1	FURTHER EVIDENCE THAT ANTARCTIC TOOTHFISH ARE IMPORTANT TO
2	WEDDELL SEALS
3	
4	David G. Ainley ¹ , Paul A. Cziko ² , Nadav Nur ³ , Jay J. Rotella ⁴ , Joseph T. Eastman ⁵
5	Michelle LaRue ⁶ , Ian Stirling ⁷ , Peter A. Abrams ⁸
6	
7	¹ HT. Harvey & Associates Ecological Consultants, Los Gatos, CA 95032 USA (ORCID 0000-
8	0003-4125-0076)
9	² Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA (ORCID
10	0000-0002-1712-9594)
11	³ Point Blue Conservation Science, Petaluma, CA 94954 USA (ORCID 0000-0002-3451-2640)
12	⁴ Department of Ecology, Montana State University, Bozeman, MT 59717, USA (ORCID 0000-
13	0001-7014-7524)
14	⁵ Department of Biomedical Sciences, Ohio University, Athens, Ohio 45701 USA (ORCID 0000-
15	0003-3868-261X)
16	⁶ Department of Earth Sciences, University of Minnesota, Minneapolis, MN 55455, USA; and
17	School of Earth & Environment, University of Canterbury, Christchurch 8041, New Zealand
18	(ORCID 0000-0002-3886-6059)
19	⁷ Wildlife Research Division, Department of Environment, % Department of Biological
20	Sciences, University of Alberta, Edmonton, Alberta T6G 2E9; Department of Biological Sciences
21	University of Alberta, Edmonton, Alberta T6G 2E9, Canada (ORCID 0000-0002-1610-9305)
22	8 Department of Ecology $\&$ Evolutionary Biology, University of Toronto, Toronto, Ontario M5S
23	3G5 Canada (ORCID 0000-0002-1828-326X)
24	
25	Running Head: Weddell Seals and Toothfish
26	
27	
28	

29 Abstract: Antarctic toothfish Dissostichus mawsoni and Weddell seals Leptonychotes 30 weddellii are important mesopredators in waters of the Antarctic continental shelf. 31 They compete with each other for prey, yet the seals also prey upon toothfish. Such 32 intraguild predation means that prevalence and respective demographic rates may 33 be negatively correlated, but quantification is lacking. Following a review of their natural histories, we initiate an approach to address this deficiency analyzing 34 scientific fishing catch-per-unit-effort (CPUE, 1975-2011 plus sporadic effort to 35 36 2018) in conjunction with an annual index of seal abundance in McMurdo Sound, 37 Ross Sea. We correlated annual variation in scientific CPUE to seal numbers over a 38 43-year period, 1975-2018, complementing an earlier study in the same locality 39 showing CPUE to be negatively correlated with spatial proximity to abundant seals. 40 The observed relationship—more seals, lower CPUE, while controlling for annual trends in each—indicates the importance of toothfish as a dietary item to Weddell 41 42 seals and highlights the likely importance of intra- and interspecific competition as 43 well as intraguild predation in seal-toothfish dynamics. Ultimately, it may be 44 necessary to supplement fishery management with targeted ecosystem monitoring 45 to prevent the fishery from having adverse effects on dependent species. 46 47 **Key words:** CCAMLR Ecosystem Monitoring Program, competition, McMurdo 48 Sound, Ross Sea, toothfish harvest rules, intraguild predation, precautionary catch 49 levels 50

INTRODUCTION

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

Whether and how much commercial fishing should be undertaken in the Southern Ocean around Antarctica has been a source of international debate. In contrast to many of the world's fisheries, commercial exploitation in the Southern Ocean is more tightly regulated, with catch levels and overall management overseen by the international Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Despite appreciable oversight, concerns exist about the paucity of knowledge on the natural histories of fished species, making it challenging to abide by Article II of the CAMLR Convention, which requires protection of related and dependent species through "rational use" of a given fishery resource (summarized in Brooks et al. 2018). In the Ross Sea, one of Earth's least-disturbed marine ecosystems (Halpern et al. 2008) commercial fishing for the Antarctic toothfish Dissostichus mawsoni Norman began in the 1996-97 austral summer. Based on somewhat speculative stock assessments, the management objective allows the Ross Sea stock's spawning biomass to be reduced to 50% of the pre-fishing level over a 35-year time horizon. Although the original stock size assessment in the Ross Sea region has a high level of uncertainty (summarized in Abrams et al. 2016), Parker et al. (2016) estimated that by 2014 the decrease was half-way to the management objective (i.e., at 75%) original spawning biomass c. 20 years after initiation of the fishery). The fishery targets areas where the largest fish occur because it is a highly competitive fishery with intense pressure for each vessel to attain full loads before sea ice drives them away, the ice-free season being only a few months. Whether reduction of toothfish biomass in the Ross Sea region could precipitate larger, unforeseen consequences in the ecosystem depends on the role that toothfish play as both predator and prey in the marine food web. To reduce the likelihood of deleterious effects, CCAMLR's ecosystem-based approach is supposed to take into account the role of the target species in the ecosystem, and to set catch limits based on the species' relative importance (Constable et al. 2000). Species that are believed to play a critical role in the ecosystem are managed more conservatively than species upon which higher

trophic levels are not known to depend. Whereas Antarctic krill Euphausia superba

Dana may only be depleted to 75% of the pre-fishery spawning biomass, because many species demonstrably subsist on it, the CCAMLR decision rule for toothfish is much less conservative, based on the supposition, summarized by Constable *et al*. (2000: 785), that:

"... Toothfish, as a large predator, is unlikely to constitute much of the diet of seals and birds (SC-CAMLR, 1997). Therefore, the species is considered in a single-species context and the second criterion [spawning biomass reduction] is applied at the 50% level rather than at the 75% level..."

Herein we present information that questions the justification for CCAMLR's decision rule with respect to levels of take of Antarctic toothfish in the Ross Sea, relative to its ecological importance. Our evidence, in addition to that offered in other studies (e.g., Testa *et al.* 1985, Salas *et al.* 2017, Lauriano *et al.* 2020), confirms that toothfish are being preyed upon by Weddell seals *Leptonychotes weddellii* Lesson, and other predators in appreciable numbers, contrary to CCAMLR's supposition. Our finding indicates that toothfish may indeed be ecologically important prey, especially for the Weddell seal, an iconic, endemic and key component of the high latitude Southern Ocean (Laws 1977; Fig. 1). Although we do not currently have data to directly estimate the impact of reduced toothfish abundance on seal population size, such an effect would be predicted by the food web models that have been used to estimate ecosystem-level effects in the Antarctic (e.g., Pinkerton & Bradford-Grieve 2014).

Antarctic toothfish

The Antarctic toothfish is the largest member of the largely endemic Antarctic fish suborder Notothenioidei, reaching 210 cm total length (TL), 120 kg weight, achieving maturity at 17 years, and living >39 years of age (Hanchet *et al.* 2015). The species' natural history and ecology were known in general terms before commercial extraction began (e.g., Kock 1992, Eastman 1993). Additional details have been provided by subsequent work (summarized in Hanchet *et al.* 2015;

Ashford et al. 2017), but major gaps remain. Antarctic toothfish principally occur south of the Southern Boundary of the Antarctic Circumpolar Current, apparently inhabiting nearly all continental shelf and slope waters around the Antarctic continent, where they occur both in the water column and in demersal habitats. As large predators and opportunistic scavengers, they consume a wide variety of smaller fishes and invertebrates. Lacking a swim bladder, juveniles and smaller subadults are negatively buoyant and apparently occur primarily near or on the substrate. By about 100 cm TL the accumulation of lipids in muscle and subcutaneous tissue facilitates neutral buoyancy, allowing the fish to move higher in the water column where they exploit pelagic prey such as the Antarctic silverfish Pleuragramma antarcticum Boulenger (Near et al. 2003). As discerned from the benthic long-line fishery in the Ross Sea, concentrations of the oldest, largest toothfish are found in the deeper troughs and over the continental slope, with smaller fish, i.e. the juveniles, subadults, and pre-spawning adults, more abundant on the banks of the continental shelf. The species spawns in association with the sea mounts north of the Ross Sea; tagging has revealed movements, including some fish tagged in southeast McMurdo Sound, that have resulted in recapture in the northern Ross Sea region (Ainley et al. 2013, Hanchet et al. 2015; see below).

Although an appreciable amount is known about spatial variation in abundance among juvenile, subadult and adult toothfish in the Ross Sea (Hanchet *et al.* 2015, Ashford *et al.* 2017), virtually nothing is known about temporal variation in the species' prevalence among any size/age class at any one location. Only one long-term time series exists, with catch-per-unit-effort (CPUE) determined over 39 years in southeastern McMurdo Sound, Ross Sea (by A. DeVries in Ainley *et al.* 2013). In that study — fishing with baited hooks spaced along a vertical set line under extensive shore-fast sea ice at about the same location in austral spring each year, over bottom depths <500 m (range 414-495 m; Fig. 2) — sizes of fish (subadults and adults) and CPUE remained relatively steady from 1972 until 1997 (or at least not trending downward). After that period, both subadults and adults exhibited a steep decrease continuing to the end of the annual scientific fishing effort in 2011 (see Figure 8 in Ainley *et al.* 2013). That study's authors hypothesized that the apparent

decrease in toothfish prevalence in southern McMurdo Sound, at the southern periphery of the species' range, was due to increasing effects of the toothfish fishery in the northern Ross Sea after its initiation in 1996-97. Until 2009, the commercial fishery operated close to McMurdo Sound. Subsequent collections within the vicinity of the historic McMurdo Sound scientific fishing locality by other researchers revealed a continuation of the trend of low catch rate at least into 2017 (Parker *et al.* 2016; PAC, C. Cheng & A. DeVries, unpublished data; see below).

Likewise, little is known about toothfish behavior, or spatio-temporal variability in toothfish abundance over the Ross Sea shelf; the limited knowledge about both stems from incidental observations from the commercial fishery, the long-term study in McMurdo Sound by A. DeVries (see above), and in-situ observation by seal-mounted cameras and drop/towed benthic cameras (summarized in Ainley et al. 2013, Hanchet et al. 2015). These observations, revealed that although toothfish occur regularly on or near the sea floor, larger, neutrally-buoyant fish also occur throughout the water column, perhaps especially under heavy ice cover. For example, the McMurdo Sound time-series effort targeted primarily fish within c. 100 m of the bottom as indicated by the regularity at which they were caught there, but toothfish were also caught near the surface. The shallower occurrence of large toothfish was further confirmed by video cameras placed on Weddell seals (Fuiman et al. 2002, Davis et al. 2013), in which seals encountered toothfish, under the ice, just 12 m from the surface. Both the toothfish and their main prey in the water column, the lipid-rich and neutrally buoyant Antarctic silverfish (Eastman 1985), appear to occur higher in the water column when light level is lowest (Fuiman et al. 2002). On the basis of micronekton net surveys along the Antarctic Peninsula, Robison (2003) concluded that silverfish employed such diel vertical migration to reduce the risk of predation by visual predators, such as seals and birds. Unfortunately, little is known about the spatial abundance of subadult and adult silverfish in the Ross Sea, though a good deal is known of smaller/younger classes (e.g., Vacchi et al. 2017).

173174

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

175 The Weddell seal is a large and relatively abundant true seal with a circumpolar 176 Antarctic distribution (Laws 1970, Siniff et al. 2008). They are frequently observed, 177 as they favor shore-fast ice near many research bases, where they find and maintain 178 access holes, give birth to young on the ice, and were taken as food by several 179 historic expeditions (LaRue et al. 2019, O'Connor 2019). The species is known to 180 prey on a diversity of fishes and invertebrates, including toothfish (Burns et al. 181 1998, Siniff & Ainley 2009, Goetz et al. 2016). 182 In contrast to the paucity of information on Antarctic toothfish, the Weddell 183 seal is one of the better-known pinnipeds – and Antarctic vertebrates, in general – 184 owing to 50+ years of research on its behavior, physiology, demography and 185 ecology, primarily undertaken in southern McMurdo Sound (e.g., Stirling 1969a, 186 Cameron & Siniff 2004, Proffitt et al. 2007, Rotella et al. 2016). Erebus Bay, in 187 southeastern McMurdo Sound, is one of the species' most populous breeding 188 haulouts anywhere in Antarctica (LaRue et al. 2019). There, the number of pups 189 produced annually has been up to 760, all of which have been tagged for the past 40 190 years (Ainley et al. 2015). In the austral spring (late September into October), 191 female Weddell seals haul out to pup near breathing holes, self-maintained by 192 abrading the landfast sea ice at persistent, predictable cracks; their procumbent 193 canine and lateral incisors have evolved to facilitate maintenance of such holes, 194 particularly in seasonally isolated locations such as Erebus Bay (Stirling 1969b; Figs. 195 2, 3). Pups grow quickly, and most are weaned in December. Following weaning, 196 adults and juveniles disperse more widely throughout McMurdo Sound and vicinity 197 (e.g., Testa 1994, Goetz 2015), the breeders having to undergo a period of 198 hyperphagia to recover the 40% of mass lost during breeding (discussed in Salas et 199 al. 2017). During winter, at least during the 1960s, 200-300 seals remain in 200 McMurdo Sound, compared to >2500 during those years in spring (Smith 1965). 201 Though Weddell seals have occurred in large numbers in McMurdo Sound for 202 as long as humans have monitored them (Smith 1965; Stirling 1969a, 1971), the 203 number of seals has fluctuated over time (Chambert et al. 2012, Ainley et al. 2015).

Variation in seal numbers is likely due in part to inter-annual and longer-term

variation in local and regional environmental conditions (Siniff et al. 2008), which

204

could affect the proportion of seals pupping, breeding success rates and recruitment into the population (Proffitt *et al.* 2007, Rotella *et al.* 2016). However, superimposed on this natural variation in the seal population has been the toll from the human take of Weddell seals (over 2000), used as food for sled dogs at a local research station. The human-caused reduction in the seal population occurred over several decades, 1966-1984 (Stirling 1971, Ainley *et al.* 2015), and according to Testa & Siniff (1987) led to an initial increase in production of pups. Numbers then stabilized at a lower level, but by the late 1990s a dramatic increase in WESE numbers was well underway (Ainley *et al.* 2015; Fig. 4).

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

206

207

208

209

210

211

212

213

214

The relationship between Antarctic Toothfish and Weddell Seals

The relationship between Antarctic toothfish and the Weddell seal is complex. Both are large mesopredators that compete for the same fish prey, principally Antarctic silverfish, when both predators are high in the water column (cf. Eastman 1985, Ainley & Siniff 2009, Salas et al. 2017). Silverfish, like toothfish, are one of the few notothenioids that occur in the water column (Eastman 1993). On the other hand, as indicated by repeated observations, the seals also prey on toothfish, with apparently no limit to the size/age class of toothfish that the seal consumes, other than exclusion of eggs, larvae and juveniles, which occur far off the shelf in the Ross Gyre where Weddell seals are absent (cf. Hanchet et al. 2015, Goetz 2015). Indeed, seals take even very large toothfish, perhaps more than half the length of the predatory seal (Fig. 1). Their relationship as interspecific competitor and preypredator is termed "intraguild predation" (Polis et al. 1989), a food web module that has received considerable attention and for which changes in the abundance of any of the players can lead to non-linear consequences (Holt & Polis 1997, Abrams & Fung 2010; Fig. 5). While toothfish can be critically important to the seals in terms of energy provided (Salas et al. 2017), toothfish removal by seals potentially increases Antarctic silverfish prevalence, providing an offsetting positive effect (see below). Commercial fishing for toothfish decreases the supply of one of the seals' primary foods, especially as the largest fish are targeted by the fishery (see above; Salas et al. 2017). However, in the longer term, the fishery may increase or decrease

the seal population - depending on the population response of silverfish, and the ability of silverfish to substitute for toothfish in the seal's diet. Concurrently, the dynamics of the seal population may produce unexpected changes in the toothfish population. The theoretical work on intraguild predation referenced above suggests that currently unknown details of the ecology of toothfish, seals and silverfish are required to predict the direction of response of any of the species to continued commercial exploitation of toothfish. Further extending this intraguild food web scenario, killer whales *Orcinus orca* L. prey on both the toothfish and the seal, as well as perhaps the silverfish (reviewed in Pitman *et al.* 2018, and also Lauriano *et al.* 2020; Fig. 5).

There has, however, been limited quantification of the importance of toothfish and silverfish in the diet and population dynamics of the seals. To regain condition following breeding. Weddell seals prey on both silverfish and toothfish because of their high energy density, especially so for toothfish (Salas et al. 2017). While ample evidence exists for the extent of seal predation on silverfish, given vertebrae and otoliths found in scats (e.g., Testa et al. 1985, Burns et al. 1998), only indirect evidence is available on the contribution of toothfish in the seal diet. This is because the seals eat only the lipid-rich trunk musculature (summarized in Ainley & Siniff 2009) leaving no evidence of predation in the scat. However, a number of observations in McMurdo Sound indicate the regular occurrence of large toothfish in the seal's diet during spring-summer, including recordings by seal-mounted cameras of seals pursuing toothfish and regular observations of seals consuming or caching captured toothfish at cracks or holes in the sea ice (e.g., summarized in Ainley & Siniff 2009, Kooyman 2013; Fig. 1). Recent stable isotope analysis (SIA) of McMurdo Sound Weddell seals revealed high δ N15 values for some individuals, which also indicates consumption of toothfish (Goetz et al. 2016). The latter study also indicated the high importance of silverfish to the seal diet.

Additional lines of evidence indicate that toothfish are an important food source for Weddell seals in the Ross Sea. First, at isolated holes or cracks away from Erebus Bay, seals have been observed to take $\sim 70~\rm kg$ of toothfish/d, which would equate to an average of 0.8-1.2 large toothfish/d (Ponganis & Stockard 2007 and

references therein; Fig. 1). Second, in a study designed to fish a grid of locations in southeastern McMurdo Sound using a vertical set line during October-December, Testa *et al.* (1985) found that the CPUE of toothfish decreased as a function of distance from a populous seal haulout in Erebus Bay (Fig. 2); a similar finding was reported for silverfish CPUE. Third, both Testa *et al.* (1985) and Ainley *et al.* (2013) further noted that, within a given spring-summer, scientific CPUE of toothfish in December decreases compared to October-November. They hypothesized that this pattern could be a result of seal predation, following the spatial expansion of the seal population throughout McMurdo Sound in late November upon completion of pupping/breeding in Erebus Bay (Smith 1965).

Questions addressed in the present study

Assuming that Weddell seals prey extensively on toothfish, one would expect, as a follow-up to Testa et al. (1985), the prevalence of toothfish in the water column to show a negative correlation with the number of breeding adult seals at a local scale. This should be increasingly evident in recent years: Testa et al. (1985) found no effect of bottom depth at the fishing site on CPUE, whereas in recent years toothfish CPUE is very low at locations of shallow depths (cf. Parker et al. 2016, Ainley et al. 2016). Thus, the volume of ocean habitat in which WESE can find toothfish appears to have become more limited, unless seals increase their foraging effort, i.e., dive deeper (Beltran et al. 2017). Variation in toothfish prevalence in southeastern McMurdo Sound as indexed by scientific CPUE could thus result from 1) inter- and intra-annual differences in local conditions (e.g., favorability of sea ice conditions/cracks in the sea ice near deeper toothfish habitat) that restrict or enable seal dispersion throughout the Sound; and/or 2) variation in the absolute numbers of fish and/or adult seals in the Erebus Bay population, which may vary due to natural fluctuations (e.g., in long-term breeding success), or anthropogenic influences (e.g., recovery from human take or climate change). With more seals, there is greater intraspecific competition for toothfish, which is manifested in the reduction in scientific CPUE. Competition can be in the form of consumption, i.e. seals removing fish, or interference, i.e. seal behavior causing fish to move away

from seal foraging habitat. No information is currently available that can determine which phenomenon is at play.

In this paper, observations of a short-term, seasonal event in austral spring 2018 provided the inspiration to re-analyze the long-term toothfish catch data from a new perspective. On surveys conducted 3-6 December 2018 (hike around Observation Hill forming Cape Armitage; Fig. 3), an unexpectedly low number of seals were hauled out - a stretch of coast closest to the scientific fishing sites (<3 km. Figs. 2, 3) and along which Weddell seals are often observed (Smith 1965, Stirling 1971, Ainley et al. 2015, LaRue et al. 2019). The low numbers of seals observed (8 seals) vs more typical, e.g., 23 and 24 seals on similar dates in 2016 and 2017 (confirmed by satellite count) ostensibly occurred due to the "tightness" of the sea ice cracks in 2018 (A. DeVries, PAC & IJR, pers. obs.; 'tightness' means that many of the usual cracks were narrow or closed). Note that high counts around the Cape in 2016 and 2017 are similar to those in December early in the period of seal exploitation, e.g., 31-32 seals in 1966-67 (IS, unpubl. data). Such tight crack conditions have occurred at times in the past, e.g., in 2015 (n = 5 seals); see below, also Siniff et al. 2008). As one would expect if seals substantially prey upon toothfish within range of their local haulout area, the scientific CPUE for toothfish in the vicinity should be affected annually: with lots of seals, there should be low catch, and vice versa.

Based on this line of reasoning, we hypothesized that the high CPUE during the earlier portion of the 39-year time series (1975 onward; documented in Ainley et al. 2013) could have been an effect of a decreased abundance of seals in the southern Sound owing to their take for dog food (Ainley et al. 2015). The subsequent increase in the number of Weddell seals in southeastern McMurdo Sound, as indicated by pup counts in Erebus Bay (there being no Cape Armitage time series), could be a significant factor contributing to the decrease in CPUE since the late 1990s (see Ainley et al. 2013). If true, an inverse relationship between seal and toothfish abundance would substantiate the view that seals are important predators of toothfish and that toothfish may play an important role in the seals' diet (Goetz et al. 2016, Salas et al. 2017).

METHODS

To determine the correlation between toothfish and seal abundance we compared the annual toothfish CPUE (toothfish/10 hooks/session; data in Ainley *et al.* 2013: their Figure 8, and additional, new data presented here) and a seal abundance index based on the annual total number of pups produced in Erebus Bay, located to the north, adjacent to the fishing site (Ainley *et al.* 2015; JJR, unpubl. data; Figs. 2, 4). While the scientific fishing time series began in 1972, we could not use the first three years of catch data owing to insufficient detail on effort (Ainley *et al.* 2013), and thus, our analysis extends from 1975 to 2018. In regard to the 2014 CPUE detailed in Parker *et al.* (2016), we did not include their data in our analysis because their fishing was conducted at depths substantially shallower and deeper than was the case during the 1975-2011 time series. Because fishing in 2012, 2017, and 2018 was conducted at comparable locations and depth compared to the 1975-2011 time series, we included those three years (see below).

To assess the association between toothfish and seal abundance, we analyzed variation in the CPUE index in relation to variation in the pup index; all analyses used Stata 16 (StataCorp. 2019). Each index was scaled to vary from 0 to 1, with 1 corresponding to the maximum value observed (see above). Because the data constitute a time series, we used the Breusch-Godfrey test to test for autocorrelation of residuals. If present, we then analyzed the relationship with the Prais-Winsten procedure, which allows for a first-order autoregression and provides estimates of the first-order autoregression correlation coefficient (ρ). We used the Akaike Information Criterion to determine whether higher order terms should be included or whether log-transformation should be applied to either variable (pup index or toothfish CPUE). To exclude the possibility that the observed association between the seal pup index and toothfish CPUE simply reflects confounding due to linear trends in year for the two variables (i.e., CPUE declining with year, the pup index increasing with year), we analyzed CPUE using the Prais-Winsten procedure, with pup index and year as predictor variables. This allowed us to analyze CPUE in relation to

number of pups, while controlling for year. Once we established a "final model," we used the sktest (Skewness/Kurtosis test for normality) to test whether model residuals were normally distributed to conform with assumptions of the Prais-Winsten procedure.

RESULTS

Seal numbers showed distinct trends over the 55 year time-series. Early in the census period, during 1963-1975, the seal abundance index was >0.60 for 62% of the years (8/13 years); during 1976-2006 it was >0.60 for only 13% of years (4/31); and most recently, 2007-2018, it has been >0.60 during 89% of years (8/9). In other words, by the late 2010s, the Erebus Bay Weddell seal breeding population was approximating the 1960s numbers (Fig. 4). An increase in the seal index was especially apparent during 1997-2000. Thereafter, growth was generally upward, but highly variable such as during the severe reduction that occurred during the B-15 iceberg episode, 2001-05, when the fast ice in Erebus Bay was unable to break out as usual and so became multi-year, leading to fewer negotiable cracks for air/water access by the seals (see Siniff et al. 2008). When the iceberg ceased blocking entrance to southern McMurdo Sound, and the fast ice again became annual (2006), the seal population recovered, indicating that the partial emigration from Erebus Bay was only temporary. Factors that might explain interannual variation in seal numbers in Erebus Bay are being analyzed independently (IIR and students, analysis underway).

Toothfish CPUE was also variable. During the early period, there were no data, but during 1975-2006, CPUE was > 0.20 in all years. Thereafter it << 0.20 in all years, nearly 0 in most. For instance, in 17 vertical sets of 15 hooks each deployed during 7 November-4 December 2012, 4 fish were caught (only two in the water column; and in 5 sets of 10 hooks during 23-30 Nov 2017, only one fish was caught (JAC, C. Cheng & A. DeVries, unpubl. data Before 1997, many dozens would be caught at this site with such an effort (as noted in Introduction). In contrast, on 23 Nov 2018, 7 toothfish were caught at this site using 11 hooks, and at a nearby site also relatively shallow (depth <500 m), 14 fish were caught in two sets of 11/12 hooks.

Toothfish CPUE was found to be negatively correlated with seal abundance for the years 1975-2018. The time series analysis indicated that seal abundance explained 51% of the variation in toothfish CPUE (Prais-Winsten test here and following: F(1, 22) = 23.25, P < 0.001, adjusted $R^2 = 0.497$), with increased seal abundance coinciding with decreased CPUE (Fig. 7). Because CPUE and the seal index were both correlated with year (P = 0.041 and P = 0.002, respectively), we fit a multivariable model that controlled for year. In this way we excluded the possibility that the observed association was solely due to confounding, i.e., that the two indices were correlated with each other simply because one index decreased over time and the other increased. Fitting a first-order autoregressive model and controlling for year, CPUE was significantly related to the seal index (P = 0.004, Table 1). This model demonstrated significant autocorrelation (ρ = +0.608; $\chi^2(1)$ = 4.83, P = 0.028). Residuals of the model were consistent with the assumption of normality (P > 0.8, Skewness-kurtosis test). By controlling for year, these results demonstrate that annual variation around the year-trend for CPUE is associated with annual variation around the year-trend for seal abundance.

We note that 2018 is an outlier: toothfish CPUE was very high. In part, this reflected reduced seal abundance compared to previous recent years (2010-2017; see above for more detailed description of the paucity of seals in 2018), but the seal abundance index clearly cannot explain all the variation seen in toothfish CPUE. We also note that the significance of the association between toothfish CPUE and seal abundance was not due to 2018: if we omit that year from the analysis then the significance of the relationship and the R² values are greater. This is the case whether or not the analysis controlled for year.

DISCUSSION

The inverse relationship between toothfish CPUE and seal abundance examined on a temporal basis complements the results of Testa *et al.* (1985) on a spatial basis, and supports the idea that seal predation leads not just to toothfish depletion in space, and not just a within-season depletion (Testa *et al.* 1985, Ainley *et al.* 2013), but variation among years as well, at least within the foraging range of areas where large

numbers of seals haul out. Erebus Bay is adjacent to the fishing site (Fig. 2). In one dive, seals can travel more than a kilometer, remaining submerged for >80 min (usual dive averages 8-12 min); their preferred foraging depth is 400-600 m, but depth changes seasonally, at times averaging as shallow as ~100 m (summarized in Goetz 2015, Beltran *et al.* 2020). Thus, it appears that in the initial years of scientific toothfish fishing, when the numbers of seals in the vicinity of the fishing site were relatively low, this led to high CPUE levels in the fishing at the relatively shallow (< 500 m), annually-used fishing site (Fig. 2). Indeed, Testa *et al.* (1985) found no effect of depth on fishing success, which is not the case in recent years (Ainley *et al.* 2016). In years with the typical number of seals present during October-November, few if any toothfish can be caught where depths are shallower than 400 m, and success has decreased from earlier years where depths are < 500 m (Ainley *et al.* 2016). Other than the recently increased number of seals during the breeding season in southeastern McMurdo Sound, the only other factor that has changed, and which could affect toothfish prevalence, is the commercial fishery.

Our results are not from a pre-planned experiment, as in the one-year Testa *et al.* (1985) study (which set the fishing lines in a grid at fixed distances from the seal colony, at various depths; see also Ashford *et al.* 2017). Still, while correlation does not demonstrate causation, no factors other than fish depletion by predation and the fishery seem likely to contribute to the complementary trends in seal and toothfish indices in McMurdo Sound. Potential alternatives are assessed below.

Alternative explanatory hypotheses. Virtually nothing is known about factors that might affect toothfish prevalence in McMurdo Sound, other than, as we demonstrate, predation (which includes the fishery). Other than level of predation from seals, annual variation in local or regional oceanographic conditions, local extraordinary events, and impacts from the toothfish fishery all may contribute to variation in toothfish abundance in McMurdo Sound. Variation in seal numbers in Erebus Bay, at least on an annual basis, has been found to correspond to the occurrence of El Niño (Cameron & Siniff 2004), during which occupation by seals of Erebus Bay is reduced (Profitt et al. 2007). That would be the most immediate consequence of changes in

453 fast ice conditions, especially the "tightness" (fewer/narrow cracks) and greater ice 454 thickness/free-board of cracks (Stirling 1969a, Siniff et al. 2008, Chambert et al. 455 2012). Higher free-board makes it more difficult for seals, especially pups, to extend 456 their bodies upward sufficiently to haul out efficiently. The tightness of cracks would 457 also require more effort by seals to maintain breathing holes. The characteristics of 458 cracks would be affected by winds (Kim et al. 2018). During the 2018 austral spring, 459 the year that inspired our analysis, El Niño was affecting climate 460 (https://ggweather.com/enso/oni.htm). In that spring, pup production was 25% lower 461 than it was on average during 2010-2017 (Fig. 4). Of the 16 years of scientific fishing 462 during 1975-1997, the four having highest CPUE were El Niño years (1976-79, and 1983; for the El Niño record, https://ggweather.com/enso/oni.htm), and all but 463 464 1976 were years of low seal abundance relative to neighboring non-El Niño years (Fig. 4). Similar to 2018, in 2015 (a major El Niño), a count of seals initially 465 466 investigated around Cape Armitage during the first days of December was very low 467 (5 seals, via satellite count; Fig. 3). 468 Other oceanographic or meteorological factors could be involved in the 469 patterns we report. For example, toothfish prevalence in southern shelf and 470 McMurdo Sound waters might be affected by the strength of current flow that could facilitate toothfish movement, through deeper troughs, from the shelf break farther 471 472 south (Ashford et al. 2017). To date, though, no data exist to quantify annual 473 variation in such a phenomenon nor link it to recurring phenomena such as El Niño. 474 On the other hand, toothfish are major predators, including even on other toothfish 475 (Eastman 1993, Petrov & Tatarnikov 2010), and thus they compete with each other 476 for resources. Toothfish patterns of occurrence may reflect the dynamic balance 477 between local production, on the one-hand, and predation and fishing, acting to 478 remove toothfish. In addition, due to density-dependent competition, toothfish may 479 depart the area, northward migration assisted by the predominant current on the 480 west side of McMurdo Sound and the Ross Sea (Ashford et al. 2017, Kim et al. 2018), 481 or by moving higher in the water column. 482 In regard to the fishery, one hypothesis offered to explain the decreasing 483 CPUE and size of toothfish caught at the DeVries fishing site after 2001 was that

availability of fish was being negatively affected by the commercial catch. Fishers targeted the largest fish including just outside of McMurdo Sound through 2008-09 (Ainley *et al.* 2013). The hypothesis stated that the vertical distribution of toothfish in the water column is dynamic, changing with density of the toothfish in order to reduce competition for silverfish as well as to reduce the possibility of encountering other toothfish, and cannibalism. This distribution can be further characterized as a "cloud" (or, better, a "ground fog") of fish (the large, neutrally buoyant ones) that rises above the bottom. Removing large fish from the population, and thus reducing the overall abundance of toothfish in Ross Sea waters, would reduce the pressure for the toothfish "cloud" to expand upward (see Ainley *et al.* 2016). At the same time, a major portion of the toothfish population and especially the negatively buoyant, smaller ones, would remain confined to the bottom and the deepest segment of the water column, competing for resources there (e.g., Parker *et al.* 2016). This would place them beyond the shallower depths sampled at the DeVries fishing site (see also Ashford *et al.* 2017).

Finally, an explanation offered by Parker *et al.* (2016), for the low abundance of toothfish in southern McMurdo Sound after the late 1990s, was blockage of toothfish movement by mega-icebergs (B-15, C-16) that were hung up on submerged pinnacles of the Beaufort Island caldera, 2001-2005, just north of McMurdo Sound. However, the depth in that area other than over the pinnacles is 1000 m, and the iceberg draft was only 250 m (Macayeal *et al.* 2008). The icebergs caused surface ice to be retained in McMurdo Sound, increasing ice age, thickness and freeboard, and decreasing cracks, resulting in very low numbers of Weddell seals (Siniff *et al.* 2008, Chambert *et al.* 2012; Fig. 4;). With so few seals, toothfish would have experienced reduced predation. Regardless, if the icebergs themselves had a negative impact on toothfish numbers, CPUE should have recovered by 2006 after the icebergs had departed, whereas in 2007-2014 it became especially low.

Parker *et al.* (2016), on the basis of their research, suggested that the fishing industry had not reduced fish prevalence in McMurdo Sound after all. They cited results of pre-recruit benthic longline surveys (data from CCAMLR reports unavailable to the public) and claimed that no change in prevalence of Ross Sea

515 bottom-dwelling fish had ever occurred (but based only on results from benthic 516 longlines). However, Parker et al. (2016) using a vertical set line had so little 517 scientific fishing success at the DeVries fishing site (fishing near the bottom above 518 324 to 505m bottom depths) during 2014 (see above) that they moved their fishing 519 site to deeper waters (> 607 m bottom) where they were ultimately successful. 520 Ainley et al. (2016), in response to the findings of Parker et al. (2016), reviewed 521 toothfish scientific catch in McMurdo Sound as a function of fishing depth, and 522 hypothesized that over the years, the growing seal population might play a major 523 role in depleting fish at shallow to increasingly greater depths. As noted, the seals 524 forage to depths as much as 600 m when pressed, although normally preferring 525 depths < 300 m (Goetz 2015, Beltran et al. 2020). Depth of 600 m is slightly 526 shallower than the bottom depth of Parker *et al.*'s most successful fishing location. 527 Results of the present analysis confirm that seal predation is negatively correlated 528 with toothfish availability at the depths where the seals forage most intensively, i.e. 529 in the upper reaches of the "cloud"; if true, this helps explain the results in Parker et 530 al. (2016, as well as Ainley et al. 2013). It is still unclear to what degree seal 531 population recovery and/or the fishery are responsible for the toothfish depletion 532 evidenced in the scientific CPUE data. 533 534 *Toothfish fishery management implications.* The evidence presented in this paper 535 identifies the Weddell seal as a strong candidate to be included in CCAMLR's 536 Ecosystem Monitoring Program (CEMP), used to manage various fisheries 537 (Constable 2002). The concentration of Weddell seals in Erebus Bay is not unique, 538 as there are other aggregations of seals distributed along the Victoria Land and 539 Marie Byrd Land coasts of the Ross Sea, identified most recently by LaRue et al. 540 (2019). One of the findings of the latter study is that Weddell seals tend to associate 541 with locations adjacent to deep water, i.e. where greater access to the upper reaches 542 of the toothfish (and silverfish) "cloud" is possible. Notably, farther north from 543 McMurdo Sound in the Ross Sea, the numbers of Weddell seals, as assessed by satellite, have decreased from levels of the 1960-70s (determined from ground 544

counts), with changes in habitat, i.e., prevalence of fast ice - critically important to

the seals - being not at all involved (Ainley *et al.* 2015). Those locations are fairly close to the major toothfish fishing ground of the continental slope, and thus the question arises as to whether there is a connection to the seal trends. In addition, there is an infusion of seals during January-February into the southern Sound from outside the Sound (Smith 1965), but in recent years, many fewer seals appear in southern McMurdo Sound to molt than in the 1960-70s (Ainley *et al.* 2015). Is the fishery involved in that trend?

While Parker et al. (2016) called for continued monitoring of toothfish along the lines of the DeVries data set (see also proposal in Ashford et al. 2017), their study in 2014 proved to be a single-year effort. On the basis of increasing evidence supporting the importance of toothfish to Weddell seals (as well as killer whales; Lauriano et al. 2002), we agree with Parker et al. (2016) that CCAMLR, through the CEMP, should be moving toward a serious effort to monitor the "...ecological relationships between harvested, dependent and related populations" (quote from CCAMLR Article II) with respect to the Ross Sea Antarctic toothfish fishery and Weddell seals. Given the presence of intraguild predation in the toothfish food web (including seals, killer whales, and silverfish), continued fishing of toothfish towards the 50% reduction management objective, without further research on the sealtoothfish relationship, has the potential to produce unexpected and unintended effects. These could even include rapid decrease in the toothfish population, which would then have far reaching implications for Ross Sea food web structure and dynamics, as well as the fishing industry itself. Setting a lower toothfish extraction objective and/or keeping track of seal numbers in the Ross Sea would bring the fishery closer to compliance with Article II of the CAMLR Convention, improving its precautionary approach to further management (cf., Croxall & Nicols 2004, Constable 2011).

572

573

574

575

576

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

Acknowledgements

Helpful comments on the manuscript were supplied by K.T. Dugger, Cassandra Brooks, Kim Goetz, Arthur L. DeVries and C.-H. Christina Cheng. Thanks to Jessica Meir and Justin Heil for use of their photos. Satellite imagery was provided by the

577	Polar Geospatial Center, University of Minnesota. Preparation of this work was			
578	principally provided by National Science Foundation grant PLR 1543541 to DGA.			
579	Weddell seal data collection was most recently supported by NSF grants ANT			
580	1141326 and 1640481 to JJR, R.A. Garrott, and D.B. Siniff, and prior NSF Grants to			
581	JJR, RAG, DBS and J.W. Testa. Acquiring toothfish catch data was most recently			
582	supported by NSF Awards OPP 1142158 (to C-HCC and ALD), OPP 1645087 (C-HCC			
583	and J. Catchen) and OPP 1644196 (PAC and ALD) and prior NSF grants to ALD and			
584	C-HCC. We thank three anonymous reviewers for their comments, which immensely			
585	helped us to improve this paper.			
586				
587	Author contributions			
588	All authors participated fully in the critical thinking, writing and re-writing that			
589	went into producing this paper.			
590				
591	Details of Data Deposit			
592	https://github.com/nadavnur/Importance_of_toothfish_to_seals			
593				
594	References			
595	ABRAMS, P.A., AINLEY, D.G., BLIGHT, L.K., DAYTON, P.K., EASTMAN, J.T. & JACQUET, J.L. 2016.			
596	Necessary elements of precautionary management: implications for the Antarctic			
597	toothfish. Fish and Fisheries, 17, 1152–1174.			
598	ABRAMS, P.A. & FUNG, S.R. 2010. Prey persistence and abundance in systems with intraguild			
599	predation and type-2 functional responses. Journal of Theoretical Biology, 264, 1033-			
600	1042.			
601	AINLEY, D.G., LARUE, M.A., STIRLING, I., STAMMERJOHN, S. & SINIFF, D.B. 2015. An apparent			
602	population decrease, or change in distribution, of Weddell seals along the Victoria Land			
603	coast. Marine Mammal Science, 31 , 1338–1361.			
604	AINLEY, D.G., NUR, N., EASTMAN, J.T., BALLARD, G., PARKINSON, C.L., EVANS, C.W. & DEVRIES, A.L.			
605	2013. Decadal trends in abundance, size and condition of Antarctic toothfish in			
606	McMurdo Sound, Antarctica, 1972–2011. Fish and Fisheries, 14, 343–363.			

607	AINLEY, D.G., BALLARD, G., EASTMAN, J.T., EVANS, C.W., NUR, N. & PARKINSON, C.L. 2016. Changed
608	prevalence, not absence explains toothfish status in McMurdo Sound. Antarctic Science,
609	29 , 165-171.
610	AINLEY, D.G. & SINIFF, D.B. 2009. The importance of Antarctic toothfish as prey of Weddell
611	Seals in the Ross Sea: a review. Antarctic Science, 21, 317–327.
612	ASHFORD, J., DINNIMAN, M. & BROOKS, C. 2017. Physical-biological interactions influencing
613	large toothfish over the Ross Sea shelf. Antarctic Science, 29, 487-494.
614	BELTRAN, R.S., KILPATRICK, A.M., BREED, G.A., ADACHI, T., TAKAHASHI, A., NAITO, Y., ROBINSON, P.W.,
615	Sмітн, Jr. W.O., Кіккнам, A.L. & Burns, J.M. 2020. Resource pulses shift the vertical
616	distribution of a Southern Ocean food chain. Proceedings of the Royal Society B, in press.
617	BELTRAN, R.S, TESTA, J.W. & BURNS, J.M. 2017. An agent-based bioenergetics model for predicting
618	impacts of environmental change on a top marine predator, the Weddell seal. Ecological
619	Modelling, 351 , 36-50.
620	BROOKS, C.M., AINLEY, D.G. ABRAMS, P.A. DAYTON, P.K., HOFMAN, R.J., JACQUET J. & SINIFF D.B. 2018.
621	Watch over Antarctic waters In a rapidly changing climate, fisheries in the Southern
622	Ocean must be managed cautiously in response to data. Nature, 158, 77-80.
623	Burns, J.M., Trumble, S.J., Castellini, M.A. & Testa, J.W. 1998. The diet of Weddell seals in
624	McMurdo Sound, Antarctica determined from scat collections and stable isotope
625	analysis. <i>Polar Biology</i> , 19 , 272–282.
626	Cameron, M.F. & Siniff, D.B. 2004. Age-specific survival, abundance, and immigration rates
627	of a Weddell seal (Leptonychotes weddellii) population in McMurdo Sound, Antarctica.
628	Canadian Journal of Zoology, 82 , 601–615.
629	Снамвект, Т., Rotella, J.J. & Garrott, R.A. 2012. Environmental extremes versus ecological
630	extremes: Impact of a massive iceberg on the population dynamics of a high-level
631	Antarctic marine predator. Proceedings of the Royal Society B, 279, 4532-4541.
632	COMISO, J.C., KWOK, R., MARTIN, S. & GORDON, A.L. 2011. Variability and trends in sea ice extent
633	and ice production in the Ross Sea. Journal of Geophysical Research, 116, C04021, doi:
634	10.1029/2010JC006391.
635	Constable, A.J. 2002. CCAMLR ecosystem monitoring and management: future work.
636	CCAMLR Science, 9 , 233–253.
637	CONSTABLE, A.J. 2011. Lessons from CCAMLR on the implementation of the ecosystem
638	approach to managing fisheries. Fish and Fisheries, 12, 138-151.

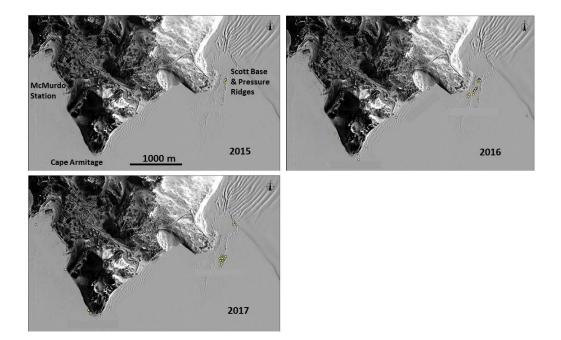
639	CONSTABLE, A.J., DE LA MARE, W.K., AGNEW, D.J., EVERSON, I. & MILLER, D. 2000. Managing
640	fisheries to conserve the Antarctic marine ecosystem: practical implementation of the
641	Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES
642	Journal of Marine Science, 57 , 778–791.
643	CROXALL, J. P. & NICOL, S. 2004. Management of Southern Ocean fisheries: global forces and
644	future sustainability. Antarctic Science, 16, 569–584.
645	DAVIS, R.W., FUIMAN, L.A., MADDEN, K.M. & WILLIAMS, T.M. 2013. Classification and behavior of
646	free-ranging Weddell seal dives based on three-dimensional movements and video-
647	recorded observations. Deep-Sea Research II, 88-89, 65-77.
648	EASTMAN, J.T. 1985. Pleuragramma antarcticum (Pisces, Nototheniidae) as food for other
649	fishes in McMurdo Sound, Antarctica. Polar Biology, 4, 155–160.
650	EASTMAN, J.T. 1993. Antarctic fish biology: evolution in a unique environment. San Diego:
651	Academic Press.
652	FUIMAN, L.A., DAVIS, R.W. & WILLIAMS, T.M. 2002. Behaviour of midwater fishes under the
653	Antarctic ice: observations by a predator. <i>Marine Biology</i> , 140 , 815–822.
654	GOETZ, K.T. 2015. Movement, habitat, and foraging behavior of Weddell Seals (Leptonychotes
655	weddellii) in the Western Ross Sea, Antarctica. PhD Dissertation, University of California,
656	Santa Cruz, CA.
657	GOETZ, K.T., BURNS, J.M., HÜCKSTÄDT, L. A., SHERO, M.R. & COSTA, D.P. 2016. Temporal variation
658	in isotopic composition and diet of Weddell seals in the western Ross Sea. Deep-Sea
659	Research Part II, http://dx.doi.org/10.1016/j.dsr2.2016.05.017.
660	HANCHET, S., DUNN, A., PARKER, S., HORN, P., STEVENS, D. & MORMEDE, S. 2015. The Antarctic
661	toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea
662	region. <i>Hydrobiologia</i> , 761 , 397–414.
663	HOLT R.D. & POLIS G.A. 1997. A theoretical framework for intraguild predation. American
664	Naturalist, 149 , 745-764.
665	Kim, S., Saenz, B., Scanniello, J., Daly, K. & Ainley, D. 2018. Local climatology of fast ice in
666	McMurdo Sound, Antarctica. Antarctic Science, 30, 1-18.
667	Коск, КH. 1992. Antarctic Fish and Fisheries. Cambridge and New York: Cambridge
668	University Press.
669	KOOYMAN, G.L. 2013. An analysis of some behavioral and physiological characteristics
670	related to diving in the Weddell Seal. In Biology of the Antarctic Seas III. Washington DC:
671	American Geophysical Union, 227-261.

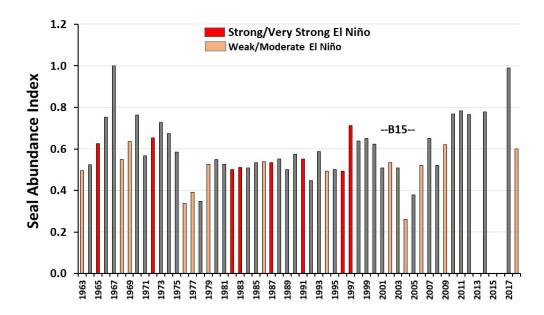
- LARUE, M.A., SALAS, L., NUR, N., AINLEY, D.G., STAMMERJOHN, S., BARRINGTON, L., STAMATIOU, K.,
- PENNYCOOK, J., DOZIER, M., SAINTS, J. & NAKAMURA, H. 2019. Physical and ecological factors
- 674 explain the distribution of Ross Sea Weddell seals during the breeding season. *Marine*
- 675 *Ecology Progress Series*, **612**, 193–208.
- LAURIANO. G., PIROTTA, E., JOYCE, T., PITMAN, R., BORRELL, A. & PANIGADA, S. Ms. Movements,
- diving behaviour and diet of type-C killer whales (*Orcinus orca*) in the Ross Sea,
- Antarctica. *Aquatic Conservation: Marine and Freshwater Ecosystems*, in review.
- 679 LAWS, R.M. 1977. The significance of vertebrates in the Antarctic marine ecosystem. *In*
- 680 LLANO, G.A., ed. *Adaptations within Antarctic Ecosystems*. Houston: Gulf Publishing
- 681 Company, 411–438.
- MACAYEAL, D.R., OKAL, M.H., THOM, J.E., BRUNT, K.M., KIM, Y.-J. & BLISS, A.K. 2008. Tabular
- iceberg collisions within the coastal regime. *Journal of Glaciology*, **54 (185)**, 1-16.
- NEAR, T.J., RUSSO, S.E., JONES, C.D. & DEVRIES, A.L. 2003. Ontogenetic shift in buoyancy and
- habitat in the Antarctic toothfish, *Dissostichus mawsoni* (Perciformes: Nototheniidae).
- 686 *Polar Biology*, **26**, 124–128.
- 687 O'CONNOR, J. 2019. Everything gets worse. *True Story, No. 32; Creative Nofiction Magazine*,
- 688 Pittsburg PA.
- PARKER, S.J., MORMEDE, S., DEVRIES, A.L., HANCHET, S.M. & EISERT, R. 2016. Have Antarctic
- toothfish returned to McMurdo Sound? *Antarctic Science*, **28**, 29–34.
- PETROV, A.F. & TATARNIKOV, V.A. 2010. New data on migrations of Antarctic toothfish
- 692 Dissostichus mawsoni in the Dumont d'Urville Sea in the 2008/2009 season. Journal of
- 693 *Ichthyology*, **50**, 140–141.
- 694 PINKERTON, M. & BRADFORD-GRIEVE, J. 2014. Characterizing foodweb structure to identify
- 695 potential ecosystem effects of fishing in the Ross Sea, Antarctica. *ICES Journal of Marine*
- 696 *Science*; doi:10.1093/icesjms/fst230.
- 697 PITMAN, R.L., FEARNBACH, H. & DURBAN, J.W. 2018. Abundance and population status of Ross
- 698 Sea killer whales (*Orcinus orca*, type C) in McMurdo Sound, Antarctica: evidence for
- 699 impact by commercial fishing? *Polar Biology*, https://doi.org/10.1007/s00300-017-
- 700 2239-4.
- POLIS, G.A., MYERS, C.A. & HOLT, R.D. 1989. The ecology and evolution of intraguild
- predation—potential competitors that eat each other. *Annual Review of Ecology and*
- 703 *Systematics*, **20**, 297–330.

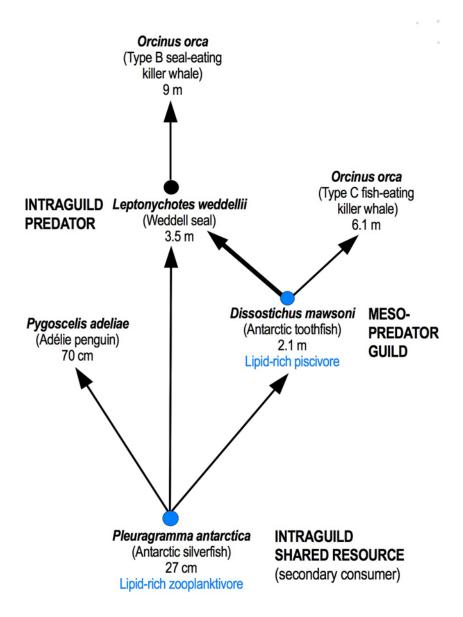
- PONGANIS, P.J. & STOCKARD, T.K. 2007. The Antarctic toothfish: how common a prey for
- Weddell seals? *Antarctic Science*, **19**, 441–442.
- PROFFITT, K.M., GARROTT, R.A., ROTELLA, J.J., SINIFF, D.B. & TESTA, J.W. 2007. Exploring linkages
- 707 between abiotic oceanographic processes and a top-trophic predator in an Antarctic
- 708 ecosystem. *Ecosystems*, **10**, 119–126.
- ROBISON, B.H. 2003. What drives the diel vertical migrations of Antarctic midwater fish?
- 710 *Journal of the Marine Biology Association of the U.K.*, **83**, 639-642.
- 711 ROTELLA, J.J., PATERSON, J.T. & GARROTT, R.A. 2016. Birth dates vary with fixed and dynamic
- maternal features, offspring sex, and extreme climatic events in a high-latitude marine
- 713 mammal. *Ecology & Evolution*, **6**, 1930-1941.
- SALAS, L., NUR, N., AINLEY, D., BURNS, J., ROTELLA, J. & BALLARD, G. 2017. Coping with loss of
- large, energy-dense prey: A potential bottleneck for Weddell Seals in the Ross Sea.
- 716 *Ecological Applications*, **27**, 10-25.
- 717 SINIFF, D.B, GARROTT, R.A., ROTELLA, J.J., FRASER, W.R. & AINLEY, D.G. 2008. Projecting the effects
- of environmental change on Antarctic seals. *Antarctic Science*, **20**, 425-435.
- 719 SMITH, M.S.R. 1965. Seasonal movements of the Weddell seal in McMurdo Sound, Antarctica.
- 720 *Journal of Wildlife Management*, **29**, 464–470.
- 721 STATACORP. 2019. Version 16, https://www.stata.com/company/.
- 722 STIRLING, I. 1969a. Ecology of the Weddell seal in McMurdo Sound, Antarctica. *Ecology*, **50**,
- 723 574–585.
- 724 STIRLING, I. 1969b. Tooth wear as a mortality factor in the Weddell seal (*Leptonychotes*
- weddelli). Journal of Mammalogy, **50**, 559-565.
- 726 STIRLING, I. 1971. Population aspects of Weddell seal harvesting at McMurdo Sound,
- 727 Antarctica. *Polar Record*, **15**, 653–667.
- 728 Testa, J.W. 1994. Over winter movements and diving behavior of female Weddell seals
- 729 (Leptonychotes weddellii) in the southwesters Ross Sea, Antarctica. Canadian Journal of
- 730 *Zoology,* **72**, 1700-1710.
- 731 TESTA, J. W. & SINIFF, D.B. 1987. Population dynamics of Weddell seals (*Leptonychotes*
- 732 *weddellii*) in McMurdo Sound, Antarctica. *Ecological Monographs*, **57**, 149–165.
- 733 Testa, J.W., Sinniff, D.B., Ross, M.J. & Winter, J.D. 1985. Weddell seal-Antarctic cod
- interactions in McMurdo Sound, Antarctica. *In Seigfried*, W.R., Condy, P.R. & Laws, R.M.,
- 735 eds. *Antarctic Nutrient Cycles and Food Webs.* Heidelberg: Springer, 561–565.

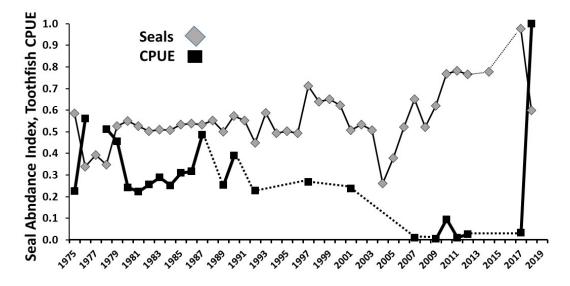
736	VACCHI, M., PISANO, E. & GHIGLIOTTI, L. (eds.). 2017. The Antarctic Silverfish: a Keystone Species
737	in a Changing Ecosystem. Advances in Polar Ecology 3, Springer International
738	Publishing, DOI 10.1007/978-3-319-55893-6_10
739	
740	
741	

Table 1. Time series analysis of CPUE index in relation to seal abundance index and year. Results shown for Prais-Winsten first-order autoregression (N = 24 yrs; see text for additional results). Both indices have been scaled (1 = maximum).


	Coefficient	Standard Error	Р
No. Seals (scaled)	-1.448	0.342	<.0001
Year	0.00727	0.00516	0.173
constant	-13.39	10.19	0.203


Fig. 1. Weddell seals with large Antarctic toothfish in McMurdo Sound, Only the trunk musculature is consumed. Photos courtesy of Jessica Meir 2008, Justin Heil 2009.


Fig. 2. Southeastern McMurdo Sound, showing southern boundary of Erebus Bay and location of the DeVries/Cheng/Cziko fishing sites (1972-2018) in vicinity of the 400-500 m isobaths, as well as those by Parker *et al.* (2016) from 2014. Also shown is the average catch per fishing session during 1982 of Testa *et al.* (1985) in a grid of fishing sites that were of increasing distance from Erebus Bay where Weddell seals are highly concentrated during the scientific fishing season (October-November). Up to a few dozen seals also typically occur off the southern end of Hut Point Peninsula, between Scott Base and McMurdo Station (see Fig. 3).


Fig. 3. Distribution of seals around Cape Armitage, the southern tip of Hut Point Peninsula, in southeastern McMurdo Sound. Haulout sites to the west and south of Observation Hill are closest to the scientific fishing areas (<3 km). Dots indicate seals detected within one week of 1 Dec during 2015-2017. We present the data on the same base image in each panel (24 November 2017) to emphasize consistency in seal locations. In these three years, 5, 23 and 28, seals were counted, respectively (vs. typically 31-32 in the mid-1960s; IS, unpubl. data).

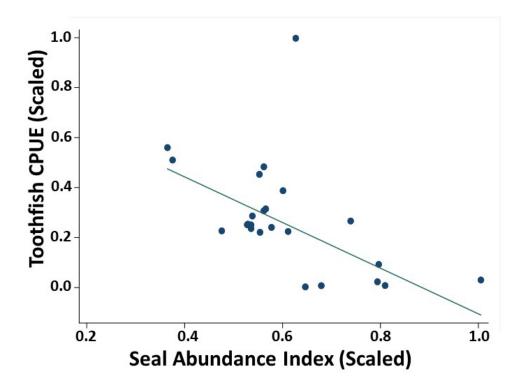

Fig. 4. Weddell seal abundance in southeastern McMurdo Sound, 1963-2018. Seal abundance index (vertical bars) is defined as the number of adult females as indicated by pups born in Erebus Bay scaled to the highest year (1966, 760 pups); seal numbers not shown in later years if no toothfish CPUE data were available; El Niño years shown in color. El Nino event strength classification is from https://ggweather.com/enso/oni.htm, based on data from the NOAA climate prediction center. The iceberg B15 event (heavy ice cover in McMurdo Sound) is also shown (see Siniff *et al.* 2008).

Fig. 5. Trophic interactions involving silverfish, among the guild (black lines) of large vertebrate predators in the southwestern Ross Sea, highlighting the importance of two lipid-rich notothenioid fish, especially Antarctic toothfish, a member of the guild. Blue dots at the origin of the arrows indicate prey species that are competed for and consumed by the species at the arrowheads. Thicker black line denotes the asymmetrical intraguild predation (Polis *et al.* 1989) between Weddell seal and toothfish, meaning that the non-reciprocal predation favors the seal as toothfish, and their predation, is reduced. Maximum lengths of species also provided.

Fig. 6. CPUE of toothfish fishing at the DeVries 400-500-m depth fishing site, 1975-2018 (Ainley *et al.* 2013 and unpublished) compared to the index of seal prevalence in southern McMurdo Sound during the fishing season (see Fig. 4). Both toothfish CPUE and the seal abundance index have been scaled relative to the maximum value in the time series, such that 1.0 = maximum. Dotted lines are hypothetical connections of widely-spaced data points.

Fig. 7. Toothfish and seal abundance are inversely correlated. Linear regression relating toothfish CPUE index (see Fig. 6) to the seal abundance index (Fig. 4) in southeastern McMurdo Sound, 1975-2018. Line of best fit shown (Prais-Winsten first-order autoregressive model, P < 0.001; see text).