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ABSTRACT

Seals (phocids) are generally not thought to produce vocalizations having ultrasonic
fundamental frequencies (= 20 kHz), though previous studies could have been biased
by sampling limitations. This study characterizes common, yet previously undescribed,
ultrasonic Weddell seal (Leptonychotes weddellii) vocalizations. They were identified in
> 1 year (2017-2018) of broadband acoustic data obtained by a continuously recording
underwater observatory in McMurdo Sound, Antarctica. Nine recurrent call types were
identified that were composed of single or multiple vocal elements whose fundamental

frequencies spanned the ultrasonic range to nearly 50 kHz. Eleven vocal elements had

ultrasonic center frequencies (= 20 kHz), including chirps, whistles and trills, with two

elements at > 30 kHz. Six elements had fundamental frequencies always > 21 kHz. The
fundamental frequency of one repetitive U-shaped whistle element reached 44.2 kHz
and descending chirps (= 3.6 ms duration) commenced at < 49.8 kHz. The source
amplitude of one fully ultrasonic chirp element (29.5 kHz center frequency) was 137 dB
re 1 yPa-m. Harmonics of some vocalizations exceeded 200 kHz. Ultrasonic
vocalizations occurred throughout the year, with the usage of repetitive ultrasonic chirp-
based calls appearing to dominate in winter darkness. The functional significance of

these high-frequency vocalizations is unknown.
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I. INTRODUCTION

A. Weddell seals and their known underwater vocalizations

The Weddell seal (Leptonychotes weddellii) is a large and relatively abundant
true seal (f. Phocidae) with a circumpolar distribution around Antarctica, including the
highest-latitude coastal regions (Reeves et al., 2002). In contrast to the other seals of
the Antarctic clade, they prefer expanses of heavy pack ice or thick shore-fast sea ice,
using their teeth to maintain access holes in the ice. They dive to at least 600 m and for
up to 82 min in search of fish and invertebrate prey year-round (Thomas and Terhune,
2009). Weddell seals have been extensively studied, owing to their prevalence near
several research stations, their aggregation on the sea ice for pupping and breeding in
the austral spring (Oct. — Dec.), and their approachability when hauled out on the sea
ice surface.

The Weddell seal’s extensive and relatively high amplitude (to 193 dB re 1
yPa-m) repertoire of multiple-element frequency- and amplitude-modulated underwater
chirps, whistles, buzzes and chugs, among other sounds, forms a major component of
the underwater soundscape in areas where they are abundant (Terhune, 2019; Thomas
and Kuechle, 1982). Thomas and Kuechle (1982) provided the first comprehensive
quantification of the species’ underwater vocalizations. They described 34 sonic call
types (< 20 kHz, human-audible) plus 9 accessory sounds recorded in McMurdo Sound
in the southwestern Ross Sea. Studies have now described repertoires consisting of 14
to 50 sonic call types from populations around Antarctica, with the variation in repertoire

size estimations likely due to geographic and temporal differences and inconsistent
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definitions of call types. Weddell seals have the most diverse vocal repertoire of any
phocid (Pahl et al.,1997; Terhune, 2019; Thomas and Kuechle, 1982).

It is likely that the full diversity of Weddell seal underwater vocalizations remains
to be described. Indeed, most studies have been limited to short-term recordings (hours
to days) from near the surface beneath shore-fast sea ice, and typically detected only
calls at = 15 kHz (see Fig. 1). Long-duration recordings appear to be limited to those
from the multi-year Perennial Acoustic Observatory in the Antarctic Ocean (PALAOA)
effort in the Weddell Sea. In that study most analyses were conducted at <15 kHz at a
coarse subsampling, and the recording site was beneath an ice shelf, 1 km from the

edge (Klinck et al., 2016; van Opzeeland et al., 2010).
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Fig. 1. Maximum reported fundamental frequencies of Weddell seal vocalizations. Bars:
Mean or maximum of highest-frequency fundamentals reported in the cited studies.
Lines: Upper limit of recording/analysis equipment frequency response (FR). Ultrasonic
fundamental frequencies (=20 kHz) have been presented in two prior studies (in a trill
and a sequence of chirps; Russell et al., 2016; Schevill and Watkins, 1971); Most others
reported sounds to =15 kHz despite higher equipment capabilities. Two studies
(asterisks) did not report maximum frequencies of vocalizations. Details of each study are
available in supplementary material online'. The present study (not shown) is based on
recordings with an upper FR limit of 256 kHz.
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Weddell seal sonic underwater vocalizations are thought to be used primarily for
mediating social interactions (Russell et al., 2016; Terhune, 2019). Social functions are
supported given that the seals respond with specific vocalizations when presented with
playbacks of their recorded calls (Thomas et al., 1983; Watkins and Schevill, 1968), by
behavioral observations (Evans et al., 2004; Russell et al., 2016), and since most
vocalizations appear to occur when the seals are near the surface (Evans et al., 2004;

Moors and Terhune, 2005).

B. Ultrasonic underwater vocalizations

Weddell seals are typically not thought to produce vocalizations having ultrasonic
fundamental frequencies (FO = 20 kHz, above the human hearing range; Terhune,
2019; Thomas and Kuechle, 1982), though studies could have been biased by sampling
limitations. Thomas and Kuechle (1982) stated they “found no vocalizations above 20
kHz” and therefore recorded data at < 19 kHz. Likewise, the majority of other studies
used an effective upper frequency response (FR) of 15 to 20 kHz (see Fig. 1). However,
two studies have presented limited evidence of ultrasonic vocalizations in Weddell
seals: Schevill and Watkins (1971) reported a series of short-duration descending chirps
with fundamentals to < 30 kHz, and Russell et al. (2016) recorded a trill-type
vocalization reaching to 22 kHz. These findings are not widely recognized and it
remains unknown whether Weddell seals regularly use vocalizations originating at
ultrasonic frequencies.

Other than the two recordings from Weddell seals, there exists only scant

evidence for pinniped (seals, eared seals and walrus) vocalizations having fundamental
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frequencies = 20 kHz. In one study of a single captive leopard seal (Hydrurga leptonyx),
ultrasonic frequency-modulated (FM) sweeps, buzzes and pulses were recorded
underwater (max. frequency 164 kHz, peak energy typically from 50 to 60 kHz; Awbrey
et al., 2004; Thomas and Awbrey, 1983). However, field studies have only reported
leopard seal vocalizations in the sonic range (< 6 kHz; Erbe et al., 2017). Several other
seal species may produce broad-bandwidth roars, hisses, moans and short-duration
clicks with some energy = 20 kHz (reviewed in Southall et al., 2019). Yet, these appear
to be based on sonic-range fundamentals (< 20 kHz). Vocalizations with ultrasonic
fundamental frequencies have not been reported from eared seals (f. Otariidae) or
walrus (f. Odobenidae; reviewed in Southall et al., 2019).

Ultrasonic vocalizations are, however, produced by a number of aquatic and
terrestrial animals for communication and other functions (Sales and Pye, 1974).
Perhaps best known are those used in the highly-evolved echolocation (active biosonar)
abilities of toothed whales (odontocetes) and bats (chiropterans). In these, the
reflections of their pulsatile ultrasonic vocalizations permit obstacle avoidance and
locating prey with high accuracy, given that short durations and increased sound
frequency improve precision (Au, 1993). A primary indicator that vocalizations are being
used for echolocation is the emission of a series of pulsed sounds (“click trains”) whose
interval varies directly as a function of distance to a target in order to avoid overlapping
emissions and returns (Au, 1993).

Longer-duration ultrasonic vocalizations are also known from some toothed

whales, in which the functions are typically attributed to intraspecific communication.
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Several dolphins produce whistles whose fundamental frequencies extend into the
ultrasonic range (e.g., to 25, 27 and 34 kHz for Stenella longirostris, S. frontalis, and
Lagenorhynchus albirostris, respectively; Lammers et al., 2003; Rasmussen and Miller,
2002). In addition, some killer whales (Orcinus orca) produce high-frequency sweeping
whistles with fundamentals to 75 kHz and durations of ten to a few-hundred ms, the
functions of which are unknown (e.g., Samarra et al., 2010).

The present study characterizes a variety of previously undescribed, yet
commonly occurring, ultrasonic underwater vocalizations produced by Weddell seals
identified in a long-term dataset of high-frequency recordings (to 256 kHz FR) from

McMurdo Sound, Antarctica.

Il. METHODS

A. Data collection

Year-round digital recordings of Weddell seal underwater vocalizations were
collected by passive acoustic monitoring over two years (Nov. 2017 — Nov. 2019) in
southeastern McMurdo Sound, Ross Sea, Antarctica (Fig. 2). The recording equipment
was integrated into the shore-cabled McMurdo Oceanographic Observatory (MOO)
mooring, which also included a self-cleaning pan-tilt-zoom camera (Octopus, View into
the Blue, Boulder, CO) and ocean condition sensors (CTD; SBE37-SMP, SeaBird
Electronics, Bellevue, WA). The mooring was installed by divers at a bottom depth of 21
m at the base of the seaward terminus of the McMurdo Station seawater intake jetty (S

77.8510°, E 166.6645°). Recordings were collected continuously throughout the
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deployment (> 90% coverage, with occasional short gaps from network and power
outages, and software bugs), yet the present study focuses on only the first 13 months

of the dataset (Nov. 2017 — Nov. 2018).

166°E
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Fig. 2. Geographic location, bathymetry, and local distribution of seals. (A) The
hydrophone was deployed as part of the McMurdo Oceanographic Observatory (MOO)
mooring at 21 m deep in southeastern McMurdo Sound, Antarctica. Excepting January to
early April 2018 when the ship’s channel (SC) was open, thick shore-fast sea ice likely
precluded most penguins and marine mammals other than Weddell seals from diving
within 10 to 30 km of the recording site (see Methods, Results). (B) Detail of MOO
environs. Weddell seals are common in Erebus Bay, where they aggregate around
predictable access holes in the sea ice (stars). Bathymetry (m) is estimated based on
relatively few data points (Davey and Nitsche, 2013), though it largely matches field
observations (PAC, personal observations). McM, McMurdo Station (USA); SB, Scott
Base (New Zealand).

The calibrated broadband omnidirectional digital hydrophone (icListen HF-SB2-
ETH, Ocean Sonics, Nova Scotia, Canada; ethernet-connected, GeoSpectrum M24-205
transducer ; 118 dB dynamic range, sensitivity -170.8 + 3.4 dBV re 1 yPa for 10 Hz to
200 kHz) was mounted vertically on a stainless-steel strut-channel attached to a 150-kg
concrete block, holding the transducer 70 cm off the mud/gravel seabed. Data were

recorded at 512 kSs™! (256 kHz Nyquist frequency), 24 bits and written as 10-min WAV
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files (c. 900 MB each, with UTC-based timestamps) to a storage array in a heated
structure on shore, then losslessly compressed using the Free Lossless Audio Codec
(FLAC, Xiph.org Foundation). A software pipeline computed three audio spectrograms
(upper limits of 2.5, 25 and 256 kHz) per file and combined those into timestamped

PNG images (see example in supplementary material online’).

B. Seal distribution, environmental factors and interfering noises

Erebus Bay in southeastern McMurdo Sound (Fig. 2) is one of the most populous
haul-out areas for Weddell seals, annually hosting up to 2000 individuals (Smith, 1965;
Testa and Siniff, 1987). The largest concentrations of individuals occur at major sea ice
breeding sites in austral spring (Oct. — Dec.), 10 to 20 km north of the MOO, where over
400 pups are born in most years (Ainley et al., 2015; Cameron et al., 2007). Weddell
seals are also common around the southern end of Hut Point Peninsula (Stirling, 1969)
in the MOQ’s immediate vicinity. From October to December in 2017 and 2018 (when
project personnel were present), daily maxima of 5 to 30 Weddell seals were observed
hauled out on the sea ice near crack features emanating from Hut Point, < 1 km north of
the MOO, with smaller aggregations near the tip of Cape Armitage, 1 km to the south.
Weddell seals occasionally hauled out at cracks < 100 m from the MOO. No other
species of marine mammals were noted during these observations. Following the
breeding season (Oct. — Dec.), the seals disperse more widely throughout McMurdo
Sound and northward into the Ross Sea (Goetz, 2015), with only 250 individuals

estimated to remain throughout the austral winter (Smith, 1965).



187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

During the majority of the project’s first year, southern McMurdo Sound was
covered with 2 to 3 m of solid shore-fast sea ice and the water column was essentially
isothermal (—1.9°C; slight upward refraction of sound). In 2017-18 the natural fast-ice
edge was from 30 (Nov. 2017 and Nov. 2018) to 10 km (Mar. 2018) from the MOO
(NASA EOSDIS Worldview, https://worldview.earthdata.nasa.gov; Fig. 2A). In January
2018 an icebreaker created an open water channel from the ice edge to about 0.5 km
north of the MOO, and near-surface temperatures rose slightly (max. —0.4°C recorded
by the MOO at 21 m in late Jan. 2018) before the channel refroze by late March or early
April.

Weddell seals are the only mammals that routinely inhabit and dive beneath the
thick, shore-fast sea ice of southern McMurdo Sound (see Results). Other potentially
soniferous marine mammals and diving birds may transiently visit the area, but typically
only when open water exists in the austral summer (Jan. — April; Kim et al., 2018;
Thomas et al., 1987; Thomas and Kuechle, 1982). These most commonly include
leopard and crabeater seals (Lobodon carcinophaga), killer and Antarctic minke
(Balaenoptera bonaerensis) whales, and Adelie (Pygoscelis adeliae) and emperor
(Aptenodytes forsteri) penguins (PAC personal observations). Nevertheless, aside from
the sounds attributed to Weddell seals, only those of killer whales (Wellard et al., 2020)
were noted in the year-round recordings, and on only about five total days throughout
February 2018. Some penguin species may produce brief sounds underwater at <7
kHz (Thiebault, 2019). However, the nearest rookery, of Adelie penguins at Cape

Royds, is 35 km north of the recording site, and no similar vocalizations were noted in

10
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the dataset. Various notothenioid fishes (= 30 cm) were continuously present at the
recording site, but no sounds could be attributed to them.

Natural and anthropogenic interfering sounds were relatively common throughout
the dataset. Identifiable sounds included irregular low-intensity, broad-spectrum clicks
and cracks from the sea ice cover, occasional wind noise, a 1.5-s gurgle with
components to 200 kHz every 90 s from the CTD’s pump, a broad-spectrum mechanical
sound for 3 min every 4 h from the camera’s cleaning system, low-intensity whines (c.
18, 58, 83 and 130 kHz) thought to be from the station seawater pumps (> 100 m away,
within the jetty’s well casing) and intermittent noises from tracked-vehicles and
helicopters (Sep. — Feb.), SCUBA divers (Oct. — Dec.), and ships (Jan.). Given the
overlying ice cover, overall background noise levels from sources other than Weddell
seals and the observatory itself were generally very low. Aside from a thin layer of

diatoms, neither biofouling nor anchor ice were observed on the hydrophone.

C. Data analysis

Ultrasonic vocalizations of Weddell seals were identified by browsing archived
spectrogram images and by watching the real-time spectrogram display at McMurdo
Station or remotely over the internet. Signals of interest were further investigated using
sound analysis software. In this way, a search set of discrete sounds was compiled from
a relatively exhaustive review of an estimated 30% of the 13-month dataset. Archived
spectrograms covering at least 2500 h (15000 images) were visually inspected.

Vocalization types that occurred exclusively when the ship’s channel was open

(Jan. — early Apr. 2018) were excluded from analyses. As such, novel sounds from killer
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whales or other species in the nearby open water would not be attributed to Weddell
seals. All broad-spectrum click sounds were excluded as many evidently originated from
sea ice movements and, lacking predictable repetition rates or frequency
characteristics, none could be attributed to the seals. Broad-spectrum “jaw claps” (to

> 200 kHz) produced by Weddell seals (Thomas and Kuechle, 1982) were excluded
since they are not vocalizations per se.

Ultrasonic vocalizations from the search set were assigned to call types based on
whether they consistently occurred alone or, for multi-element calls, in series with one
or more other sounds in recurrent stereotyped patterns (Moors and Terhune, 2004).
Archived spectrogram images from select days throughout the 13-month dataset were
then visually browsed in order to collect multiple examples of each call type at levels
substantially above background noise. To attempt to reduce bias towards individual

seals, calls were typically chosen for analysis only if separated from their previous

occurrences by = 24 h. Call types and their elements were analyzed for frequency,

waveform and time characteristics in Raven Pro 1.5 (Center for Conservation
Bioacoustics, 2014). Analysis settings varied depending on call type and are presented
in Table I. For multi-element chirp-based calls, inter-chirp intervals were measured
between the beginnings of successive chirps. Durations of individual chirp elements
were measured for the time containing 90% of the energy in order to avoid
misinterpretation of start and stop times due to echoes or multipath transmission.

For an initial assessment of whether the usage of ultrasonic call types varied

throughout the year, their presence or absence were tabulated by calendar month over
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the 13-month dataset. Beginning at the start of each month, archived spectrograms
were visually inspected until at least one instance of each call type was found, or until
the end of the month was reached.

The proportional usage of ultrasonic calls was investigated by analyzing a single
24-h period in austral spring (Nov. 20, 2017) and one from near the winter solstice
(“midwinter”, June 19, 2018). The sampled days were chosen because they maximized
differences in solar illumination and breeding status, vocalizations occurred throughout
the entire 24-h period, and because vocal activity appeared to be broadly representative
of their respective seasons. The spring sample was in the height of the breeding season
and characterized by 24-h of continuous sunlight (sun altitudes from 8° to 32°, always
above the horizon). Conversely, the midwinter sample was likely prior to the
commencement of major breeding-oriented behaviors (Thomas and Terhune, 2009) and
was characterized by near absolute darkness (sun altitudes from —11° to —36°, always
below the horizon; crescent moon =< 1.8° above the horizon for about 5 h).

In each 24-h sample, all archived spectrograms were visually inspected, counting
occurrences of ultrasonic call types that were readily distinguishable (see example
labeled spectrogram in supplementary material online'). Sonic-range vocalizations
could not be accurately counted due to their high abundance and frequent overlap in the
spring sample. Instead, occurrence of a relatively common and easily identified sonic
vocalization was used as a proxy for overall sonic-range vocal activity. This narrowband
descending-frequency whistle (from 18 to 12 kHz over about 5 s) has been previously

attributed to Weddell seals (Thomas and Kuechle, 1982; see example in supplementary
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material online'), and is referred to herein as the “sonic standard call.” Results from one
study suggest that seasonal variation in the proportional usage of sonic descending
whistles is relatively low (32 to 38% of total sonic calls, in non-breeding and breeding
seasons, respectively; Doiron et al., 2012).

A simultaneous video and audio recording of a Weddell seal producing a
repetitive ultrasonic chirp-based call (C102, see Results) in close proximity to the MOO
permitted estimation of the source sound pressure levels (SPLs) of its elements. The
seal-hydrophone distance was estimated using the apparent size of benthic landmarks
on video together with their measured dimensions and distances (by divers with tape
measure), the known geometry of the mooring, and the estimated length of an adult
seal using a range of plausible values (2.5 to 3.3 m total length; Thomas and Terhune,
2009). Using hydrophone calibration coefficients, “inbound power” was measured in
Raven Pro for the fundamental and prominent harmonics (25 to 70, 15 to 65, and 0 to
70 kHz bands for the C102-a, C102-b and C102-c elements, respectively) over the
duration of the sounds while excluding obvious echoes. Lower and upper estimate
bounds for the source SPLs were computed using the sonar equation to account for
transmission loss (source SPL = received level + transmission loss) assuming spherical
spreading [transmission loss = 20 x log1o (distanceseal-hydrophone)] Over the range of
estimated seal-hydrophone distances (Rogers, 2014). With the seal <26 m from the
hydrophone (see Results), spherical spreading of sound could be assumed and any

frequency-dependent absorption was considered negligible (Au, 1993).
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lll. RESULTS

A. Attribution of vocalizations to Weddell seals

All ultrasonic vocalizations described herein were attributed to Weddell seals with
high confidence. For the majority of the dataset, the thick, shore-fast sea ice would
generally preclude all other marine mammals and penguins from diving within 10 to 30
km of the recording site (Fig. 2A; Kim et al., 2018; Thomas et al. 1987; Thomas and
Kuechle, 1982). This is supported by the results of comprehensive surveys of seals in
the greater Erebus Bay area, conducted about six times annually in November through
mid-December since 1969 (Rotella, 2018). In each survey during the present study
(2017 and 2018) about 1000 hauled-out Weddell seals were documented. By
comparison, there were only 3 total sightings of crabeater seals, and no other pinnipeds
or whales were observed on or diving beneath the shore-fast sea ice in areas away
from the ice edge (J.J. Rotella, personal communication). Errant Adelie and emperor
penguins occasionally wander over the ice throughout southeastern McMurdo Sound,
but they do not typically dive through the isolated holes or cracks in the shore-fast sea
ice (PAC personal observations).

With the exception of killer whale vocalizations, present only intermittently in
February 2018 when the ship’s channel was open (Jan. — Mar.), the underwater
vocalizations of Weddell seals were the only identifiable sounds of non-human
biological origin in the recordings. The novel ultrasonic vocalizations described herein
were both comparatively common and nearly always interspersed with the sonic trills,

chirps, buzzes and chugs that have been previously attributed to Weddell seals (see

15
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example spectrogram in supplementary material online'; Thomas and Kuechle, 1982;
Pahl et al., 1997). Finally, the MOQO’s underwater camera provided regular visual
confirmation of Weddell seals producing multiple sonic call types and, in one instance,
an ultrasonic call (see below). However, most vocalizing individuals were beyond the

visual range of the camera (= 300 m).

B. Call types with ultrasonic fundamental frequencies

Nine recurrent call types were identified that were composed of 17 vocal element
types whose fundamental frequencies (FO) were partially or entirely = 20 kHz (Fig. 3,
Table I; recordings available in supplementary multimedia online'). Individual elements
of multi-element calls sometimes occurred alone, though the vast majority occurred
within the presented stereotyped calls. Call types were named based on their
predominant ultrasonic elements, i.e., chirps (“C”), U-shaped whistles (“U”), relatively
constant-frequency whistles (“W”), and FM ftrills (“T”), with numbers starting at 101 to
avoid confusion with other naming systems. Distinct element types identified within
multiple-element calls were designated with lowercase letters. No clipping or other

acoustic artifacts were found that could have skewed the results.
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Fig. 3. Spectrograms of Weddell seal ultrasonic underwater vocalizations. These
recurrent, stereotyped single and multiple-element call types were based on chirp (“C”),
U-shaped (“U”), relatively constant-frequency whistle (“W”), and frequency-modulated trill
(“T”) elements having ultrasonic fundamental frequencies (=20 kHz). Distinct element
types of multi-element calls are named with lowercase letters. Some details are shown in
Fig. 4. Note different time and frequency scales between panels. Summary statistics are
presented in Fig. 5 and Table I. Presented spectrograms were computed from resampled
data (128 kSs™') using an 8192-pt. Hann window, 90% overlap, with 8192-pt DFT sample
length. Recordings are available in supplementary multimedia online’.

The fundamental frequencies of individual vocal elements spanned the ultrasonic
spectrum from 20 to 49.8 kHz (Figs. 4, 5; Table I). The highest-frequency fundamental
was found at the start of a C101-a chirp element (49.8 kHz), and the element type with
the highest mean maximum frequency was the C103-c chirp (42.7 + 3.3 kHz, mean +
SD). As shown by their center frequencies (the frequency that divides the selection into
two frequency intervals of equal energy) the most energy in all elements was focused in
the lower half of their fundamental’s frequency spectrum. Nevertheless, 11 element
types had mean fundamental center frequencies = 20 kHz, with 2 element types > 30

kHz (C101-c, U101-a). The fundamental frequencies of six elements were entirely > 21
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Fig. 4. Some details of the ultrasonic vocalizations presented in Fig. 3. The various
element types with the highest fundamental frequencies are presented as spectrograms
(top sub-panels) and waveforms (bottom). Only a portion of T101-a and the leading
whistle for T101-b are shown. Note different axis scales between panels. Presented
spectrograms were computed from 512 kSs™' data using a 256-pt. Hann window, 90%
overlap, with 4096-pt. DFT sample length. Amplitude is presented as raw instrument
voltage output (at various scales) after bandpass filtering (15 to 50 kHz) for clarity.

abc abc abcd ab
=0 &&= <T== 9
C101 C102 C103 Uito1

(6]
o

150

N
o

40

‘ ‘ 320
410
ab

o
=}
-

-

o

W
o

Frequency (kHz)
n
o

—_
o

®
©
2
=

w102

S T101
Fig. 5. Characteristics of the fundamental frequencies of Weddell seal ultrasonic
underwater call types analyzed in this study. Bars: Mean maximum and minimum
frequencies of the fundamental. Lines: Range of fundamental frequencies. White circles:
mean center frequencies. The ultrasonic range (=20 kHz) is shown with a white
background. n = 4 to 23 for each element type. Values and analysis parameters are
presented in Table I.

18



372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

Call type U101 typically presented as a repetitive series of 5 to 37 discrete
ultrasonic U-shaped whistles (U101-a) between 32.5 and 44.2 kHz (min. and max.),
followed by a rapid, sonic buzz (U101-b). Occasionally, the U-shaped elements
appeared to be merged into a continuous, irregular sinusoid.

Call types T101 and T102 were based on trills that began at = 20 kHz, i.e.,
continuous long-duration FM calls with relatively wide envelopes. T101 included two
distinct trill elements that frequently occurred sequentially and only in the presented
order, though element type T101-b also occurred alone. Element type T101-a
maintained relatively constant frequency contours over its duration, with most energy
= 20 kHz and reaching to 28.9 kHz. A lower-frequency variant of this element (< 22 kHz)
was presented by Russell et al. (2016). A low-frequency trill element often occurred
between T101-a and T101-b (visible at 21 s in Fig. 3), though its usage was sporadic
and it was not characterized. A portion of T101-b (= 12.8 kHz) appears to have been
previously described as call type T6 by Thomas and Kuechle (1982). The recordings
herein now show that this element begins as a somewhat variable descending
narrowband ultrasonic whistle (= 36.1 kHz, Fig. 4) before transitioning to a trill whose
frequency envelope descends into the sonic range as the amplitude increases. A similar
leading whistle also characterized call type T102, whose single element occurred both

independently and in a call similar to C103, where it replaced chirp element C103-b.

C. Chirp-based calls and source levels

Multiple-element chirp-based calls C101, C102 and C103 (Figs. 3, 4) recurred

regularly in the dataset. Ultrasonic chirps initiated with fundamental frequencies ranging
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from 21.3 to 44.7 kHz (mean maximums; Fig. 5, Table I) followed by rapid downward
linear or exponential FM sweeps. Chirp fundamentals descended at 1.2 to 2.0 kHz/ms
(46 to 192 octaves/s, min. and max., excluding the lower-frequency terminal elements)
with 90% of the energy contained within 3.6 to 9.2 ms (Table I).

Call types C101 and C102 each began with a unique ultrasonic chirp (C101-a,
C102-a) at the highest frequencies of the call, followed by a series of 5 to 29 similar
fully- or partially-ultrasonic chirps (C101-b, C102-b) at predictable intervals and
somewhat lower frequency contours, and terminated with the lowest-frequency chirp
(C101-c, C102-c). These two call types segregated based on small but consistent
differences in the frequency contours of their elements (Figs. 3, 4, 5 and Table I) and
by the relatively stereotyped progression of their inter-chirp time intervals (ICls; Fig. 6).
Conversely, the ICIs of call type C103 were rather variable, having a typically short first
ICI (< 1 s), and longer ICls thereafter (1 — 10 s). A fourth chirp-based call type occurred
infrequently in the dataset and was not analyzed. It was similar to C101 and C102 but
with fewer elements and seemingly consistent but much longer ICls (8 to 10 s; visible in
Supplementary Fig. 1'). Calls resembling those presented by Schevill and Watkins
(1971) were not found. No calls were observed to terminate with rapidly decreasing ICls
akin to the “terminal buzz” commonly referenced in the echolocation literature (e.g.,

DeRuiter et al., 2009).
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Fig. 6. Repetitive ultrasonic chirp-based call types (C101 and C102) segregated based
on the stereotyped progression of their inter-chirp intervals (ICls). ICl was measured as
the time interval between the onset of successive chirp elements within a series of chirps
within an individual call. Circles mark the time interval between the first and second chirp
(the start of the call), with subsequent chirps in each series shown by connected lines.
For clarity, given the characteristics of the calls, ICl number is referenced to the final ICI
(0, the end of the call). Some datapoints are hidden by overlap.

An example of call type C102 was recorded simultaneously with underwater
video observation of the source individual (likely an 18-y-old male based on
contemporaneous surface sightings, yellow tag #9410; Rotella, 2018). The vocalizing
seal was estimated to be between 18 and 26 m from the hydrophone and facing
about 90° off-axis (see video in supplementary material online'). Movements of the
seal’s head, throat and chest area coincided with the emissions of individual chirps, and
no air was observed to escape from the mouth or nostrils. Estimated source SPLs were
lower for the ultrasonic chirps (from 135 to 152.0 dB re 1 yPa-m for C102-a and
C102-b) than for the terminal sonic chirp (154 to 158 dB re 1 yPa-m, Table II).
Equivalent continuous sound level (Leq) values for all elements were essentially equal to
inbound power measurements, and background noise levels in the bandwidths used to

measure the sounds were <91 dB re 1 yPa.
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D. Temporal variation in ultrasonic calling

The ultrasonic calls of Weddell seals were common almost year-round. Based on
an assessment of presence/absence only, 8 out of the 9 ultrasonic call types were
found at least once in > 11 of the 13 analyzed months (Fig. 7A). None were recorded in
February. Overall, the prevalence of ultrasonic and sonic vocalizations appeared to be
highly correlated. Both were most common during the austral spring breeding season
(Oct. — Dec.), comparatively less frequent at other times, and rare or absent for
extended periods in austral summer (Jan. — Mar.; data not shown). A similar pattern has
been previously reported for sonic-range vocalizations at other locations (Green and
Burton, 1988; Thomas et al., 1988; van Opzeeland et al., 2010). It likely results from
seasonal changes in the abundance of seals at the recording site (Goetz, 2015; Smith
1965) and/or their propensity to vocalize. Weddell seals may also reduce their vocal
activity in summer to avoid detection by potential predators (e.g., killer whales) in

nearby open water (Thomas et al., 1987).
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Fig. 7. Monthly occurrence and seasonal variation in ultrasonic calling. (A) Presence
(black squares, = 1 occurrence) or absence (white circles) of ultrasonic call types in

each of 13 calendar months. Gray shading demarcates the breeding seasons. (B) Vocal
activity over a single 24-h period in austral spring and one in midwinter. The relative
prevalence of total ultrasonic calls compared to the sonic standard call was
approximately constant in the two samples, though vocal activity for each was about 3-
fold lower in midwinter. C103 was excluded from calculations because its detection was
unreliable in the midwinter sample (asterisks). The sonic standard call (a descending
whistle) was used as a proxy for overall sonic vocal activity. (C) Proportional ultrasonic
call type usage in the spring and midwinter samples. Bar heights for each call depict
their percentage of the total ultrasonic calls in each 24-h period, excluding counts of
C108 (hatched bar, asterisks; not counted in midwinter). Four disparate call types
occurred at similarly high proportions in spring, whereas the two similar repetitive
ultrasonic chirp-based calls dominated in midwinter. The actual call counts are
presented above the bars in (B) and (C).
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Seasonal variation in ultrasonic call activity and proportional call type usage was
assessed by counting calls over a single 24-hour period in austral spring (Nov. 20,
2017; 24-h sunlight, breeding season) and one near the winter solstice (June 19, 2018,
“midwinter”; 24-h darkness, non-breeding). Detection of call type C103 was unreliable in
the midwinter sample because of its visual similarity to the prevalent cracking sounds
from the sea ice. Thus, it was not counted in midwinter and excluded from comparative
analyses. The sonic standard call was taken as a proxy for total sonic vocal activity in
both samples (see Methods).

Using this methodology, total ultrasonic vocal activity was found to be 2.8-fold
lower in midwinter compared to spring (299 and 848 total ultrasonic calls in 24 h,
respectively, both excluding counts of C103; Fig. 7B). The midwinter decrease in total
ultrasonic calling was approximately matched by the decrease in occurrences of the
sonic standard call (3.4-fold). This may signify that the seals’ relative use of ultrasonic
VS. sonic vocalization remains relatively constant year-round.

The proportional usage of the individual ultrasonic call types varied between the
two sampled days (Fig. 7C). In the spring sample, four disparate call types (C103,
W102, T101 and T102) were most prevalent. Each accounted for between 19 and 27%
of total ultrasonic calls (full range of proportional usage, both including and excluding
counts of C103; each call averaging 8.5 to 9.5 occurrences per h). Conversely, the two
similar repetitive ultrasonic chirp-based calls (C101 and C102) were dominant in the
midwinter sample where, together, they accounted for 62% of all ultrasonic calls

(averages of 3.1 and 4.6 occurrences per h, respectively).

24



487

488

489

490

491

492

493

494

495

496

497

498

E. Harmonics

Vocalizations with both sonic and ultrasonic fundamentals exhibited harmonics
with energy regularly present above background levels to over 100 kHz and
occasionally to over 200 kHz, especially when received with high signal-to-noise ratios
(SNR =40 dB, as measured in the same 1/3 octave band as the fundamental). Some
examples are presented in Fig. 8. No clipping of high-intensity sounds was observed,
i.e., the presented harmonics are not artifacts. No emphasis on higher-order harmonics
were noted for any vocalizations, rather the fundamental frequency always contained
the most energy. When received at these high SNRs, ultrasonic chirps were
accompanied by coincident very low intensity sounds at frequencies below the

fundamental (e.g., C101-b, C102-b in Fig. 3 and at 15 to 25 ms in C103-c in Fig. 8).
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501  Fig. 8. Harmonics of sonic and ultrasonic chirp, whistle and trill elements extended to
502 >200 kHz when received with high signal-to-noise ratios. To illustrate this, the entire
503 recorded harmonic series for portions of three diverse element types are presented.
504 Power spectra (left panels, 2 kHz resolution), computed for the time segment between
505 the dashed lines in the spectrograms (right panels), are referenced to raw instrument
506 voltage. The fundamental always contained the most energy. Subharmonics below the
507 fundamental were not evident. In these examples, signal-to-noise ratios exceeded 60 dB,
508 as measured in the same 1/3 octave band as the fundamental. Presented spectrograms
509 were computed from 512 kSs™! data using a 1024-pt. Hann window, 90% overlap, with
510 2048-pt. DFT sample length.

511 IV. DISCUSSION

512 A. Ultrasonic vocalizations of Weddell seals

513 Despite years of acoustic studies on Weddell seals throughout the Antarctic, this
514  study is the first documentation of their relatively extensive and diverse ultrasonic
515 repertoire. With fundamental frequencies reaching to nearly 50 kHz, Weddell seals now

516 appear to be rivaled only by killer whales (75 kHz; Samarra et al., 2010) and possibly
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leopard seals (164 kHz; Awbrey et al., 2004; Thomas and Awbrey, 1983; if validated,
see Introduction) for the highest frequencies of tonal vocalizations produced by aquatic
mammals. In considering the presented ultrasonic call types, the present findings
increase the known Weddell seal vocal repertoire by 9 call types. Adding these to the
accounting by Terhune (2019) increases the total size of the species’ known vocal
repertoire to 59 call types, of which 17% have elements with ultrasonic center
frequencies (10 of 59, including chirps described by Schevill and Watkins, 1971). From
the previously reported lowest-frequency fundamentals (32 Hz; Terhune, 2019) to the
highest-frequency fundamental reported herein (49.8 kHz), Weddell seal vocalizations
span > 10 octaves.

While the Weddell seals’ routine use of higher frequencies was unknown, the
time-frequency contour shapes of these ultrasonic call types have been previously
described for calls at sonic frequencies (Doiron et al., 2012; Pahl et al., 1997; Thomas
and Kuechle, 1982). Similarly, the stereotyped repetition of similar elements within calls
(Moors and Terhune, 2004) and mixed-element calls (Terhune and Dell’Apa, 2006) also
occur in the sonic range. The mixing of ultrasonic and sonic elements in stereotyped
multi-element calls suggests that some sonic elements previously thought to occur

individually may have belonged to more complex calls.

B. How common are ultrasonic vocalizations?

It is likely that similar vocalizations were missed in previous recordings from
around Antarctica owing primarily to temporal biases and/or limitations of recording

equipment (e.g., Fig. 1), however other possibilities exist. Weddell seals have
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geographically distinct repertoires on various scales (e.g., Thomas and Stirling, 1983),
thus ultrasonic call usage could be unique to the McMurdo Sound population. This could
explain why most other researchers did not note ultrasonic components despite some
ability to record at the necessary frequencies. It is also conceivable that other recording
sites were more influenced by environmental or biological sounds (e.g., Klinck et al.,
2008) that precluded the detection of ultrasonic vocalizations or their attribution to seals.
It is implausible that ultrasonic vocalization constitutes a behavior learned by the local
population since the earlier recordings in McMurdo Sound (e.g., Thomas and Kuechle,
1982), given that Schevill and Watkins (1971) previously recorded a sequence of < 30
kHz chirps in the area.

It is relevant to question whether the ultrasonic vocalizations presented herein
are the product of a single individual (or a few) with an atypical repertoire, or rather
represent a more general feature of the species as a whole. The former case is unlikely
given the temporal distribution of calls over the lengthy dataset (Fig. 7A), the large local
population (Ainley et al., 2015), the diving range of the seals (5 km; Thomas and
Terhune, 2009), and that overlapping ultrasonic calls were occasionally recorded (data
not shown). The present recordings may be biased towards certain individuals over
shorter time periods (hours to weeks), and the trill-type vocalizations may be specific to
males (Oetelaar et al., 2003; Thomas and Kuechle, 1982). On the other hand, one of
the present authors (JMT) recorded trills that appeared to commence above 22 kHz (the

upper FR of the equipment) at Davis Station in 1997 (> 5000 km from McMurdo Sound).
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This suggests that ultrasonic vocalizations may be a common feature of the Weddell

seal repertoire throughout their distribution.

C. Ultrasonic sound production and reception

Exactly how seals produce their vocalizations has been the subject of some
speculation. Sonic Weddell seal underwater vocalizations occur with the mouth and
nostrils closed such that no air escapes, and they may be accompanied by pulsing or
bobbing of the head, neck, or torso (Oetelaar et al., 2003; Schevill and Watkins, 1971).
The video evidence (presented online') indicates that the same is likely true for
ultrasonic vocalizations. Seals, including Weddells, are thus thought to vocalize by
vibrating vocal folds and resonating pressure waves in contained air spaces, as in
between the larynx and the trachea (Piérard, 1969). In a response-driven system such
as this, the emitted frequency would be at least partially controlled by the properties of
the air chambers that the vibrations excite (Bradbury and Vehrencamp, 1998; Moors
and Terhune, 2005), and higher frequencies should arise from the compression of air
spaces with increasing hydrostatic pressure during dives (Falke et al., 1985; Kooyman
etal., 1970).

However, for harp (Pagophilus groenlandicus) and Weddell seal audible
vocalizations, Moors and Terhune (2005) found no relationship between vocalization
frequency and the depth of emission up to 90 m, suggesting that the characteristics of
the air spaces have minimal influence on the frequencies of emitted sounds. Likewise,
the ultrasonic elements presented herein likely do not represent sonic calls shifted to

higher frequencies because they were produced at great depth, given especially the
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presented video evidencel, the local bathymetry of the recording site (Fig. 2B), and
previous recordings of ultrasonic chirps produced near the surface (Schevill and
Watkins, 1971).

Taken together, the fundamental frequencies of the ultrasonic element types
spanned the full range from 20 to 50 kHz (Fig. 5). Weddell seals do not therefore
appear to be limited to the use of a discrete set of ultrasonic frequencies as might occur
in response-driven systems with specific resonances due to the geometry of the vocal
tract (Au and Suthers, 2014). The coincident emission of low-intensity sounds below the
frequencies of highest intensity (Figs. 3, 8) could possibly indicate that sonic-range
fundamentals (i.e., subharmonics) are selectively filtered in the vocal tract of the seals,
allowing predominantly ultrasonic overtones to escape (e.g., Hartley and Suthers,
1988). However, the spectra of the sounds do not support this conclusion (Fig. 8). It is
more likely that the low-frequency sounds arise from physical movements of the body or
displacement of air internally during vocalization. At this point, the most parsimonious
explanation for the production of ultrasonic vocalizations in Weddell seals is that, as for
those in the sonic range, they are primarily created by vibrations of the vocal folds
themselves, i.e., they are source-driven.

It appears that the ultrasonic vocalizations of Weddell seals are produced at
lower amplitude than their sonic vocalizations, given the range of estimates for the
elements of a single C102 call (135 to 152 dB re 1 yPa-m, for C102-a and C102-b vs.
153 to 193 dB re 1 yPa-m for previously described sonic vocalizations; Table II;

Thomas and Kuechle, 1982). For calls that contained both ultrasonic and sonic
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fundamental frequencies, the ultrasonic components were always received at lower
amplitude than those in the sonic range. However, the presented estimates of source
SPLs remain only a minimum bound, given the vocalizing seal was oriented
approximately 90° away from the hydrophone and their greatest sound pressure is likely
to emanate in a more-or-less wide cone (possibly to 90° wide) angled somewhat
downward from the throat area (Schevill and Watkins, 1971). For harp seal sonic
vocalizations, source SPLs apparently vary by up to 12 dB around the animal (Rossong
and Terhune, 2009), thus it is possible that on-axis source SPLs for the ultrasonic chirps
of Weddell seals could reach to over 164 dB re 1 yPa-m.

It is likely that the seals can perceive at least the fundamental frequencies of all
of their ultrasonic vocalizations presented herein. Phocids as a group have an overall
best underwater hearing range (+ 20 dB from the lowest threshold) of about 125 Hz to
50 kHz with maximum sensitivity around 12 kHz (Southall et al., 2019). While the upper
frequency limit of Weddell seal hearing has not been tested, it is unlikely that the seals
would be able to produce stereotyped vocalizations to 50 kHz that they could not hear
themselves. Although harmonics of both sonic and ultrasonic elements were detected to
over 200 kHz (Fig. 8), the Weddell seals’ auditory sensitivity is likely poor > 60 kHz,
given data for other phocids (Cunningham and Reichmuth, 2016; Kastelein et al., 2009).

Thus, the higher-order harmonics are probably undetectable to them.

D. Functions of ultrasonic vocalizations

Most known Weddell seal vocalizations are expected to be produced for

intraspecific communication purposes (e.g., Russell et al., 2016; Thomas et al., 1983),
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626 and the same may be true for those in the ultrasonic range. Schevill and Watkins (1971)
627 noted that the ultrasonic chirps they recorded were used by seals travelling between
628 access holes, perhaps a warning of their impending arrival to conspecifics at the distant
629 site. Similarly, the supplementary video! shows a seal producing ultrasonic chirp-based
630 call C102 at <20 m depth, immediately after leaving a breathing hole and with no other
631 seals in view (visible range to > 200 m). However, in the preliminary analysis herein, the
632  proportional usage of the ultrasonic call types varied substantially between periods of
633  sunlight/breeding and darkness/non-breeding (Fig. 7C). This suggests that individual
634 call types may be associated with specific behaviors that change seasonally.

635 Sound production over a larger frequency range could provide various benefits.
636  Given that higher frequencies attenuate more rapidly with distance compared to lower
637 frequencies (Au, 1993), the use of the ultrasonics could restrict communications to

638 conspecifics at short range, while also avoiding detection by distant predators such as
639 killer whales (Rogers, 2014). At present, these suppositions remain poorly supported
640 since most ultrasonic calls included lower-frequency components and were also

641  generally interspersed with sonic vocalizations.

642 The Weddell seals’ use of ultrasonic frequencies could also serve as an

643 additional communication channel in areas where the lower frequencies are cluttered
644  with the vocalizations of other species or conspecifics. Moreover, because ultrasonic
645 emissions typically have a narrower beam than those at lower frequencies (Sales and
646 Pye, 1974), their use could possibly allow communicative signals to be emitted with

647  better directionality. The relative extent to which higher frequencies and overtones are
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attenuated in received calls could also provide another metric besides intensity for

determining the distance or orientation of vocalizing conspecifics (Wartzok et al., 1992).

E. Relevance to echolocation

Previous authors have asserted that pinnipeds do not echolocate, using a
definition of the term associated only with food capture and the high-precision biosonar
of toothed whales and bats (Schusterman et al., 2000). Weddell seals may, however,
possess the characteristics necessary for at least a rudimentary form of echo-based
acoustic spatial perception (for which no standardized gradational terminology seems to
exist). As with other seal species, they likely have relatively sensitive hearing over a
wide frequency range (Southall et al., 2019), can localize sound sources (Terhune,
1974; Wartzok et al., 1992), and are now known to produce repetitive, short-duration
ultrasonic vocalizations (this study; Schevill and Watkins, 1971). Any communicative
functions of ultrasonic calls would not exclude the possibility that echo and
reverberation patterns also provide some information about the surroundings. However,
there remain substantial differences between these seals and animals with an acute
echolocating ability: seals do not possess any specialized structures for directional
emission or reception of sounds (Schusterman et al., 2000; Vater and Késsl, 2004) and
their target detection range would be limited by the lower amplitudes of their
vocalizations (> 40 dB lower than the maximum of toothed whale echolocation clicks;
Au, 1993). Moreover, the durations of the shortest ultrasonic chirps presented herein
are still comparatively long (= 3.6 ms), resulting in a ranging error of = 5.4 m given the

speed of sound in seawater (= 1500 m/s).
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Nevertheless, the echoes of the ultrasonic vocalizations emitted by Weddell
seals could conceivably provide finer-scale information on obstacles, the sealice
surface, or the water depth compared to those at lower frequencies. They might
therefore facilitate orientation and navigation, especially in dark or limited-visibility
conditions under the sea ice where egress points are limited. Notably, the proportional
usage of repetitive ultrasonic chirp-based calls (C101 and C102) appeared to be higher
in midwinter darkness compared to spring (Fig. 7C). Though only a preliminary finding,
this might lend support to their use in acoustic spatial perception. Additional studies are
needed to determine to what extent Weddell seals use their own sounds to navigate

and find prey in nature.

V. CONCLUDING REMARKS

Given that Weddell seals have long been the subjects of acoustic research, the
discovery that they routinely use a relatively diverse repertoire of ultrasonic
vocalizations reinforces the need for broad-bandwidth, long-term passive acoustic
monitoring. At present, it is unclear whether ultrasonic emissions could comprise an
important facet of the underwater vocalizations of other seals. As for Weddell seals,
many previous studies of other species used recording equipment or analyses with
relatively low upper FR. It is also possible that infrequently-used or low-intensity
ultrasonic vocalizations were simply missed, or attributed to other species. Given the
evolution of recording and analysis technologies, future researchers might consider
replicating previous studies to assess whether other seals also produce ultrasonic

vocalizations. Indeed, recording at higher frequencies could contribute to a better
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understanding of the range of ways that marine mammals employ sounds to enable

their survival in a complex underwater environment (e.g., Tyack, 1997).
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TEXTUAL FOOTNOTES

1See supplementary material and multimedia at [Staff inserts URL here] for: (1) Details
of previous Weddell seal recordings cited in Fig. 1, (2) an example of the archived
spectrogram images used for assessing call prevalence, (3) spectrograms of the “sonic
standard call”, (4) audio files of the presented calls in full resolution and (5) modified
human-audible versions, and (6) an underwater video of a vocalizing seal from which

chirp source SPLs were derived.
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TABLES

Table I. Characteristics of the fundamental frequencies of Weddell seal ultrasonic
underwater vocalizations recorded by the MOO in McMurdo Sound, Antarctica. Means +
SD are presented, with other listed values in brackets.?2

Call Element Number Max. freq. Min. freq. Center freq. Peak amplitude Duration
type type analyzed [max.] (kHz) [min.] (kHz) [range] (kHz) freq. [range] (kHz) [range]
C101® Full call 10 - - - - 16.5 £3.5s¢
[11.2-21.0]
a 10 41.6 £4.7 26.7£0.7 28,5+0.7 28.0+0.8 6.6 £ 1.7 ms'
[49.8] [25.7] [27.5 - 29.8] [26.8 - 29.0] [4.8-9.2]
b 10 37421 20.7+04 226+1.1 22313 5.8 1.1 ms'
[47.0] [19.4] [21.0 - 25.3] [21.0 - 25.8] [4.0-7.2]
c 10 21.9+1.8 4.0=+0.2 51x0.2 49=+0.1 128.6 +21.5 msf
[24.5] [3.8] [5.0 - 5.5] [4.8 - 5.0] [107.1 - 179.8]
C102v Full call 15 - - - - 8.7 +£0.6 s°
[7.8-9.5]
a 15 39.7+24 255+1.8 296 +1.3 28.7+1.8 5.9 £1.3 ms'
[42.8] [21.4] [27.3 - 31.3] [25.5 - 31.5] [4.0 - 8.8]
b 15 34.0+23 18.0+0.4 20414 19.3+0.9 4.5 0.4 ms'
[40.7] [15.8] [17.8 - 24.3] [17.5 - 24.0] [3.6 - 4.8]
c 15 21.3+29 42=+0.2 59x0.3 5.6+0.3 39.6 £ 10.1 msf
[30.0] [3.9] [5.5 - 6.5] [5.0 - 6.0] [29.6 - 63.7]
C103v Full call 12 - - - - 3.2+3.5s°
[1.2-10.7]
a 12 37.3+4A1 246+1.9 26.8+1.9 26418 6.6 £ 1.5 ms'
[44.9] [22.5] [24.5 - 30.5] [24.3 - 30.0] [4.8 - 8.8]
b 12 22.7+2.8 54x04 7.3x0.8 6.8 0.3 5.5 3.2 ms'
[28.7] [4.7] [6.3-9.0] [6.3-7.3] [3.6 - 12.0]
c 12 42.7 £3.3 31.8+15 34122 33.8+22 5.5 0.9 ms'
[48.1] [28.5] [29.3 - 37.5] [29.0 - 37.8] [4.4-6.8]
d 4 11.7x£22 0.2+0.2 0.6+0.3 0.6x0.4 66.8 + 49.5 msf
[14.0] [0.04] [0.3-1.0] [0.3-1.0] [22.4 - 110.5]
u101e Full call 20 - - - - 10.5+4.0 s¢
[5.2 - 21.4]
a 20 40.8 £1.7 34414 36.3+15 36.0+1.7 6.3+3.0s
[44.2] [32.5] [34.8 - 41.0] [33.9 - 41.5] [2.7 -11.9]
b 20 17.7 £ 3.1 5.1+0.3 6.4+0.5 59x0.5 45x£26s
[23.8] [4.6] [5.8-7.4] [5.3-7.4] [1.9-9.9]
w1014 - 6 32.0x15 28.8+0.3 29.6 +0.5 29407 1.9+03s
[34.7] [28.3] [29.2 - 30.4] [28.4 - 30.5] [1.5-2.2]
w1024 - 31 21.3+04 20.3+0.3 20.8+0.3 20.8+0.3 7.7x17s
[22.8] [19.6] [20.3 - 21.3] [20.2 - 21.3] [4.8 -10.7]
Ww103d - 5 249+0.3 19.7 £ 0.1 20.0 +0.1 20.1 £0.3 9.7x21s
[25.3] [19.5] [19.9 - 20.1] [19.8 - 20.6] [6.2-11.3]
T1014 Full call 19 - - - - 50.9 +13.9 s
[10.6 - 75.6]
a 19 26.7+1.2 17.3+0.6 21212 21.0+£1.9 143+19s
[28.9] [15.6] [19.4 - 24.1] [17.7 - 24.7] [7.3-15.6]
b 19 30.9+4.4 0.1+0.1 0.7+0.2 0.7 £0.1 28.3+10.7s
[36.1] [0.0] [0.5-1.4] [0.5-0.8] [2.4 - 52.3]
T1024 - 23 244 +£22 9.5+0.3 11.3+0.7 10.8+1.0 6.7+25s
[29.5] [9.0] [10.4 - 13.3] [10.0 - 14.7] [8.7-10.1]

aAll files were 512 kSs1, 24 bit WAV; only the fundamental frequencies of vocalizations were included in analysis selection bounds.
b Analyzed with 2048-pt Hann window, 90% overlap, 2048-pt DFT sample length = 250 Hz filter bandwidth.
¢ Analyzed with 4096-pt Hann window, 90% overlap, 4096-pt DFT sample length = 125 Hz filter bandwidth.
d Analyzed with 8192-pt Hann window, 50% overlap, 8192-pt DFT sample length = 62.5 Hz filter bandwidth.
e For multiple-element calls, full call duration was measured from the beginning of the first element to the end of the last element.
fFor chirp-type elements only, duration is the interval containing 90% of energy for 10 randomly-selected individual elements.
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905 Table Il. Estimated source sound pressure levels (SPLs) of chirps from a single type
906 C102 call, derived from a simultaneous underwater video and audio recording by the
907 MOO (estimated seal-observatory distance = 18 to 26 m).2

908
Element type Center freq.  Duration® Source SPL°
(kHz) (90%, ms) (dB re 1 yPa-m)
C102-a 29.5 6.0 137
(initial chirp; n=1) (135 to 138)
C102-b 19.7+09¢  57=+0.7¢ 144 + 10
(repetitive chirps; n=26) (142 to0 152)
C102-c 6.3 37.2 156
(terminal chirp; n=1) (154 to 158)
909 a Selection bounds included the fundamental and prominent harmonics excluding
910 obvious echoes (see Methods). Analyzing filter bandwidth 250 Hz (2048 DFT
911 length, 512 kSs-' data).
912 bTime containing 90% of the energy for individual elements.
913 ¢ At median estimated seal-hydrophone distance; range of source SPL values for
914 individual chirps given full range of distance uncertainty in parentheses; calculated
915 as inbound power plus estimated transmission loss; the seal was facing about 90°
916 off-axis.
917 d Means + SD.
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