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Abstract

In this paper we study the problem of detecting a known signal transmitted over a MIMO channel

of unknown complex gains and additive noise of unknown covariance. The problem arises in many

contexts, including transmit-receiver synchronization. We derive the exact probability distribution for a

generalized likelihood ratio (GLR) statistic, and establish the connection between this statistic and the

Wilks Lambda and Hotelling T 2 statistics. We give alternatives to the GLR statistic, which include the

Bartlett-Nanda-Pillai trace, the Lawley-Hotelling trace, and the Roy maximum eigenvalue statistics, each

of which is favored under special conditions on the actual MIMO channel. For example, if the channel

is an incoherent scattering channel, then the competition for greatest power is among the Bartlett-Nanda-

Pillai, Lawley-Hotelling, and GLR statistics. If it is a coherent channel that supports a propagating wave,

then Roy’s test is more powerful. We discuss the null distribution theory of the GLR at length to show

how it may be used to accurately predict false alarm probabilities.
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I. INTRODUCTION

In this paper we re-visit the problem of detecting a known signal transmitted over a MIMO channel of unknown

complex gains and additive noise of unknown covariance. The problem arises in many contexts, including transmit-

receiver synchronization. The first contribution in the engineering literature to this general problem was made by

Reed and Yu [1], who derived the probability distribution for a generalized likelihood ratio test in the case of a

SIMO channel. Their detector was generalized to the MIMO case by Bliss and Parker [2]. Hiltunen, Loubaton, and

Chevalier [3], [4] used large random matrix theory to derive asymptotic approximations for the distribution of the

MIMO detector.

We derive the generalized likelihood ratio (GLR) for the Reed-Yu problem, as generalized by Bliss and Parker,

and establish its connection to the Wilks Lambda and Hotelling T 2 statistics. We establish its exact probability

distribution by deriving its moment generating function. Our results are based on the exact distribution theory for

finite beta-distributed random matrices, whereas the results of [3], [4] are asymptotic and based on large random

matrix theory. With these exact distributions, it is now known what distribution is being approximated by the

asymptotic approximations of [3], [4]. It is now known that the MIMO version of the Reed-Yu detector is, in fact,

a Wilks Lambda statistic, and that it generalizes the Hotelling T 2 statistic.

Under the null hypothesis of no signal in a measurement matrix, we show that the GLR is CFAR, and equal in

distribution to the product of independent beta-distributed random variables, a result previously reported in [5].

This stochastic representation offers a simple and numerically-stable method for predicting false alarm probability,

without computing determinants of large random matrices. Moreover, we show that under the null the moment

generating function is a rational function, which can be exactly inverted for the density of the GLR in finite

parameter regimes where asymptotic approximations may not accurately predict performance. Then, to demonstrate

the importance of saddlepoint approximations for inverting moment generating functions, we compute saddlepoint

approximations to the null survival function, which provides the probability of false alarm versus threshold setting.

These approximations are then compared with those suggested by large random matrix theory.

The GLR detector statistic is derived from maximum likelihood reasoning. Moreover, it is derived under the

assumption that the unknown channel matrix has no constraining structure. When it does, then there are alternatives

that are more powerful, which is to say their ROC curves would lie above the ROC curve of the Wilks Lamba.

For example, if the channel is a coherent channel that supports a propagating wave, then the channel matrix is near

to rank-one, and Roy’s maximum eigenvalue test would be preferred over the Wilks Lambda. If the channel is an

incoherent scattering channel, then the competition for greatest power is among the Bartlett-Nanda-Pillai, Lawley-

Hotelling, and GLR statistics. If the eigenvalues of the channel matrix are equal, then the Bartlett-Nanda-Pillai

is more powerful, and with a mix of small and large eigenvalues either Lawley-Hotelling or GLR will be most

powerful.

January 10, 2020 DRAFT



3

Contributions. In summary, this paper complements the papers of Bliss and Parker [2], and Hiltunen, et al. [3], [4],

in the following ways :

1) it is now known that the MIMO version of the Reed-Yu detector statistic, derived by Bliss and Parker [2], is

in fact a Wilks Lambda statistic, and a generalized version of the Hotelling T 2 statistic;

2) it is now known what distribution is approximated by the large random matrix results of [3], [4];

3) under the null, the GLR statistic is equal in distribution to a product of independent beta-distributed random

variables, thereby providing a preferred alternative to the direct simulation of the detector statistic for Monte

Carlo prediction of false alarm probability;

4) under the null the moment generating function of the GLR statistic is a rational function, which means it may

be inverted exactly, and this inversion is practical in parameter regimes where asymptotic results may not be

accurate;

5) under the null, the moment generating function may be inverted by saddlepoint methods to return highly

accurate approximations throughout the support of the distribution. Such approximations preserve relative

error in the extreme right tail of the distribution in large-deviations regions where simulations and normal

approximations fail to provide adequate relative accuracy.

Our results are presented in the style of the literature on multivariate analysis, where the distributions of many

important statistics are known by their moment generating functions, even though inversion of these functions

may lie beyond the power of current methods, such as saddlepoints, to detemine them for their probability density

functions (pdfs) and cumulative distribution functions (cdfs). Throughout the paper we direct the reader to continuing

research on the inversion of moment generating functions by the method of saddlepoints.

Under the null our results are to be preferred over asymptotic results, because they can be used with saddlepoint

approximations to efficiently and stably predict false alarm probabilities with very high accuracy, even in the extreme

right tail where small false alarm probabilities are to be computed. This is demonstrated with several numerical

examples. Under the alternative, the inversion of the moment generating function (MGF) of the GLR is a work in

progress, which builds on the non-cental distribution theory developed herein.

II. PROBLEM STATEMENT

Consider a subspace signal-plus-noise model xm = Hsm + nm, for m = 1, . . . ,M . The signal component lies in

an unknown p-dimensional subspace 〈H〉, with unknown basis H ∈ CL×p. For each time sample, its location in

this subspace is determined by the vector of signals sm ∈ Cp. The noise snapshots nm are proper and independent

for m = 1, . . . ,M , and distributed as nm ∼ CNL[0,Σ], with Σ a positive definite covariance matrix. Thus, the
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measurements xm are independent and distributed as xm ∼ CNL[Hsm,Σ], with H and Σ unknown; the signal

sequence {sm,m = 1, 2, . . . ,M} is known. We assume M > L+ p, which is to say the number of measurements,

ML, exceeds the number of unknowns, L2, in the noise covariance matrix Σ plus the number of unknowns, 2Lp,

in the unknown channel matrix H.

This data model corresponds to one channel use of a multiple input multiple output (MIMO) transmission system

with p transmitting antennas, L receiving antennas, and M symbol transmissions, when the transmitting and receiving

antennas are perfectly synchronized [2]. We are interested in testing

H0 : S = 0 versus H1 : known full row rank S 6= 0 (1)

Define SH = [s1, . . . , sM ] ∈ Cp×M , X = [x1, . . . ,xM ] ∈ CL×M , and N = [n1, . . . ,nM ] ∈ CL×M . Then, the data

matrix X = HSH + N is distributed as

f(X,H,S,Σ) =
1

πLM (det Σ)M
×

exp{−tr[(X−HSH)HΣ−1(X−HSH)]} (2)

The notation SH for the p×M symbol matrix is merely a convenience to make formulas familiar.

In this paper, we assume S is known, but the channel gains H and the noise covariance Σ are unknown. We make

no assumptions on the channel matrix H, but once the detector is derived, we discuss alternative detectors that

would provide more power than others, when the true H is structured. This way of constructing an unconstrained

detector, followed by approximation for structured H, stands in contrast to the problem of structuring H up-front,

and then trying to solve an optimization problem for H, so structured.

For p = 1, the Generalized Likelihood Ratio Test (GLRT) for this measurement model has been derived in [1],

for a problem of optical pattern detection with unknown spectral distribution. For p ≥ 1 Bliss and Parker [2]

generalized this result for synchronization in a MIMO channel. The analysis in [1] considers the special case of a

real measurement model for the rank one signal model p = 1. The analysis in [2] assumes complex measurements

and a rank-p signal model. We follow the approaches of [1], [2] to identify Maximum Likelihood (ML) estimates

of the unknown parameters, and use these estimates to form the GLR for the hypothesis test (1). Then we extend

the distribution results of [1], [5] for the detector statistic.

III. GENERALIZED LIKELIHOOD RATIO TEST AND ITS DISTRIBUTION

To find the GLR for this problem, we need the ML estimate of Σ under H0 and H1, and the ML estimate of H

under H1. Under H0 the ML estimate of the covariance matrix Σ is

Σ̂0 =
1

M
XXH (3)
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Similarly, under H1, the ML estimates of Σ and H are

Σ̂1 =
1

M
(X− ĤSH)(X− ĤSH)H , (4)

and

Ĥ = XS(SHS)−1. (5)

The GLR ` = fH0
(X,HS = 0, Σ̂0)/fH1

(X, Ĥ,S, Σ̂1) is then

`1/M =
det(X(IM −PS)XH)

det(XXH)
. (6)

where PS = S(SHS)−1SH is the rank-p projection onto the subspace 〈S〉, spanned by the linearly independent

columns of the M × p matrix S. The columns of X are assumed to be statistically independent, so that XXH is

full rank with probability one.

The distribution of (6) has been derived for finite L and M in [1] for the case p = 1. Hiltunen, et al. [3] show that in

the case where the number of receiving antennas L and the number of snapshots M are large and of the same order

of magnitude, but the number of transmitting antennas p remains fixed, a standardized version of -log(`) converges

to a normal distribution under H0 and H1. Then, pragmatic approximations for the distribution are derived for

large p. In [4], it is shown that asymptotically in L, M , and p, log(`) is approximated as a normal random variable

(See Theorem 1 of [3]). In [5], we outlined a derivation of the exact distribution of (6) under H0 and H1, in

the non-asymptotic case. We refine this derivation here, with detail added to the original proof, and establish the

connection between the GLR, the Wilks Lambda, and Hotelling T 2 statistics.

The distribution of ` is invariant to the transformation X → Σ−1/2X. Thus we may assume X to be proper, and

distributed as the proper complex normal, CNL×M (Σ−1/2HSH , IL ⊗ IM ). Let U = [US,U
⊥
S ] ∈ CM×M , where

US ∈ CM×p is a unitary basis for S, and PS = USUH
S ; U⊥S ∈ CM×(M−p) is a unitary basis for its orthogonal

space. The matrix U is unitary. Define L× p Y1 = XUS, and L× (M − p) Y2 = XUS⊥ , so that

W := `1/M =
det(Y2Y

H
2 )

det(Y1YH
1 + Y2YH

2 )
, (7)

which is the same as the Wilks Lambda [6]. Here, Y1 ∼ CNL×p(M1, IL⊗Ip), Y2 ∼ CNL×(M−p)(0, IL⊗IM−p),

are independent, M1 = Σ−1/2HSHUS, and Y2Y
H
2 ∼ CW(L,M − p, IL), a complex Wishart distribution for the

sample covariance matrix of M − p draws of an L-dimensional complex Gaussian vector whose covariance is IL.

For M − p ≥ L, as assumed, the matrix Y2Y
H
2 is non-singular, with probability one.
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A. More antennas than sources, L ≥ p.

For L ≥ p, the statistic in (7) may be written as

W = det(Y2Y
H
2 )/det(Y1Y

H
1 + Y2Y

H
2 ) = 1/det

[
IL + (Y2Y

H
2 )−1/2Y1Y

H
1 (Y2Y

H
2 )−1/2

]
= 1/det

[
Ip + YH

1 (Y2Y
H
2 )−1Y1

]
= det

[
(Ip + F)−1

]
(8)

= det(B). (9)

where B = (Ip + F)−1. The pdf of F = YH
1 (Y2Y

H
2 )−1Y1 is given in [7] as

f(F) =e−tr(MH
1 M1)

1F̃1(M ;L; MH
1 M1(I + F−1)−1)×

Γ̃p(M)

Γ̃p(M − L)Γ̃p(L)

det(F)L−p

det(I + F)M
(10)

which is a complex noncentral matrix F distribution. The Jacobian for the transformation F → B is (det B)−2p,

so the pdf of B may be written as

f(B) =e−tr(MH
1 M1)

1F̃1(M ;L; MH
1 M1(I−B))

Γ̃p(M)

Γ̃p(M − L)Γ̃p(L)
×

det(B)M−L−pdet(I−B)L−p, (11)

which may be considered a complex noncentral matrix variate Beta distribution, and denoted CBp(M−L,L,MH
1 M1).

Under H0 (S = 0), W = det(B) is distributed as the product of independent beta random variables. That is,

W = det(B) ∼
p∏
i=1

bi; bi ∼ β(M − L− i+ 1, L). (12)

This is a stochastic representation of the GLR under the null. It offers numerically-stable stochastic simulation of

the GLR, without simulation of the detector statistic itself, which may involve the computation of determinants of

large matrices. Moreover, from this representation, the MGF of the GLR may be derived. The pdf may be computed

to a high degree of accuracy using saddlepoint inversion of the MGF as shown in [8], Sections 2.4.1 and 11.1.1,

for the real case. To this end, the MGF of Z = log det(B) and its saddlepoint inversions are treated in Appendix,

Section A, where numerical results are given for parameter choices made in [3],[4].

Under H1 we derive the MGF for Z = logW = log det(B) in Appendix, Section B. Of course the result specializes

to the MGF under the null. The proof follows the approach used in Muirhead (1982, Thm. 10.5.1) [9], extended

to apply to complex matrix beta distributions. The result as expected doubles the degrees of freedom.

THEOREM 1. Assume p ≤ L. Under H1, MZ(s) = E(W s) is

MZ(s) =
Γ̃p(M − L+ s)Γ̃p(M)

Γ̃p(M − L)Γ̃p(M + s)
1F̃1(s;M + s;−MH

1 M1) (13)

for Re(s) > p+ L−M − 1 < 0.

PROOF. See Appendix, Section B.
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In the noncentral setting, saddlepoint approximations can be used to invert the MGF in (13) but this is complicated

by the difficulty in computing the 1F̃1 hypergeometric function. To get around this in the real case using Muirhead’s

(1982, Thm. 10.5.1) [9] expression for the MGF, Butler and Wood (2005) [10] replaced the true value of 1F1 with

an explicit Laplace approximation to get an approximation to E(esZ), which could be subsequently inverted using

saddlepoint approximations; see [8], Section 11.3.1, for details. The same approach applied to (13) using Laplace

approximation for 1F̃1 allows for approximation to the non-null distribution and density functions of Z = logW

and W. Such a Laplace approximation for 1F̃1 is proposed in Butler and Wood (2020) [11]. In the real case, these

saddlepoint approximations achieve a high degree of accuracy when the eigenvalues of MH
1 M1 are not exceptionally

large. Similar results should apply in the complex case.

B. More sources than antennas, p > L

For p > L, there is a parallel development that produces the L×L matrix B = (Y1Y
H
1 +Y2Y

H
2 )−1/2Y2Y

H
2 (Y1Y

H
1 +

Y2Y
H
2 )−H/2.

From arguments given in Appendix, Section B, the distribution of W under H0 is

W = det(B) ∼
L∏
i=1

bi; bi ∼ β(M − p− i+ 1, p) (14)

which is (12) with the roles of p and L interchanged. This interchange is also apparent in the noncentral MGF of

Z = logW given in the next corollary, which is proved in Appendix C.

COROLLARY 1. Assume p > L. Under H1, MZ(s) = E(W s) is

MZ(s) =
Γ̃L(M − p+ s)Γ̃L(M)

Γ̃L(M − p)Γ̃L(M + s)
1F̃1(s;M + s;−M1M

H
1 ) (15)

for Re(s) > p+ L−M − 1 < 0.

PROOF. See Appendix C.

IV. CONNECTION TO HOTELLING’S T 2 STATISTIC.

In the special case p = 1 then F = YH
1 (Y2Y

H
2 )−1Y1 is a real scalar. Upon rescaling by the degrees of freedom

ratio (M −L)/L, its noncentral density given in (10) reduces to that of a Noncentral F{2L; 2(M −L); 2MH
1 M1}

distribution with noncentrality parameter 2MH
1 M1. This reproduces the distribution determined in Srivastava and

Khatri [12].

For the symbol sequence sH = 1H , Y1 = X1/
√
M =

√
M x̄ and Y2Y

H
2 = XXH −M x̄x̄H so that

F =
√
M x̄{XX

H −M x̄x̄H)−1
√
M x̄ = T0/(1− T0)
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where T0 = M x̄H(XX
H

)−1x̄. Thus, F and W are monotone increasing in Hotelling’s T 2 statistic. For further

emphasis, the argument for W = det(B) proceeds as follows. When p = 1, meaning H = h ∈ CL, and the symbol

sequence sH = 1T , the likelihood may be written

W =
det
[
X(IM −P1)XH

]
det [XXH)]

=
det(XXH −M(

∑M
1 x[m])(

∑M
1 x[m])H

det(XXH)

= 1−
√
M(

M∑
1

x[m])H(XXH)−1(
M∑
1

x[m])
√
M (16)

The monotone function (1/M)(1−W ) = (
∑M

1 x[m])H(XXH)−1(
∑M

1 x[m]) is Hotelling’s T 2 statistic.

So the multi-rank version of the RX problem is a generalization of the Hotelling problem, where Hotelling’s constant

but unknown h is replaced by a sequence of unknown Hs[m], with the linear combining weights s[m] known, but

the common channel matrix H unknown.

For p = 1, the test based on F is the uniformly most powerful (UMP) invariant test among tests for H0 versus H1

at fixed level α. The uniformity is over all non-zero values of the M × 1 symbol matrix S. The invariance uses the

group of transformations X → NX where N is any L × L nonsingular complex matrix. Starting with sufficient

statistics Y1 and Y2Y
H
2 , it is easily shown that F is the maximal invariant and MH

1 M1 is the associated maximal

invariant parameter. Since the noncentral F distribution is known to possess the monotone likelihood ratio property

(Lehmann and Romano, 2006, p. 307, problem 7.4) [13], we conclude that the test which rejects for large F is

UMP invariant. For the i.i.d. case in which sm = 1 for all m, this result was shown in Giri (1965, Thm. 3.2) [14].

V. RELATED TESTS: BARTLETT-NANDA-PILLAI, LAWLEY-HOTELLING, AND ROY

The hypothesis test may also be addressed by using three other competing test statistics as alternatives to the

likelihood ratio test. For the case p = 1, all four tests reduce to the use of the Hotelling T 2 test statistic, which

is UMP invariant. For the case p > 1, however, no single test can be expected to dominate the others in terms of

power. The test which achieves the greatest power depends upon the configuration of eigenvalues for the noncentrality

matrix MHM.

The three other tests use the Bartlett-Nanda-Pillai trace statistic V = tr(B), the Lawley-Hotelling trace statistic

U = tr(F) = tr{B−1(Ip −B)}, and Roy’s maximum root λ1, the largest eigenvalue of B.

The tests are broadly divided into two groups: W,V, and U which often share similar power and λ1 with a quite

different power level. Roy’s test using λ1 should be more powerful than the other three when the noncentrality matrix

MH
1 M1 admits a single non-zero eigenvalue. This dominance diminishes quickly when MH

1 M1 admits further non-

zero eigenvalues. When the eigenvalues of MH
1 M1 are very unequal, then typically U is more powerful than W

which is more powerful than V. If the eigenvalues are close, then this ordering of power gets reversed. For further

discussion see Muirhead [9], Section 10.5.6, and the references therein.
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Apart from W, the non-null distribution theory for the other three statistics is quite difficult, theoretically and

computationally, in both the real and complex cases. However, null distributions in the complex case are tractable

and we consider each of the three null distributions below.

The MGF for V is computed directly from the integral representation of 1F̃1 as

MV (s) = E(esV ) = 1F̃1(M − L;M ; sIp)

for all s ∈ C, and M − L ≥ p. When p > L the MGF is 1F̃1(M − p;M ; sIL). The null distribution and density

function of V can be computed using a saddlepoint approximation based on MV after replacing 1F̃1 with its

Laplace approximation as described in Butler and Wood [11].

The MGF for U is computed from the integral representation of Ψ̃, the confluent hypergeometric function of second

type given in Chikuse (1975, Eqn. 4.13), [15]. For p ≤ L, this leads to

MU (s) = E(esU ) =
Γ̃p(M)

Γ̃p(M − L)
Ψ̃(L;L+ p−M ;−sIp), Re(s) ≤ 0.

For p > L, the MGF is
Γ̃L(M)

Γ̃L(M − p)
Ψ̃(p; p+ L−M ;−sIL), Re(s) ≤ 0.

Saddlepoint methods cannot be used with Ψ̃ or when it is replaced with a Laplace approximation since both are

not “steep” at s = 0 as discussed in [8], Section 16.2.2. However, numerical inversion along Re(s) = −ε < 0 for

some ε > 0 can be used either with Ψ̃ or its Laplace approximation.

The null distribution of the maximum root test for p ≤ L was derived in Khatri [16] and takes the explicit form

F (t) = P (λ1 ≤ t) = cdet{A(t)},

where

c = πp(p−1)Γ̃p(M)/{Γ̃p(p)Γ̃p(M − L)Γ̃p(L)}

and A(t) = {aij(t)} is a p × p symmetric matrix with aij(t) = Bt(M − L − p + i + j − 1, L − p + 1) and

Bt(α, β) =
∫ t
0
uα−1(1 − u)β−1du as the incomplete beta function. The computations for filling out the matrix

A(t) only require the single incomplete beta integral for a11(t). All other entries in A(t) result from recursive

computation using the recursion for Bt given in (8.17.20) of [17] as

Bt(α+ 1, β) =
1

α+ β

{
αBt(α, β)− tα(1− t)β

}
.

This allows for fast efficient computation, although the computation of det[A(t)] for large p is sensitive to numerical

error in the computation of the matrix entries. For larger values of p, the Tracy-Widom limiting distribution (of

order 2) for a transformed value of λ1 may be accurately used as given in Theorem 2 of Johnstone (2008) [18].

The case p > L is handled by interchanging the roles of p and L in the expressions above so that A(t) is now an

L× L matrix.
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VI. NUMERICAL RESULTS

Under the null, the distribution of W = det(B) may be approximated with a histogram computed from Monte-Carlo

simulation of a product of independent beta-distributed random variables. The analytical alternative is to invert the

moment generating function of W , using the method of saddlepoints or exact inversion of its rational MGF. These

methods may be used to predict the probability of false alarm (or equivalently the survival function) with precision,

without asymptotic approximation or direct simulation of W .

In this section we use Monte-Carlo simulation of beta-distributed random variables and saddlepoint approximations

to compute what may be called exact false alarm probabilities, and compare them with the asymptotic approximations

of [3], [4]. The purpose is not to call into question asymptotic results, which for some parameter choices and

false alarm probabilities may be quite accurate. Rather it is to show that asymptotic approximations are just that:

approximations that are to be used with caution in non-asymptotic regimes.

2 3 4 5 6 7 8

t

10-4

10-3

10-2

10-1

100

PFA

Detection Test Statistics

Our Result

[3] and [4]: Assumption (b) 

Saddlepoint Approximation

Fig. 1: Probability of false alarm (PFA) on log-scale, p = 5 sources, L = 10 antenna elements, M = 20 snapshots.

The blue curve is generated from tail probabilities of a histogram computed from 107 realizations of the detector

statistic W ; the red curve is generated from tail probabilities of a histogram computed from 107 realizations of the

product of p independent beta-distributed random variables; the circles are computed from saddlepoint inversion

of the moment generating function for W ; the black curve is computed from the asymptotic approximation of [3],

[4], using their approximation (b).
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The results are illustrated in Figures 1-3, for parameter choices made in [3], [4]. In each figure false alarm

probabilities are predicted from stochastic simulation of a product of betas, from saddlepoint approximation of

the null distribution of W , and from the large random matrix approximation. These are compared with the false

alarm probabilities predicted from simulation of W itself. These latter are invisible, as they lie exactly under the

predictions from the stochastic simulation of a product of betas and from saddlepoint inversion of the moment

generating function. The conclusions from these figures is what might be expected: for numbers of sensors less

than about 100, number of measurements less than about 200, and number of sources in the range of 5 to 50,

and for false alarm probabilities in the range 10−4 − 10−6, the false alarm probabilities predicted from asymptotic

approximations can be too low by a factor of 0.1. For example, in Fig. 1 it is demonstrated that when the asymptotic

approximation to the probability of false alarm is predicted to be 10−4, the actual probability of false alarm is 10−3.

For applications in radar and communications, this has consequences. For other applications it may not.

Details concerning the computation of saddlepoint approximations and their preservation of relative error uniformly

in the right tail are given in Appendix A. Exact inversion using the method of partial fraction expansion is also

described in Appendix A.

16 16.5 17 17.5 18 18.5 19 19.5 20

t

10-4

10-3

10-2

10-1

100

PFA

Detection Test Statistics

Our Result

[3] and [4]: Assumption (b) 

Saddlepoint Approximation

Fig. 2: Probability of false alarm (PFA) on log-scale, p = 20 sources, L = 40 antenna elements, M = 80 snapshots.

See the caption of Fig 1 for a description of the plot features.

January 10, 2020 DRAFT



12

44 44.2 44.4 44.6 44.8 45 45.2 45.4 45.6

t

10-4

10-3

10-2

10-1

PFA

Saddlepoint approximation

Our Result

[3] and [4]: Assumption (b) 

Detection Test Statistics

Fig. 3: Probability of false alarm (PFA) on log-scale, p = 50 sources, L = 100 antenna elements, M = 200

snapshots. See the caption of Fig 1 for a description of the plot features.

VII. CONCLUSIONS

In this paper we have revisited a detector first derived by Reed and Yu [1], generalized by Bliss and Parker [2], and

recently studied by Hiltunen, Loubaton, and Chevalier [3], [4]. The problem is to detect a known signal transmitted

over a MIMO channel of unknown complex gains and additive noise of unknown covariance. We have shown that

the generalized likelihood ratio (GLR) is a Wilks Lambda statistic, and a generalization of the Hotelling T 2 statistic.

The probability distribution for the GLR was first derived for the SIMO channel in [1]. We have generalized this

distribution for the case of a MIMO channel, and shown that the GLR is distributed as the determinant of a complex

Beta-distributed matrix, which may be written as a product of independent scalar beta random variables under the

null. The moment generating function of the GLR is derived, and saddlepoint techniques for inverting it under the

null are presented. Our results hold for M symbols transmitted from p transmitters and received at L receivers.

They contrast with the asymptotic results of [3], [4], based on large random matrix theory, which assume L and

M to be large.

The GLR may be modified to arrive at several related statistics, including the Bartlett-Nanda-Pillai, Lawley-Hotelling,

and Roy tests. We indicate how the null distributions for each statistic may be computed. For the case p = 1, all

four tests reduce to Hotelling’s T 2 test which is UMP invariant. For p > 1, however, we contend that no single test
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will dominate, and that the dominant test is determined by the nature of the MIMO channel as expressed through

the arrangement of eigenvalues of the noncentrality matrix MH
1 M1.

This paper is not to be construed as a competition between exact distribution results and asymptotic results. Each

has its virtues. Asymptotic results do not claim to be exact, nor even accurate, in non-asymptotic regimes, but can

claim accuracy and ease of computation in their asymptotic regimes when small tail probabilities are not involved.

Our exact results under the null are to be preferred over asymptotic results because they can be used to efficiently

and stably compute false alarm probabilities with high precision. In false alarm ranges of 10−2 to 10−6 the proposed

saddlepoint approximations provide high accuracy and preserve relative error, unlike Monte-Carlo simulations or

asymptotic normal results. With more effort, exact inversion of a rational MGF can be achieved, as described in

Appendix A.

Under the alternative hypothesis, the inversion of the MGF of the GLR is a work in progress. At the time of

this writing we offer no computationally feasible way to invert it to determine the pdf and to compute detection

probabilities and ROC curves, although promising methods are under development.

VIII. APPENDICES

A. Moment Generating Function and Saddlepoint Inversion for the Distribution of W = det(B) Under

the Null.

The null distribution of W , characterized in (12) as a product of independent beta random variables, leads to

exact and saddlepoint computations for the density of Z = logW , and for false alarm probabilities. The scalar

Z = log det(B) is negative with probability one, so for convenience, we derive the MGF of −Z, which is the

MGF of Z, evaluated at −s:

M−Z(s) =MZ(−s) = c

p∏
i=1

Γ(N − i+ 1− s)
Γ(M − i+ 1− s)

c =

p∏
i=1

Γ(M − i+ 1)

Γ(N − i+ 1)
, (17)

with N = M −L. The arguments of the gamma function ratios differ by the integer M −N = L so the expression

in (17) is a rational function in s which can be expanded into partial fractions and inverted term-by-term for exact

computation. Using Γ(x+ 1) = xΓ(x) successively in each, this becomes

M−Z(s) = c
N∏

j=N−p+1

Γ(j − s)
Γ(j + L− s)

= c
N∏

j=N−p+1

j+L−1∏
k=j

1

k − s

= c
N∏

k=N−p+1

(
1

k − s

)k−(M−L−p)
×
M−p−1∏
k=N+1

(
1

k − s

)p
×

M−1∏
k=M−p

(
1

k − s

)M−k
. (18)

The expression in (18) shows that this MGF has poles from N − p+ 1 to M − 1. Poles of order 1 to p run from

k = N − p + 1 to N , respectively, fixed order p-poles run from N + 1 to M − p + 1, and poles of order p to 1

run from M − p to M − 1, respectively. Altogether there are L+ p− 1 poles with orders running from 1 to p.
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Exact inversion of (18) proceeds by expanding M−Z into a partial fraction sum using the symbolic computational

capabilities of Maple or Mathematica. This is followed by direct symbolic inversion to yield exact expressions for

the density function of −Z as well as its cumulative distribution function. This method will be limited to settings

in which the value of p is not large since higher-order p-poles substantially increase the size of the partial fraction

expansions involved.

Approximate saddlepoint inversion is based upon the cumulant generating function (CGF) K(s) = log{M−Z(s)}

and its derivatives. Using (6.3.2) of Abramowitz and Stegun (1972) [19], its first derivative can be expressed as

K′(s) = (N − p− s)ψ (1 +N − p− s) + (M − s)ψ (M − s)

− (M − p− s)ψ (M − p− s)− (N − s)ψ (N + 1− s) ,

where ψ(s) = d log Γ(s)/ds is the digamma function. Higher-order derivatives follow from Leibnitz’s formula of

the derivative of a product to give closed form expressions in terms of polygamma functions given as

K(k)(s) = (−1)k−1
[
(N − p− s)ψ(k−1) (1 +N − p− s) + (M − s)ψ(k−1) (M − s)

+(k − 1)
{
ψ(k−2) (1 +N − p− s) + ψ(k−2) (M − s)

}]
+ (−1)k

[
(M − p− s)ψ(k−1) (M − p− s) + (N − s)ψ(k−1) (N + 1− s)

+(k − 1)
{
ψ(k−2) (M − p− s) + ψ(k−2) (N + 1− s)

}]
, (19)

for k ≥ 1. The exact mean and variance of −Z are µ = K′(0) and σ2 = K(2)(0).

The CGF of the standardized Z ′ = (−Z − µ)/σ is KZ′(s) = K(s/σ) − sµ/σ. Sufficient conditions for the

convergence of Z ′ to a standard normal are that the third and higher-order cumulants K(k)
Z′ (0) for k ≥ 3 all

convergence to 0. Given the benign nature of these CGFs, the sufficient conditions are likely to also be necessary.

Thus convergence of the third and higher-order cumulants most likely characterizes the asymptotic regimes for

which there is a weak normal limit. Therefore it is the asymptotic behavior of the polygamma functions involved

which determines regimes leading to a normal limit.

1) Example p = 5, L = 10,M = 20: The first 4 cumulants of −Z are

K′(0) = 4.308 3 K(2)(0) = 0.4032 K(3)(0) = 0.08222 K(4)(s) = 0.02734

and the standardized skewness and kurtosis in terms of the 3rd and 4th cumulants are

K(3) (0) /{K(2)(0)}3/2 = 0.3212 K(4) (0) /{K(2)(0)}2 = 0.1682. (20)

The standardized cumulants in (20) suggest the distribution is close to normal, with the caution that small tail

probabilities may still be poorly approximated.

January 10, 2020 DRAFT



15

We compute the exact density of −Z, denoted f(t), its saddlepoint approximation f̂(t) as given in (1.4) of Section

1.1.2 of Butler (2007) [8], and the normal approximation of [4]. In Fig. 4, the saddlepoint approximation is seen

to be graphically indistinguishable from the exact density.

0

0.2

0.4

0.6

2 3 4 5 6 7t

Fig. 4: The exact density of −Z (solid red), the saddlepoint density approximation (solid line green), and the normal

approximation (solid black) from [4] (solid black).
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0
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Fig. 5: Plot of the exact log10(PFA) (solid red), its log10-saddlepoint approximation (solid lime green), and the

log10-normal approximation from [4] (solid black).

Fig. 5 compares log10{PFA(t)}, the true log10-false alarm rate (solid red), with log10{P̂FA(t)}, the log10-Lugannani-

Rice saddlepoint approximation (solid lime green) given in (1.21) of Section 1.2 of Butler (2007) [8], and the
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log10-normal approximation used in [4]. The saddlepoint approximation is graphically indistinguishable from the

exact log10-false alarm curve and the log10-normal approximation begins to deviate substantially at t = 5.5 where

the tail probability is 0.038 and still quite substantial.

The percentage relative errors of f̂(t) and the normal approximation are shown in the left panel of Fig. 6, where

this error is plotted as 100{f̂(t)/f(t)− 1} versus t. At t = 7, P{ −Z > 7} = 0.000 175, f̂(7) has a relative error

−0.469% and the normal density approximation has diverged to −100% the lowest possible valued that can be

plotted for the percentage relative error computation. The saddlepoint density satisfies the large deviation limit

lim
t→∞

100

{
f̂(t)

f(t)
− 1

}
= 100

(
1√

2πe−1
− 1

)
= 8. 44%, (21)

as may be deduced from Theorem 3 and Corollary 4 in Butler and Wood (2019) [20]. Thus its relative error is

uniform in the right tail and such uniformity and the limit in (21) apply for all values of p, L, and M. The normal

approximation in [4] does not preserve such uniformity since the tail of the normal density approximation → 0 at

a faster rate than f(t) = O(e−6t) as t→∞ so that the corresponding ratio in (21) converges to −100%.

The percentage relative errors 100{P̂FA(t)/PFA(t)−1} versus t are plotted in the right panel of Fig. 6. At t = 6.6

and 6.9, the normal approximation differs from the exact right tail probabilities of 8.9× 10−4 and 2.9× 10−4 by

factors of 1/5 and 1/10 respectively. Unlike the normal CDF approximation, the Lugannani and Rice saddlepoint

approximation P̂FA(t) preserves uniform relative in the right tail and its limiting percentage relative error is the

same as that in (21) for all values of p, L, and M. This again follows from Theorem 3 and Corollary 4 in Butler

and Wood (2019) [20].

-15
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Fig. 6: (Left panel). Plots of the percentage relative error for the saddlepoint density approximation f̂(t) (solid

lime green) and the normal approximation (solid black). (Right panel). Plots of the percentage relative error for the

saddlepoint PFA approximation P̂FA(t) (solid lime green) and the normal CDF approximation (solid black).

2) Example p = 20, L = 40,M = 80: Standardized skewness and kurtosis, as computed from (19), provide

a means for determining whether normal approximations will provide adequate accuracy. Both values are zero
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for a normal distribution and their closeness to zero provides information about the accuracy in using the normal

approximation. For this example these standardized cumulants are

K(3)(0)/{K(2)(0)}3/2 = 8. 067× 10−2 K(4)(0)/{K(2)(0)}2 = 1. 066× 10−2

suggesting that the exact distribution of −Z is quite close to a normal distribution, with the caution that small tail

probabilities may still be poorly approximated.

3) Example p = 50, L = 100,M = 200: For this example the standardized skewness and kurtosis are

K(3)(0)/{K(2)(0)}3/2 = 3. 228× 10−2 K(4)(0)/{K(2)(0)}2 = 1. 706× 10−3,

suggesting that the exact distribution of −Z is close to a normal distribution, with the caution that small tail

probabilities may still be poorly approximated.

B. Proof of Theorem 1

Starting with the noncentral matrix beta density in (10), let

c = e− tr(MH
1 M1)Γ̃p(M)/{Γ̃p(M − L)Γ̃p(L)}

so that

E(W s) = c

∫
0<B=BH<Ip

1F̃1{M ;L; MH
1 M1(Ip −B)}det(B)

M−L−p+s
det(Ip −B)L−p(dB.)

Change variables B→ Ip −B so

E(W s) = c

∫
0<B=BH<Ip

1F̃1{M ;L; MH
1 M1B)}det(B)

L−p
det(Ip −B)M−L−p+s(dB.)

Using the zonal polynomial expansion for 1F̃1 given in James (1964, Section 8) [7] this becomes

E(W s) = c

∫
0<B=BH<Ip

∞∑
k=0

∑
κ

[M ]κ
[L]κ

C̃κ(MH
1 M1B)

k!
det(B)

L−p
det(Ip −B)M−L−p+s(dB.)

The integration and double summation may be interchanged. Using the reproductive property of zonal polynomial

C̃κ as given in Khatri (1966, Section 5) [21], then

E(W s) = c
∞∑
k=0

∑
κ

[M ]κ
[L]κ

1

k!

Γ̃p(L, κ)Γ̃p(M − L+ s)

Γ̃p(M + s;κ)
C̃κ(MH

1 M1),

where Γ̃p(L, κ) = [L]κ Γ̃p(L). Cancelling c with values Γ̃p(L, κ) and Γ̃p(M + s;κ) gives

E(W s) = e− tr(MH
1 M1)

Γ̃p(M − L+ s)Γ̃p(M)

Γ̃p(M − L)Γ̃p(M + s)

∞∑
k=0

∑
κ

[M ]κ
[M + s]κ

C̃κ(MH
1 M1)

k!

= e− tr(MH
1 M1)

Γ̃p(M − L+ s)Γ̃p(M)

Γ̃p(M − L)Γ̃p(M + s)
1F̃1(M ;M + s; MH

1 M1) (22)

=
Γ̃p(M − L+ s)Γ̃p(M)

Γ̃p(M − L)Γ̃p(M + s)
1F̃1(s;M + s;−MH

1 M1), (23)

where (23) follows from (22) using the Euler relation for 1F̃1 as given in Herz (1955) [22].
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C. Proof of Corollary 1

The proof follows the approach used in Theorem 10.4.1 in Muirhead (1982) [9] but applied to Hermitian matrices

rather than real symmetric matrices. Starting with W1 = Y1Y
H
1 ∼ noncentral CWL(p,M1M

H
1 ) and W2 =

Y2Y
H
2 ∼ CWL(M−p, IL), the joint density of W1 and W2 from James (1964, Section 8) [7] is

f(W1,W2) =
1

Γ̃L(p)
det(W1)p−Le− tr(M1M

H
1 +W1)

0F̃1(p; M1M
H
1 W1)

× 1

Γ̃L(M − p)
det(W2)M−p−Le− trW2 .

Transform W1, W2 →W1, F = W
1/2
1 W−1

2 W
1/2
1 with Jacobian

(dW1)(dW2) = det(W1)L det(F)−2L(dW1)(dF)

to get the joint density of W1 and F. From this, the marginal density of F is

f(F) =
det(F)p−L−M

Γ̃L(M − p)Γ̃L(p)
e− tr(M1M

H
1 )×∫

W1=WH
1 >0

0F̃1(p; M1M
H
1 W1)e− tr{W1(IL+F−1)} det(W1)M−L(dW1).

Using Lemma 1 below, the integral is

f(F) =
Γ̃L(M)

Γ̃L(M − p)Γ̃L(p)
e− tr(M1M

H
1 )×

1F̃1{M ; p; M1M
H
1 (IL + F−1)−1} det(F)p−L

det(IL + F)M
.

Transforming F→ B = (IL + F)
−1 with Jacobian det(B)−2L leads to

f(B) =
Γ̃L(M)

Γ̃L(M − p)Γ̃L(p)
e− tr(M1M

H
1 )×

1F̃1{M ; p; M1M
H
1 (IL −B)}det(B)M−p−L det(IL −B)p−L.

This is a noncentral complex matrix variate beta CBL(M−p, p,M1M
H
1 ). This compares to CBp(M−L,L,MH

1 M1)

for the case in which p ≥ L. The results in (14) and (15) follow directly by interchanging the roles of p and L

and applying the same arguments used in Theorem 1. �

LEMMA 1. Let Y be L× L Hermitian positive definite and let Z be L× L Hermitian. For Re(a) > L− 1,∫
W=WH>0

0F̃1(p; YW)e− tr(WZ) det(W)M−L(dW)

= Γ̃L(M) det(Z)−M 1F̃1{M ; p; YZ−1} (24)

Proof. Take the zonal polynomial expansion of 0F̃1 given in James (1964, Section 8, Eqn. 87) [7], integrate term-

by-term using the reproductive property of the zonal polynomials in Eqn. 85, and then recognize that this leads to

the zonal polynomial expansion for 1F̃1 on the right side of 24. �
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