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Abstract 

 The rates of liquid-phase, acid-catalyzed reactions relevant to the upgrading of biomass 

into high-value chemicals are highly sensitive to solvent composition and identifying suitable 

solvent mixtures is theoretically and experimentally challenging. We show that the complex 

atomistic configurations of reactant-solvent environments generated by classical molecular 

dynamics simulations can be exploited by 3D convolutional neural networks to enable accurate 

predictions of Brønsted acid-catalyzed reaction rates for model biomass compounds. We develop 

a 3D convolutional neural network, which we call SolventNet, and train it to predict acid-catalyzed 

reaction rates using experimental reaction data and corresponding molecular dynamics simulation 

data for seven biomass-derived oxygenates in water-cosolvent mixtures. We show that SolventNet 

can predict reaction rates for additional reactants and solvent systems an order of magnitude faster 

than prior simulation methods. This combination of machine learning with molecular dynamics 

enables the rapid, high-throughput screening of solvent systems and identification of improved 

biomass conversion conditions.  
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Introduction 

The catalytic conversion of lignocellulosic biomass is a promising strategy to obtain 

transportation fuels and high-value chemicals from renewable feedstocks.1 The conversion of 

biomass-derived molecules is typically facilitated by liquid-phase, acid-catalyzed reactions 

(examples shown in Fig. 1a) that are hindered by low reactivity in aqueous solution. One method 

to increase acid-catalyzed reaction rates is to modify the solvent composition by mixing organic, 

polar aprotic cosolvents with water to create mixed-solvent environments; such environments have 

been shown to improve reaction rates up to 100-fold compared to rates for the same reactions in 

pure water.2-4 Unfortunately, identifying solvent environments that improve reaction rates by trial-

and-error experimentation is time-consuming, costly, and provides limited physical insight into 

the physical basis of solvent effects. Instead, computational tools have been applied to understand 

solvent effects on chemical reactivity and guide the design of solvent mixtures for efficient 

biomass conversion processes.5  

In the past decade, ab initio quantum chemical methods have been used to quantify solvent 

effects on barriers to elementary steps for biomass conversion reactions.1, 5, 6 Using ab initio 

molecular dynamics (MD) simulations, Mellmer et al. found that the inclusion of organic 

cosolvents increases biomass conversion reaction kinetics by lowering the activation energy due 

to changes to the solvation environment around the acidic proton catalyst, the reactant, and charged 

transition states (Fig. 1b).3 The simulations revealed that hydrophilic reactants drive the formation 

of water-enriched local domains in mixed-solvent environments that preferentially solvate the acid 

catalyst and stabilize subsequent carbocation-like transition states.2-4 These findings suggest that 
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the extent of water enrichment around the reactant is directly correlated with acid-catalyzed 

reaction performance. Similar studies have used ab initio techniques to understand how the solvent 

 
Figure 1. Overview of solvent effects on acid-catalyzed reactions and model systems. (a) Two example 
acid-catalyzed reactions: xylitol (XYL) dehydration and levoglucosan (LGA) hydrolysis. (b) Hypothesized 
effect of mixed-solvent environments on the free energy landscape of acid-catalyzed reactions. The 
schematic illustrates the formation of a local solvent domain (within the circular dashed line) around the 
reactant in a mixed-solvent environment that modifies the reaction free energy landscape, thus affecting 
reaction kinetics.3,4 (c) Organic, polar aprotic cosolvents modeled in this study, including dioxane (DIO), 
-valerolactone (GVL), tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and 
acetone (ACE). Molecules drawn in black were included in the training set. Molecules drawn in gray were 
included in the test set. (d) Biomass-derived model reactants modeled in this study, including ethyl tert-
butyl ether (ETBE), tert-butanol (TBA), cellobiose (CEL), glucose (GLU), LGA, 1,2-propanediol (PDO), 
fructose (FRU), and XYL. The color scheme follows part c, except TBA, PDO, and FRU were included as 
part of some of the reactant-solvent combinations in both training and test sets. 
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environment alters reaction kinetics for key acid-catalyzed reactions, 5, 7 such as the conversion of 

fructose to afford 5-hydroxymethylfurfural8, 9 (a platform chemical for polymer precursors and 

transportation fuels).10 Unfortunately, while ab initio methods can directly probe mechanistic 

details of reactions, their high computational expense renders the screening of multiple solvent 

compositions infeasible.  

Relative to ab initio MD, classical MD simulations can access longer timescales (s) and 

larger length scales (nm) with significantly reduced computational budgets, allowing a more rapid 

characterization of complex solvent environments around even large reactants.11-13 Classical MD 

simulations are suitable for modeling the spatial organization of mixed-solvent environments that 

emerges from the interplay of reactant-solvent-cosolvent interactions and may impact reaction 

kinetics (e.g., due to preferential solvation of the reactant as described above) but may not be 

captured by bulk solvent descriptors (e.g., the dielectric constant).5, 14 On the other hand, a key 

limitation of classical MD simulations is their inability to directly model chemical reactions. 

Nonetheless, we recently utilized classical MD simulations to understand and predict solvent 

effects on experimental reaction rates for the conversion of biomass-derived model compounds in 

aqueous mixtures of 1,4-dioxane (DIO), -valerolactone (GVL), and tetrahydrofuran (THF).4 

Based on the hypothesis that classical MD simulations could quantify the reactant-water-cosolvent 

interactions that dictated reactivity in prior ab initio simulations,3 we developed an MD model 

consisting of only reactant, water, and cosolvent molecules and calculated three simulation-derived 

descriptors that quantified the extent of water-enrichment around the reactant, reactant-water 

hydrogen bonding, and reactant hydrophilicity. We then derived a linear regression model that 

used these three descriptors to predict experimental reaction rates and found good agreement in 

DIO-water mixtures.4 These findings showed that classical MD simulations can be used to predict 
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solvent effects on reaction rates without explicitly modeling the acid catalyst or the reaction 

mechanism. The regression model was less accurate for GVL- and THF-water mixtures, indicating 

that either descriptors computed with classical MD cannot quantify reaction rates in these systems 

or that more complex descriptors must be defined to capture reactivity trends. However, designing 

new descriptors of reaction kinetics based on human intuition is challenging, often requiring 

complex and time-consuming data analysis tools (e.g. solvation free energies14, 15 or three-

dimensional solvent mapping12, 14) that cannot be readily generalized across a range of solvent 

compositions.  

As an alternative to designing descriptors via human intuition, machine learning methods 

have been increasingly used to infer molecular properties by automatically extracting features from 

complex sources of data.16-22 For example, convolutional neural networks (CNNs) can be used to 

identify and quantify patterns within two-dimensional (2D) spatial datasets such as images.23 By 

training on a suitable set of labeled image data, CNNs extract spatial features without requiring 

human supervision and can then utilize these features to classify image contents. CNNs have been 

shown to outperform other machine learning methods (e.g. fully connected neural networks and 

support vector machines)24 in the ImageNet Large-Scale Visual Recognition Challenge,25 a contest 

requiring a model to classify more than 1.2 million images. CNNs can be further generalized to 

extract features from three-dimensional (3D) volumetric data,26 which can facilitate the analysis 

of 3D molecular structures. For example, 3D CNNs have recently been used to detect protein 

functional sites,27 evaluate protein-ligand binding sites,28 and quantify protein-ligand binding 

affinities29 by training on protein database structures. Based on these examples and our prior 

success using classical MD simulations to predict acid-catalyzed reaction outcomes,4, 14 we 
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hypothesize that 3D CNNs can exploit the output of classical MD simulations to more accurately 

predict solvent effects on acid-catalyzed reaction rates.  

In this work, we developed 3D CNNs that utilize information on atomic positions obtained 

from classical MD simulation trajectories to predict the rates of liquid-phase, acid-catalyzed 

biomass conversion reactions in mixed-solvent environments. To develop our training procedure, 

we use 76 experimentally determined reaction rates for 7 biomass-derived model reactants in DIO-

, GVL-, and THF-water solvent mixtures as labels. For each experimental reaction rate and 

associated solvent mixture, we record configurations from a corresponding MD simulation 

trajectory (each configuration contains the 3D positions of atoms in reactant, solvent, and water 

molecules). Configurations collected from the simulation and their spatial rotations are used to 

obtain multiple voxel representations that map to the same experimental reaction rate and are used 

as input data for the 3D CNN. This procedure allows us to construct a rich training dataset that 

consists of 18,240 voxel representations (over 240 distinct voxel representations mapping to each 

of the 76 experimental reaction rates). This approach seeks to demonstrate that MD trajectory data 

embeds rich information that explains reaction rates and develops early in the MD simulation to 

drastically reduce computational time. We find that all 3D CNNs considered – including a new 3D 

CNN that we developed, which we call SolventNet, and two previously developed 3D CNNs 

(ORION30 and VoxNet31) – predict experimental reaction rates more accurately than models based 

on human-selected, MD-derived descriptors4. SolventNet predictions generalize to a test set 

consisting of 32 experimentally determined reaction rates obtained from the literature, including 

rates for reactants in three additional polar aprotic cosolvents not included in model training - 

dimethyl sulfoxide, acetonitrile, and acetone - with distinct properties (e.g., functional groups, 

basicity, and polarizability) from the cosolvents used to train the model. We further find that 
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accurate reaction rate predictions with SolventNet require as little as 4 ns of classical MD trajectory 

data, a 50-fold improvement from the original 205 ns of MD data used in models based on human-

selected descriptors.4 We thus conclude that 3D atomistic configurations contain significant 

information that explains reaction rates and that such configurations develop early in the MD 

simulation. We envision that the computational efficiency associated with the combination of 3D 

CNNs and classical MD simulations will enable the integration of these tools with process models 

to screen solvents and optimize reactor conditions for biomass conversion processes.32  

 The manuscript is organized as follows. We first describe the set of 108 experimentally 

determined reaction rates, each associated with a unique combination of reactant and mixed-

solvent environment, that are used as labels for the training set (76 reaction rates) and test set (32 

reaction rates). We then describe the training and validation of baseline linear and nonlinear 

models using data consisting of human-selected descriptors computed from MD trajectories, with 

one trajectory and corresponding set of descriptors per label. We next describe an alternative input 

data set generated by splitting each MD trajectory into 10 independent voxel representations for 

interpretation by 3D CNNs. After data augmentation, this procedure yields 240 voxel 

representations per label that are used to train and validate 3D CNNs for comparison to the baseline 

models. We then assess the test set and leave-one-out cross-validation accuracy of SolventNet to 

establish model generalizability. Finally, we visualize spatial features that influence SolventNet 

accuracy using saliency maps.   

Results and Discussion 

Experimental reaction data used for model training and testing 

108 previously reported, experimentally determined reaction rates for acid-catalyzed 

dehydration or hydrolysis reactions in mixed-solvent environments were used as labels for the 
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training and testing of predictive models for acid-catalyzed reaction rates. Each reaction rate was 

measured for a unique reactant-solvent combination (i.e., a reactant in a mixed-solvent 

environment). 76 experimental reaction rates (70% of the labels) were taken from Ref. 4 and used 

as labels for the training set. The training set includes rates for 7 biomass-relevant model reactants: 

ethyl tert-butyl ether (ETBE), tert-butanol (TBA), 1,2-propanediol (PDO), levoglucosan (LGA), 

fructose (FRU), cellobiose (CEL), and xylitol (XYL). Solvent systems include aqueous mixtures 

with 25 wt%, 50 wt%, 75 wt%, or 90 wt% of one of three polar aprotic cosolvents: 1,4-dioxane 

(DIO), -valerolactone (GVL), and tetrahydrofuran (THF). 32 experimental reaction rates (30% of 

the labels) were taken from Refs. 3 and 33 and used as labels for the test set. The test set includes 

rates for 4 model reactants: TBA, FRU, PDO, and glucose (GLU). Solvent systems include 

aqueous mixtures with dimethyl sulfoxide (DMSO), acetonitrile (MeCN), and acetone (ACE). 

Training set experiments were performed at temperatures between 343 K – 433 K and test set 

experiments were performed at temperatures between 363 K – 433 K. All experiments used triflic 

acid as a catalyst, except for test set experiments from Ref. 33 (for FRU and GLU in aqueous 

mixtures of ACE) which used hydrochloric acid. The test set labels thus consist of independent 

reaction rates from different literature sources for reactants and cosolvents not included in the 

training set but at comparable experimental conditions. Chemical structures of all reactants and 

cosolvents are shown in Fig. 1c and Fig. 1d, respectively. Table S1 and Table S2 list the reaction 

conditions for each label. 

To compare the effect of the mixed-solvent environment on reaction rates in different 

systems, Equation 1 defines the kinetic solvent parameter (𝜎) as the log-ratio between the apparent 

rate constant for the dehydration or hydrolysis of reactant 𝑟 in a given mixed-solvent environment 

(𝑘𝑜𝑟𝑔
𝑟 ) and the apparent rate constant for the same reaction in pure water (𝑘𝐻2𝑂

𝑟 ):4 
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𝜎 = log10 (

𝑘𝑜𝑟𝑔
𝑟  

𝑘𝐻2𝑂
𝑟 ) (1) 

𝜎 > 1 indicates that the reaction rate is faster in the mixed-solvent environment than in pure water 

and 𝜎 < 1 indicates the converse. All labels for the training and test sets were defined as 𝜎 values 

(𝜎exp) to facilitate the training of regression models.  

 

Baseline prediction models for reaction rates using human-selected descriptors from classical MD 

In prior work, we performed classical MD simulations of one reactant molecule in a mixed-

solvent environment to generate a single 205 ns simulation trajectory for each of the 76 reactant-

solvent combinations included in the training set.4 Fig. 2a illustrates the general approach for 

extracting descriptors from these MD simulations to predict experimental kinetic solvent 

parameters. From each MD trajectory, we computed three physically motivated, human-selected 

descriptors that capture reactant hydrophilicity and solvent interactions: the preferential exclusion 

coefficient (Γ), which quantifies the local enrichment of water in the spatial region near the 

reactant; the hydrogen bonding lifetime between the reactant and water (𝜏), which quantifies the 

stabilization of a putative charged transition state by nearby water molecules; and the accessible 

hydroxyl fraction (𝛿), which quantifies reactant hydrophilicity by dividing the accessible surface 

area (ASA) of the reactant’s hydroxyl groups by the ASA of the overall molecule. Descriptor 

calculations are described in Ref. 4 and descriptor values are listed in Table S1.  

Descriptor values were used as input data to train a linear regression model (Equation 2) 

to predict values of the kinetic solvent parameter (𝜎pred): 

 𝜎pred = 𝐴 + 𝐵(Γ̃) + 𝐶(𝜏̃) + 𝐷(𝛿) (2) 
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𝐴, 𝐵, 𝐶, and 𝐷 are regression coefficients and descriptors with a tilde are re-scaled between 0 and 

1 by min-max scaling. Fig. 2b illustrates the 5-fold cross-validation procedure used to evaluate if 

the linear model and all following models described in this work could generalize to new reactant-

solvent combinations not included in the training data.34 In this procedure, the 76 labels in the 

training set were randomly split into five folds, each containing approximately 20% of the labels. 

All input data (i.e., descriptor values) associated with the labels in one of the five folds were used 

as the validation set, the input data associated with the labels in the remaining four folds were used 

 
Figure 2. Evaluation of human-selected multidescriptor models. (a) General approach for correlating 
features from molecular dynamics (MD) simulations to experimental kinetic solvent parameters (𝜎exp). 
The simulation configuration shows xylitol (XYL) in 90 wt% dioxane (DIO) as an example. (b) Schematic 
illustrating 5-fold cross validation procedure used to train and validate models. (c) Parity plot between 
predicted (𝜎pred) and experimental (𝜎exp) kinetic solvent parameters for the multidescriptor linear model. 
The best-fit slope and root-mean-squared error (RMSE) between 𝜎pred and 𝜎exp values are shown within 
the plot. The solid black lines indicate perfect correlation (𝜎pred = 𝜎exp), the dashed black lines indicate 
approximate experimental error, and the dashed gray lines are drawn at 𝜎exp = 0 and 𝜎pred = 0 as a guide 
to the eye. (d) Parity plot for the nonlinear fully connected neural network model. 
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to train the model (i.e., regression coefficients were fit), and values of 𝜎pred were calculated for 

the validation set. This procedure was iterated five times such that each training set label was 

included in the validation set exactly once.  

Fig. 2c shows the parity plot between 𝜎pred and 𝜎exp for the linear regression model, with 

each value of  𝜎pred corresponding to a validation set prediction from the 5-fold cross validation 

procedure. We use the best-fit slope and root-mean-square error (RMSE) between 𝜎pred and 𝜎exp 

to evaluate model accuracy; a perfect model would have a slope of one and a RMSE of zero. Since 

the RMSE of the experimental data is 0.10,4 any predictive model with RMSE near 0.10 is 

sufficiently accurate. The linear model has a slope of 0.49 and RMSE of 0.58; most outliers are 

reactions occurring in THF-water (hollow symbols) or in 90 wt% cosolvent systems (diamond 

symbols). Fitting the linear model using only data for DIO-water mixtures without 5-fold cross 

validation leads to an RMSE of 0.23,4 but this approach is less accurate for GVL-water (RMSE of 

0.36) and THF-water (RMSE of 0.59) mixtures (SI, Table S3), indicating that the performance of 

the linear model depends strongly on the cosolvent. This result suggests that the linear model has 

limited generalizability across cosolvents. We also tested if a nonlinear model could improve upon 

the predictions of the linear model using the same input data. We performed 5-fold cross-validation 

to evaluate a fully connected neural network with three hidden layers, each with ten rectified linear 

units (ReLU), followed by a linear unit for the regression task of predicting 𝜎 using the three 

human-selected descriptors as input. Fig. 2d shows the parity plot between 𝜎pred and 𝜎exp using 

the fully connected neural network model. The behavior of the fully connected neural network 

model was comparable to that of the linear model with a slope of 0.46 and RMSE of 0.62. We use 

these multidescriptor models as a baseline for comparison to alternative models. 
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These findings show that reaction rates predicted with the multidescriptor models lie in the 

correct quadrants with few false-positive or false-negative 𝜎 values and are accurate for some 

cosolvents (i.e., DIO). The descriptors underscore the importance of spatial information: Γ 

quantifies the solvent composition in a region near the reactant, 𝜏 describes the relative locations 

of reactant hydroxyl groups and water molecules, and 𝛿 is related to the relative surface areas of 

hydrophilic and hydrophobic regions of the reactant. However, both models have significant 

outliers for systems corresponding to larger values of 𝜎exp, suggesting that the descriptors fail to 

capture important information that may be encoded within the complex geometrical (3D) features 

of the reactant-solvent environment. In addition, the identification of these descriptors requires 

domain expertise and is time-consuming.  

 

Generation of input data set for interpretation by 3D CNNs using classical MD data 

To improve upon the human-selected multidescriptor models, we hypothesized that 3D 

CNNs can be used to establish mappings between atomic positions sampled from classical MD 

(which emerge from the combination of reactant-solvent, solvent-cosolvent, and reactant-

cosolvent interactions) to experimental reaction rates. We expect that 3D CNNs are appropriate 

for analyzing these systems because: (i) CNNs can extract non-intuitive features of the reactant-

solvent environment by identifying spatial correlations in the input data, (ii) liquid-phase systems 

exhibit pronounced spatial correlations due to intermolecular interactions between solvent 

molecules, (iii) the importance of spatial information encoded within the human-selected 

descriptors suggests that spatial correlations are relevant to solvent effects, and (iv) 3D CNNs can 

analyze atomic positions without transforming the domain to a 2D space (flattening), thereby 

capturing the detailed geometry of the reactant and local solvation environment. 3D CNNs thus 
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provide a natural framework for identifying complex features of reactant-solvent environments 

that affect reaction rates but that may not be easily identified using human intuition.  

We first developed a protocol for converting trajectory data of atomic positions of reactant, 

solvent, and cosolvent molecules obtained from classical MD simulations into a data 

representation that is suitable for 3D CNN analysis. 3D CNNs interpret data consisting of a series 

of voxels arranged in a 3D grid, with each voxel containing normalized intensities in several 

independent channels. The channels can convey different types of field information. The relative 

positioning of the voxels in the grid confers spatial information. We thus converted the spatially 

continuous atomic positions output by MD to voxels that record the normalized occurrences of 

water, cosolvent, and reactant oxygen atoms within (0.2 nm)3 volume elements. This data 

representation is motivated by the physical intuition obtained from the success of the human-

selected multidescriptor models: the importance of the descriptor Γ suggests that the positions of 

water and cosolvent atoms should be recorded to quantify preferential enrichment of solvent 

molecules near the reactant while the descriptors 𝜏 and 𝛿 suggest that the positions of reactant 

oxygen atoms should be recorded to quantify potential hydrogen bonding and reactant 

hydrophilicity. The volume associated with each voxel was selected to be comparable to typical 

atomic radii to ensure that molecular geometry could be resolved.  

Fig. 3 illustrates the approach used to convert MD positions to a grid of voxels. For each 

set of atomic positions corresponding to a single time sampled during a MD trajectory (i.e., a MD 

configuration), we centered a 3D histogram on the center-of-mass of the reactant. The histogram 

covered a cubic (4 nm)3 volume (a volume smaller than the total simulation box size to avoid 

crossing the simulation box boundaries) that was divided into a 20×20×20 grid of bins 

corresponding to (0.2 nm)3 volume elements. For each bin, we calculated the normalized 
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occurrence of water atoms by counting the number of water atoms within the bin and normalizing 

by the maximum number of water atoms within any bin. The same procedure was separately 

performed to calculate the normalized occurrence of cosolvent and reactant oxygen atoms in each 

bin. The normalized water, reactant, and cosolvent occurrences were then stored in the “red, green, 
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and blue” color channels, respectively (Fig. 3a) to obtain a 20×20×20×3 grid of voxels for a single 

MD configuration.  

To capture the preferential locations of solvent molecules relative to the reactant as they 

diffuse within the cubic volume, and to prevent voxels from being unoccupied, we averaged grid 

 
Figure 3. Input data representation for 3D CNNs. Approach for converting the atomic positions 
obtained from a MD simulation to a voxel representation using xylitol in 90 wt% dioxane as an example. 
(a) For each MD configuration (example at left), a (4 nm)3 cubic box was centered on the reactant and a 
20×20×20 grid of (0.2 nm)3 volume elements was used to discretize space. The normalized occurrences of 
water, oxygens of the reactant, and cosolvent atomic positions within each volume element were stored in 
different channels to yield a 20×20×20×3 grid of voxels. Voxels are visualized by showing the water 
channel in red, the reactant channel in green, and the cosolvent channel in blue. Half of the voxels are 
transparent to illustrate the solvent distribution around the reactant.  (b) Grids of voxels were averaged over 
2 ns of MD data (200 MD configurations) to yield a 20×20×20×3 voxel representation. (c) For each 
reactant-solvent system, 20 ns of simulation data were used to generate 10 independent voxel 
representations.  
 

 



16 

values obtained from multiple consecutive MD configurations to generate a single averaged grid 

of voxels that we define as a voxel representation. Specifically, each voxel representation was 

generated by averaging grid values from 2 ns of MD data (corresponding to 200 consecutive MD 

configurations) as illustrated in Fig. 3b. The 2 ns simulation time was selected as a balance between 

maximizing model accuracy and minimizing computational expense. This simulation time is 

substantially shorter than the 205 ns trajectories associated with each training label. Thus, we split 

the first 20 ns of each trajectory into 10 independent 2-ns partitions and generated a voxel 

representation for each partition, yielding 10 voxel representations per training label. These 

choices were based on extensive robustness tests to determine the best-performing input data 

representations as described in the Supplementary Information, Section S5 (Table S4).  Because 

3D CNNs are not rotationally invariant, we further augmented the training data by rotating each 

voxel representation to generate 24 unique cube rotations per voxel representation (Fig. S1), 

leading to 240 (augmented) voxel representations per training set label.  

 

3D CNNs improve reaction rate predictions with less required simulation time 

We next developed a 3D CNN model, which we call SolventNet, that inputs voxel 

representations and outputs predicted kinetic solvent parameters. The SolventNet architecture 

consists of four convolutional layers, two max-pooling layers, and three fully connected layers as 

shown schematically in Error! Reference source not found.a. This architecture is based on the 

previously developed VoxNet 3D CNN but replaces the final fully connected layer with two 

convolutional layers, one max-pooling layer, and three fully connected layers.31 We also compared 

SolventNet to the VoxNet31 and ORION30 3D CNNs (SI, Fig. S4) to investigate how the 3D CNN 
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architecture influences prediction accuracy. All three models include a final layer with a linear 

activation unit for the regression task of predicting 𝜎.  

The 3D CNNs were evaluated using 5-fold cross-validation, similar to the procedure used 

for the human-selected descriptor models. For the 3D CNNs, the training data included all 

augmented voxel representations for 80% of the labels (14,400 or 14,640 voxel representations) 

and the validation data included only non-augmented voxel representations for the remaining 20% 

of the labels (150 or 160 voxel representations).  Fig. 4b shows the parity plot between 𝜎pred and 

𝜎exp using SolventNet. Values and error bars of 𝜎pred report the average and standard deviation 

  
Figure 4. Architecture, training, and performance of 3D CNNs. (a) Architecture of SolventNet, a 3D 
CNN that inputs a 20×20×20×3 voxel representation (described in Fig 3) and outputs the predicted kinetic 
solvent parameter (𝜎). 3D CNNs were evaluated using the same 5-fold cross validation procedure described 
in Fig. 2b. (c) Parity plot between predicted (𝜎pred) and experimental (𝜎exp) kinetic solvent parameters 
using SolventNet. 𝜎pred is the average prediction of 10 voxel representations per label. Error bars show the 
standard deviation of these predictions. The best-fit slope and root-mean-squared error (RMSE) between 
𝜎pred and 𝜎exp values are shown within the plot. Solid and dashed lines follow the conventions of Fig. 2. 
(d) Comparison of the RMSEs between 𝜎pred and 𝜎exp for the multidescriptor linear and nonlinear neural 
network (NN) models and the 3D CNNs (ORION, VoxNet, and SolventNet) when performing 5-fold cross 
validation.  
 
 



18 

of the values predicted for each of the 10 non-augmented validation set voxel representations per 

label. Compared to the baseline human-selected multidescriptor models (Fig. 2), SolventNet 

significantly improves the prediction of kinetic solvent parameters with a best-fit slope of 0.89 and 

RMSE of 0.37. Fig. 4c further indicates that the RMSEs obtained using all three 3D CNNs 

(SolventNet, VoxNet, and ORION) are comparable and outperform the multidescriptor models. 

Moreover, the 3D CNNs were trained using only 20 ns of MD data per reactant-solvent 

combination compared to the 205 ns of MD data per reactant-solvent combination used to compute 

the three descriptors in Equation 2. The 3D CNNs required 1.6-2.4 hours to train using one GPU 

and one CPU core (Table S3), whereas the MD simulations required ~216 hours for all 76 reactant-

solvent combinations using one GPU and 28 CPU cores, a substantially longer time. Therefore, 

the ~10-fold reduction in MD data translates to a comparable decrease in real time required for 

model training.  

A potential issue when training CNNs is the large number of learned parameters, which 

may lead to overfitting. We note, however, that the 3D CNNs used in this work are relatively 

compact; SolventNet has 172,417 parameters compared to 33,601,345 parameters for VGG16, a 

common 2D CNN35 (Methods and Table S3). The ratio of parameters to the number of augmented 

training voxel representations for SolventNet is 11.8-11.9; for comparison, the ratio of parameters 

to the number of training descriptor sets for the fully connected neural network model is 4.4. The 

small ratio of parameters to training examples for SolventNet is comparable to alternative 3D CNN 

architectures and suggests that we should not expect significant overfitting during training. For 

example, 3D CNNs have been used to assess the quality of protein tertiary structures with a ratio 

of parameters to training examples of 34 (~5.4 million parameters, ~160,000 grids of voxels)36 and 

85 (~170 million parameters, ~2 million grids of voxels).37 We also observe that increasing the 



19 

amount of training voxel representations by a factor of 10 (by splitting 200 ns of MD data into 100 

voxel representations) does not impact 3D CNN performance (Fig. S3). Moreover, the differences 

in RMSE between ORION, VoxNet, and SolventNet show that CNN architecture minimally 

affects model performance, even though ORION has nearly five times as many parameters as 

SolventNet. Therefore, the specific 3D CNN architecture is not critical; rather, it is the use of a 3D 

CNN to analyze MD simulations that yield improved model performance. We also tested 

alternative neural network architectures (SI), including networks with both descriptors and voxel 

representations as input, 2D CNNs, and 3D CNNs with alternative voxel representations, but did 

not observe increases in accuracy. Together, these results show that 3D CNNs are more accurate 

than prior models based on human-selected descriptors (Fig. 2) while requiring less MD data to 

train, that the amount of training data used is sufficient, and that prediction accuracy does not 

significantly vary with model architecture. For the remainder of the manuscript, we focus on 

SolventNet because it has the median number of parameters and performs well when predicting 

the test set as discussed in the next section (see Table S3 for model comparisons).  

 

Generalizability of SolventNet predictions to new solvents and reactants 

We next assessed the accuracy of SolventNet for the 32 reactant-solvent combinations 

included in the test set. For each test set reactant-solvent combination, we performed new MD 

simulations to obtain the 4 ns of simulation data necessary to generate two voxel representations 

(following the same procedure illustrated in Figure 3). Only two voxel representations were used 

to assess the ability of SolventNet to rapidly generalize to new solvent combinations with minimal 

MD simulation data. The test set voxel representations were not augmented. We re-trained 
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SolventNet using all training set data (76 labels and 18,240 augmented voxel representations) and 

then predicted kinetic solvent parameters for the test set voxel representations. 

Fig. 5 shows the parity plot between 𝜎pred and 𝜎exp for the test set using SolventNet. 

Values and error bars of 𝜎pred report the average and standard deviation of the values predicted 

for each of the 2 test set voxel representations per label. The best-fit slope is 0.72 and RMSE is 

0.48, indicating that while prediction accuracy slightly degrades compared to predictions for the 

validation set, SolventNet still generalizes well. Notably, the test set accuracy exceeds the 

validation set accuracy of the baseline multidescriptor models. The parity plot also shows high 

linear correlation with Pearson’s r = 0.80 for the test set data. Thus, even for systems for which 
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SolventNet predictions are less accurate, the model still captures qualitative trends regarding 

solvent compositions that improve reaction rates, despite including reactants (GLU), cosolvents 

(MeCN, DMSO, and ACE), and organic weight fractions (44, 65, and 88 wt%) not present for any 

of the reactant-solvent combinations in the training set. These findings suggest that SolventNet 

extracted features of the reactant-solvent environment that are important to reaction performance 

and that are generalizable across different reactant-solvent combinations. The reduced accuracy 

may be due, in part, to the different literature sources for the test set data (which may introduce 

experimental error) and the use of a hydrochloric acid rather than triflic acid catalyst in Ref. 33, 

since chloride can impact reaction kinetics.6   

 
Figure 5. Generalizability of SolventNet to new reactants and cosolvents. Parity plots between 
predicted (𝜎pred) and experimental (𝜎exp) kinetic solvent parameters for the test set. Predictions were made 
using SolventNet after training with all training set data. 𝜎pred is the average prediction of 2 voxel 
representations per label. Error bars show the standard deviation of these predictions.  The slope and root-
mean-squared error (RMSE) between 𝜎pred and 𝜎expvalues are shown within each plot. Solid and dashed 
lines follow the convention of Fig. 2. 
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The test set results show that SolventNet performs well for DMSO-water mixtures with a 

RMSE of 0.43. This result is somewhat surprising because DMSO is more basic than the 

cosolvents used for training3 and is known to compete against water for binding sites around 

hydroxyl groups on hydrophilic reactants.12, 14 In addition, we have previously found that reactant-

DMSO interactions can be favored over reactant-water interactions in DMSO-water mixtures, 

whereas reactant-water interactions are favored in the other cosolvent-water systems.15 Despite 

these unique behaviors, the features learned by SolventNet can translate to reaction rate predictions 

for DMSO-water mixtures with accuracy comparable to predictions for all other systems tested. 

Of the reactants in the test set, the worst prediction accuracy was obtained for GLU with a RMSE 

of 0.88. Since GLU was not part of the training set, we expect that the prediction accuracy for this 

reactant would be lower than FRU; moreover, this system used a hydrochloric acid catalyst as 

noted above. Nonetheless, the qualitative trend is again captured for GLU conversion with a 

Pearson’s r = 0.93 (computed only for systems with GLU). 

Based on the DMSO and GLU analysis, we also used leave-one-out cross-validation to 

determine if SolventNet predictions were sensitive to particular reactants or cosolvents included 

in the training set, further motivated by the weak performance of descriptor-based models for THF- 

and GVL-water mixtures. In this procedure (illustrated in Fig. 6a), we held out all labels and 

associated voxel representations for reactant-solvent combinations in the original training set that 

either contained a given cosolvent (e.g., all DIO-water mixtures) or a given reactant (e.g., XYL in 

all solvent systems) and used these data as the test set. SolventNet was trained using the remaining 

data and used to predict kinetic solvent parameters for 10 voxel representations per test set 

reactant-solvent combination. This procedure was repeated by iteratively using data for each 

cosolvent or reactant as the test set. Fig. 6b shows the parity plot between 𝜎pred and 𝜎exp for leave-
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one-out cross validation across cosolvents. The RMSE varies between 0.27-0.43, which is 

comparable to the predictions for DMSO-water mixtures. These results indicate that SolventNet 

predictions are comparable for a wide range of mixed-solvent environments, including the THF- 

and GVL-water mixtures that were poorly predicted by the linear multidescriptor model. Fig. 6c 

shows the parity plot between 𝜎pred and 𝜎exp for leave-one-out cross validation across reactants. 

The RMSE varies between 0.11-0.81 depending on the specific reactant, which is comparable to 

the results for leave-one-out cross validation across cosolvents. The largest RMSE is obtained for 

 
Figure 6. Leave-one-out cross validation of SolventNet. (a) Schematic illustrating the leave-one-out 
cross validation procedure in which all data for a single cosolvent or all data for a single reactant were used 
as the test set and the remaining data were used as the training set. (b) Parity plot between predicted (𝜎pred) 
and experimental (𝜎exp) kinetic solvent parameters for the leave-one-out cross validation of SolventNet 
across cosolvents. The RMSE values between 𝜎pred and 𝜎exp labeled within each plot report the values 
obtained when data for the listed cosolvent-water system were used to as the test set. 𝜎pred is the average 
prediction of 10 voxel representations per label. Error bars show the standard deviation of these predictions. 
Solid and dashed lines follow the conventions of Fig. 2. (c) Parity plot between predicted (𝜎pred) and 
experimental (𝜎exp) kinetic solvent parameters for the leave-one-out cross validation of SolventNet across 
reactants. The RMSE values in the table report the values obtained when data for the listed reactant were 
used as the test set. 
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LGA which is comparable to the test set results for GLU. As with the GLU results, 𝜎pred and 𝜎exp 

for LGA exhibit strong linear correlation with a r of 0.90, indicating that quantitative trends of 

reactivity are captured. LGA may be an outlier due to the overestimation of its hydrophilicity since 

the voxel representations account for all oxygens of LGA, including oxygens in ether bonds. Taken 

together, the results from the independent test set and from leave-one-out cross-validation suggest 

that SolventNet predictions generalize well across all cosolvents tested and all reactants other than 

LGA.  

 

Physical interpretation of SolventNet features 

While SolventNet offers improved prediction accuracy and computational efficiency 

compared to models based on human-selected descriptors, it is difficult to physically interpret 

features extracted by the model.38 For example, representative voxel representations for different 

reactant-solvent combinations do not have visually distinctive features (Fig. S2). As an initial step 

toward interpreting features recognized by SolventNet, we generated saliency maps to visualize 

the sensitivity of SolventNet predictions to different voxels and thus to specific spatial regions 

around the reactant. A saliency map consists of saliency values (normalized between 0-1) for each 

voxel that indicate how sensitive the SolventNet prediction is to the normalized occurrences of 

water, reactant, and cosolvent atoms in that voxel. Larger saliency values indicate increased 

sensitivity. Fig. 7 shows a saliency map that was generated using the integrated gradient approach39 

(described in the Methods) by inputting a voxel representation of XYL in 90 wt% DIO to a fully 

trained SolventNet model. The saliency map is split into separate 3D grids of voxels for reactant, 

cosolvent, and water channels, with each voxel colored according to its normalized saliency value 
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using the same color scheme as the input voxel representation (Fig. 3). Transparent voxels are 

unimportant to model predictions (normalized saliency values less than 0.10).  

Inspection of the saliency map in Fig. 7 confirms that SolventNet primarily recognizes 

features of the solvent environment within a local domain near the reactant, in agreement with the 

assumption underlying the definition of human-selected descriptors. Saliency maps for each 

channel are further projected from 3D to 2D by averaging saliency values along the z-axis (selected 

arbitrarily) to generate the contour plots shown in Fig. 7. These plots clearly show that regions 

near the reactant are most important for predictions, that the size of the simulated volume is 

 
Figure 7. Saliency map using SolventNet. Example saliency map generated for a voxel representation of 
XYL in 90 wt% DIO (shown in Fig. 4a) using SolventNet after training with all training set data. The 
saliency map is visualized on a 3D grid with the same dimensions as the input voxel representation. Each 
voxel is assigned a saliency value normalized from 0 to 1 that indicates the sensitivity of SolventNet 
predictions to the normalized occurrences of water, reactant, and cosolvent atoms in that voxel. Larger 
saliency values indicate greater sensitivity. The saliency map is visualized by separate grids showing the 
water value in red, the reactant value in green, and the cosolvent value in blue. Half of the voxels are 
transparent to illustrate the saliency values around the reactant and only the voxels with values greater than 
0.10 for each system component are shown. 2D contours are plotted by averaging along the z-axis for 
normalized values of 0.10, 0.25, 0.50, 0.75, and 0.90.  
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sufficiently large that regions far from the reactant are unimportant, and that SolventNet extracts 

non-intuitive geometrical features that are not captured by the assumptions of spherical symmetry. 

Similar saliency maps may be useful for guiding future ab initio calculations by identifying 

important solvent regions to be studied, thus minimizing the number of molecules needed for 

quantum chemical calculations.  

 

Conclusions 

In this work, we combined machine learning tools with classical MD simulations to 

develop SolventNet, a 3D CNN which interprets MD simulation data that has been transformed 

into a voxel representation to predict acid-catalyzed reaction rates in aqueous mixtures with polar 

aprotic cosolvents. SolventNet does not require the human selection of descriptors a priori and 

can capture spatial correlations without assuming spherical symmetry. SolventNet (and other 3D 

CNNs) more accurately predicts reaction rates than models based on human-selected descriptors 

and generalizes to new polar aprotic cosolvents, cosolvent mass fractions, and reactants not used 

during model training. These findings indicate that SolventNet extracts features from the spatial 

configurations of reactant, solvent, and cosolvent molecules determined by classical MD 

simulations that encode sufficient information to predict solvent effects on acid-catalyzed 

reactions, even though the reaction mechanisms and possible transition states are not explicitly 

modeled.  

A significant advantage of this newly developed approach is computational efficiency. 

Once trained, SolventNet requires as little as 4 ns of MD simulation data to predict a reaction rate 

for a single reactant-solvent combination. For the system sizes considered in this work, these 

trajectories can be simulated in less than an hour on single node of a typical high-performance 
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computing cluster, greatly diminishing the time necessary to predict reaction rates compared to ab 

initio methods. This reduced computational expense suggests that SolventNet could be leveraged 

for solvent screening, potentially in combination with process models,10 to design more efficient 

biomass conversion processes without costly experimental trial-and-error. However, all systems 

studied so far involve mixtures of water and polar aprotic cosolvents; extending SolventNet to 

predict reaction rates in substantially different solvent systems (e.g., ionic liquids) will likely 

require additional training. 

The voxel representations input to SolventNet also only contain atomic positions, thus 

omitting important chemical information such as the presence of covalent bonds between atoms 

and atomic charges. These data could possibly be interpreted by alternative network architectures. 

For example, a graph neural network could represent atoms as nodes and atomic interactions as 

edges.16, 17, 40 Thus, we anticipate that further model development can continue to increase 

prediction accuracy. Furthermore, the voxel representations input to SolventNet are only generated 

from MD simulations of reactant states; future work will explore whether including voxel 

representations from simulations of product states can improve the accuracy of reaction rate 

predictions or enable predictions of reaction selectivities.14 Classical MD can also model molecules 

much larger than the small-molecule reactants studied here, such as biomass-relevant polymers 

(e.g., cellulose, hemicellulose, or lignin).11-13 Future work will explore the use of SolventNet with 

semantic segregation techniques, which enable individual regions of data input to a CNN to be 

separately classified,41 to predict the reactivity of multiple reactive sites simultaneously based on 

MD simulations of biomass-relevant polymers. Screening solvents for these larger systems is 

difficult with ab initio methods. 

Methods 
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Classical molecular dynamics simulation methods 

Classical MD simulations were performed using a leapfrog integrator with a 2-fs timestep. 

The initial simulation box dimensions were set to (6 nm)3 in all simulations, and water and 

cosolvent molecules were added in the desired proportions. All reactants and cosolvents were 

parameterized using the CGenFF/CHARMM36 forcefields.42-44 Water was modeled using the 

Single Point Charge/Extended (SPC/E) model.45 Verlet lists were generated using a 1.2 nm 

neighbor list cutoff. Van der Waals interactions were modeled with a Lennard-Jones potential that 

was smoothly shifted to zero between 1.0 nm and 1.2 nm. Electrostatic interactions were calculated 

using the smooth Particle Mesh Ewald method with a short-range cutoff of 1.2 nm, grid spacing 

of 0.12 nm, and 4th order interpolation. Bonds were constrained using the LINCS algorithm.46  The 

solvent system was equilibrated in a NPT simulation for 5 ns at T = 300 K and P = 1 bar with a 

velocity-rescale thermostat and Berendsen barostat. A single reactant molecule was added to the 

system and equilibrated with the same barostat and thermostat for 500 ps. NPT production 

simulations were then performed at the reaction temperature and P = 1 bar using a Nose-Hoover 

thermostat and Parrinello-Rahman barostat. All thermostats used a 1.0 ps time constant and all 

barostats used a 5.0 ps time constant with an isothermal compressibility of 5.0×10-5 bar-1. 

Simulation configurations were output every 10 ps. All simulations were performed using 

GROMACS 201647 and visualized using VMD.48 

Simulation data obtained using this protocol for reactant-solvent combinations included in 

the training set (including molecules drawn in black in Fig. 1c and Fig. 1d) were taken from Ref.  4. 

The production simulations for these molecules were performed for 200 ns. This simulation time 

was necessary due to the slow convergence of Γ as described in Ref. 4. The last 190 ns were used 

to compute Γ and 𝛿 for the multidescriptor models shown in Fig. 2. An additional 5 ns production 
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simulation was performed to compute 𝜏. Descriptors were calculated as described in Ref. 4 (values 

listed in Table S1). The first 20 ns of the 200 ns were used to generate voxel representations for 

training and validating the 3D CNNs. New simulations were performed following the above 

simulation protocol for the reactant-solvent combinations included in the test set (including 

molecules drawn in gray in Fig. 1c and Fig. 1d). The production simulations for these molecules 

were performed for 4 ns at the reaction temperatures (listed in Table S2) and used to generate voxel 

representations for testing the 3D CNNs.  

 

Summary of model training, validation, and testing 

 108 experimentally determined reaction rates from literature sources were converted to 

kinetic solvent parameters using Equation 1 and used as labels. Each reaction rate (label) was 

determined for a unique reactant-solvent combination, which is defined as a single reactant in a 

binary mixture of a single cosolvent and water (in varying wt%). The labels were split into a 

training set with 72 labels (70% of the labels), all from Ref. 4, and a test set with 32 labels (30% 

of the labels) from Refs. 3, 33. A single MD trajectory was associated with each label. All models 

were evaluated using a 5-fold cross-validation procedure in which 80% of the labels and associated 

descriptors/voxel representations (60-61 labels) were used as training data and the remaining 20% 

of the labels (15-16 labels) and associated descriptors/voxel representations were used as 

validation data. This procedure was iterated 5 times such that each label was used for validation 

once. Model performance was evaluated based on the RMSE of the predicted values of the kinetic 

solvent parameter for the validation set. 

Training data for the multidescriptor models were generated by using each MD trajectory 

to compute 3 descriptors from 205 ns of MD data as described above. The multidescriptor linear 
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model was trained by regressing a line to the training data. The multidescriptor fully connected 

neural network was trained for 500 epochs (for each epoch, the neural network trained one cycle 

of the entire dataset) using the Keras deep learning library on top of Tensorflow.49 Training was 

performed using the Adam optimizer with a learning rate of 0.001, mean-squared loss function, 

and training batches of size 18 (one epoch equates to four backpropagation steps).  

Training data for the 3D CNNs were generated by splitting each MD trajectory associated 

with a training set label into 10 independent partitions containing 2 ns (200 MD configurations) of 

consecutive MD data. For each partition, all MD configurations were converted to 3D grids of 

voxels that were averaged to obtain voxel representations as described in the Results and 

Discussion (Figure 3). The 10 voxel representations per label used for training were augmented by 

including all 24 unique cube rotations as training data, leading to a total of 240 voxel 

representations per label or 14,400-14,640 training voxel representations. The voxel 

representations per label used for validation were not augmented, leading to 150-160 validation 

voxel representations. All 3D CNNs were trained for 500 epochs using the Keras deep learning 

library on top of Tensorflow.49 Models were trained using the Adam optimizer with a learning rate 

of 0.00001, mean-squared loss function, and training batches of size 18 (one epoch equates to 814 

backpropagation steps). Learning curves for all 3D CNNs are shown in Fig. S5 of the 

Supplementary Information.  

 The generalizability of SolventNet was assessed using the test set and leave-one-out cross-

validation of the training set. For each test set label, 4 ns of consecutive MD data was converted 

to two independent voxel representations that were not augmented. SolventNet was re-trained 

using augmented voxel representations for all training set data (18,240 voxel representations) and 

used to predict kinetic solvent parameters for the 2 voxel representations per test set label (64 voxel 
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representations). In the leave-one-out cross-validation procedure, all labels associated with a single 

reactant or cosolvent in the training set were held out as the test set, then SolventNet was trained 

using all data for the remaining labels and used to predict kinetic solvent parameters for 10 voxel 

representations per held out label. In both procedures, model performance was assessed based on 

the RMSE of the predicted values of the kinetic solvent parameter for the test set. 

 

3D CNN architectures 

 Three 3D CNN architectures that vary in complexity and number of parameters were 

considered in this work: VoxNet31 (5 layers, 150,689 parameters), ORION30 (8 layers, 908,833 

parameters), and SolventNet (9 layers, 172,417 parameters), which we developed in-house. The 

architectures of VoxNet and ORION are described in the Supporting Information (Fig. S4). 

SolventNet has three stages (Fig. 4a). The first stage has two convolutional layers with 8 and 16 

3×3×3 filters, respectively, and a 2×2×2 max-pooling layer. The second stage has the same 

structure as the first, except the two convolutional layers have 32 and 64 filters, respectively. The 

results from the last max-pooling layer are passed to a batch normalization layer and flattened. The 

flattened data is then input to a neural network with three fully connected layers with 128 nodes in 

each layer. The ReLU activation function is used for the fully connected layers.  

 

Generation of saliency maps  

Saliency maps were computed using a fully trained SolventNet with the integrated gradient 

approach.39 We define the voxel representation input as a tensor 𝑥 ∈ ℝ20×20×20×3. SolventNet has 
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a loss function 𝐿: ℝ20×20×20×3 → ℝ, where the output is the RMSE loss value. Equation 3 defines 

the saliency map function (𝐸: ℝ20×20×20×3 → ℝ20×20×20×3): 

 
𝐸(𝑥) = (𝑥 − 𝑥̅) × ∫

𝜕𝐿(𝑥̅ + 𝛼(𝑥 − 𝑥̅))

𝜕𝑥
𝑑𝛼

1

0

 (3) 

𝐸(𝑥) is the saliency value of 𝑥. 𝑥̅ is the baseline input, which we select as 𝑥̅ = 0. Equation 3 

accounts for the change of the loss function caused by the change in the normalized occurrences 

of atoms in a voxel in the original input voxel representation. If the loss function does not 

significantly change, then that voxel is considered to be unimportant for the prediction. Values of 

𝐸(𝑥), normalized to lie within the range 0-1, are shown on the saliency maps in Fig. 7. 
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