

1 **Weddell seals produce ultrasonic vocalizations**

2 Paul A. Cziko^{1,a)}, Lisa M. Munger^{1,b)}, Nicholas R. Santos^{1,c)} *and* John M. Terhune^{2,d)}

3 1. Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA, 97403-5289

4 2. Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, E2L
5 4L5, Canada

6 a. Electronic mail: pcziko@uoregon.edu, ORCID: 0000-0002-1712-9594

7 b. ORCID: 0000-0001-6237-2844

8 c. ORCID: 0000-0001-5853-402X

9 d. ORCID: 0000-0002-2661-7389

12 **RUNNING TITLE**

13 Weddell seals produce ultrasonic vocalizations

14 **KEY WORDS**

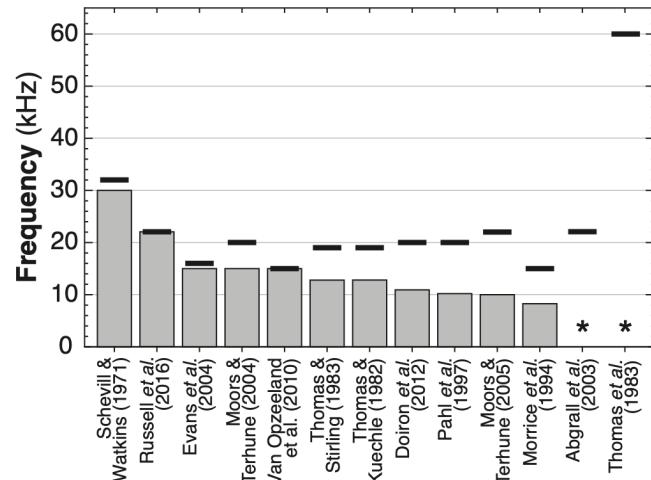
15 marine bioacoustics; passive acoustic monitoring; phocids; echolocation

17 **ABSTRACT**

18 Seals (phocids) are generally not thought to produce vocalizations having ultrasonic
19 fundamental frequencies (≥ 20 kHz), though previous studies could have been biased
20 by sampling limitations. This study characterizes common, yet previously undescribed,
21 ultrasonic Weddell seal (*Leptonychotes weddelli*) vocalizations. They were identified in
22 > 1 year (2017-2018) of broadband acoustic data obtained by a continuously recording
23 underwater observatory in McMurdo Sound, Antarctica. Nine recurrent call types were
24 identified that were composed of single or multiple vocal elements whose fundamental
25 frequencies spanned the ultrasonic range to nearly 50 kHz. Eleven vocal elements had
26 ultrasonic center frequencies (≥ 20 kHz), including chirps, whistles and trills, with two
27 elements at > 30 kHz. Six elements had fundamental frequencies always > 21 kHz. The
28 fundamental frequency of one repetitive U-shaped whistle element reached 44.2 kHz
29 and descending chirps (≥ 3.6 ms duration) commenced at ≤ 49.8 kHz. The source
30 amplitude of one fully ultrasonic chirp element (29.5 kHz center frequency) was 137 dB
31 re $1 \mu\text{Pa}\cdot\text{m}$. Harmonics of some vocalizations exceeded 200 kHz. Ultrasonic
32 vocalizations occurred throughout the year, with the usage of repetitive ultrasonic chirp-
33 based calls appearing to dominate in winter darkness. The functional significance of
34 these high-frequency vocalizations is unknown.

35

36 **I. INTRODUCTION**


37 **A. Weddell seals and their known underwater vocalizations**

38 The Weddell seal (*Leptonychotes weddellii*) is a large and relatively abundant
39 true seal (f. *Phocidae*) with a circumpolar distribution around Antarctica, including the
40 highest-latitude coastal regions (Reeves *et al.*, 2002). In contrast to the other seals of
41 the Antarctic clade, they prefer expanses of heavy pack ice or thick shore-fast sea ice,
42 using their teeth to maintain access holes in the ice. They dive to at least 600 m and for
43 up to 82 min in search of fish and invertebrate prey year-round (Thomas and Terhune,
44 2009). Weddell seals have been extensively studied, owing to their prevalence near
45 several research stations, their aggregation on the sea ice for pupping and breeding in
46 the austral spring (Oct. – Dec.), and their approachability when hauled out on the sea
47 ice surface.

48 The Weddell seal's extensive and relatively high amplitude (to 193 dB re 1
49 μ Pa-m) repertoire of multiple-element frequency- and amplitude-modulated underwater
50 chirps, whistles, buzzes and chugs, among other sounds, forms a major component of
51 the underwater soundscape in areas where they are abundant (Terhune, 2019; Thomas
52 and Kuechle, 1982). Thomas and Kuechle (1982) provided the first comprehensive
53 quantification of the species' underwater vocalizations. They described 34 sonic call
54 types (< 20 kHz, human-audible) plus 9 accessory sounds recorded in McMurdo Sound
55 in the southwestern Ross Sea. Studies have now described repertoires consisting of 14
56 to 50 sonic call types from populations around Antarctica, with the variation in repertoire
57 size estimations likely due to geographic and temporal differences and inconsistent

58 definitions of call types. Weddell seals have the most diverse vocal repertoire of any
59 phocid (Pahl *et al.*, 1997; Terhune, 2019; Thomas and Kuechle, 1982).

60 It is likely that the full diversity of Weddell seal underwater vocalizations remains
61 to be described. Indeed, most studies have been limited to short-term recordings (hours
62 to days) from near the surface beneath shore-fast sea ice, and typically detected only
63 calls at ≤ 15 kHz (see **Fig. 1**). Long-duration recordings appear to be limited to those
64 from the multi-year Perennial Acoustic Observatory in the Antarctic Ocean (PALAOA)
65 effort in the Weddell Sea. In that study most analyses were conducted at ≤ 15 kHz at a
66 coarse subsampling, and the recording site was beneath an ice shelf, 1 km from the
67 edge (Klinck *et al.*, 2016; van Opzeeland *et al.*, 2010).

68
69 **Fig. 1.** Maximum reported fundamental frequencies of Weddell seal vocalizations. **Bars:**
70 Mean or maximum of highest-frequency fundamentals reported in the cited studies.
71 **Lines:** Upper limit of recording/analysis equipment frequency response (FR). Ultrasonic
72 fundamental frequencies (≥ 20 kHz) have been presented in two prior studies (in a trill
73 and a sequence of chirps; Russell *et al.*, 2016; Schevill and Watkins, 1971); Most others
74 reported sounds to ≤ 15 kHz despite higher equipment capabilities. Two studies
75 (asterisks) did not report maximum frequencies of vocalizations. Details of each study are
76 available in supplementary material online¹. The present study (not shown) is based on
77 recordings with an upper FR limit of 256 kHz.
78

79 Weddell seal sonic underwater vocalizations are thought to be used primarily for
80 mediating social interactions (Russell *et al.*, 2016; Terhune, 2019). Social functions are
81 supported given that the seals respond with specific vocalizations when presented with
82 playbacks of their recorded calls (Thomas *et al.*, 1983; Watkins and Schevill, 1968), by
83 behavioral observations (Evans *et al.*, 2004; Russell *et al.*, 2016), and since most
84 vocalizations appear to occur when the seals are near the surface (Evans *et al.*, 2004;
85 Moors and Terhune, 2005).

86 **B. Ultrasonic underwater vocalizations**

87 Weddell seals are typically not thought to produce vocalizations having ultrasonic
88 fundamental frequencies ($F_0 \geq 20$ kHz, above the human hearing range; Terhune,
89 2019; Thomas and Kuechle, 1982), though studies could have been biased by sampling
90 limitations. Thomas and Kuechle (1982) stated they “found no vocalizations above 20
91 kHz” and therefore recorded data at ≤ 19 kHz. Likewise, the majority of other studies
92 used an effective upper frequency response (FR) of 15 to 20 kHz (see **Fig. 1**). However,
93 two studies have presented limited evidence of ultrasonic vocalizations in Weddell
94 seals: Schevill and Watkins (1971) reported a series of short-duration descending chirps
95 with fundamentals to ≤ 30 kHz, and Russell *et al.* (2016) recorded a trill-type
96 vocalization reaching to 22 kHz. These findings are not widely recognized and it
97 remains unknown whether Weddell seals regularly use vocalizations originating at
98 ultrasonic frequencies.

99 Other than the two recordings from Weddell seals, there exists only scant
100 evidence for pinniped (seals, eared seals and walrus) vocalizations having fundamental

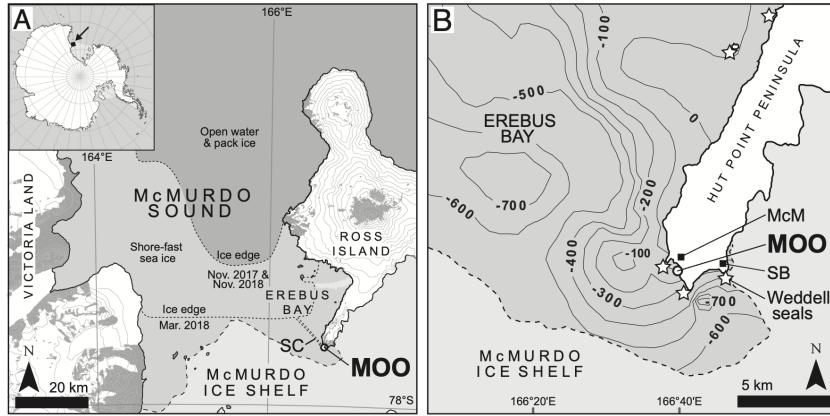
101 frequencies ≥ 20 kHz. In one study of a single captive leopard seal (*Hydrurga leptonyx*),
102 ultrasonic frequency-modulated (FM) sweeps, buzzes and pulses were recorded
103 underwater (max. frequency 164 kHz, peak energy typically from 50 to 60 kHz; Awbrey
104 *et al.*, 2004; Thomas and Awbrey, 1983). However, field studies have only reported
105 leopard seal vocalizations in the sonic range (≤ 6 kHz; Erbe *et al.*, 2017). Several other
106 seal species may produce broad-bandwidth roars, hisses, moans and short-duration
107 clicks with some energy ≥ 20 kHz (reviewed in Southall *et al.*, 2019). Yet, these appear
108 to be based on sonic-range fundamentals (< 20 kHz). Vocalizations with ultrasonic
109 fundamental frequencies have not been reported from eared seals (f. Otariidae) or
110 walrus (f. Odobenidae; reviewed in Southall *et al.*, 2019).

111 Ultrasonic vocalizations are, however, produced by a number of aquatic and
112 terrestrial animals for communication and other functions (Sales and Pye, 1974).
113 Perhaps best known are those used in the highly-evolved echolocation (active biosonar)
114 abilities of toothed whales (odontocetes) and bats (chiropterans). In these, the
115 reflections of their pulsed ultrasonic vocalizations permit obstacle avoidance and
116 locating prey with high accuracy, given that short durations and increased sound
117 frequency improve precision (Au, 1993). A primary indicator that vocalizations are being
118 used for echolocation is the emission of a series of pulsed sounds (“click trains”) whose
119 interval varies directly as a function of distance to a target in order to avoid overlapping
120 emissions and returns (Au, 1993).

121 Longer-duration ultrasonic vocalizations are also known from some toothed
122 whales, in which the functions are typically attributed to intraspecific communication.

123 Several dolphins produce whistles whose fundamental frequencies extend into the
124 ultrasonic range (e.g., to 25, 27 and 34 kHz for *Stenella longirostris*, *S. frontalis*, and
125 *Lagenorhynchus albirostris*, respectively; Lammers *et al.*, 2003; Rasmussen and Miller,
126 2002). In addition, some killer whales (*Orcinus orca*) produce high-frequency sweeping
127 whistles with fundamentals to 75 kHz and durations of ten to a few-hundred ms, the
128 functions of which are unknown (e.g., Samarra *et al.*, 2010).

129 The present study characterizes a variety of previously undescribed, yet
130 commonly occurring, ultrasonic underwater vocalizations produced by Weddell seals
131 identified in a long-term dataset of high-frequency recordings (to 256 kHz FR) from
132 McMurdo Sound, Antarctica.


133 **II. METHODS**

134 **A. Data collection**

135 Year-round digital recordings of Weddell seal underwater vocalizations were
136 collected by passive acoustic monitoring over two years (Nov. 2017 – Nov. 2019) in
137 southeastern McMurdo Sound, Ross Sea, Antarctica (**Fig. 2**). The recording equipment
138 was integrated into the shore-cabled McMurdo Oceanographic Observatory (MOO)
139 mooring, which also included a self-cleaning pan-tilt-zoom camera (Octopus, View into
140 the Blue, Boulder, CO) and ocean condition sensors (CTD; SBE37-SMP, SeaBird
141 Electronics, Bellevue, WA). The mooring was installed by divers at a bottom depth of 21
142 m at the base of the seaward terminus of the McMurdo Station seawater intake jetty (S
143 77.8510°, E 166.6645°). Recordings were collected continuously throughout the

144 deployment (> 90% coverage, with occasional short gaps from network and power
145 outages, and software bugs), yet the present study focuses on only the first 13 months
146 of the dataset (Nov. 2017 – Nov. 2018).

147

148 **Fig. 2.** Geographic location, bathymetry, and local distribution of seals. **(A)** The
149 hydrophone was deployed as part of the McMurdo Oceanographic Observatory (MOO)
150 mooring at 21 m deep in southeastern McMurdo Sound, Antarctica. Excepting January to
151 early April 2018 when the ship's channel (SC) was open, thick shore-fast sea ice likely
152 precluded most penguins and marine mammals other than Weddell seals from diving
153 within 10 to 30 km of the recording site (see Methods, Results). **(B)** Detail of MOO
154 environs. Weddell seals are common in Erebus Bay, where they aggregate around
155 predictable access holes in the sea ice (stars). Bathymetry (m) is estimated based on
156 relatively few data points (Davey and Nitsche, 2013), though it largely matches field
157 observations (PAC, personal observations). McM, McMurdo Station (USA); SB, Scott
158 Base (New Zealand).

159

160 The calibrated broadband omnidirectional digital hydrophone (icListen HF-SB2-
161 ETH, Ocean Sonics, Nova Scotia, Canada; ethernet-connected, GeoSpectrum M24-205
162 transducer ; 118 dB dynamic range, sensitivity -170.8 ± 3.4 dBV re $1 \mu\text{Pa}$ for 10 Hz to
163 200 kHz) was mounted vertically on a stainless-steel strut-channel attached to a 150-kg
164 concrete block, holding the transducer 70 cm off the mud/gravel seabed. Data were
165 recorded at 512 kSs^{-1} (256 kHz Nyquist frequency), 24 bits and written as 10-min WAV

166 files (c. 900 MB each, with UTC-based timestamps) to a storage array in a heated
167 structure on shore, then losslessly compressed using the Free Lossless Audio Codec
168 (FLAC, Xiph.org Foundation). A software pipeline computed three audio spectrograms
169 (upper limits of 2.5, 25 and 256 kHz) per file and combined those into timestamped
170 PNG images (see example in supplementary material online¹).

171 **B. Seal distribution, environmental factors and interfering noises**

172 Erebus Bay in southeastern McMurdo Sound (**Fig. 2**) is one of the most populous
173 haul-out areas for Weddell seals, annually hosting up to 2000 individuals (Smith, 1965;
174 Testa and Siniff, 1987). The largest concentrations of individuals occur at major sea ice
175 breeding sites in austral spring (Oct. – Dec.), 10 to 20 km north of the MOO, where over
176 400 pups are born in most years (Ainley *et al.*, 2015; Cameron *et al.*, 2007). Weddell
177 seals are also common around the southern end of Hut Point Peninsula (Stirling, 1969)
178 in the MOO's immediate vicinity. From October to December in 2017 and 2018 (when
179 project personnel were present), daily maxima of 5 to 30 Weddell seals were observed
180 hauled out on the sea ice near crack features emanating from Hut Point, < 1 km north of
181 the MOO, with smaller aggregations near the tip of Cape Armitage, 1 km to the south.
182 Weddell seals occasionally hauled out at cracks < 100 m from the MOO. No other
183 species of marine mammals were noted during these observations. Following the
184 breeding season (Oct. – Dec.), the seals disperse more widely throughout McMurdo
185 Sound and northward into the Ross Sea (Goetz, 2015), with only 250 individuals
186 estimated to remain throughout the austral winter (Smith, 1965).

187 During the majority of the project's first year, southern McMurdo Sound was
188 covered with 2 to 3 m of solid shore-fast sea ice and the water column was essentially
189 isothermal (-1.9°C ; slight upward refraction of sound). In 2017-18 the natural fast-ice
190 edge was from 30 (Nov. 2017 and Nov. 2018) to 10 km (Mar. 2018) from the MOO
191 (NASA EOSDIS Worldview, <https://worldview.earthdata.nasa.gov>; **Fig. 2A**). In January
192 2018 an icebreaker created an open water channel from the ice edge to about 0.5 km
193 north of the MOO, and near-surface temperatures rose slightly (max. -0.4°C recorded
194 by the MOO at 21 m in late Jan. 2018) before the channel refroze by late March or early
195 April.

196 Weddell seals are the only mammals that routinely inhabit and dive beneath the
197 thick, shore-fast sea ice of southern McMurdo Sound (see Results). Other potentially
198 soniferous marine mammals and diving birds may transiently visit the area, but typically
199 only when open water exists in the austral summer (Jan. – April; Kim *et al.*, 2018;
200 Thomas *et al.*, 1987; Thomas and Kuechle, 1982). These most commonly include
201 leopard and crabeater seals (*Lobodon carcinophaga*), killer and Antarctic minke
202 (*Balaenoptera bonaerensis*) whales, and Adelie (*Pygoscelis adeliae*) and emperor
203 (*Aptenodytes forsteri*) penguins (PAC personal observations). Nevertheless, aside from
204 the sounds attributed to Weddell seals, only those of killer whales (Wellard *et al.*, 2020)
205 were noted in the year-round recordings, and on only about five total days throughout
206 February 2018. Some penguin species may produce brief sounds underwater at ≤ 7
207 kHz (Thiebault, 2019). However, the nearest rookery, of Adelie penguins at Cape
208 Royds, is 35 km north of the recording site, and no similar vocalizations were noted in

209 the dataset. Various notothenioid fishes (≤ 30 cm) were continuously present at the
210 recording site, but no sounds could be attributed to them.

211 Natural and anthropogenic interfering sounds were relatively common throughout
212 the dataset. Identifiable sounds included irregular low-intensity, broad-spectrum clicks
213 and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with
214 components to 200 kHz every 90 s from the CTD's pump, a broad-spectrum mechanical
215 sound for 3 min every 4 h from the camera's cleaning system, low-intensity whines (c.
216 18, 58, 83 and 130 kHz) thought to be from the station seawater pumps (> 100 m away,
217 within the jetty's well casing) and intermittent noises from tracked-vehicles and
218 helicopters (Sep. – Feb.), SCUBA divers (Oct. – Dec.), and ships (Jan.). Given the
219 overlying ice cover, overall background noise levels from sources other than Weddell
220 seals and the observatory itself were generally very low. Aside from a thin layer of
221 diatoms, neither biofouling nor anchor ice were observed on the hydrophone.

222 **C. Data analysis**

223 Ultrasonic vocalizations of Weddell seals were identified by browsing archived
224 spectrogram images and by watching the real-time spectrogram display at McMurdo
225 Station or remotely over the internet. Signals of interest were further investigated using
226 sound analysis software. In this way, a search set of discrete sounds was compiled from
227 a relatively exhaustive review of an estimated 30% of the 13-month dataset. Archived
228 spectrograms covering at least 2500 h (15000 images) were visually inspected.

229 Vocalization types that occurred exclusively when the ship's channel was open
230 (Jan. – early Apr. 2018) were excluded from analyses. As such, novel sounds from killer

231 whales or other species in the nearby open water would not be attributed to Weddell
232 seals. All broad-spectrum click sounds were excluded as many evidently originated from
233 sea ice movements and, lacking predictable repetition rates or frequency
234 characteristics, none could be attributed to the seals. Broad-spectrum “jaw claps” (to
235 > 200 kHz) produced by Weddell seals (Thomas and Kuechle, 1982) were excluded
236 since they are not vocalizations *per se*.

237 Ultrasonic vocalizations from the search set were assigned to call types based on
238 whether they consistently occurred alone or, for multi-element calls, in series with one
239 or more other sounds in recurrent stereotyped patterns (Moors and Terhune, 2004).
240 Archived spectrogram images from select days throughout the 13-month dataset were
241 then visually browsed in order to collect multiple examples of each call type at levels
242 substantially above background noise. To attempt to reduce bias towards individual
243 seals, calls were typically chosen for analysis only if separated from their previous
244 occurrences by ≥ 24 h. Call types and their elements were analyzed for frequency,
245 waveform and time characteristics in Raven Pro 1.5 (Center for Conservation
246 Bioacoustics, 2014). Analysis settings varied depending on call type and are presented
247 in **Table I**. For multi-element chirp-based calls, inter-chirp intervals were measured
248 between the beginnings of successive chirps. Durations of individual chirp elements
249 were measured for the time containing 90% of the energy in order to avoid
250 misinterpretation of start and stop times due to echoes or multipath transmission.
251 For an initial assessment of whether the usage of ultrasonic call types varied
252 throughout the year, their presence or absence were tabulated by calendar month over

253 the 13-month dataset. Beginning at the start of each month, archived spectrograms
254 were visually inspected until at least one instance of each call type was found, or until
255 the end of the month was reached.

256 The proportional usage of ultrasonic calls was investigated by analyzing a single
257 24-h period in austral spring (Nov. 20, 2017) and one from near the winter solstice
258 (“midwinter”, June 19, 2018). The sampled days were chosen because they maximized
259 differences in solar illumination and breeding status, vocalizations occurred throughout
260 the entire 24-h period, and because vocal activity appeared to be broadly representative
261 of their respective seasons. The spring sample was in the height of the breeding season
262 and characterized by 24-h of continuous sunlight (sun altitudes from 8° to 32°, always
263 above the horizon). Conversely, the midwinter sample was likely prior to the
264 commencement of major breeding-oriented behaviors (Thomas and Terhune, 2009) and
265 was characterized by near absolute darkness (sun altitudes from -11° to -36°, always
266 below the horizon; crescent moon ≤ 1.8° above the horizon for about 5 h).

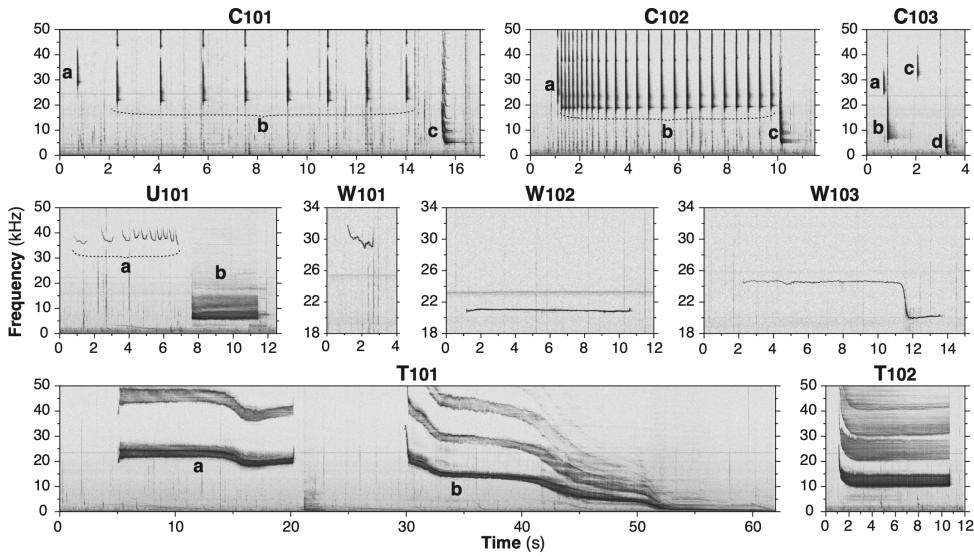
267 In each 24-h sample, all archived spectrograms were visually inspected, counting
268 occurrences of ultrasonic call types that were readily distinguishable (see example
269 labeled spectrogram in supplementary material online¹). Sonic-range vocalizations
270 could not be accurately counted due to their high abundance and frequent overlap in the
271 spring sample. Instead, occurrence of a relatively common and easily identified sonic
272 vocalization was used as a proxy for overall sonic-range vocal activity. This narrowband
273 descending-frequency whistle (from 18 to 12 kHz over about 5 s) has been previously
274 attributed to Weddell seals (Thomas and Kuechle, 1982; see example in supplementary

275 material online¹), and is referred to herein as the “sonic standard call.” Results from one
276 study suggest that seasonal variation in the proportional usage of sonic descending
277 whistles is relatively low (32 to 38% of total sonic calls, in non-breeding and breeding
278 seasons, respectively; Doiron *et al.*, 2012).

279 A simultaneous video and audio recording of a Weddell seal producing a
280 repetitive ultrasonic chirp-based call (C102, see Results) in close proximity to the MOO
281 permitted estimation of the source sound pressure levels (SPLs) of its elements. The
282 seal-hydrophone distance was estimated using the apparent size of benthic landmarks
283 on video together with their measured dimensions and distances (by divers with tape
284 measure), the known geometry of the mooring, and the estimated length of an adult
285 seal using a range of plausible values (2.5 to 3.3 m total length; Thomas and Terhune,
286 2009). Using hydrophone calibration coefficients, “inbound power” was measured in
287 Raven Pro for the fundamental and prominent harmonics (25 to 70, 15 to 65, and 0 to
288 70 kHz bands for the C102-a, C102-b and C102-c elements, respectively) over the
289 duration of the sounds while excluding obvious echoes. Lower and upper estimate
290 bounds for the source SPLs were computed using the sonar equation to account for
291 transmission loss (source SPL = received level + transmission loss) assuming spherical
292 spreading [transmission loss = $20 \times \log_{10}(\text{distance}_{\text{seal-hydrophone}})$] over the range of
293 estimated seal-hydrophone distances (Rogers, 2014). With the seal \leq 26 m from the
294 hydrophone (see Results), spherical spreading of sound could be assumed and any
295 frequency-dependent absorption was considered negligible (Au, 1993).

296 **III. RESULTS**

297 **A. Attribution of vocalizations to Weddell seals**

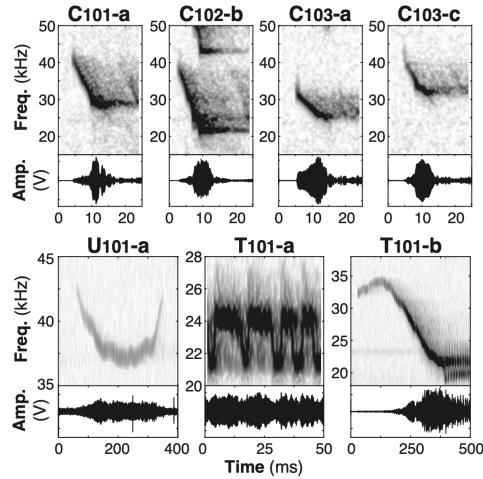

298 All ultrasonic vocalizations described herein were attributed to Weddell seals with
299 high confidence. For the majority of the dataset, the thick, shore-fast sea ice would
300 generally preclude all other marine mammals and penguins from diving within 10 to 30
301 km of the recording site (**Fig. 2A**; Kim *et al.*, 2018; Thomas *et al.* 1987; Thomas and
302 Kuechle, 1982). This is supported by the results of comprehensive surveys of seals in
303 the greater Erebus Bay area, conducted about six times annually in November through
304 mid-December since 1969 (Rotella, 2018). In each survey during the present study
305 (2017 and 2018) about 1000 hauled-out Weddell seals were documented. By
306 comparison, there were only 3 total sightings of crabeater seals, and no other pinnipeds
307 or whales were observed on or diving beneath the shore-fast sea ice in areas away
308 from the ice edge (J.J. Rotella, personal communication). Errant Adelie and emperor
309 penguins occasionally wander over the ice throughout southeastern McMurdo Sound,
310 but they do not typically dive through the isolated holes or cracks in the shore-fast sea
311 ice (PAC personal observations).

312 With the exception of killer whale vocalizations, present only intermittently in
313 February 2018 when the ship's channel was open (Jan. – Mar.), the underwater
314 vocalizations of Weddell seals were the only identifiable sounds of non-human
315 biological origin in the recordings. The novel ultrasonic vocalizations described herein
316 were both comparatively common and nearly always interspersed with the sonic trills,
317 chirps, buzzes and chugs that have been previously attributed to Weddell seals (see

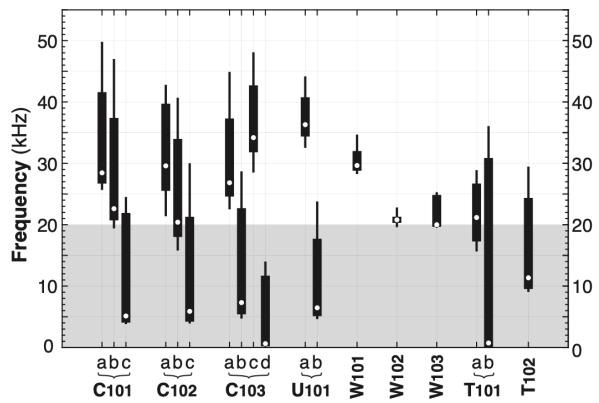
318 example spectrogram in supplementary material online¹; Thomas and Kuechle, 1982;
319 Pahl *et al.*, 1997). Finally, the MOO's underwater camera provided regular visual
320 confirmation of Weddell seals producing multiple sonic call types and, in one instance,
321 an ultrasonic call (see below). However, most vocalizing individuals were beyond the
322 visual range of the camera (≤ 300 m).

323 **B. Call types with ultrasonic fundamental frequencies**

324 Nine recurrent call types were identified that were composed of 17 vocal element
325 types whose fundamental frequencies (F0) were partially or entirely ≥ 20 kHz (**Fig. 3**,
326 **Table I**; recordings available in supplementary multimedia online¹). Individual elements
327 of multi-element calls sometimes occurred alone, though the vast majority occurred
328 within the presented stereotyped calls. Call types were named based on their
329 predominant ultrasonic elements, i.e., chirps ("C"), U-shaped whistles ("U"), relatively
330 constant-frequency whistles ("W"), and FM trills ("T"), with numbers starting at 101 to
331 avoid confusion with other naming systems. Distinct element types identified within
332 multiple-element calls were designated with lowercase letters. No clipping or other
333 acoustic artifacts were found that could have skewed the results.



334
 335 **Fig. 3.** Spectrograms of Weddell seal ultrasonic underwater vocalizations. These
 336 recurrent, stereotyped single and multiple-element call types were based on chirp ("C"),
 337 U-shaped ("U"), relatively constant-frequency whistle ("W"), and frequency-modulated trill
 338 ("T") elements having ultrasonic fundamental frequencies (≥ 20 kHz). Distinct element
 339 types of multi-element calls are named with lowercase letters. Some details are shown in
 340 **Fig. 4.** Note different time and frequency scales between panels. Summary statistics are
 341 presented in **Fig. 5** and **Table I**. Presented spectrograms were computed from resampled
 342 data (128 kSs $^{-1}$) using an 8192-pt. Hann window, 90% overlap, with 8192-pt DFT sample
 343 length. Recordings are available in supplementary multimedia online¹.
 344


345 The fundamental frequencies of individual vocal elements spanned the ultrasonic
 346 spectrum from 20 to 49.8 kHz (**Figs. 4, 5; Table I**). The highest-frequency fundamental
 347 was found at the start of a C101-a chirp element (49.8 kHz), and the element type with
 348 the highest mean maximum frequency was the C103-c chirp (42.7 ± 3.3 kHz, mean \pm
 349 SD). As shown by their center frequencies (the frequency that divides the selection into
 350 two frequency intervals of equal energy) the most energy in all elements was focused in
 351 the lower half of their fundamental's frequency spectrum. Nevertheless, 11 element
 352 types had mean fundamental center frequencies ≥ 20 kHz, with 2 element types > 30
 353 kHz (C101-c, U101-a). The fundamental frequencies of six elements were entirely > 21

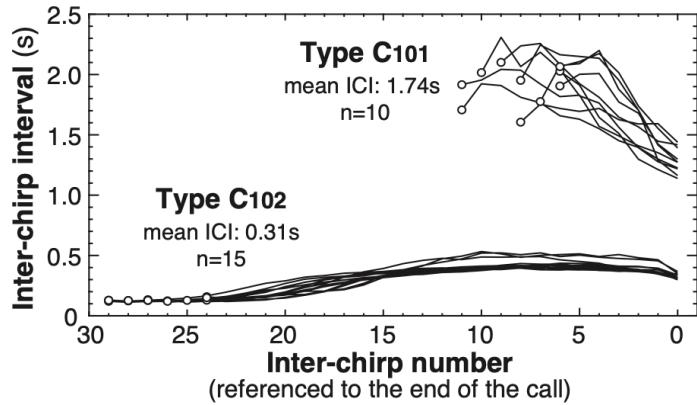
354 kHz. Element U101-a exhibited the highest mean fundamental center frequency at 36.2

355 kHz.

356
357 **Fig. 4.** Some details of the ultrasonic vocalizations presented in **Fig. 3**. The various
358 element types with the highest fundamental frequencies are presented as spectrograms
359 (**top sub-panels**) and waveforms (**bottom**). Only a portion of T101-a and the leading
360 whistle for T101-b are shown. Note different axis scales between panels. Presented
361 spectrograms were computed from 512 kSs⁻¹ data using a 256-pt. Hann window, 90%
362 overlap, with 4096-pt. DFT sample length. Amplitude is presented as raw instrument
363 voltage output (at various scales) after bandpass filtering (15 to 50 kHz) for clarity.
364

365
366 **Fig. 5.** Characteristics of the fundamental frequencies of Weddell seal ultrasonic
367 underwater call types analyzed in this study. Bars: Mean maximum and minimum
368 frequencies of the fundamental. Lines: Range of fundamental frequencies. White circles:
369 mean center frequencies. The ultrasonic range (≥ 20 kHz) is shown with a white
370 background. n = 4 to 23 for each element type. Values and analysis parameters are
371 presented in **Table I**.

372 Call type U101 typically presented as a repetitive series of 5 to 37 discrete
373 ultrasonic U-shaped whistles (U101-a) between 32.5 and 44.2 kHz (min. and max.),
374 followed by a rapid, sonic buzz (U101-b). Occasionally, the U-shaped elements
375 appeared to be merged into a continuous, irregular sinusoid.

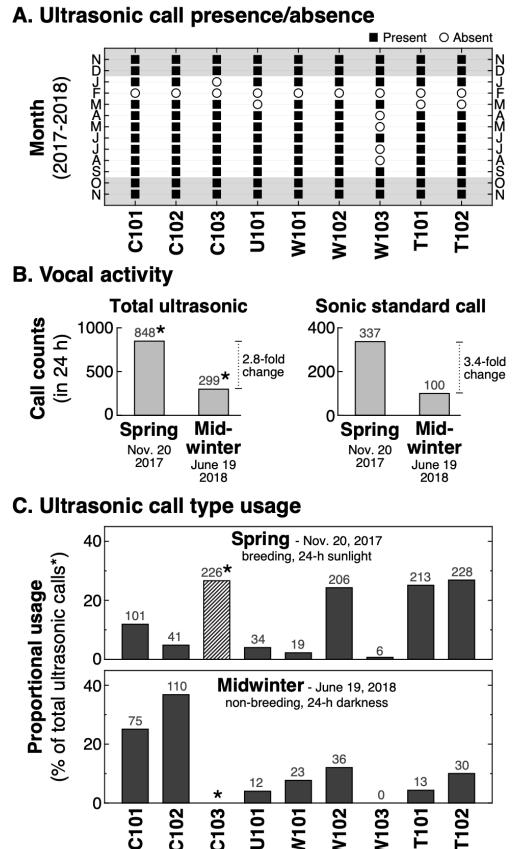

376 Call types T101 and T102 were based on trills that began at ≥ 20 kHz, i.e.,
377 continuous long-duration FM calls with relatively wide envelopes. T101 included two
378 distinct trill elements that frequently occurred sequentially and only in the presented
379 order, though element type T101-b also occurred alone. Element type T101-a
380 maintained relatively constant frequency contours over its duration, with most energy
381 ≥ 20 kHz and reaching to 28.9 kHz. A lower-frequency variant of this element (≤ 22 kHz)
382 was presented by Russell *et al.* (2016). A low-frequency trill element often occurred
383 between T101-a and T101-b (visible at 21 s in **Fig. 3**), though its usage was sporadic
384 and it was not characterized. A portion of T101-b (≤ 12.8 kHz) appears to have been
385 previously described as call type T6 by Thomas and Kuechle (1982). The recordings
386 herein now show that this element begins as a somewhat variable descending
387 narrowband ultrasonic whistle (≤ 36.1 kHz, **Fig. 4**) before transitioning to a trill whose
388 frequency envelope descends into the sonic range as the amplitude increases. A similar
389 leading whistle also characterized call type T102, whose single element occurred both
390 independently and in a call similar to C103, where it replaced chirp element C103-b.

391 **C. Chirp-based calls and source levels**

392 Multiple-element chirp-based calls C101, C102 and C103 (**Figs. 3, 4**) recurred
393 regularly in the dataset. Ultrasonic chirps initiated with fundamental frequencies ranging

394 from 21.3 to 44.7 kHz (mean maximums; **Fig. 5, Table I**) followed by rapid downward
395 linear or exponential FM sweeps. Chirp fundamentals descended at 1.2 to 2.0 kHz/ms
396 (46 to 192 octaves/s, min. and max., excluding the lower-frequency terminal elements)
397 with 90% of the energy contained within 3.6 to 9.2 ms (**Table I**).

398 Call types C101 and C102 each began with a unique ultrasonic chirp (C101-a,
399 C102-a) at the highest frequencies of the call, followed by a series of 5 to 29 similar
400 fully- or partially-ultrasonic chirps (C101-b, C102-b) at predictable intervals and
401 somewhat lower frequency contours, and terminated with the lowest-frequency chirp
402 (C101-c, C102-c). These two call types segregated based on small but consistent
403 differences in the frequency contours of their elements (**Figs. 3, 4, 5 and Table I**) and
404 by the relatively stereotyped progression of their inter-chirp time intervals (ICIs; **Fig. 6**).
405 Conversely, the ICIs of call type C103 were rather variable, having a typically short first
406 ICI (< 1 s), and longer ICIs thereafter (1 – 10 s). A fourth chirp-based call type occurred
407 infrequently in the dataset and was not analyzed. It was similar to C101 and C102 but
408 with fewer elements and seemingly consistent but much longer ICIs (8 to 10 s; visible in
409 **Supplementary Fig. 1**). Calls resembling those presented by Schevill and Watkins
410 (1971) were not found. No calls were observed to terminate with rapidly decreasing ICIs
411 akin to the “terminal buzz” commonly referenced in the echolocation literature (e.g.,
412 DeRuiter *et al.*, 2009).


413

414 **Fig. 6.** Repetitive ultrasonic chirp-based call types (C101 and C102) segregated based
 415 on the stereotyped progression of their inter-chirp intervals (ICIs). ICI was measured as
 416 the time interval between the onset of successive chirp elements within a series of chirps
 417 within an individual call. Circles mark the time interval between the first and second chirp
 418 (the start of the call), with subsequent chirps in each series shown by connected lines.
 419 For clarity, given the characteristics of the calls, ICI number is referenced to the final ICI
 420 (0, the end of the call). Some datapoints are hidden by overlap.
 421

422 An example of call type C102 was recorded simultaneously with underwater
 423 video observation of the source individual (likely an 18-y-old male based on
 424 contemporaneous surface sightings, yellow tag #9410; Rotella, 2018). The vocalizing
 425 seal was estimated to be between 18 and 26 m from the hydrophone and facing
 426 about 90° off-axis (see video in supplementary material online¹). Movements of the
 427 seal's head, throat and chest area coincided with the emissions of individual chirps, and
 428 no air was observed to escape from the mouth or nostrils. Estimated source SPLs were
 429 lower for the ultrasonic chirps (from 135 to 152.0 dB re 1 μ Pa-m for C102-a and
 430 C102-b) than for the terminal sonic chirp (154 to 158 dB re 1 μ Pa-m, **Table II**).
 431 Equivalent continuous sound level (L_{eq}) values for all elements were essentially equal to
 432 inbound power measurements, and background noise levels in the bandwidths used to
 433 measure the sounds were < 91 dB re 1 μ Pa.

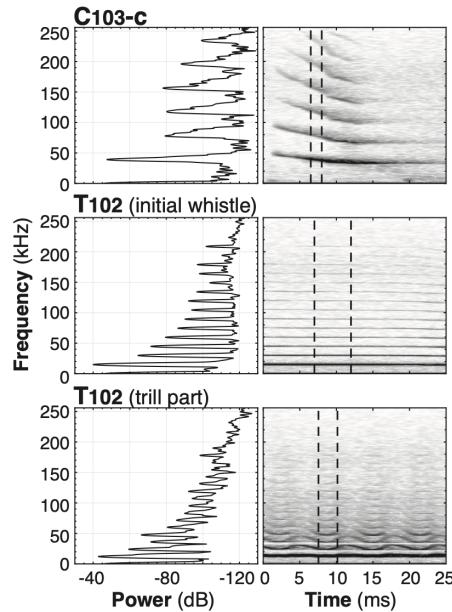
434 **D. Temporal variation in ultrasonic calling**

435 The ultrasonic calls of Weddell seals were common almost year-round. Based on
436 an assessment of presence/absence only, 8 out of the 9 ultrasonic call types were
437 found at least once in ≥ 11 of the 13 analyzed months (**Fig. 7A**). None were recorded in
438 February. Overall, the prevalence of ultrasonic and sonic vocalizations appeared to be
439 highly correlated. Both were most common during the austral spring breeding season
440 (Oct. – Dec.), comparatively less frequent at other times, and rare or absent for
441 extended periods in austral summer (Jan. – Mar.; data not shown). A similar pattern has
442 been previously reported for sonic-range vocalizations at other locations (Green and
443 Burton, 1988; Thomas *et al.*, 1988; van Opzeeland *et al.*, 2010). It likely results from
444 seasonal changes in the abundance of seals at the recording site (Goetz, 2015; Smith
445 1965) and/or their propensity to vocalize. Weddell seals may also reduce their vocal
446 activity in summer to avoid detection by potential predators (e.g., killer whales) in
447 nearby open water (Thomas *et al.*, 1987).

448

449 **Fig. 7.** Monthly occurrence and seasonal variation in ultrasonic calling. **(A)** Presence
450 (black squares, ≥ 1 occurrence) or absence (white circles) of ultrasonic call types in
451 each of 13 calendar months. Gray shading demarcates the breeding seasons. **(B)** Vocal
452 activity over a single 24-h period in austral spring and one in midwinter. The relative
453 prevalence of total ultrasonic calls compared to the sonic standard call was
454 approximately constant in the two samples, though vocal activity for each was about 3-
455 fold lower in midwinter. C103 was excluded from calculations because its detection was
456 unreliable in the midwinter sample (asterisks). The sonic standard call (a descending
457 whistle) was used as a proxy for overall sonic vocal activity. **(C)** Proportional ultrasonic
458 call type usage in the spring and midwinter samples. Bar heights for each call depict
459 their percentage of the total ultrasonic calls in each 24-h period, excluding counts of
460 C103 (hatched bar, asterisks; not counted in midwinter). Four disparate call types
461 occurred at similarly high proportions in spring, whereas the two similar repetitive
462 ultrasonic chirp-based calls dominated in midwinter. The actual call counts are
463 presented above the bars in (B) and (C).

464


465 Seasonal variation in ultrasonic call activity and proportional call type usage was
466 assessed by counting calls over a single 24-hour period in austral spring (Nov. 20,
467 2017; 24-h sunlight, breeding season) and one near the winter solstice (June 19, 2018,
468 “midwinter”; 24-h darkness, non-breeding). Detection of call type C103 was unreliable in
469 the midwinter sample because of its visual similarity to the prevalent cracking sounds
470 from the sea ice. Thus, it was not counted in midwinter and excluded from comparative
471 analyses. The sonic standard call was taken as a proxy for total sonic vocal activity in
472 both samples (see Methods).

473 Using this methodology, total ultrasonic vocal activity was found to be 2.8-fold
474 lower in midwinter compared to spring (299 and 848 total ultrasonic calls in 24 h,
475 respectively, both excluding counts of C103; **Fig. 7B**). The midwinter decrease in total
476 ultrasonic calling was approximately matched by the decrease in occurrences of the
477 sonic standard call (3.4-fold). This may signify that the seals’ relative use of ultrasonic
478 vs. sonic vocalization remains relatively constant year-round.

479 The proportional usage of the individual ultrasonic call types varied between the
480 two sampled days (**Fig. 7C**). In the spring sample, four disparate call types (C103,
481 W102, T101 and T102) were most prevalent. Each accounted for between 19 and 27%
482 of total ultrasonic calls (full range of proportional usage, both including and excluding
483 counts of C103; each call averaging 8.5 to 9.5 occurrences per h). Conversely, the two
484 similar repetitive ultrasonic chirp-based calls (C101 and C102) were dominant in the
485 midwinter sample where, together, they accounted for 62% of all ultrasonic calls
486 (averages of 3.1 and 4.6 occurrences per h, respectively).

487 **E. Harmonics**

488 Vocalizations with both sonic and ultrasonic fundamentals exhibited harmonics
489 with energy regularly present above background levels to over 100 kHz and
490 occasionally to over 200 kHz, especially when received with high signal-to-noise ratios
491 ($\text{SNR} \geq 40$ dB, as measured in the same 1/3 octave band as the fundamental). Some
492 examples are presented in **Fig. 8**. No clipping of high-intensity sounds was observed,
493 i.e., the presented harmonics are not artifacts. No emphasis on higher-order harmonics
494 were noted for any vocalizations, rather the fundamental frequency always contained
495 the most energy. When received at these high SNRs, ultrasonic chirps were
496 accompanied by coincident very low intensity sounds at frequencies below the
497 fundamental (e.g., C101-b, C102-b in **Fig. 3** and at 15 to 25 ms in C103-c in **Fig. 8**).
498

501 **Fig. 8.** Harmonics of sonic and ultrasonic chirp, whistle and trill elements extended to
 502 > 200 kHz when received with high signal-to-noise ratios. To illustrate this, the entire
 503 recorded harmonic series for portions of three diverse element types are presented.
 504 Power spectra (**left panels**, 2 kHz resolution), computed for the time segment between
 505 the dashed lines in the spectrograms (**right panels**), are referenced to raw instrument
 506 voltage. The fundamental always contained the most energy. Subharmonics below the
 507 fundamental were not evident. In these examples, signal-to-noise ratios exceeded 60 dB,
 508 as measured in the same 1/3 octave band as the fundamental. Presented spectrograms
 509 were computed from 512 kSs⁻¹ data using a 1024-pt. Hann window, 90% overlap, with
 510 2048-pt. DFT sample length.

511 **IV. DISCUSSION**

512 **A. Ultrasonic vocalizations of Weddell seals**

513 Despite years of acoustic studies on Weddell seals throughout the Antarctic, this
 514 study is the first documentation of their relatively extensive and diverse ultrasonic
 515 repertoire. With fundamental frequencies reaching to nearly 50 kHz, Weddell seals now
 516 appear to be rivaled only by killer whales (75 kHz; Samarra *et al.*, 2010) and possibly

517 leopard seals (164 kHz; Awbrey *et al.*, 2004; Thomas and Awbrey, 1983; if validated,
518 see Introduction) for the highest frequencies of tonal vocalizations produced by aquatic
519 mammals. In considering the presented ultrasonic call types, the present findings
520 increase the known Weddell seal vocal repertoire by 9 call types. Adding these to the
521 accounting by Terhune (2019) increases the total size of the species' known vocal
522 repertoire to 59 call types, of which 17% have elements with ultrasonic center
523 frequencies (10 of 59, including chirps described by Schevill and Watkins, 1971). From
524 the previously reported lowest-frequency fundamentals (32 Hz; Terhune, 2019) to the
525 highest-frequency fundamental reported herein (49.8 kHz), Weddell seal vocalizations
526 span > 10 octaves.

527 While the Weddell seals' routine use of higher frequencies was unknown, the
528 time-frequency contour shapes of these ultrasonic call types have been previously
529 described for calls at sonic frequencies (Doiron *et al.*, 2012; Pahl *et al.*, 1997; Thomas
530 and Kuechle, 1982). Similarly, the stereotyped repetition of similar elements within calls
531 (Moors and Terhune, 2004) and mixed-element calls (Terhune and Dell'Apa, 2006) also
532 occur in the sonic range. The mixing of ultrasonic and sonic elements in stereotyped
533 multi-element calls suggests that some sonic elements previously thought to occur
534 individually may have belonged to more complex calls.

535 **B. How common are ultrasonic vocalizations?**

536 It is likely that similar vocalizations were missed in previous recordings from
537 around Antarctica owing primarily to temporal biases and/or limitations of recording
538 equipment (e.g., **Fig. 1**), however other possibilities exist. Weddell seals have

539 geographically distinct repertoires on various scales (e.g., Thomas and Stirling, 1983),
540 thus ultrasonic call usage could be unique to the McMurdo Sound population. This could
541 explain why most other researchers did not note ultrasonic components despite some
542 ability to record at the necessary frequencies. It is also conceivable that other recording
543 sites were more influenced by environmental or biological sounds (e.g., Klinck *et al.*,
544 2008) that precluded the detection of ultrasonic vocalizations or their attribution to seals.
545 It is implausible that ultrasonic vocalization constitutes a behavior learned by the local
546 population since the earlier recordings in McMurdo Sound (e.g., Thomas and Kuechle,
547 1982), given that Schevill and Watkins (1971) previously recorded a sequence of ≤ 30
548 kHz chirps in the area.

549 It is relevant to question whether the ultrasonic vocalizations presented herein
550 are the product of a single individual (or a few) with an atypical repertoire, or rather
551 represent a more general feature of the species as a whole. The former case is unlikely
552 given the temporal distribution of calls over the lengthy dataset (**Fig. 7A**), the large local
553 population (Ainley *et al.*, 2015), the diving range of the seals (5 km; Thomas and
554 Terhune, 2009), and that overlapping ultrasonic calls were occasionally recorded (data
555 not shown). The present recordings may be biased towards certain individuals over
556 shorter time periods (hours to weeks), and the trill-type vocalizations may be specific to
557 males (Oetelaar *et al.*, 2003; Thomas and Kuechle, 1982). On the other hand, one of
558 the present authors (JMT) recorded trills that appeared to commence above 22 kHz (the
559 upper FR of the equipment) at Davis Station in 1997 (> 5000 km from McMurdo Sound).

560 This suggests that ultrasonic vocalizations may be a common feature of the Weddell
561 seal repertoire throughout their distribution.

562 **C. Ultrasonic sound production and reception**

563 Exactly how seals produce their vocalizations has been the subject of some
564 speculation. Sonic Weddell seal underwater vocalizations occur with the mouth and
565 nostrils closed such that no air escapes, and they may be accompanied by pulsing or
566 bobbing of the head, neck, or torso (Oetelaar *et al.*, 2003; Schevill and Watkins, 1971).

567 The video evidence (presented online¹) indicates that the same is likely true for
568 ultrasonic vocalizations. Seals, including Weddells, are thus thought to vocalize by
569 vibrating vocal folds and resonating pressure waves in contained air spaces, as in
570 between the larynx and the trachea (Piérard, 1969). In a response-driven system such
571 as this, the emitted frequency would be at least partially controlled by the properties of
572 the air chambers that the vibrations excite (Bradbury and Vehrencamp, 1998; Moors
573 and Terhune, 2005), and higher frequencies should arise from the compression of air
574 spaces with increasing hydrostatic pressure during dives (Falke *et al.*, 1985; Kooyman
575 *et al.*, 1970).

576 However, for harp (*Pagophilus groenlandicus*) and Weddell seal audible
577 vocalizations, Moors and Terhune (2005) found no relationship between vocalization
578 frequency and the depth of emission up to 90 m, suggesting that the characteristics of
579 the air spaces have minimal influence on the frequencies of emitted sounds. Likewise,
580 the ultrasonic elements presented herein likely do not represent sonic calls shifted to
581 higher frequencies because they were produced at great depth, given especially the

582 presented video evidence¹, the local bathymetry of the recording site (**Fig. 2B**), and
583 previous recordings of ultrasonic chirps produced near the surface (Schevill and
584 Watkins, 1971).

585 Taken together, the fundamental frequencies of the ultrasonic element types
586 spanned the full range from 20 to 50 kHz (**Fig. 5**). Weddell seals do not therefore
587 appear to be limited to the use of a discrete set of ultrasonic frequencies as might occur
588 in response-driven systems with specific resonances due to the geometry of the vocal
589 tract (Au and Suthers, 2014). The coincident emission of low-intensity sounds below the
590 frequencies of highest intensity (**Figs. 3, 8**) could possibly indicate that sonic-range
591 fundamentals (i.e., subharmonics) are selectively filtered in the vocal tract of the seals,
592 allowing predominantly ultrasonic overtones to escape (e.g., Hartley and Suthers,
593 1988). However, the spectra of the sounds do not support this conclusion (**Fig. 8**). It is
594 more likely that the low-frequency sounds arise from physical movements of the body or
595 displacement of air internally during vocalization. At this point, the most parsimonious
596 explanation for the production of ultrasonic vocalizations in Weddell seals is that, as for
597 those in the sonic range, they are primarily created by vibrations of the vocal folds
598 themselves, i.e., they are source-driven.

599 It appears that the ultrasonic vocalizations of Weddell seals are produced at
600 lower amplitude than their sonic vocalizations, given the range of estimates for the
601 elements of a single C102 call (135 to 152 dB re 1 μ Pa-m, for C102-a and C102-b vs.
602 153 to 193 dB re 1 μ Pa-m for previously described sonic vocalizations; **Table II**;
603 Thomas and Kuechle, 1982). For calls that contained both ultrasonic and sonic

604 fundamental frequencies, the ultrasonic components were always received at lower
605 amplitude than those in the sonic range. However, the presented estimates of source
606 SPLs remain only a minimum bound, given the vocalizing seal was oriented
607 approximately 90° away from the hydrophone and their greatest sound pressure is likely
608 to emanate in a more-or-less wide cone (possibly to 90° wide) angled somewhat
609 downward from the throat area (Schevill and Watkins, 1971). For harp seal sonic
610 vocalizations, source SPLs apparently vary by up to 12 dB around the animal (Rossong
611 and Terhune, 2009), thus it is possible that on-axis source SPLs for the ultrasonic chirps
612 of Weddell seals could reach to over 164 dB re 1 μ Pa·m.

613 It is likely that the seals can perceive at least the fundamental frequencies of all
614 of their ultrasonic vocalizations presented herein. Phocids as a group have an overall
615 best underwater hearing range (+ 20 dB from the lowest threshold) of about 125 Hz to
616 50 kHz with maximum sensitivity around 12 kHz (Southall *et al.*, 2019). While the upper
617 frequency limit of Weddell seal hearing has not been tested, it is unlikely that the seals
618 would be able to produce stereotyped vocalizations to 50 kHz that they could not hear
619 themselves. Although harmonics of both sonic and ultrasonic elements were detected to
620 over 200 kHz (**Fig. 8**), the Weddell seals' auditory sensitivity is likely poor > 60 kHz,
621 given data for other phocids (Cunningham and Reichmuth, 2016; Kastelein *et al.*, 2009).
622 Thus, the higher-order harmonics are probably undetectable to them.

623 **D. Functions of ultrasonic vocalizations**

624 Most known Weddell seal vocalizations are expected to be produced for
625 intraspecific communication purposes (e.g., Russell *et al.*, 2016; Thomas *et al.*, 1983),

626 and the same may be true for those in the ultrasonic range. Schevill and Watkins (1971)
627 noted that the ultrasonic chirps they recorded were used by seals travelling between
628 access holes, perhaps a warning of their impending arrival to conspecifics at the distant
629 site. Similarly, the supplementary video¹ shows a seal producing ultrasonic chirp-based
630 call C102 at < 20 m depth, immediately after leaving a breathing hole and with no other
631 seals in view (visible range to > 200 m). However, in the preliminary analysis herein, the
632 proportional usage of the ultrasonic call types varied substantially between periods of
633 sunlight/breeding and darkness/non-breeding (**Fig. 7C**). This suggests that individual
634 call types may be associated with specific behaviors that change seasonally.

635 Sound production over a larger frequency range could provide various benefits.
636 Given that higher frequencies attenuate more rapidly with distance compared to lower
637 frequencies (Au, 1993), the use of the ultrasonics could restrict communications to
638 conspecifics at short range, while also avoiding detection by distant predators such as
639 killer whales (Rogers, 2014). At present, these suppositions remain poorly supported
640 since most ultrasonic calls included lower-frequency components and were also
641 generally interspersed with sonic vocalizations.

642 The Weddell seals' use of ultrasonic frequencies could also serve as an
643 additional communication channel in areas where the lower frequencies are cluttered
644 with the vocalizations of other species or conspecifics. Moreover, because ultrasonic
645 emissions typically have a narrower beam than those at lower frequencies (Sales and
646 Pye, 1974), their use could possibly allow communicative signals to be emitted with
647 better directionality. The relative extent to which higher frequencies and overtones are

648 attenuated in received calls could also provide another metric besides intensity for
649 determining the distance or orientation of vocalizing conspecifics (Wartzok *et al.*, 1992).

650 **E. Relevance to echolocation**

651 Previous authors have asserted that pinnipeds do not echolocate, using a
652 definition of the term associated only with food capture and the high-precision biosonar
653 of toothed whales and bats (Schusterman *et al.*, 2000). Weddell seals may, however,
654 possess the characteristics necessary for at least a rudimentary form of echo-based
655 acoustic spatial perception (for which no standardized gradational terminology seems to
656 exist). As with other seal species, they likely have relatively sensitive hearing over a
657 wide frequency range (Southall *et al.*, 2019), can localize sound sources (Terhune,
658 1974; Wartzok *et al.*, 1992), and are now known to produce repetitive, short-duration
659 ultrasonic vocalizations (this study; Schevill and Watkins, 1971). Any communicative
660 functions of ultrasonic calls would not exclude the possibility that echo and
661 reverberation patterns also provide some information about the surroundings. However,
662 there remain substantial differences between these seals and animals with an acute
663 echolocating ability: seals do not possess any specialized structures for directional
664 emission or reception of sounds (Schusterman *et al.*, 2000; Vater and Kössl, 2004) and
665 their target detection range would be limited by the lower amplitudes of their
666 vocalizations (> 40 dB lower than the maximum of toothed whale echolocation clicks;
667 Au, 1993). Moreover, the durations of the shortest ultrasonic chirps presented herein
668 are still comparatively long (≥ 3.6 ms), resulting in a ranging error of ≥ 5.4 m given the
669 speed of sound in seawater ($\cong 1500$ m/s).

670 Nevertheless, the echoes of the ultrasonic vocalizations emitted by Weddell
671 seals could conceivably provide finer-scale information on obstacles, the sea/ice
672 surface, or the water depth compared to those at lower frequencies. They might
673 therefore facilitate orientation and navigation, especially in dark or limited-visibility
674 conditions under the sea ice where egress points are limited. Notably, the proportional
675 usage of repetitive ultrasonic chirp-based calls (C101 and C102) appeared to be higher
676 in midwinter darkness compared to spring (**Fig. 7C**). Though only a preliminary finding,
677 this might lend support to their use in acoustic spatial perception. Additional studies are
678 needed to determine to what extent Weddell seals use their own sounds to navigate
679 and find prey in nature.

680 **V. CONCLUDING REMARKS**

681 Given that Weddell seals have long been the subjects of acoustic research, the
682 discovery that they routinely use a relatively diverse repertoire of ultrasonic
683 vocalizations reinforces the need for broad-bandwidth, long-term passive acoustic
684 monitoring. At present, it is unclear whether ultrasonic emissions could comprise an
685 important facet of the underwater vocalizations of other seals. As for Weddell seals,
686 many previous studies of other species used recording equipment or analyses with
687 relatively low upper FR. It is also possible that infrequently-used or low-intensity
688 ultrasonic vocalizations were simply missed, or attributed to other species. Given the
689 evolution of recording and analysis technologies, future researchers might consider
690 replicating previous studies to assess whether other seals also produce ultrasonic
691 vocalizations. Indeed, recording at higher frequencies could contribute to a better

692 understanding of the range of ways that marine mammals employ sounds to enable
693 their survival in a complex underwater environment (e.g., Tyack, 1997).

694 **ACKNOWLEDGEMENTS**

695 We thank the personnel at McMurdo Station including especially laboratory,
696 construction and IT staff, and divers R. Robbins and S. Rupp. We thank T. Mendelow
697 (View into The Blue) and Ocean Sonics for technical assistance, and J. Hildebrand and
698 S. Wiggins for helpful advice. H. Kaiser, K. Meister, W. Turner and A. L. DeVries
699 provided assistance in Antarctica. A. M. Wood provided laboratory space and S. Nash
700 contributed excellent administrative support at the University of Oregon. Fig. 2 was
701 created with assistance from the Polar Geospatial Center under US National Science
702 Foundation award OPP 1559691. JMT acknowledges the support of the University of
703 New Brunswick. This work was primarily supported by award OPP 1644196 to PAC and
704 Arthur L. DeVries. The authors thank I. Charrier, the Editor and an anonymous reviewer
705 whose comments helped to improve this manuscript.

706 **TEXTUAL FOOTNOTES**

707 ¹See supplementary material and multimedia at [Staff inserts URL here] for: (1) Details
708 of previous Weddell seal recordings cited in Fig. 1, (2) an example of the archived
709 spectrogram images used for assessing call prevalence, (3) spectrograms of the “sonic
710 standard call”, (4) audio files of the presented calls in full resolution and (5) modified
711 human-audible versions, and (6) an underwater video of a vocalizing seal from which
712 chirp source SPLs were derived.

713 **REFERENCES**

714 Ainley, D. G., Larue, M. A., Stirling, I., Stammerjohn, S., and Siniff, D. B. (2015). "An
715 apparent population decrease, or change in distribution, of Weddell seals along the
716 Victoria Land coast," *Mar. Mam. Sci.* **31**(4), 1338–1361. doi:10.1111/mms.12220

717 Au, W. W. L. (1993). *The sonar of dolphins* (Springer-Verlag, New York), Chaps. 1, 5, 7,
718 11.

719 Au, W. W. L., and Suthers, R. A. (2014). "Production of Biosonar Signals: Structure and
720 Form," in *Biosonar*, edited by A. Surlykke, P. E. Nachtigall, R. R. Fay, and A. N.
721 Popper (Springer, New York), pp. 61–105. doi:10.1007/978-1-4614-9146-0_3

722 Awbrey, F. T., Thomas, J. A., and Evans, W. E. (2004). "Ultrasonic underwater sounds
723 from a captive leopard seal (*Hydrurga leptonyx*)," in *Echolocation in Bats and
724 Dolphins*, edited by C. F. Moss and M. Vater (University of Chicago Press,
725 Chicago), pp. 535–541.

726 Bradbury, J. W., and Vehrencamp, S. L. (1998). *Principles of Animal Communication*
727 (Sinauer Associates Inc., Sunderland, MA), pp. 75–112.

728 Cameron, M. F., Siniff, D. B., Proffitt, K. M., and Garrott, R. A. (2007). "Site fidelity of
729 Weddell seals: the effects of sex and age," *Antarct. Sci.* **19**(2), 149–155.
730 doi:10.1017/S0954102007000223

731 Center for Conservation Bioacoustics (2014). "Raven Pro: interactive sound analysis
732 software (version 1.5)." Retrieved from <http://ravensoundsoftware.com/>

733 Cunningham, K. A., and Reichmuth, C. (2016). "High-frequency hearing in seals and
734 sea lions," *Hearing Res.* **331**, 83–91. doi:10.1016/j.heares.2015.10.002

735 Davey, F., and Nitsche, F. O. (2013). “Ross Sea bathymetry grid (2005) based on Fred
736 Davey's bathymetry map (2004).” Interdisciplinary Earth Data Alliance.
737 doi:10.1594/IEDA/100405

738 DeRuiter, S. L., Bahr, A., Blanchet, M. A., Hansen, S. F., Kristensen, J. H., Madsen, P.
739 T., Tyack, P. L., and Wahlberg, M. (2009). “Acoustic behaviour of echolocating
740 porpoises during prey capture,” *J. Exp. Biol.* **212**(19), 3100–3107.
741 doi:10.1242/jeb.030825

742 Doiron, E. E., Rouget, P. A., and Terhune, J. M. (2012). “Proportional underwater call
743 type usage by Weddell seals (*Leptonychotes weddellii*) in breeding and nonbreeding
744 situations,” *Can. J. Zool.* **90**(2), 237–247. doi:10.1139/z11-131

745 Erbe, C., Dunlop, R., Jenner, K. C. S., Jenner, M.-N. M., McCauley, R. D., Parnum, I.,
746 Parsons, M., Rogers, T., and Salgado-Kent, C. (2017). “Review of underwater and
747 in-air sounds emitted by Australian and Antarctic marine mammals,” *Acoust. Aust.*
748 **45**(2), 179–241. doi:10.1007/s40857-017-0101-z

749 Evans, W. E., Thomas, J. A., and Davis, R. W. (2004). “Vocalizations from Weddell
750 seals (*Leptonychotes weddellii*) during diving and foraging,” in *Echolocation in Bats
751 and Dolphins*, edited by J. A. Thomas, C. F. Moss, and M. Vatek (University of
752 Chicago Press, Chicago), pp. 541–547.

753 Falke, K. J., Hill, R. D., Qvist, J., Schneider, R. C., Guppy, M., Liggins, G. C.,
754 Hochachka, P. W., Elliott, R. E., and Zapol, W. M. (1985). “Seal lungs collapse
755 during free diving: evidence from arterial nitrogen tensions,” *Science*. **229**(4713),
756 556–558. doi:10.1126/science.4023700

757 Goetz, K. T. (2015). *Movement, Habitat, and Foraging Behavior of Weddell seals*
758 (*Leptonychotes Weddellii*) in the Eastern Ross Sea, Antarctica (PhD Dissertation,
759 University of California, Santa Cruz). Retrieved from
760 <https://escholarship.org/uc/item/0jx2107r>

761 Green, K., and Burton, H. R. (1988). "Annual and diurnal variations in the underwater
762 vocalizations of Weddell seals," *Polar Biol.* **8**, 161-164. doi:10.1007/BF00443447

763 Hartley, D. J., and Suthers, R. A. (1988). "The acoustics of the vocal tract in the
764 horseshoe bat, *Rhinolophus hildebrandtii*," *J. Acoust. Soc. Am.* **84**(4), 1201–1213.
765 doi:10.1121/1.396621

766 Kastelein, R. A., Wensveen, P. J., Hoek, L., Verboom, W. C., and Terhune, J. M.
767 (2009). "Underwater detection of tonal signals between 0.125 and 100 kHz by
768 harbor seals (*Phoca vitulina*)," *J. Acoust. Soc. Am.* **125**(2), 1222–1229.
769 doi:10.1121/1.3050283

770 Kim, S., Saenz, B., Scanniello, J., Daly, K., and Ainley, D. (2018). "Local climatology of
771 fast ice in McMurdo Sound, Antarctica," *Antarct. Sci.* **30**(2), 125-142.
772 doi:10.1017/S0954102017000578

773 Klinck, H., Kindermann, L., and Boebel, O. (2008). "Detection of leopard seal (*Hydrurga*
774 *leptonyx*) vocalizations using the Envelope-Spectrogram Technique (TEST) in
775 combination with a Hidden Markov model," *Can. Acoust.* **36**(1), 118–124.

776 Klinck, H., Kindermann, L., and Boebel, O. (2016). "PALAOA: The perennial acoustic
777 observatory in the Antarctic Ocean—real-time eavesdropping on the Antarctic
778 underwater soundscape," in *Listening in the Ocean*, edited by W. W. L. Au and M.

779 O. Lammers (Springer, New York), pp. 207–219. doi:10.1007/978-1-4939-3176-7_8

780 Kooyman, G. L., Hammond, D. D., and Schroeder, J. P. (1970). “Bronchograms and

781 tracheograms of seals under pressure,” *Science*. **169**(3940), 82–84.

782 doi:10.1126/science.169.3940.82

783 Lammers, M. O., Au, W. W. L., and Herzing, D. L. (2003). “The broadband social

784 acoustic signaling behavior of spinner and spotted dolphins,” *J. Acoust. Soc. Am.*

785 **114**(3), 1629–1639. doi:10.1121/1.1596173

786 Moors, H. B., and Terhune, J. M. (2004). “Repetition patterns in Weddell seal

787 (*Leptonychotes weddelli*) underwater multiple element calls,” *J. Acoust. Soc. Am.*

788 **116**(2), 1261–1270. doi:10.1121/1.1763956

789 Moors, H. B., and Terhune, J. M. (2005). “Calling depth and time and frequency

790 attributes of harp (*Pagophilus groenlandicus*) and Weddell (*Leptonychotes weddelli*)

791 seal underwater vocalizations,” *Can. J. Zool.* **83**(11), 1438–1452. doi:10.1139/Z05-

792 135

793 Oetelaar, M. L., Terhune, J. M., and Burton, H. R. (2003). “Can the sex of a Weddell

794 seal (*Leptonychotes weddelli*) be identified by its surface call?,” *Aquat. Mamm.*

795 **29.2**, 261–267. doi:10.1578/016754203101024194

796 Pahl, B. C., Terhune, J. M., and Burton, H. R. (1997). “Repertoire and geographic

797 variation in underwater vocalisations of Weddell seals (*Leptonychotes weddelli*,

798 Pinnipedia: Phocidae) at the Vestfold Hills, Antarctica,” *Aust. J. Zool.* **45**(2), 171–

799 187. doi:10.1071/zo95044

800 Piérard, J. (1969). “Le larynx du phoque de Weddell (*Leptonychotes weddelli*, Lesson,

801 1826)" ("The larynx of the Weddell seal"), *Can. J. Zool.* **47**(1), 77–87.

802 doi:10.1139/z69-015

803 Rasmussen, M. H., and Miller, L. A. (2002). "Whistles and clicks from white-beaked

804 dolphins, *Lagenorhynchus albirostris*, recorded in Faxaflói Bay, Iceland," *Aquat.*

805 *Mamm.* **28.1**, 78–89.

806 Reeves, R. R., Stewart, B. S., Clapham, P. J., and Powell, J. A. (2002). "Weddell seal,"

807 in *Guide to marine mammals of the world* (Alfred A. Knopf, Inc., New York). pp. 166–

808 169.

809 Rogers, T. L. (2014). "Source levels of the underwater calls of a male leopard seal," *J.*

810 *Acoust. Soc. Am.* **136**(4), 1495–1498. doi:10.1121/1.4895685

811 Rossong, M. A., and Terhune, J. M. (2009). "Source levels and communication-range

812 models for harp seal (*Pagophilus groenlandicus*) underwater calls in the Gulf of St.

813 Lawrence, Canada," *Can. J. Zool.* **87**(6), 609–617. doi:10.1139/Z09-048

814 Rotella, J. J. (2018). "Demographic data for Weddell Seal colonies in Erebus Bay

815 through the 2017 Antarctic field season," US Antarctic Program (USAP) Data

816 Center. doi:10.15784/601125

817 Russell, L., Purdy, J., and Davis, R. (2016). "Social context predicts vocalization use in

818 the courtship behaviors of Weddell seals (*Leptonychotes weddellii*): a case study,"

819 *Anim. Behav. Cogn.* **3**(2), 95–119. doi:10.12966/abc.04.05.2016

820 Sales, G., and Pye, D. (1974). *Ultrasonic Communication by Animals* (Chapman and

821 Hall, London), pp. 1-281.

822 Samarra, F. I. P., Deecke, V. B., Vinding, K., Rasmussen, M. H., Swift, R. J., and Miller,

823 P. J. O. (2010). "Killer whales (*Orcinus orca*) produce ultrasonic whistles," *J. Acoust.*
824 *Soc. Am.* **128**(5), EL205–EL210. doi:10.1121/1.3462235

825 Schevill, W. E., and Watkins, W. A. (1971). "Directionality of the sound beam in
826 *Leptonychotes weddelli* (Mammalia: Pinnipedia)," In *Antarctic Pinnipedia, Antarctic*
827 *Research Series Vol. 18*, edited by W. H. Burt (American Geophysical Union,
828 Washington, D. C.), pp. 163–168. doi:10.1029/AR018p0163

829 Schusterman, R. J., Kastak, D., Levenson, D. H., Reichmuth, C. J., and Southall, B. L.
830 (2000). "Why pinnipeds don't echolocate," *J. Acoust. Soc. Am.* **107**(4), 2256–2264.
831 doi:10.1121/1.428506

832 Smith, M. S. R. (1965). "Seasonal movements of the Weddell seal in McMurdo Sound,
833 Antarctica," *J. Wildlife Manage.* **29**(3), 464–470. doi:10.2307/3798043

834 Southall, B. L., Finneran, J. J., Reichmuth, C., Nachtigall, P. E., Ketten, D. R., Bowles,
835 A. E., Ellison, W. T., Nowacek, D. P., and Tyack, P. L. (2019). "Marine mammal
836 noise exposure criteria: updated scientific recommendations for residual hearing
837 effects," *Aquat. Mamm.* **45**(2), 125–232. doi:10.1578/AM.45.2.2019.125

838 Stirling, I. (1969). "Ecology of the Weddell Seal in McMurdo Sound, Antarctica,"
839 *Ecology*. **50**(4), 573–586. doi:10.2307/1936247

840 Terhune, J. M. (1974). "Directional hearing of a harbor seal in air and water," *J. Acoust.*
841 *Soc. Am.* **56**(6), 1862–1865. doi:10.1121/1.1903523

842 Terhune, J. M. (2019). "The underwater vocal complexity of seals (Phocidae) is not
843 related to their phylogeny," *Can. J. Zool.* **97**(3), 232–240. doi:10.1139/cjz-2018-0190

844 Terhune, J. M., and Dell'Apa, A. (2006). "Stereotyped calling patterns of a male Weddell

845 seal (*Leptonychotes weddelli*)," *Aquat. Mamm.* **32**(2), 175–181.
846 doi:10.1578/AM.32.2.2006.175

847 Testa, J. W., and Siniff, D. B. (1987). "Population dynamics of Weddell seals
848 (*Leptonychotes weddelli*) in McMurdo Sound, Antarctica," *Ecol. Monogr.* **57**(2), 149–
849 165. doi:10.2307/1942622

850 Thiebault, A., Charrier, I., Aubin, T., Green, D. B., and Pistorius, P. A. (2019). "First
851 evidence of underwater vocalisations in hunting penguins," *PeerJ* **7**:e8240.
852 doi:10.7717/peerj.8240

853 Thomas, J. A., and Awbrey, F. T. (1983). "Ultrasonic vocalizations of leopard seals
854 (*Hydrurga leptonyx*)," *Antarct. J. US.* **17**, 186.

855 Thomas, J. A., Ferm, L. M., and Kuechle, V. B. (1987) "Silence as an anti-predation
856 strategy by Weddell seals," *Antarct. J. US.* **22**, 232-234.

857 Thomas, J. A., Ferm, L. M., and Kuechle, V. B. (1988). "Patterns of underwater calls
858 from Weddell seals (*Leptonychotes weddelli*) during the breeding season at
859 McMurdo Sound, Antarctica," *Antarct. J. US.* **23**, 146-148.

860 Thomas, J. A., and Kuechle, V. B. (1982). "Quantitative analysis of Weddell seal
861 (*Leptonychotes weddelli*) underwater vocalizations at McMurdo Sound, Antarctica,"
862 *J. Acoust. Soc. Am.* **72**(6), 1730–1738. doi:10.1121/1.388667

863 Thomas, J.A., and Stirling, I. (1983). "Geographic variation in the underwater
864 vocalizations of Weddell seals (*Leptonychotes weddelli*) from Palmer Peninsula
865 and McMurdo Sound, Antarctica," *Can. J. Zool.* **61**(10), 2203–2212.
866 doi:10.1139/z83-291

867 Thomas, J. A., and Terhune, J. M. (2009). “Weddell seal (*Leptonychotes weddelli*),” in
868 *Encyclopedia of Marine Mammals, 2nd ed.*, edited by W. F. Perrin, B. Wrusig, and J.
869 G. M. Thewissen (Academic Press, Amsterdam), pp. 1217–1220. doi:10.1016/B978-
870 0-12-373553-9.X0001-6

871 Thomas, J. A., Zinnel, K. C., and Ferm, L. M. (1983). “Analysis of Weddell seal
872 (*Leptonychotes weddelli*) vocalizations using underwater playbacks,” *Can. J. Zool.*
873 **61**(7), 1448–1456. doi:10.1139/z83-194

874 Tyack, P. L. (1997). “Studying how cetaceans use sound to explore their environment,”
875 in *Communication, Perspectives in Ethology, Vol. 12*, edited by D. H. Owings, M. D.
876 Beecher, and N. S. Thompson (Springer, Boston, MA), pp. 251–297.
877 doi:10.1007/978-1-4899-1745-4_9

878 van Opzeeland, I., Van Parijs, S., Bornemann, H., Frickenhaus, S., Kindermann, L.,
879 Klinck, H., Plötz, J., and Boebel, O. (2010). “Acoustic ecology of Antarctic
880 pinnipeds,” *Mar. Ecol. Prog. Ser.* **414**, 267–291. doi:10.3354/meps08683

881 Vater, M., and Kössl, M. (2004). “The ears of whales and bats,” in *Echolocation in Bats
882 and Dolphins*, edited by J. A. Thomas, C. F. Moss, and M. Vater (University of
883 Chicago Press, Chicago), pp. 89-99.

884 Wartzok, D., Elsner, R., Stone, H., Kelly, B. P., and Davis, R. W. (1992). “Under-ice
885 movements and the sensory basis of hole finding by ringed and Weddell seals,”
886 *Can. J. Zool.* **70**(9), 1712–1722. doi:10.1139/z92-238

887 Watkins, W. A., and Schevill, W. E. (1968). “Underwater playback of their own sounds
888 to *Leptonychotes* (Weddell seals),” *J. Mammal.* **49**(2), 287–296.

889 doi:10.2307/1377986

890 Wellard, R., Pitman, R. L., Durban, J. D., and Erbe, C. (2020). "Cold call: the acoustic

891 repertoire of Ross Sea killer whales (*Orcinus orca*, Type C) in McMurdo Sound,

892 Antarctica," *R. Soc. Open Sci.* **7**:191228. doi:10.1098/rsos.191228

893

894 **TABLES**895 **Table I.** Characteristics of the fundamental frequencies of Weddell seal ultrasonic
896 underwater vocalizations recorded by the MOO in McMurdo Sound, Antarctica. Means \pm
897 SD are presented, with other listed values in brackets.^a

Call type	Element type	Number analyzed	Max. freq. [max.] (kHz)	Min. freq. [min.] (kHz)	Center freq. [range] (kHz)	Peak amplitude freq. [range] (kHz)	Duration [range]
C101^b	Full call	10	-	-	-	-	16.5 ± 3.5 s ^e [11.2 - 21.0]
	a	10	41.6 ± 4.7 [49.8]	26.7 ± 0.7 [25.7]	28.5 ± 0.7 [27.5 - 29.8]	28.0 ± 0.8 [26.8 - 29.0]	6.6 ± 1.7 ms ^f [4.8 - 9.2]
	b	10	37.4 ± 2.1 [47.0]	20.7 ± 0.4 [19.4]	22.6 ± 1.1 [21.0 - 25.3]	22.3 ± 1.3 [21.0 - 25.8]	5.8 ± 1.1 ms ^f [4.0 - 7.2]
	c	10	21.9 ± 1.8 [24.5]	4.0 ± 0.2 [3.8]	5.1 ± 0.2 [5.0 - 5.5]	4.9 ± 0.1 [4.8 - 5.0]	128.6 ± 21.5 ms ^f [107.1 - 179.8]
C102^b	Full call	15	-	-	-	-	8.7 ± 0.6 s ^e [7.8 - 9.5]
	a	15	39.7 ± 2.4 [42.8]	25.5 ± 1.8 [21.4]	29.6 ± 1.3 [27.3 - 31.3]	28.7 ± 1.8 [25.5 - 31.5]	5.9 ± 1.3 ms ^f [4.0 - 8.8]
	b	15	34.0 ± 2.3 [40.7]	18.0 ± 0.4 [15.8]	20.4 ± 1.4 [17.8 - 24.3]	19.3 ± 0.9 [17.5 - 24.0]	4.5 ± 0.4 ms ^f [3.6 - 4.8]
	c	15	21.3 ± 2.9 [30.0]	4.2 ± 0.2 [3.9]	5.9 ± 0.3 [5.5 - 6.5]	5.6 ± 0.3 [5.0 - 6.0]	39.6 ± 10.1 ms ^f [29.6 - 63.7]
C103^b	Full call	12	-	-	-	-	3.2 ± 3.5 s ^e [1.2 - 10.7]
	a	12	37.3 ± 4.1 [44.9]	24.6 ± 1.9 [22.5]	26.8 ± 1.9 [24.5 - 30.5]	26.4 ± 1.8 [24.3 - 30.0]	6.6 ± 1.5 ms ^f [4.8 - 8.8]
	b	12	22.7 ± 2.8 [28.7]	5.4 ± 0.4 [4.7]	7.3 ± 0.8 [6.3 - 9.0]	6.8 ± 0.3 [6.3 - 7.3]	5.5 ± 3.2 ms ^f [3.6 - 12.0]
	c	12	42.7 ± 3.3 [48.1]	31.8 ± 1.5 [28.5]	34.1 ± 2.2 [29.3 - 37.5]	33.8 ± 2.2 [29.0 - 37.8]	5.5 ± 0.9 ms ^f [4.4 - 6.8]
	d	4	11.7 ± 2.2 [14.0]	0.2 ± 0.2 [0.04]	0.6 ± 0.3 [0.3 - 1.0]	0.6 ± 0.4 [0.3 - 1.0]	66.8 ± 49.5 ms ^f [22.4 - 110.5]
U101^c	Full call	20	-	-	-	-	10.5 ± 4.0 s ^e [5.2 - 21.4]
	a	20	40.8 ± 1.7 [44.2]	34.4 ± 1.4 [32.5]	36.3 ± 1.5 [34.8 - 41.0]	36.0 ± 1.7 [33.9 - 41.5]	6.3 ± 3.0 s [2.7 - 11.9]
	b	20	17.7 ± 3.1 [23.8]	5.1 ± 0.3 [4.6]	6.4 ± 0.5 [5.8 - 7.4]	5.9 ± 0.5 [5.3 - 7.4]	4.5 ± 2.6 s [1.9 - 9.9]
W101^d	-	6	32.0 ± 1.5 [34.7]	28.8 ± 0.3 [28.3]	29.6 ± 0.5 [29.2 - 30.4]	29.4 ± 0.7 [28.4 - 30.5]	1.9 ± 0.3 s [1.5 - 2.2]
W102^d	-	31	21.3 ± 0.4 [22.8]	20.3 ± 0.3 [19.6]	20.8 ± 0.3 [20.3 - 21.3]	20.8 ± 0.3 [20.2 - 21.3]	7.7 ± 1.7 s [4.8 - 10.7]
W103^d	-	5	24.9 ± 0.3 [25.3]	19.7 ± 0.1 [19.5]	20.0 ± 0.1 [19.9 - 20.1]	20.1 ± 0.3 [19.8 - 20.6]	9.7 ± 2.1 s [6.2 - 11.3]
T101^d	Full call	19	-	-	-	-	50.9 ± 13.9 s ^e [10.6 - 75.6]
	a	19	26.7 ± 1.2 [28.9]	17.3 ± 0.6 [15.6]	21.2 ± 1.2 [19.4 - 24.1]	21.0 ± 1.9 [17.7 - 24.7]	14.3 ± 1.9 s [7.3 - 15.6]
	b	19	30.9 ± 4.4 [36.1]	0.1 ± 0.1 [0.0]	0.7 ± 0.2 [0.5 - 1.4]	0.7 ± 0.1 [0.5 - 0.8]	28.3 ± 10.7 s [2.4 - 52.3]
T102^d	-	23	24.4 ± 2.2 [29.5]	9.5 ± 0.3 [9.0]	11.3 ± 0.7 [10.4 - 13.3]	10.8 ± 1.0 [10.0 - 14.7]	6.7 ± 2.5 s [3.7 - 10.1]

898 ^aAll files were 512 kSs⁻¹, 24 bit WAV; only the fundamental frequencies of vocalizations were included in analysis selection bounds.899 ^bAnalyzed with 2048-pt Hann window, 90% overlap, 2048-pt DFT sample length = 250 Hz filter bandwidth.900 ^cAnalyzed with 4096-pt Hann window, 90% overlap, 4096-pt DFT sample length = 125 Hz filter bandwidth.901 ^dAnalyzed with 8192-pt Hann window, 50% overlap, 8192-pt DFT sample length = 62.5 Hz filter bandwidth.902 ^eFor multiple-element calls, full call duration was measured from the beginning of the first element to the end of the last element.903 ^fFor chirp-type elements only, duration is the interval containing 90% of energy for 10 randomly-selected individual elements.

904

905 **Table II.** Estimated source sound pressure levels (SPLs) of chirps from a single type
 906 C102 call, derived from a simultaneous underwater video and audio recording by the
 907 MOO (estimated seal-observatory distance = 18 to 26 m).^a
 908

Element type	Center freq. (kHz)	Duration ^b (90%, ms)	Source SPL ^c (dB re 1 μ Pa-m)
C102-a (initial chirp; n=1)	29.5	6.0	137 (135 to 138)
C102-b (repetitive chirps; n=26)	19.7 ± 0.9^d	5.7 ± 0.7^d	144 ± 1^d (142 to 152)
C102-c (terminal chirp; n=1)	6.3	37.2	156 (154 to 158)

909 ^a Selection bounds included the fundamental and prominent harmonics excluding
 910 obvious echoes (see Methods). Analyzing filter bandwidth 250 Hz (2048 DFT
 911 length, 512 kSs⁻¹ data).

912 ^b Time containing 90% of the energy for individual elements.

913 ^c At median estimated seal-hydrophone distance; range of source SPL values for
 914 individual chirps given full range of distance uncertainty in parentheses; calculated
 915 as inbound power plus estimated transmission loss; the seal was facing about 90°
 916 off-axis.

917 ^d Means \pm SD.