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Abstract: Predicting residential water demand is challenging because of two technical questions: (1) which data and variables should be
used and (2) which modeling technique is most appropriate for high prediction accuracy. To address these issues, this article investigates 12
statistical techniques, including parametric models and machine learning (ML) models, to predict daily household water use. In addition, two
data scenarios are adopted, one with only 6 variables, generally available to cities and water utilities (general scenario), and one with all 19
variables available from the Residential End-Use 2016 database (REU 2016 scenario). The results for the REU 2016 scenario indicate that
ML models outperform linear models. In particular, gradient boosting regression (GBR) performs best with an R2

adj of 0.69 compared to 0.54
for linear regression. The performance gap between ML and linear models becomes even wider for the general scenario with an R2

adj of 0.60
for GBR compared to 0.33 for linear regression. The finding in this article can be useful to researchers, municipalities, and utilities seeking
novel modeling techniques that can provide consistent modeling performance—i.e., high prediction accuracy—depending on data avail-
ability. Future work could include the development of new measures to increase the interpretability of ML models to better understand
causal relationships between independent variables and daily household water use. DOI: 10.1061/(ASCE)WR.1943-5452.0001119.
© 2019 American Society of Civil Engineers.

Introduction

Being able to adequately model water demand is essential for
municipalities and utilities to effectively meet consumer demand
while managing the available supply of water (House-Peters et al.
2010). In fact, modeling water demand has been integral not only to
water resource planning but also to urban infrastructure planning
and policy decision-making. This is especially the case now as
cities are expanding while simultaneously trying to consume less
energy and fewer resources (Derrible 2016, 2017, 2018). Specifi-
cally in the water realm, efforts should be put into effectively mod-
eling water demand of single-family households since they are the
primary consumers of public-supply water use in North America
(DeOreo et al. 2016).

Determining the right modeling approach (i.e., modeling algo-
rithm) to predict household water demand is a challenging task be-
cause water demand can be affected by numerous factors, including
technological, demographic, social, economic, and climate charac-
teristics, and public policies (Donkor et al. 2012; Fricke 2014;
House-Peters and Chang 2011). A wide variety of statistical tech-
niques exists that can be used to model household end-use water
demand. In general, parametric statistical models (also known as
parametric models, such as linear regression) are the most com-
monly applied models to predict household water use. Recently,
with the advent of data science and big data, the capabilities of
available data mining techniques (also known as machine-based

statistical learning, such as neural networks) seem virtually limit-
less (Ahmad et al. 2016, 2017; Ahmad and Derrible 2015; Derrible
and Ahmad 2015; Golshani et al. 2018; Lee et al. 2018), and they
offer new opportunities to model household water use, especially
because they can capture unobserved patterns and nonlinear rela-
tionships (Friedman et al. 2001; Lee et al. 2018; Bishop 2006).

Both families of algorithms [parametric and machine learning
(ML) models] have their own technical characteristics and methodo-
logical advantages (e.g., interpretability versus ability to capture non-
linearities) that need to be leveraged based on the context in which
they are applied. For instance, although more intuitive and interpret-
able than other models, parametric models (e.g., linear regression)
tend to generate more prediction errors than ML models. Further-
more, parametric models require a high degree of domain knowledge
to construct and adjust a model’s configuration while taking into ac-
count the underlying relationships between factors (e.g., to avoid
collinearity issues). In contrast, ML models show a high degree of
predictive accuracy with most data sets thanks to their ability to cap-
ture nonlinear and complex characteristics in the data, but many ML
models are less interpretable than parametric models owing to their
reliance on machine-based computation processes. Thus, selecting
the right modeling algorithms is not trivial. In this article, 12 stat-
istical learning algorithms are tested, including 4 parametric statis-
tical models and 8 ML models (Table 1). To validate the models, a
fivefold cross-validation (5-fold CV) process is applied (detailed
later) (Friedman et al. 2001; Kohavi 1995; Zhou 2012), which is
generally used to check the performance of ML models.

Beyond modeling, data availability can also be an issue. For
example, in the United States, most municipalities and utilities
do not have access to detailed water-use data sets such as longitu-
dinal (i.e., multilevel) or time-series (e.g., smart metered data) data
sets, although they have access to general individual- or household-
level information from publicly accessible microdata. In this con-
text, this article is purposely designed to investigate the role of data
availability in modeling performance. For this, two data scenarios
are elaborated, one that intentionally only includes commonly
available variables (i.e., general scenario) and one that contains
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many variables from the Residential End Uses of Water survey
(REU 2016 scenario) carried out by the Water Research Founda-
tion (WRF). Specifically, the general scenario only includes six
variables related to the demographic and economic characteristics
of households and climate. These six variables were selected
because they are mostly accessible to all US municipalities and
utilities from micro-level public data sources or other city-level
microdata samples. In contrast, the REU 2016 scenario includes
19 cross-sectional variables (i.e., for a single “typical” day), in-
cluding variables related to water-saving behavior and detailed
water-use patterns; technical details on how the REUW 2016 data
set is used in this study is provided in the data preprocessing
section.

Overall, this study will be useful to researchers, municipalities,
and utilities seeking to model and forecast residential water use,
especially when only limited data are available. The lessons from
this study can be used for short- and long-term planning, especially
in areas of rapid growth, and for routine operations by utilities.
Moreover—although only partly done in this work—the models
developed can also be used to infer the impact of individual var-
iables on residential water use (e.g., determine which variables
impact water use the most).

This study contains six sections. After this section, the section
“Literature Review” briefly reviews the literature on the two
technical aspects central to this work. The section “Research De-
sign and Data Preprocessing” details the data and the analysis
process. The section “Methodology” defines the 12 statistical
learning algorithms and performance indicators selected for this
article. In the section “Model Result and Discussion,” the overall
findings of the study are presented and discussed, and several
future tasks are suggested. Finally, the final section concludes
the article.

Literature Review

As mentioned, statistical algorithms can be broadly categorized
into two families: parametric statistical models and ML models.
Numerous studies focus on modeling household end-use water
demand. In particular, parametric models have most commonly
applied to predict household water use since they are easy to in-
terpret and are based on strong predetermined assumptions
(Arbues et al. 2010; Arbues and Villanua 2006; Brentan et al.
2017; Donkor et al. 2012; Goodchild 2003; Guhathakurta and
Gober 2007; House-Peters et al. 2010; House-Peters and Chang
2011; Kenney et al. 2008; Kontokosta and Jain 2015). While

parametric models are theoretically intuitive and easy to interpret
(i.e., since they yield parameters), they also pose serious statistical
issues.

First, parametric models have predetermined structures (e.g., re-
siduals are assumed to follow a normal distribution), and a hypo-
thetical test is performed to statistically validate the relationship
(Hastie et al. 2009). Furthermore, a single parametric equation
is globally employed and is supposed to hold over the entire data
set (i.e., the same relationships are assumed to apply to everyone),
while it is notoriously difficult for a linear parametric model to find
a best-fitting mathematical function (Friedman et al. 2001; Hensher
et al. 2005; Kuhn and Johnson 2013). To partially alleviate this
issue, modeling algorithms incorporating clusters (i.e., generalized
mixed-effect model) have been used by controlling detrimental
effects (e.g., random and fixed) (House-Peters and Chang 2011;
Wooldridge 2010). Nonetheless, these modeling algorithms are
preferentially applied to multilevel data (e.g., longitudinal) that may
not be accessible to many cities. Furthermore, finding the best-fitting
configuration of a model while taking into account underlying inter-
actions and relationships between variables (e.g., nonlinearity) is not
trivial (Breiman et al. 1984; De’ath 2002; Elith et al. 2008).

As an alternative to parametric models, ML models have also
been widely used in the urban infrastructure literature in general
(Akbarzadeh et al. 2019; Derrible and Ahmad 2015; Golshani
et al. 2018; Lee et al. 2018; Wisetjindawat et al. 2018) and specifi-
cally for household water use (Adamowski et al. 2012; Altunkaynak
and Nigussie 2017; Al-Zahrani and Abo-Monasar 2015; Bai et al.
2014; Donkor et al. 2012; Firat et al. 2009, 2010; House-Peters
and Chang 2011; Vitter and Webber 2018; Yurdusev et al. 2010).
In general, ML models have been shown to have high predictive
performance in a wide range of modeling applications thanks to sig-
nificant advances in computational ability. Specifically, ML models
can recognize nontrivial patterns from a data set that often result in
high prediction accuracies.

In particular, artificial neural network (ANN) models have
been widely applied to predict or forecast water consumption
(Altunkaynak and Nigussie 2017; Firat et al. 2009, 2010). For in-
stance, Firat et al. (2009, 2010) used six different ANN models to
forecast monthly water consumption using time-series data and
found that generalized regression neural network (GRNN) models
performed best. Apart from ANNs, Bai et al. (2014) used a stepwise
support vector machine (SVM) regression to forecast daily water
consumption using time-series data, which is called a variable-
structure SVM. Instead of using ML to directly model water
demand, ML models are also applied to facilitate water demand
analysis. For example, Vitter and Webber (2018) used a SVM clas-
sifier to classify specific water-use events (e.g., shower, clothes
washing) in households by incorporating electricity consumption
information that correlates to water consumption. Numerous other
ML models have been applied to predict other urban resources
(e.g., electricity and energy), including kernel-based methods,
boosting methods, and bagging methods (Bansal et al. 2015;
Kusiak et al. 2010; Lozano and Gutiérrez 2008; Robinson et al.
2017; Tso and Yau 2007).

In general, ML models include nonparametric (e.g., kernel) and
complex structure (e.g., network) models that can capture nonlinear
or complex relationships between various factors and target values
(e.g., household water use). Furthermore, they generally provide
higher predictive performances than parametric models in resource
demand modeling (Al-Zahrani and Abo-Monasar 2015; Firat et al.
2009, 2010; Robinson et al. 2017) since nonparametric features in
the model are trained by machine-based repetitive computation.
Owing to their machine-based computation, however, ML models
more commonly face overfitting issues, and they are also generally

Table 1. Statistical methodologies used for two scenarios

Category Regression methodologies

Parametric
statistical learning
algorithm (parametric models)

Ordinary least-squares regression
(linear regression)
Penalized: ridge regression (ridge)
Penalized: lasso regression (lasso)
Bayesian ridge regression (BRR)

Nonparametric
statistical learning
algorithm (ML models)

SVM with radial basis function (RBF)
kernel (RBF-SVM)
SVM with linear kernel (linear-SVM)
Kernel ridge regression (KRR)
Gradient boosting regression (GBR)
Random forest (RF) regression
K-nearest neighbor (KNN) regression
Multilayer perceptron (MLP)
regression
GRNN
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less interpretable than parametric models (e.g., neural networks are
often described as black-box models). To address the interpretabil-
ity issues in ML models, several useful statistical measures exist.
For instance, rule-based ensemble methods, such as gradient boost-
ing regression (GBR), are able to examine the marginal effect of a
feature on the predicted values of a learned model (a.k.a., partial
dependence plot) (Doshi-Velez and Kim 2017; Friedman et al.
2001; Natekin and Knoll 2013).

In addition to modeling methodologies, the performance of
water demand models largely depends on the quality of the data
available that properly capture the relationship between water de-
mand and the factors affecting the demand. Previous studies on
household water demand modeling found that the most significant
factors affecting water use include household demographic factors
(e.g., size, income, and type) (Arbues et al. 2010; Arbues and
Villanua 2006; DeOreo et al. 2016; Domene and Saurí 2006;
Grafton et al. 2011; House-Peters et al. 2010; Mayer et al. 1999;
Mazzanti and Montini 2006; Schleich and Hillenbrand 2009), cli-
mate factors (e.g., precipitation and temperature) (Donkor et al.
2012; Froukh 2001; Goodchild 2003; Guhathakurta and Gober
2007; House-Peters et al. 2010; House-Peters and Chang 2011;
Jentgen et al. 2007; Kontokosta and Jain 2015; Lee et al. 2010,
2015; Schleich and Hillenbrand 2009), price, and detailed water-
use and associated attitudinal information related to households
(Arbues et al. 2010; Arbues and Villanua 2006; Cominola et al.
2018; DeOreo et al. 2016; Fricke 2014; Ghimire et al. 2015;
Grafton et al. 2011; House-Peters et al. 2010; Kontokosta and Jain
2015; Vitter and Webber 2018; Willis et al. 2011). The first two
factors (i.e., household demographics and climate factors) are gen-
erally available to cities and water utilities in the United States,
which is not the case for detailed information on water use and
its behavioral characteristics, which is rarely available.

Research Design and Data Preprocessing

Research Design

This article is designed to examine two common technical issues
and investigate the modeling performances of 12 techniques under
two data scenarios (see research framework in Fig. 1). Before the
main analysis, this study conducts a thorough descriptive analysis
to detect the presence of statistical issues in the data set, which
is often the case for data that relate to resource consumption
(e.g., water and electricity). Then the main analysis focuses on
training 12 statistical learning algorithms (Table 1) on 70% of the
data (i.e., train set) under 2 data scenarios (i.e., general and REU
scenario). A 5-fold CV process is also applied to the training set.
The learned models are then validated on the remaining 30% of the
data (i.e., test set). The next section offers details on the data and the
two modeling scenarios.

Data Preprocessing

This article uses the REU 2016 database (DeOreo et al. 2016) re-
leased by the Water Research Foundation (WRF). The REU 2016
study contains extensive household water-use information from 24
water utility companies across the United States and Canada. The
REU database consists of four main data sets that come from two
main sources: (1) household water use (e.g., 12 days of metered
consumption) and billing information (e.g., annual water consump-
tion) and (2) household survey responses (DeOreo et al. 2016).
In particular, metered consumption was originally measured every
10 s for 2 weeks, but it was subsequently aggregated by day for
12 days (DeOreo et al. 2016).

This study mainly uses two data sets from the REU 2016 data-
base: daily household water use (“REU2016_Daily_Use_Main”)

Fig. 1. Research Design.
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and mailed household survey information about demographics and
water consumption behaviors (“REU2016_End_Use_Sample”).
The daily household water-use data set includes nine utilities for
a total of 771 households over 12 days. In total, the number of ob-
servations available is around 9,300 (some households include
more than 12 days). Furthermore, the mailed survey data set con-
tains detailed information on household demographic and eco-
nomic characteristics as well as water consumption behaviors in
the form of revealed preference (RP) and stated preference (SP).

From this database, this study purposely creates cross-sectional
data by combining average daily household water use with house-
hold survey information, based on the given identification codes
(KEYCODES). To calculate the average daily water use, the 12
recorded days of household daily water use are averaged. In es-
sence, this data set is transformed into cross-sectional information
to model one single “typical” day for the 771 households.

Subsequently, the combined data contained numerous missing
values, and some variables contained redundant or interrelated in-
formation that could bias the results (i.e., collinearity issues).
Therefore, multiple cleaning and variable selection processes were
conducted initially. In particular, variables with a very low response
rate (<10%–20%) were eliminated, and some variables having
redundant or interrelated information were merged. In addition,
household water demand also depends on climate conditions, which
must be taken into account since not all households are located in the
same geographic area. For this study, the number of heating degree

days (HDDs), the number of cooling degree days (CDDs), and the
climate zone (CZ) of each household were added to the data set
from www.degreeday.net and from maps provided by the American
Society of Heating, Refrigeration, and Air-Conditioning Engineers
(ASHRAE).

To further study the relationship between the variables, Fig. 2
shows the correlation matrix between all independent variables.
Specifically, no significant collinearity issues were detected that
might lead to biased estimation; i.e., Spearman coefficient = 1.0.
Nonetheless, as expected, HDD, CDD, and climate zone are
strongly correlated, and the pairs between outdoor properties
(e.g., pool) and climate conditions also show some correlation.
Moreover, variables related to household size also show some cor-
relation, such as number of toilets and bedrooms. In each case, only
one of the variables that showed some correlations was selected; for
instance, only HDD was selected. In the end, the data set contained
24 variables and 531 observations (i.e., single-family households).
The full list of variables used is shown in Table 2.

Overall, the general scenario includes six variables: number of
workers, household size, income, type, areas, and HDD. In particu-
lar, in the United States, these variables are available from publicly
accessible micro data sets, such as the American Community Sur-
vey (ACS) and the Public Use Microdata Sample (PUMS), and
from community-level household surveys. Although public micro
data sets are mostly anonymous and only contain a limited number
of samples, utilities and municipalities can use this information

Fig. 2. Correlation of independent variables (predictors).
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based on existing statistical approaches that are widely used in a
resource planning process—see details in Farooq et al. (2013),
Guo and Bhat (2007), and Rosca et al. (2018). In contrast, the
REU 2016 scenario includes all information in the general scenario
and more detailed household level water-use information that de-
scribe household water consumption from RP and SP responses.
For both scenarios, daily total household water consumption in lit-
ers per day is predicted, expressed as TraceDaily, that includes both
indoor and outdoor water consumption [although only a limited

number of households report outdoor properties (e.g., garden, lawn,
pool)].

Descriptive Analysis

An early investigation of the distribution of household water use
(i.e., TraceDaily) reveals that the variable is not normally distributed.
Using ordinary least squares (OLS) regression, Fig. 3(a) shows that
the distribution of household water use (y) is skewed to the right,

Table 2. Variables used in two scenarios: general and REU 2016 specific

Variable type Variable Description N Mean Standard

General scenario: six variables
Independent variable (x) Capita Number of people in household 531 2.73 1.44

HDD Heating degree days 531 4,098.92 2,432.28
Employed adults Number of workers in household 531 1.32 0.9
Income Household income ($10,000) 531 8.17 5.26
Parcel area Size of parcel area (m2) 531 809.08 496.0
Dummy outdoor Existence of outdoor properties is 1, otherwise 0

(e.g., garden, tree, lawn, and pool)
531 0.6 0.49

REU 2016 scenario: general scenario (6 variables) + 13 variables

Independent variable (x) Bedrooms Number of bedrooms in household 531 3.38 0.87
Outdoor area Size of outdoor area (m2) 531 320.98 330.14
Pool area Size of pool area (m2) 531 15.72 17
Homies Person usually stay at home 531 1.01 0.85
Vintage Vintage of home 531 34.59 19.44
Fixed charges Fixed rates for water 531 17.6 9.57
Marginal rate Marginal rates for water 531 4.98 2.24
Dummy treatment Treatment system in household is 1, otherwise 0

(e.g., water softener or reverse osmosis system)
531 0.12 0.33

Dummy pool Household with pool (indoor or outdoor) is 1, otherwise is 0 531 0.11 0.32
Dummy toilet flush Average toilet flush is less than 7.58 l per flush is 1, otherwise is 0 531 0.45 0.5
Dummy shower flow Average shower flow is less than 7.58 L=min is 1, otherwise 0 531 0.51 0.5
Dummy clothes load Average washer load is less than 11 L per load is 1, otherwise 0 531 0.51 0.5
Dummy hot water Hot water wait in master bathroom is 1, otherwise 0 531 0.45 0.5

Dependent variable (y) Trace dailya Daily water consumption (L=day, lpd) 531 714.98 428.72
aDaily water consumption is transformed into log10y. See details in section “Descriptive Analysis” and Fig. 2.

Fig. 3. (a) Distribution of dependent variables (y); (b) residuals of y; (c) distribution of dependent variables (log10y); and (d) residuals of log10y
(residuals are estimated by OLS).
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which is common in lognormal distributions. Furthermore, the
residual plots, Fig. 3(b), show the presence of a funnel-shaped
pattern, suggesting a nonconstant variance in the error terms—
i.e., heteroscedasticity—which violates the predetermined as-
sumption in linear models (e.g., linear regression). To solve this
heteroscedasticity issue, the actual y can be transformed using a
concave function such as the logarithm function (log10y) or the
square root of the actual yð ffiffiffi

y
p Þ (James et al. 2013; Kuhn and

Johnson 2013). This transformation shrinks the responses, which
can alleviate the heteroscedasticity issue. In the literature, the log-
transformed is most commonly used (Keene 1995; Kuhn and
Johnson 2013; Robinson et al. 2017). As shown in Fig. 3(c), taking
the log-transformed TraceDaily results in a normal distribution and
randomly scattered residuals shown in Fig. 3(d). As a result, log10y
is used as the dependent variable instead of y.

Methodology

Parametric linear models (i.e., linear and penalized regression)
assume either that the regression function EðyjXÞ is linear in the
inputs (X) to predict the output (Y) or that the linear model fits
reasonably along with a flat hyperplane (Hastie et al. 2009; James
et al. 2013; Kuhn and Johnson 2013). Thus, parametric linear
models are simple and can sometimes outperform nonlinear mod-
els, especially for limited and sparse data (Hastie et al. 2009). In
addition to the conventional linear regression technique (i.e., OLS),
several parametric linear models introduce additional information
or statistical assumptions, such as partial least squares (PLS), and
penalized models, such as lasso and ridge regression to decrease
the level of biases while preserving the predetermined assumptions
(i.e., linearity). In contrast, numerous nonparametric learning mod-
els or ML models exist that can be adapted to the data without as-
suming that a linear regression function in EðyjXÞ is linear. Due to
differences between the two modeling categories, it is difficult to
simply conclude which modeling technique is superior to the others
because this largely depends on the purpose of the research and the
intrinsic characteristics of the data used in the model.

Regardless of the algorithm, all have several common features.
In particular, most statistical models estimate the relationship be-
tween a set of independent variables x with a dependent variable y
while minimizing a loss function. For example, many models min-
imize the sum of squared errors (SSE), and are then evaluated by
measuring how much they managed to minimize SSE, e.g., using
the mean of squared errors (MSE):

MSE ¼ 1

n

XN
i¼1

ðyi − fðxiÞÞ2 ð1Þ

where N is the total number of observations, xi is a set of indepen-
dent variable vectors for ith observation, and yi a dependent var-
iable for ith observation. In fact, the MSE can be decomposed into
three parts:

E½MSE� ¼ ε2 þ ðBiasÞ2 þ Variance ð2Þ

The first part (ε2) consists of the unobserved errors that are
impossible to eliminate in modeling. In the second term, “Bias”
illustrates how well the estimated model can explain the relation-
ship between x and y. The last term is the variance. Generally, the
aim is to control the level of bias and variance when estimating a
model. Specifically, more complex models (e.g., artificial neural
networks) can have higher variances than models based on a linear
assumption (e.g., linear regression), which can lead to overfitting.
In contrast, simpler models can have lower variances, but they may

not be able to fully infer the relationship between x and y, thereby
resulting in underfitting. This trade-off between the two families of
techniques is often referred to as the variance–bias trade-off (James
et al. 2013; Kuhn and Johnson 2013). The following sections detail
the 12 statistical learning techniques selected in this study.

Parametric Statistical Learning Algorithms

Linear Regression Model
Linear regression aims to explain the relationship between a set of
independent variable vectors (x) and a dependent variable (y) based
on the linear function

y ¼ fðXÞ ¼ β0 þ
Xp
j¼1

βjXj ð3Þ

where xj is a vector for the jth independent variable, and βj and β0

are unknown parameters (coefficients and an intercept, respec-
tively). This linear combination is estimated by minimizing the
SSE between x and y Eq. (1), and it is also known as the standard
OLS regression.

Penalized Models: Ridge and Lasso Regression
Penalized models aim to mitigate problems related to model vari-
ance when the number of independent variables increases in the
standard OLS regression. Specifically, it is possible that highly
correlated variables (i.e., collinearity) can greatly increase the vari-
ance, and such variance issues can increase the overall MSE. Thus,
the family of penalized models, including ridge and lasso regres-
sions, regulate the estimation process by adding a penalty to the
SSE. Ridge regression adds an L2 penalty in the SSE, which con-
trols the trade-off between the variance and the bias. Specifically,
this penalty sacrifices some bias, and it can reduce the variance that
provides a lower MSE:

SSEL2
¼

XN
i¼1

ðyi − fðxiÞÞ2 þ λ
XP
j¼1

β2
j ð4Þ

where λ regulates the inflation of coefficient, and it must be cali-
brated through validation process.

In addition to the lasso regression, ridge regression (a.k.a., the
least absolute shrinkage and selection operator modeling) has an
L1 penalty that substitutes the L2 penalty in the ridge regression:

SSEL1
¼

XN
i¼1

ðyi − fðxiÞÞ2 þ λ
XP
j¼1

jβjj ð5Þ

Modified Ridge Regression: Kernel and Bayesian Ridge
Regression
Ridge regression is the simplest algorithm that can be kernelized or
combined with probabilistic features (e.g., Bayesian). Specifically,
x in Eq. (5) is substituted by the kernel function, ∅:

SSEL2
¼

XN
i¼1

ðyi − fð∅iÞÞ2 þ λ
XP
j¼1

β2
j ð6Þ

It is termed kernel ridge regression (KRR) since it uses the same
loss function that is used in ridge regression. Alternatively, the con-
text of Bayesian statistics can also be applied to ridge regression.
Specifically, the prior information and the posterior mean of a
model for the parameter (βj) follow:
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Prior: βj;∼Nð0; 1=λÞ; posterior: βj;∼Nð0; σ2=λÞ for all j

ð7Þ

All the modeling parameters are jointly estimated by maximiz-
ing the marginal log-likelihood function.

Nonparametric Machine-Based Statistical
Learning Algorithms

Rule-Based Ensemble Models: Random Forest and Gradient
Boosting Regression
Tree-based models estimate the relationship between X and y by
partitioning the input based on specific rules (i.e., rule-based
model). In particular, they provide a set of conditions and results
that are highly interpretable and also easily include different types
of variables without any assumptions and preprocessing. However,
simple trees can have a highly unstable performance and tend to
have higher variances than linear models (e.g., linear regression).
Therefore, ensemble methods are generally preferred because they
can reduce variance (James et al. 2013; Kuhn and Johnson 2013).
This article adopts two popular ensemble methods: random forest
(RF) regression and GBR.

Bagging algorithms, also called bootstrap aggregation tech-
niques, build a large number of decorrelated trees using bootstrap-
ping and then average them. Specifically, the bagging process in RF
is as follows (Friedman et al. 2001):
1. Draw bootstrapped samples (size N) from the original data set.
2. Grow a regression tree for the bootstrapped samples and a sub-

set of independent variables, and then recursively repeat the
tree-growing process until the stopping criterion is reached
(i.e., minimum node size).

3. Average all regression trees (size N) while reducing the overall
model variance, which is also called bagging.

4. The RF model predicts y given xi:

yðxiÞ ¼ f̂NRFðxiÞ ¼
1

N

XN
b¼1

TbðxiÞ

where xi = vector of independent variable; TbðxiÞ = single
regression tree grown by bootstrapped samples and a subset
of variables; and N = total number of regression trees.
Gradient boosting regression uses another tree ensemble tech-

nique, known as a boosting algorithm. Although bagging algo-
rithms (i.e., RF) also use multiple trees, boosting algorithms
sequentially grow the trees. Specifically, each tree is grown by us-
ing information (i.e., poorly fitted observations) from previously
grown trees, and different weights are assigned at each step
(James et al. 2013). The general boosting process for GBR is as
follows:
1. Initially set the number of trees (estimators), N, and number of

splits (tree depth), D (stopping criteria).
2. A target (dependent) variable, f̂ðxÞ ¼ 0, is initially set to zero,

and residual (ri) and target (dependent) variables (yi) are as-
sumed to be identical for all observations (i).

3. During the boosting process for each tree estimator (N number
of trees), the following steps are repeatedly and sequentially
conducted:
a. Estimate a tree and compute the residual for each observation

(computing negative gradient, r);
b. Fit a regression tree f̂b to the data ðx; rÞ); b denotes a single

regression tree;
c. Compute a new target value, f̂, by adding in a regularized

new tree:

f̂ðxÞ←f̂ðxÞ þ λf̂bðxÞ
d. Update the residuals:

ri←ri − λf̂bðxiÞ
4. Sum the sequential trees that predict y given x:

fBðxÞ ¼
XN
b¼1

λf̂bðxÞ

Support Vector Machine
A SVM is a kernel-based method to find the optimal generalization
boundaries for fitting y based on X. In fact, when used for regres-
sion, SVM inherits some properties from the SVM algorithm used
for classification. Specifically, SVM adopts different kernel func-
tions (∅) to capture the relationship between X and y:

yðxÞ ¼
XM
m¼1

βm∅mðxÞ þ β0 ð8Þ

where ∅ = kernel function (also called a basis function) with M
numbers. To estimate the parameters (β and β0), the following
kernel function is minimized:

min∅ðβ;β0Þ¼
XN
i¼1

Vr
εþ

1

2
kβk2

¼
XN
i¼1

Vðyi−fðxiÞÞþ
λ
2

X
β2
m

ðwhereVr
ϵ¼0ðif jrj≤εÞ;jrj−ε;otherwiseÞ ð9Þ

where Vr
ϵ measures the general errors from the support vectors se-

lected by the model. The element ε is the threshold to manage the
number of support vectors used for finding optimal bound, and λ is
called the penalty parameter determining the flexibility of the
model. Both ε and λ must be tuned to balance the variance–bias
trade-off.

ANN Models: Multilayer Perceptron and Generalized
Regression Neural Network
Artificial neural networks algorithmically construct a simplified
model of the human brain to explain or infer the relationship be-
tween X and y. The multilayer perceptron (MLP) neural network
has been widely adopted; it consists of three layers: input, hidden,
and output. It is also called a backpropagation neural network
(BPNN). In MLP, the hidden layer is able to capture nonlinear
relationships between X (input layer) and y (output layer).

For regression problems, the MLP neural network takes input
data and computes an output result based on the value of inputs
(x) and the corresponding weights (w) using an internal activation
function (f). The activation function is used to transfer inputs to
outputs according to the functional form of the activation function.
The weights are scaled values associated with the connections
between neurons. The notion that MLP predicts y given x can
be expressed as

yðx;wÞ ¼ w0 þ f

�Xn
i

wi∅iðxÞ
�

¼ w0 þ f

�Xn
i

wixi

�
ð10Þ

where x = input vector; w = vector of associated weights; and
∅x = basis function. Here, the function f takes x as the basis
function in the form of a linear combination. To estimate the
weights, a backpropagation process is applied to minimize the
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loss function (SSE) for the MLP by generally using the gradient
descent method (GDM).

AGRNN is a feedforward network that is physically identical to
the architecture of a BPNN (i.e., MLP)—three layers consisting of
an input layer, a hidden [radial basis function (RBF)] layer, and an
output layer. In contrast to the BPNN model, GRNN is formulated
by a linear combination of input (x) and associated weights (w)
through a RBF such as a Gaussian density function, gðxÞ. To
predict y given x, the GRNN can be expressed as

yðx;wÞ ¼ w0 þ f

�Xn
i

wigiðxÞ
�

ð11Þ

where w = vector of associated weights between output and hidden
layers. The main difference between Eqs. (10) and (11) is the basis
function that is changed from a linear to a Gaussian basis function.

Specifically, the basis function gðxÞ is conceptually obtained by
calculating the distance between two vectors based on the Gaussian
function whose outputs are inversely proportional to the distance
from the mean:

gðxÞ ¼ 1

σð2πÞ12 exp
�
− kx − cik2

2σ2

�
∼ expð−βkx − cik2Þ ð12Þ

where x = new input data samples to be classified with n var-
iables; and c = mean of Gaussian distribution, also known as a
prototype vector. To be specific, this equation computes the geo-
metric distance between the new input vector and the prototype
vector (i.e., mean of Gaussian distribution); thus, the similarity
of the input vector and prototype vector is measured.

Model Specification and Evaluation

Variable Scaling
A set of variables in a data set is recorded based on varying scales
and ranges. These numerical differences among variables may re-
sult in biased estimation, especially for some nonparametric models
that are sensitive to scales (e.g., ANN and SVR). Therefore, scaled
values (zi) are preferred for both the independent and dependent
variables in all models. Although variables do not need to be scaled
for linear models, the same values are used in all models for con-
sistency. In this study, the conventional min-max scaling technique
is adopted; it is defined as

zi ¼
xi −minðxÞ

maxðxÞ −minðxÞ ð13Þ

where zi = scaled value of ith sample; xi = original value of ith
sample; and maxðxÞ and minðxÞ = minimum and maximum value
of x.

As mentioned earlier and as is common in data mining, all mod-
els are trained on 70% of the data and tested on the remaining 30%
of the data. Furthermore, to detect any overfitting issues, a 5-fold
CV analysis is conducted. That is, the training set (i.e., 70% of the
data) is divided into five partitions, four of the five partitions are
used for model training, and the remaining partition is used to
evaluate the model. This process gives us five trained models,
and the average and standard deviation of the performance of each
model are calculated. Each model is then trained again on the full
training set and tested against the test set. Although this two-step
process adds some redundancy, it offers a statistically robust
method to validate the results.

Model Evaluation Metrics
To evaluate the models, three metrics are used: mean absolute error
(MAE), mean squared error (MSE), and adjusted r-squared (R2

adj).
MAE and MSE are primarily used to measure the deviation
between the actual and predicted water consumption values:

MAE ¼ 1

n

Xn
i¼1

jyi − ŷij ð14Þ

MSE ¼ 1

n

Xn
i¼1

ðyi − ŷiÞ2 ð15Þ

where ŷi = predicted value for ith household. In addition, R2
adj is

calculated to see how close the predicted values are to a fitted line
or curve to overcome the limitations of the traditional R2 indicator.
In particular, R2 increases whenever more independent variables
are added; thus, more variables may appear to better fit the data,
while this is not necessarily the case. R2 can also be affected by
the “noise” in the data. The traditional R2 is defined as

R2 ¼ 1 −
P

n
i¼1 ðyi − ŷiÞ2P
n
i¼1 ðyi − ȳiÞ2

ð16Þ

where n = number of observations. In contrast, the R2
adj is adjusted

by the number of variables in the model, and it can control increases
of R2 (Hastie et al. 2009). R2

adj is therefore lower or equal to R
2, and

it is defined as

R2
adj ¼ 1 − ð1 − R2Þðn − 1Þ

n − k − 1
ð17Þ

where k = number of independent variables; and ȳi = mean of actual
values.

Model Results and Discussion

This section contains the model validation results for the REU 2016
scenario first and then for the general scenario.

REU 2016 Scenario: Including 19 Variables

The performance of the 12 statistical models using the 5-fold CV
analysis for the REU 2016 scenario is shown in Table 3. The table
includes the MAE, MSE, and R2

adj values. The first value in the
table is the average performance, and the uncertainty value after
the “�” is the standard deviation. All models use normalized
data and predict the log-transformed of household water use. All
are implemented with the Scikit-learn library built in Python
(Pedregosa et al. 2011).

The results show that GBR outperforms the other models with a
MAE of 0.098 and R2

adj of 0.69. Furthermore, models containing
probabilistic or nonparametric features such as KRR, RBF-SVR,
RF, and GRNN perform better than other models. Parametric (lin-
ear) models such as ridge, linear-SVM, and linear regression also
perform relatively well with a MAE of approximately 0.113 and
R2
adj of 0.55. On average, parametric models performed worse than

MLmodels with a drop in R2
adj of about 0.14. In addition to Table 3,

Fig. 4 shows error plots comparing the predicted and actual water
consumption values. In particular, the predicted values for GBR are
more closely scattered to the standard regression line than the other
models. Moreover, the scattered values of the other models (espe-
cially parametric models) have a slightly lower tangent to the fitted
line than GBR—i.e., most models overestimate low consumption
values and underestimate high consumption values. For instance,
the linear regression model tends to overestimate lower values

© ASCE 04019067-8 J. Water Resour. Plann. Manage.
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(approximately bottom 30% in actual water consumption) and
underestimate higher values (approximately ranging from the
median to below the top 10%). This is partly because linear para-
metric models have strict assumptions of the error terms and the

relations between independent variables. In general, they assume
that covariance between independent variables is zero and that the
error terms follow normal distributions with a mean of zero. These
assumptions are likely to partly account for the poor prediction,
especially when the dimensionality of variables is high (i.e., large
number of independent variables).

In addition, MLP shows comparatively poor predictive perfor-
mance because many values are underestimated or overestimated
across the entire range of consumption values. Although similar pat-
terns are seen in other models, MLP has proven to be more sensitive.
this may be due to the fact that MLP with a backpropagation process
generally requires large data sets, preferably at least 10 times larger
than the number of weights in the network structure (Anthony and
Bartlett 2009; Iyer and Rhinehart 1999). In this study, the MLP
model only has 531 observations but 19 independent variables.
Furthermore, the MLP model shows the largest variation during
cross validation (standard deviation with �0.18 in R2

adj), and this
implies that it may not be optimized to the global minimum because
of the algorithmic characteristics of GDM.

General Scenario: Including Six Variables

Similar to Table 3 for the REU 2016 scenario, the performance
of the 12 statistical models for the general scenario are shown
in Table 4. The model performances are systematically lower for

Table 3. Cross-validation results of all models using all variables available
in REU 2016

Statistical regression
technique MAEN MSEN R2

adj

GBR 0.098� 0.01 0.017� 0.01 0.69� 0.09
RF regression 0.099� 0.02 0.017� 0.01 0.64� 0.10
RBF-SVM 0.110� 0.02 0.018� 0.00 0.62� 0.08
Bayesian ridge
regression (BRR)

0.111� 0.02 0.018� 0.02 0.61� 0.10

GRNN 0.111� 0.01 0.019� 0.01 0.60� 0.11
Kernel ridge
regression (KRR)

0.112� 0.01 0.021� 0.00 0.58� 0.07

Ridge regression (ridge) 0.113� 0.01 0.021� 0.01 0.55� 0.07
SVM with linear
kernel (linear-SVM)

0.113� 0.02 0.021� 0.00 0.55� 0.07

Linear regression 0.113� 0.02 0.021� 0.01 0.54� 0.07
MLP regression (MLP) 0.115� 0.03 0.023� 0.02 0.52� 0.18
Lasso regression (Lasso) 0.116� 0.02 0.025� 0.01 0.49� 0.05
KNN regression (KNN) 0.119� 0.02 0.029� 0.01 0.41� 0.06

Note: MAEN, MSEN, and R2 are calculated from normalized data.

Fig. 4. Comparison of error plots for REU 2016–specific scenario [the horizontal is the logarithm of normalized actual water consumption (log10y)
and the vertical axis is that of predicted consumption values].
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the general scenario compared to the REU 2016 scenario, which is
expected since fewer variables are used. The results also show that
the performance gaps between the ML and parametric models in-
creased significantly. For instance, the R2

adj values for linear regres-
sion decreased from 0.54 to 0.33 (a 41% decrease) in contrast to the
R2
adj values for GBR, which only decreased from 0.69 to 0.60

(a 13% decrease). In addition, the error plots in Fig. 5 demonstrate
that GBR shows similar patterns with Fig. 4, and the number of
under- and overestimated samples increased only marginally. Con-
sequently, these results suggest that the independent variables can
still explain residential end-use water consumption behaviors rel-
atively well. In particular, household type and size and climate fac-
tors appear to significantly affect water consumption. The results
also show that MLP now performs relatively well in the general
scenario, with only a 0.04 decrease in R2

adj and a 0.016 increase
in MAE. This is partially because the general scenario includes
fewer variables than the REU 2016 scenario, thus requiring the
training of fewer weights (which is important, as mentioned
earlier).

Finally, in predictive modeling, it is generally desirable to gain
an appreciation for the contribution of each variable, i.e., which
independent variable contributes the most to explaining the depen-
dent variables? For instance, the top-ranked model, GBR, has the
potential to measure the relative importance of each variable, gen-
erally referred to as the variable importance (VI). The results of VI
can be interpreted as the predictive power of independent variables.
Based on the VI in GBR, income, household size, parcel area, the
existence of outdoor properties, and climate make a greater contri-
bution to the prediction of household water consumption. This also
implies that the variables used in the general scenario are sufficient
to provide an acceptable prediction performance.

Table 4. Cross-validation result for general scenario that only includes
publicly available variables (six variables)

Statistical regression
techniques MAEN MSEN R2

adj

GBR 0.128� 0.01 0.026� 0.01 0.60� 0.13
RF regression 0.130� 0.01 0.029� 0.01 0.51� 0.18
GRNN 0.131� 0.02 0.030� 0.01 0.50� 0.11
KRR 0.131� 0.02 0.030� 0.01 0.49� 0.12
MLP regression 0.132� 0.02 0.031� 0.01 0.48� 0.14
SVM (linear-SVM) 0.134� 0.02 0.033� 0.01 0.44� 0.10
KNN 0.135� 0.02 0.034� 0.01 0.43� 0.10
Ridge 0.137� 0.02 0.036� 0.00 0.39� 0.11
Bayesian ridge
regression

0.137� 0.02 0.036� 0.00 0.37� 0.11

SVM regression
(RBF-SVM)

0.139� 0.02 0.037� 0.00 0.34� 0.11

Linear 0.140� 0.02 0.037� 0.01 0.33� 0.11
Lasso 0.140� 0.02 0.037� 0.01 0.33� 0.08

Fig. 5. Comparison of error plots for general scenario.
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Technical Discussion

Generally, the results demonstrate that ML models outperform
parametric linear models, such as linear regression, which is largely
due to the algorithmic differences between the two families of tech-
niques. For instance, GBR, SVM, KRR, RF, and ANN models are
primarily designed to capture nonlinear and complex relationships
between variables in regression problems. For that, they perform
stochastic local optimization (e.g., kernel, boosting, and bagging)
rather than single global optimization (Friedman et al. 2001). Thus,
they are likely to decrease biases during the estimation process, and
they can provide more accurate predictions than linear models.

Nonetheless, this local nonparametric learning process may gen-
erate overfitted models that can have high variances. For instance,
ANN models using a high-dimensional input data set tend to be
overfitted since they have too many weights that need to be opti-
mized. These overfitting issues can be seen in any ML models. The
simplest way to mitigate them is to set an early stopping rule that is
widely used to interrupt the repetitive learning of a machine. When
it comes to algorithmic features, regularization and shrinkage meth-
ods are added to the ML models to avoid overfitting (Friedman
et al. 2001). Specifically, a regularization term within some models
(e.g., GBR, lasso, ridge, and KRR) alleviates problems related to
outliers (e.g., high biases) and high-dimensional inputs (e.g., high
correlation) by introducing penalties while balancing the trade-off
between the variance and bias. In addition to the regularization,
GBR and ANN models contain a shrinkage parameter that can also
control variances by sacrificing some biases. For example, this is
applied to hyperparameters (i.e., weights) that can control skewed
variables and outliers. These algorithmic features partly substanti-
ate the performance gaps between the ML and parametric models
used in this study, and GBR, in particular, possesses all the features
mentioned earlier. In other words, ML models can be more appro-
priate for predicting residential water use, especially for data such
as REU 2016 that inherently exhibit high variance (i.e., detrimental
outliers).

In predictive modeling, the applicability of a model is also an
important performance criterion, i.e., whether a model can easily be
used for other municipalities or utilities. The availability of data on
daily water use can vary dramatically across geographical loca-
tions, however. For instance, some cities may have access to longer
time-series daily water use than the REU 2016 data sets that are
only available for 12 days. This longer time-series data may include
unobserved heterogeneity across households and other unobserved
effects. To enhance future applicability, the modeling approaches
discussed here are designed to alleviate these effects by controlling
variables (a.k.a., covariates) that can incorporate seasonal and
climate-related effects that affect water use. In addition, the top-
ranked model, gradient boosting machine (GBM), possesses an al-
gorithmic ability to handle heterogeneity issues, which is initially
built in in rule-based models (see details in the “Methodology” sec-
tion). Due to its nonparametric and rule-based properties, it is al-
gorithmically well suited to handle mixed-type data that often show
mixed effects (e.g., heterogeneity across observations) (Friedman
2001; Friedman et al. 2001). In addition to this algorithmic char-
acteristic, GBM includes boosting machine processes that sequen-
tially “forgive” poorly learned samples in a single tree structure by
using multiple trees (i.e., estimators). This is one of the main tech-
nical reasons why GBM performs best among all modeling meth-
ods tested in this study. Therefore, the modeling performance will
be consistent when the data get even longer than what is used in this
article.

Despite a high degree of predictive power, the general criticism
of many machine-based algorithms is their lack of interpretability,

unlike parametric models, in which a domain expert can validate
the parameters estimated. Several statistical measures exist to ad-
dress this interpretability issue in ML models (Doshi-Velez and
Kim 2017; Samek et al. 2017). Among numerous measures, a
model-agnostic approach (i.e., not specific to a particular algo-
rithm) is generally preferred since it can be applied to any predic-
tive modeling process using ML models (Friedman et al. 2001;
Lundberg and Lee 2017; Molnar 2018; Ribeiro et al. 2016). For
example, and as shown in this article, GBR is able to identify
the magnitude of the contribution of each variable by measuring
the reduction in the overall error (i.e., bias and variance), called
variable importance. Nonetheless, VI cannot represent the sensitiv-
ity of variables on dependent variables. In contrast, the marginal
effect of an independent variable on the predicted values of a
learned model can also be examined with ML models and is gen-
erally referred to as partial dependence (Friedman et al. 2001;
Natekin and Knoll 2013; Semanjski and Gautama 2015; Lee et al.
2019). Although they are beyond the scope of this article, these
interpretable features are straightforward. Not only do they provide
valuable insights into the performance of a model, they can also
help determine effective policies by assessing the contribution of
individual variables and therefore help municipalities and utilities
make better long-term and short-term decisions.

Conclusion

This article aimed to test two technical challenges in water demand
modeling: determining which modeling technique is most appro-
priate and determining how much data and what variables are
required for learning an acceptable model. Specifically, the perfor-
mance of 12 statistical learning algorithms, including parametric
and nonparametric models, were investigated to model household
end-use water demand (i.e., the cross section of average daily water
use), while taking into account two data scenarios. For the general
scenario, only six variables were intentionally kept because they are
commonly available in public micro databases and, thus, are acces-
sible to all cities and water utilities.

The results for the REU 2016 scenario indicate that nonpara-
metric ML models perform better than parametric linear models;
specifically, GBR performed best. Furthermore, MLP showed rel-
atively poor accuracy and the largest variation during cross valida-
tion, although it reportedly performed well in previous studies. This
is likely due to the fact that GDM may have issues with finding
optimal solutions while minimizing loss functions when the dimen-
sionality of the input data (i.e., the number of variables) is small.
In the general scenario, ML models perform adequately as well de-
spite the data constraints (i.e., six variables), and here again GBR
performed best. In contrast to the REU 2016 scenario, the perfor-
mance gaps between the ML models and the linear models were
even wider. In addition, linear models less accurately predicted
under- and overestimated samples compared to the REU 2016
scenario.

The findings in this study can fill important technical knowledge
gaps in predicting household water demand. Moreover, the study
can be useful to municipalities and utilities that can adopt the same
techniques (e.g., gradient boosting) on their own data set to predict
water demand and to infer the importance of individual variables in
their area. To further improve water demand prediction accuracy,
future work can focus on simulating data sets that can provide more
information with utilities to better capture household and individual
water consumption behavior. In addition, as mentioned in the tech-
nical discussion, a single metric, such as predictive accuracy, is
often not enough to be able to develop effective policies. Instead,
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learned models should have both predictive power and be interpret-
able to take full advantage of the usability and adaptability of
models in the future.

Data Availability Statement

The 2016 Residential End Use of Water survey (REU 2016) used in
this study can be acquired from the Water Research Foundation
(www.waterrf.org), and it is accessible to everyone upon request.
The database is provided as a Microsoft Access file. Within the
database, the authors used primarily “REU 2016_Daily_Use_Main”
and “REU2016_End_Use_Sample,” and these are combined with
KEYCODES.

The Python codes used in this article were created mainly by
using the Scikit-learn library (Pedregosa et al. 2011). Anyone with
minimal experience in statistical modeling should be able to use the
ML models used in this study easily by using this Python package
or most other libraries available in Python and in other computer
languages (e.g., R). The Python codes developed for this study are
available from the corresponding author upon request.
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