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ABSTRACT

Condition assessment of machinery components such as
gears is important to maintain their normal operations and thus
can bring benefit to their life circle management. Data-driven
approaches haven been a promising way for such gear condition
monitoring and fault diagnosis. In practical situation, gears
generally have a variety of fault types, some of which exhibit
continuous severities of fault.  Vibration data collected
oftentimes are limited to reflect all possible fault types.
Therefore, there is practical need to utilize the data with a few
discrete fault severities in training and then infer fault severities
for the general scenario. To achieve this, we develop a fuzzy
neural network (FNN) model to classify the continuous
severities of gear faults based on the experimental measurement.
Principal component analysis (PCA) is integrated with the FNN
model to capture the main features of the time-series vibration
signals with dimensional reduction for the sake of computational
efficiency. Systematic case studies are carried out to validate
the effectiveness of proposed methodology.

1. INTRODUCTION

Gears are one of the most critical machinery components in
industry. Condition monitoring and fault diagnosis have shown
benefits to ensure the safe and normal operations of gears.
Vibration signals have been widely used in the practice of gear
fault diagnosis because they are easily measured with low-cost
sensors, and contain sufficient information to reflect the health
condition of gear system [1, 2]. Fault diagnosis of gear system
is performed upon the signal processing of measured vibration
data, which aims at extracting the underlying features in data to
elucidate health conditions. To facilitate such feature extraction,
a number of signal processing techniques that deal with either
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time- or frequency-domain information have been developed and
applied, including wavelet transform [3-5], Hilbert-Huang
transform [6], etc. The main challenge of these signal
processing-based feature extraction methods lies in the manual
selection of fault-related features. The selection of useful
features retrieved from signal processing is dependent on the
engineering judgement and empirical experience, which
oftentimes is inefficient and tedious due to the multiple attempts
required.

Along with the rapid advancement of computational power,
data-driven machine learning approaches have been extensively
adopted to classify/identify gear fault types [7-9]. They are
capable of autonomously identifying the representative features
once they are trained by learning from the data.  This
fundamentally avoids the manual feature selection needed in
signal processing-based feature extraction methods. Among
those data-driven approaches, deep learning neural networks
have gained significant attentions because of their enhanced
feature extraction and learning ability, as well as their capability
to handle the large dimension of features, such as image and
video [10, 11]. Convolutional neural network (CNN) is one of
the promising deep learning neural network models. Cao et al
[12] wutilized convolutional neural network-based transfer
learning approach to classify gear fault types based on small
datasets. Kim and Choi [13] integrated signal segmentation
approach into convolutional neural network model for
conducting gear fault identification. In order to enhance the
accuracy of gear fault classification/identification, recent
research efforts have been made to build a hybrid approach by
combining signal processing techniques together with the neural
network models. Such a hybrid approach essentially leverages
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the power of both methods and thus demonstrates improved
capability [14,15].

It is worth mentioning here that state-of-art data-driven
classifiers for gear fault identification is feasible only when the
data with the same types of gear faults are used for both training
and testing processes. This is however difficult to be realized in
the complex industrial setting, in which an infinite number of
gear faults with continuous severities may occur. It becomes
unrealistic to collect the vibration data corresponding to all
possible fault types in order to establish the classifiers that can
enable the reliable “deterministic” classification. Instead, one
may want to use vibration data labeled with a few discrete fault
severities to train a model that is expected to yield the correct
fuzzy or probabilistic classification of other fault severities. A
desirable classification result can be described for example as
“this data sample indicates high likelihood that a gear is under
40% damage”. In this context, we aim at developing a novel
classifier to handle the abovementioned classification task with
fuzzy essence. Specifically, in this research we build a fuzzy
neural network (FNN) model [16] based on the experimentally
measured time series signals under different gear healthy
conditions, which are pre-processed via principal component
analysis (PCA) [17].

The remainder of this paper is organized as follows. In
Section 2, the proposed methodology is presented which
includes fuzzy neural network (FNN) and principal component
analysis (PCA). Section 3 demonstrates comprehensive case
studies regarding how to employ above methodology to conduct
the fuzzy classification of gear fault types in terms of measured
time-series vibration signals, followed by the concluding
remarks in Section 4.

2. METHODOLOGY FORMULATION
In this section, we first introduce the fuzzy neural network

(FNN) and its general architecture and layers. We then briefly

outline the principal component analysis, which will be

integrated into FNN to facilitate the numerical analysis.

2.1 Fuzzy neural network (FNN)

Fuzzy neural network (FNN) is a neuro-fuzzy system that is
one specific type of neural network models [16]. As compared
to the general neural network models, e.g., multilayer perceptron
neural network (MLP), fuzzy neural network primarily aims to
learn linguistic/fuzzy rules via model training. The essence of
FNN is that it must contain one fuzzification layer consisting of
multiple fuzzy rules to be trained. In order to enhance its feature
learning ability, the general architecture also allows the
incorporation of other types of layers, such as fully connected
layers which are commonly seen in a lot of neural network
models. Figure 1 shows one representative architecture of FNN
model. The details of layers involved are described below.

1. Input layer — this layer conveys the input information into
network. Each neuron of this layer carries one feature of
input sample.

2. Fuzzification layer — this layer is the key layer used to
represent the way of fuzzy human reasoning. The fuzzy
rules are readily integrated into this layer, and they are

characterized by so called membership functions, which
map the point from input space into a membership value (or
degree of membership). Membership functions generally
are built from several basic functions: piecewise linear
functions, Gaussian distribution function, sigmoid curve,
and quadratic and cubic polynomial curves [16].

3. Fuzzy reasoning/rule layer — this layer works in
collaboration with previous fuzzification layer to mimic the
process of human reasoning. Specifically, it activates its
affiliated rule neurons to take actions accordingly in terms
of antecedents from fuzzification layer. The resulted
output of this layer is so called firing strength, which
mathematically is in the form of multiplication of associated
membership function values.  The firing strength is
capable of differentiating the samples in terms of samples’
input features. The discrepancy of samples will become
more obvious especially when more features are introduced.

4. Defuzzification layer — it fundamentally is a fully connected
layer that is widely used in any type of NN model.

5. Softmax layer — it performs normalization function of the
output values from defuzzification layer to yield probability
values of all classes.

6. Output layer — it assigns the class in terms of probability
values from softmax layer.
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FIGURE 1: ARCHITECTURE OF FUZZY NEURAL NWTEORK
(FNN) MODEL.

2.2 Principal component analysis (PCA)

Principal component analysis (PCA) is a statistical
procedure that uses an orthogonal transformation to convert a set
of observations of possibly correlated variables (entities each of
which takes on various numerical values) into a set of values of
linearly uncorrelated variables called principal components [17].
The principal components (PCs) are ranked in terms of feature
variances among all data samples. Therefore, PCA not only
results in the most differential features of samples, but also
achieves the input data compression to facilitate the succeeding
FNN model training. The significantly reduced input features
greatly favor the computational efficiency enhancement. On the
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other hand, more input features (some of them may not be quite
influential to output) much likely result in overfitting issue and
hence degrade the performance of FNN.

3. CASE ILLUSTRATION

In this section, we carry out a case study, i.e., gear fault
classification with fuzzy expression based on the experimentally
measured time-series data.
3.1 Data acquisition

In this research, the experimental data are collected from a
benchmark two-stage gearbox with replaceable gears a shown in
Figure 2. The gear speed is controlled by a motor.  The torque
is supplied by a magnetic brake which can be adjusted by
changing its input voltage. A 32-tooth pinion and an 80-tooth
gear are installed on the first stage input shaft. The second
stage consists of a 48-tooth pinion and 64-tooth gear. The input
shaft speed is measured by a tachometer, and gear vibration
signals are measured by an accelerometer. The signals are
recorded through a dSPACE system (DS1006 processor board,
dSPACE Inc.) with sampling frequency of 20 KHz.
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FIGURE 2: BENCHMARK GEARBOX SETUP.

There are 9 different gear conditions that are intentionally
created onto pinion on the input shaft including healthy
condition, missing tooth, root crack, spalling, and chipping tip
with 5 different severities (Figure 3). For each gear condition,
104 signals are collected using the experimental gearbox system.
For each signal, 3,600 angle-even samples are recorded in the
course of 4 gear revolutions first for the case study.

FIGURE 3: 9 PINIONS WITH DIFFERENT HEALTH
CONDITIONS (5 SEVERITIES FOR CHIPPING TIP).

3.2 Training and implementation
Data configuration and problem set-up

We have a total of 936 time-series samples with 9 labeled
fault types. Each fault type has 104 samples, showing the data
balance required for classification analysis. We formulate a
fault classification problem. Here we assume we have
unknown labels for 2 fault types with continuous severities. We
aim at building a discriminative FNN model by training samples
with other 7 fault types, and use that model to test samples with
2 unknown fault types. Details can be referred to Table 1.

Table 1. GEAR HEALTH CONDITIONS

ID Fault Types Fault Type
Attribute
1 Healthy Labeled/train
2 Missing tooth Labeled/train
3 Crack Labeled/train
4 Spalling Labeled/train
5 Chipping_tip_5 (least Labeled/train
severe)
6 Chipping tip 4 Unknown/test
7 Chipping_tip 3 Labeled/train
8 Chipping tip 2 Unknown/test
9 Chipping_tip 1 (most Labeled/train

severe)

This set-up yields a total of 728 training samples and 208
testing samples. Each sample has 3,600 acceleration time
series data points. In order to fit FNN model with tractable
training effort, PCA is implemented on each sample for data
dimensionality reduction. The 2-D projections of first 4 PCs
based upon training datasets are given in Figure 4. Different
colors indicate different fault types. Apparently, lower-order PCs
generally have more clear boundaries of formed clusters. Care
should be taken when analyzing classification accuracy. As
samples with unknown fault types are not used for training and
these samples essentially fall within specified continuous
severities on chipping tip, the result will be considered as correct
when the samples with true label chipping tip 4 are identified
as chipping_tip 5 or chipping tip 3. Similarly, it’s considered
to be correct when the samples with true label chipping_tip 2 are
identified as chipping_tip 3 or chipping_tip 1.
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Figure 4. PRINCIPLE COMPONENTS EXTRACTED FROM
TRAINING SAMPLES WITH 7 LABELED FAULT TYPES.
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Establishment of fuzzy neural network (FNN) model
Following the architecture shown in Figure 1, here we

specify the parameters required to finalize the establishment of

FNN for training:

1. Input layer. Since in this study each time series sample is
pre-processed and converted to several primary features
through dimensionality reduction utilizing PCA, the number
of nodes in input layer, i.e., n therefore denotes the number
of principal components (PCs). Here we use 3 PCs to initiate
our analysis.

2. Fuzzification layer. In this study, we choose the Gaussian
membership function to describe the fuzzy sets. Each
input feature will be processed by ( mxq ) numbers of

membership functions. Therefore, the number of
membership functions in this layer is (nxmxgq). Here, m

denotes the number of fault types (7 in this case), and ¢
denotes the size of clusters (set as 1 in this case for sake of
model simplicity). Note, the size of clusters definitely will
increase the scale of model.

3. Fuzzy reasoning/rule layer. The total number of possible
rules to cover all scenarios theoretically is (mxgq)" (g is
selected as 1). For the sake of simplicity, here we assume
that the rules are subject to self-correlation, which reduces
(mxgq)" to (mxgq). The details of rules are included in
Table 2. Such rule set-up has some merits: 1). each rule in
Table 2 solely affects the probability output of one relevant
fault type, which matches our basic understanding; 2). the
model stays simple by keeping a small number of nodes in
this layer.

4. Defuzzification layer. The total weights in this layer to be
optimized is m , which is equal to the number of outputs in
fuzzy reasoning layer when ¢ =1 in this case. This can be
easily paired with m probability values of relevant fault
types in final output.

Table 2. FUZZY LOGIC RULES

Rule ID Fuzzification layer #2 Fuzzy reasoning
/antecedent layer
#3/consequent
1 If (x,is MF,,) AND n
. = Hvi,l
(x,is MF, )AND i
...AND (x,is MF,,
)
2 If (x;is MF;,) AND n
. V2= HVi,z
(x,is MF,,)AND "
...AND (x,is
MF,,)
3 If (x,is MF;;) AND

n
V3= va
il

(x,is MF,,)AND

...AND (x,is
MF,;)
4 If (x,is MF,,) AND
(x,is MF,,)AND
...AND (x, is
MF,,)
5 If (x,is MF,;) AND
(x,is MF,;)AND
...AND (x,is
MF,;)
6 If (x,is MF;;) AND
(x,is MF,;)AND
...AND (x, is
MF,)
7 If (x,is MF,,) AND
(x,is MF,, )AND
...AND (x, is
MF,;)

n
Vs = H Via
i1

n
Vs = Hvi,S
il

n
Ve = H Vie
i1

n
V7= I IVi,7
i=1

According to the definition of model architecture, we can
train the model based on training datasets and use the well-
trained model to predict the output under other testing inputs.
The analysis is facilitated by MATLAB Fuzzy Logic Toolbox.
Here, it’s noteworthy that the architecture shown in Figure 1 is
used for training. When we test the samples that essentially do
not belong to those 7 fault types, we extract the outputs from
fuzzy reasoning layer and directly normalize the outputs for fault
type classification. In other words, we remove the
defuzzification layer in current architecture in order to enable the
classification result with fuzzy nature.

The testing/classification results of 104 samples for each
unknown fault type, i.e., chipping_tip 4 and chipping_tip 2 are
shown in Figures 5 and 6. In those two plots, the horizontal
and vertical axes respectively indicate the testing sample index
and the normalized probability values of 7 known fault types
given the testing samples. Therefore, at each testing sample,
there are 7 probability values distributed vertically. It can be
observed that healthy condition and chipping tip 5 are two
dominant fault types identified for the testing samples with true
fault type: chipping tip 4 as their identified probability data
points locate at the top area (approach probability value 1). On
the other hand, other fault types make very little contribution.
While fault type chipping tip 3 is primarily identified for the
testing samples with true fault type: chipping tip 2, relatively
uniform distribution of probability data points illustrates the
engagement of other identified fault types.
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Figure 5. NORMALIZED PROBABILITIES OF FAULT TYPES
OVER TESTING SAMPLES WITH TRUE FAULT TYPE:
chipping_tip_ 4 (NUMBER OF PCS =3).
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Figure 6. NORMALIZED PROBABILITIES OF FAULT TYPES

OVER TESTING SAMPLES WITH TRUE FAULT TYPE:
chipping_tip 2 (NUMBER OF PCS = 3). (same legend with Figure 5)

In terms of the highest probability values, the most possible
fault types of all testing samples can be determined. The
distributions of total numbers for identified fault types are given
in Figure 7. According to the accuracy definition of fuzzy
classification, the numbers of correctly identified samples for
fault type chipping_tip_4 and chipping_tip 2 respectively are 79
and 91 (out of 104) from Figure 7.

The results illustrate the effectiveness of FNN for coping
with the fuzzy classification analysis in this study. Moreover, one
may interestingly notice that the second largest number of
samples with chipping tip 4 are identified as healthy condition.
It may be reasonable since the chipping tip 4 is a minor fault
scenario whose input features may resemble that of healthy
condition in many relevant testing samples. The optimized
Gaussian membership functions in FNN are shown in Figure 8.
It can be seen that the membership functions of higher-order PC

become less differentiable. Generally, these 3 PCs are
necessarily incorporated into training because their membership
functions among different fault types vary, either with the change
of mean or variance.
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Figure 7. FUZZY CLASSIFICATION ACCURACY
EXAMINATION: NUMBERS OF FAULT TYPES IDENTIFIED
GIVEN TESTING VIBRATION SIGNALS (NUMBER OF PCS = 3).
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It’s noteworthy here that the FNN is able to magnify the
probability of the most possible fault type identified following
the mathematical form of firing strength. The firing strength
enables the normalized probability values of the most possible
fault type and others respectively to approach 1 and 0 as long as
the sufficient differentiable features are involved. Therefore,
except the most possible fault type, other fault types cannot be
ranked due to their nearly zero probability values, which can be
clearly illustrated in Figure 5. Figure 6 on the other hand can
indicate the ranking of involved fault types given certain testing
sample.
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4. CONCLUDING REMARKS

In this research, we establish a fuzzy neural network (FNN)
model that is trained upon measured vibration data labeled with
limited gear fault types. We use this well-trained FNN model to
fuzzily classify other possible fault types that are not included in
the fault types in training data. To facilitate the training, we
apply principal component analysis (PCA) onto measured gear
vibration time series data to extract its features and consider
these as input features of FNN model. In the case study, only
first 3 principal components are selected to feed the FNN model.
The results clearly verify the feasibility of this proposed
methodology with good fuzzy classification accuracy.
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