction accuracy for this
reactant would be lower than FRU; moreover, this system used a hydrochloric acid catalyst as
noted above. Nonetheless, the qualitative trend is again captured for GLU conversion with a
Pearson’s = 0.93 (computed only for systems with GLU).

Based on the DMSO and GLU analysis, we also used leave-one-out cross-validation to
determine if SolventNet predictions were sensitive to particular reactants or cosolvents included
in the training set, further motivated by the weak performance of descriptor-based models for THF-
and GVL-water mixtures. In this procedure (illustrated in Fig. 6a), we held out all labels and
associated voxel representations for reactant-solvent combinations in the original training set that
either contained a given cosolvent (e.g., all DIO-water mixtures) or a given reactant (e.g., XYL in
all solvent systems) and used these data as the test set. SolventNet was trained using the remaining
data and used to predict kinetic solvent parameters for 10 voxel representations per test set
reactant-solvent combination. This procedure was repeated by iteratively using data for each

cosolvent or reactant as the test set. Fig. 6b shows the parity plot between opreq and ey, for leave-
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Figure 6. Leave-one-out cross validation of SolventNet. (a) Schematic illustrating the leave-one-out
cross validation procedure in which all data for a single cosolvent or all data for a single reactant were used
as the test set and the remaining data were used as the training set. (b) Parity plot between predicted (0preq)

and experimental (0eyp) Kinetic solvent parameters for the leave-one-out cross validation of SolventNet
across cosolvents. The RMSE values between 0yreq and oey, labeled within each plot report the values
obtained when data for the listed cosolvent-water system were used to as the test set. opreq is the average

prediction of 10 voxel representations per label. Error bars show the standard deviation of these predictions.
Solid and dashed lines follow the conventions of Fig. 2. (¢) Parity plot between predicted (0preq) and

experimental (geyp ) kinetic solvent parameters for the leave-one-out cross validation of SolventNet across

reactants. The RMSE values in the table report the values obtained when data for the listed reactant were
used as the test set.

one-out cross validation across cosolvents. The RMSE varies between 0.27-0.43, which is
comparable to the predictions for DMSO-water mixtures. These results indicate that SolventNet
predictions are comparable for a wide range of mixed-solvent environments, including the THF-
and GVL-water mixtures that were poorly predicted by the linear multidescriptor model. Fig. 6¢
shows the parity plot between opreq and gey,, for leave-one-out cross validation across reactants.
The RMSE varies between 0.11-0.81 depending on the specific reactant, which is comparable to

the results for leave-one-out cross validation across cosolvents. The largest RMSE is obtained for
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LGA which is comparable to the test set results for GLU. As with the GLU results, 0preq and gexp

for LGA exhibit strong linear correlation with a » of 0.90, indicating that quantitative trends of
reactivity are captured. LGA may be an outlier due to the overestimation of its hydrophilicity since
the voxel representations account for all oxygens of LGA, including oxygens in ether bonds. Taken
together, the results from the independent test set and from leave-one-out cross-validation suggest
that SolventNet predictions generalize well across all cosolvents tested and all reactants other than

LGA.

Physical interpretation of SolventNet features

While SolventNet offers improved prediction accuracy and computational efficiency
compared to models based on human-selected descriptors, it is difficult to physically interpret
features extracted by the model.*® For example, representative voxel representations for different
reactant-solvent combinations do not have visually distinctive features (Fig. S2). As an initial step
toward interpreting features recognized by SolventNet, we generated saliency maps to visualize
the sensitivity of SolventNet predictions to different voxels and thus to specific spatial regions
around the reactant. A saliency map consists of saliency values (normalized between 0-1) for each
voxel that indicate how sensitive the SolventNet prediction is to the normalized occurrences of
water, reactant, and cosolvent atoms in that voxel. Larger saliency values indicate increased
sensitivity. Fig. 7 shows a saliency map that was generated using the integrated gradient approach®
(described in the Methods) by inputting a voxel representation of XYL in 90 wt% DIO to a fully
trained SolventNet model. The saliency map is split into separate 3D grids of voxels for reactant,

cosolvent, and water channels, with each voxel colored according to its normalized saliency value
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Figure 7. Saliency map using SolventNet. Example saliency map generated for a voxel representation of
XYL in 90 wt% DIO (shown in Fig. 4a) using SolventNet after training with all training set data. The
saliency map is visualized on a 3D grid with the same dimensions as the input voxel representation. Each
voxel is assigned a saliency value normalized from O to 1 that indicates the sensitivity of SolventNet
predictions to the normalized occurrences of water, reactant, and cosolvent atoms in that voxel. Larger
saliency values indicate greater sensitivity. The saliency map is visualized by separate grids showing the
water value in red, the reactant value in green, and the cosolvent value in blue. Half of the voxels are
transparent to illustrate the saliency values around the reactant and only the voxels with values greater than
0.10 for each system component are shown. 2D contours are plotted by averaging along the z-axis for
normalized values of 0.10, 0.25, 0.50, 0.75, and 0.90.

using the same color scheme as the input voxel representation (Fig. 3). Transparent voxels are
unimportant to model predictions (normalized saliency values less than 0.10).

Inspection of the saliency map in Fig. 7 confirms that SolventNet primarily recognizes
features of the solvent environment within a local domain near the reactant, in agreement with the
assumption underlying the definition of human-selected descriptors. Saliency maps for each
channel are further projected from 3D to 2D by averaging saliency values along the z-axis (selected

arbitrarily) to generate the contour plots shown in Fig. 7. These plots clearly show that regions

near the reactant are most important for predictions, that the size of the simulated volume is
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sufficiently large that regions far from the reactant are unimportant, and that SolventNet extracts
non-intuitive geometrical features that are not captured by the assumptions of spherical symmetry.
Similar saliency maps may be useful for guiding future ab initio calculations by identifying
important solvent regions to be studied, thus minimizing the number of molecules needed for

quantum chemical calculations.

Conclusions

In this work, we combined machine learning tools with classical MD simulations to
develop SolventNet, a 3D CNN which interprets MD simulation data that has been transformed
into a voxel representation to predict acid-catalyzed reaction rates in aqueous mixtures with polar
aprotic cosolvents. SolventNet does not require the human selection of descriptors a priori and
can capture spatial correlations without assuming spherical symmetry. SolventNet (and other 3D
CNNs) more accurately predicts reaction rates than models based on human-selected descriptors
and generalizes to new polar aprotic cosolvents, cosolvent mass fractions, and reactants not used
during model training. These findings indicate that SolventNet extracts features from the spatial
configurations of reactant, solvent, and cosolvent molecules determined by classical MD
simulations that encode sufficient information to predict solvent effects on acid-catalyzed
reactions, even though the reaction mechanisms and possible transition states are not explicitly
modeled.

A significant advantage of this newly developed approach is computational efficiency.
Once trained, SolventNet requires as little as 4 ns of MD simulation data to predict a reaction rate
for a single reactant-solvent combination. For the system sizes considered in this work, these

trajectories can be simulated in less than an hour on single node of a typical high-performance
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computing cluster, greatly diminishing the time necessary to predict reaction rates compared to ab
initio methods. This reduced computational expense suggests that SolventNet could be leveraged
for solvent screening, potentially in combination with process models,'° to design more efficient
biomass conversion processes without costly experimental trial-and-error. However, all systems
studied so far involve mixtures of water and polar aprotic cosolvents; extending SolventNet to
predict reaction rates in substantially different solvent systems (e.g., ionic liquids) will likely
require additional training.

The voxel representations input to SolventNet also only contain atomic positions, thus
omitting important chemical information such as the presence of covalent bonds between atoms
and atomic charges. These data could possibly be interpreted by alternative network architectures.
For example, a graph neural network could represent atoms as nodes and atomic interactions as
edges.!® 17> 4 Thus, we anticipate that further model development can continue to increase
prediction accuracy. Furthermore, the voxel representations input to SolventNet are only generated
from MD simulations of reactant states; future work will explore whether including voxel
representations from simulations of product states can improve the accuracy of reaction rate
predictions or enable predictions of reaction selectivities.'* Classical MD can also model molecules
much larger than the small-molecule reactants studied here, such as biomass-relevant polymers
(e.g., cellulose, hemicellulose, or lignin).!!"!3 Future work will explore the use of SolventNet with
semantic segregation techniques, which enable individual regions of data input to a CNN to be
separately classified,*' to predict the reactivity of multiple reactive sites simultaneously based on
MD simulations of biomass-relevant polymers. Screening solvents for these larger systems is
difficult with ab initio methods.

Methods
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Classical molecular dynamics simulation methods

Classical MD simulations were performed using a leapfrog integrator with a 2-fs timestep.
The initial simulation box dimensions were set to (6 nm)® in all simulations, and water and
cosolvent molecules were added in the desired proportions. All reactants and cosolvents were
parameterized using the CGenFF/CHARMM36 forcefields.*>** Water was modeled using the
Single Point Charge/Extended (SPC/E) model.*> Verlet lists were generated using a 1.2 nm
neighbor list cutoff. Van der Waals interactions were modeled with a Lennard-Jones potential that
was smoothly shifted to zero between 1.0 nm and 1.2 nm. Electrostatic interactions were calculated
using the smooth Particle Mesh Ewald method with a short-range cutoff of 1.2 nm, grid spacing
of 0.12 nm, and 4™ order interpolation. Bonds were constrained using the LINCS algorithm.*® The
solvent system was equilibrated in a NPT simulation for 5 ns at 7 = 300 K and P = 1 bar with a
velocity-rescale thermostat and Berendsen barostat. A single reactant molecule was added to the
system and equilibrated with the same barostat and thermostat for 500 ps. NPT production
simulations were then performed at the reaction temperature and P = 1 bar using a Nose-Hoover
thermostat and Parrinello-Rahman barostat. All thermostats used a 1.0 ps time constant and all
barostats used a 5.0 ps time constant with an isothermal compressibility of 5.0x107 bar.
Simulation configurations were output every 10 ps. All simulations were performed using
GROMACS 20167 and visualized using VMD.*®

Simulation data obtained using this protocol for reactant-solvent combinations included in
the training set (including molecules drawn in black in Fig. 1c and Fig. 1d) were taken from Ref. 4.
The production simulations for these molecules were performed for 200 ns. This simulation time
was necessary due to the slow convergence of I' as described in Ref. 4. The last 190 ns were used

to compute I and § for the multidescriptor models shown in Fig. 2. An additional 5 ns production
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simulation was performed to compute 7. Descriptors were calculated as described in Ref. 4 (values
listed in Table S1). The first 20 ns of the 200 ns were used to generate voxel representations for
training and validating the 3D CNNs. New simulations were performed following the above
simulation protocol for the reactant-solvent combinations included in the test set (including
molecules drawn in gray in Fig. 1c and Fig. 1d). The production simulations for these molecules
were performed for 4 ns at the reaction temperatures (listed in Table S2) and used to generate voxel

representations for testing the 3D CNNss.

Summary of model training, validation, and testing

108 experimentally determined reaction rates from literature sources were converted to
kinetic solvent parameters using Equation 1 and used as labels. Each reaction rate (label) was
determined for a unique reactant-solvent combination, which is defined as a single reactant in a
binary mixture of a single cosolvent and water (in varying wt%). The labels were split into a
training set with 72 labels (70% of the labels), all from Ref. 4, and a test set with 32 labels (30%
of the labels) from Refs. * ¥, A single MD trajectory was associated with each label. All models
were evaluated using a 5-fold cross-validation procedure in which 80% of the labels and associated
descriptors/voxel representations (60-61 labels) were used as training data and the remaining 20%
of the labels (15-16 labels) and associated descriptors/voxel representations were used as
validation data. This procedure was iterated 5 times such that each label was used for validation
once. Model performance was evaluated based on the RMSE of the predicted values of the kinetic

solvent parameter for the validation set.

Training data for the multidescriptor models were generated by using each MD trajectory

to compute 3 descriptors from 205 ns of MD data as described above. The multidescriptor linear
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model was trained by regressing a line to the training data. The multidescriptor fully connected
neural network was trained for 500 epochs (for each epoch, the neural network trained one cycle
of the entire dataset) using the Keras deep learning library on top of Tensorflow.*’ Training was
performed using the Adam optimizer with a learning rate of 0.001, mean-squared loss function,

and training batches of size 18 (one epoch equates to four backpropagation steps).

Training data for the 3D CNNs were generated by splitting each MD trajectory associated
with a training set label into 10 independent partitions containing 2 ns (200 MD configurations) of
consecutive MD data. For each partition, all MD configurations were converted to 3D grids of
voxels that were averaged to obtain voxel representations as described in the Results and
Discussion (Figure 3). The 10 voxel representations per label used for training were augmented by
including all 24 unique cube rotations as training data, leading to a total of 240 voxel
representations per label or 14,400-14,640 training voxel representations. The voxel
representations per label used for validation were not augmented, leading to 150-160 validation
voxel representations. All 3D CNNs were trained for 500 epochs using the Keras deep learning
library on top of Tensorflow.* Models were trained using the Adam optimizer with a learning rate
of 0.00001, mean-squared loss function, and training batches of size 18 (one epoch equates to 814
backpropagation steps). Learning curves for all 3D CNNs are shown in Fig. S5 of the

Supplementary Information.

The generalizability of SolventNet was assessed using the test set and leave-one-out cross-
validation of the training set. For each test set label, 4 ns of consecutive MD data was converted
to two independent voxel representations that were not augmented. SolventNet was re-trained
using augmented voxel representations for all training set data (18,240 voxel representations) and

used to predict kinetic solvent parameters for the 2 voxel representations per test set label (64 voxel
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representations). In the leave-one-out cross-validation procedure, all labels associated with a single
reactant or cosolvent in the training set were held out as the test set, then SolventNet was trained
using all data for the remaining labels and used to predict kinetic solvent parameters for 10 voxel
representations per held out label. In both procedures, model performance was assessed based on

the RMSE of the predicted values of the kinetic solvent parameter for the test set.

3D CNN architectures

Three 3D CNN architectures that vary in complexity and number of parameters were
considered in this work: VoxNet?! (5 layers, 150,689 parameters), ORION?® (8 layers, 908,833
parameters), and SolventNet (9 layers, 172,417 parameters), which we developed in-house. The
architectures of VoxNet and ORION are described in the Supporting Information (Fig. S4).
SolventNet has three stages (Fig. 4a). The first stage has two convolutional layers with 8 and 16
3x3x3 filters, respectively, and a 2x2x2 max-pooling layer. The second stage has the same
structure as the first, except the two convolutional layers have 32 and 64 filters, respectively. The
results from the last max-pooling layer are passed to a batch normalization layer and flattened. The
flattened data is then input to a neural network with three fully connected layers with 128 nodes in

each layer. The ReL U activation function is used for the fully connected layers.

Generation of saliency maps

Saliency maps were computed using a fully trained SolventNet with the integrated gradient

approach.®® We define the voxel representation input as a tensor x € R?0%20%20%3 gg]ventNet has
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a loss function L: R20%20%20x3 _, R 'where the output is the RMSE loss value. Equation 3 defines

the saliency map function (E: R20%20%20x3 _, R20x20x20x3).

E(x) = (x — %) X flaL(Ha(x_fD da 3)

0 0x
E(x) is the saliency value of x. X is the baseline input, which we select as X = 0. Equation 3
accounts for the change of the loss function caused by the change in the normalized occurrences
of atoms in a voxel in the original input voxel representation. If the loss function does not
significantly change, then that voxel is considered to be unimportant for the prediction. Values of

E(x), normalized to lie within the range 0-1, are shown on the saliency maps in Fig. 7.
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