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ABSTRACT 

Condition assessment of machinery components such as 
gears is important to maintain their normal operations and thus 
can bring benefit to their life circle management. Data-driven 
approaches haven been a promising way for such gear condition 
monitoring and fault diagnosis. In practical situation, gears 
generally have a variety of fault types, some of which exhibit 
continuous severities of fault.  Vibration data collected 
oftentimes are limited to reflect all possible fault types. 
Therefore, there is practical need to utilize the data with a few 
discrete fault severities in training and then infer fault severities 
for the general scenario. To achieve this, we develop a fuzzy 
neural network (FNN) model to classify the continuous 
severities of gear faults based on the experimental measurement. 
Principal component analysis (PCA) is integrated with the FNN 
model to capture the main features of the time-series vibration 
signals with dimensional reduction for the sake of computational 
efficiency.  Systematic case studies are carried out to validate 
the effectiveness of proposed methodology. 
 
1. INTRODUCTION 

Gears are one of the most critical machinery components in 
industry. Condition monitoring and fault diagnosis have shown 
benefits to ensure the safe and normal operations of gears.  
Vibration signals have been widely used in the practice of gear 
fault diagnosis because they are easily measured with low-cost 
sensors, and contain sufficient information to reflect the health 
condition of gear system [1, 2].  Fault diagnosis of gear system 
is performed upon the signal processing of measured vibration 
data, which aims at extracting the underlying features in data to 
elucidate health conditions. To facilitate such feature extraction, 
a number of signal processing techniques that deal with either 

time- or frequency-domain information have been developed and 
applied, including wavelet transform [3-5], Hilbert-Huang 
transform [6], etc. The main challenge of these signal 
processing-based feature extraction methods lies in the manual 
selection of fault-related features. The selection of useful 
features retrieved from signal processing is dependent on the 
engineering judgement and empirical experience, which 
oftentimes is inefficient and tedious due to the multiple attempts 
required. 

Along with the rapid advancement of computational power, 
data-driven machine learning approaches have been extensively 
adopted to classify/identify gear fault types [7-9]. They are 
capable of autonomously identifying the representative features 
once they are trained by learning from the data.  This 
fundamentally avoids the manual feature selection needed in 
signal processing-based feature extraction methods. Among 
those data-driven approaches, deep learning neural networks 
have gained significant attentions because of their enhanced 
feature extraction and learning ability, as well as their capability 
to handle the large dimension of features, such as image and 
video [10, 11]. Convolutional neural network (CNN) is one of 
the promising deep learning neural network models. Cao et al 
[12] utilized convolutional neural network-based transfer 
learning approach to classify gear fault types based on small 
datasets. Kim and Choi [13] integrated signal segmentation 
approach into convolutional neural network model for 
conducting gear fault identification. In order to enhance the 
accuracy of gear fault classification/identification, recent 
research efforts have been made to build a hybrid approach by 
combining signal processing techniques together with the neural 
network models. Such a hybrid approach essentially leverages 
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the power of both methods and thus demonstrates improved 
capability [14,15].    

It is worth mentioning here that state-of-art data-driven 
classifiers for gear fault identification is feasible only when the 
data with the same types of gear faults are used for both training 
and testing processes. This is however difficult to be realized in 
the complex industrial setting, in which an infinite number of 
gear faults with continuous severities may occur.  It becomes 
unrealistic to collect the vibration data corresponding to all 
possible fault types in order to establish the classifiers that can 
enable the reliable “deterministic” classification.  Instead, one 
may want to use vibration data labeled with a few discrete fault 
severities to train a model that is expected to yield the correct 
fuzzy or probabilistic classification of other fault severities. A 
desirable classification result can be described for example as 
“this data sample indicates high likelihood that a gear is under 
40% damage”.  In this context, we aim at developing a novel 
classifier to handle the abovementioned classification task with 
fuzzy essence.  Specifically, in this research we build a fuzzy 
neural network (FNN) model [16] based on the experimentally 
measured time series signals under different gear healthy 
conditions, which are pre-processed via principal component 
analysis (PCA) [17].  

The remainder of this paper is organized as follows.  In 
Section 2, the proposed methodology is presented which 
includes fuzzy neural network (FNN) and principal component 
analysis (PCA). Section 3 demonstrates comprehensive case 
studies regarding how to employ above methodology to conduct 
the fuzzy classification of gear fault types in terms of measured 
time-series vibration signals, followed by the concluding 
remarks in Section 4. 

 
2. METHODOLOGY FORMULATION 

In this section, we first introduce the fuzzy neural network 
(FNN) and its general architecture and layers. We then briefly 
outline the principal component analysis, which will be 
integrated into FNN to facilitate the numerical analysis.  
2.1 Fuzzy neural network (FNN) 

Fuzzy neural network (FNN) is a neuro-fuzzy system that is 
one specific type of neural network models [16]. As compared 
to the general neural network models, e.g., multilayer perceptron 
neural network (MLP), fuzzy neural network primarily aims to 
learn linguistic/fuzzy rules via model training. The essence of 
FNN is that it must contain one fuzzification layer consisting of 
multiple fuzzy rules to be trained. In order to enhance its feature 
learning ability, the general architecture also allows the 
incorporation of other types of layers, such as fully connected 
layers which are commonly seen in a lot of neural network 
models. Figure 1 shows one representative architecture of FNN 
model. The details of layers involved are described below. 
1. Input layer – this layer conveys the input information into 

network. Each neuron of this layer carries one feature of 
input sample.  

2. Fuzzification layer – this layer is the key layer used to 
represent the way of fuzzy human reasoning.  The fuzzy 
rules are readily integrated into this layer, and they are 

characterized by so called membership functions, which 
map the point from input space into a membership value (or 
degree of membership).  Membership functions generally 
are built from several basic functions: piecewise linear 
functions, Gaussian distribution function, sigmoid curve, 
and quadratic and cubic polynomial curves [16].   

3. Fuzzy reasoning/rule layer – this layer works in 
collaboration with previous fuzzification layer to mimic the 
process of human reasoning. Specifically, it activates its 
affiliated rule neurons to take actions accordingly in terms 
of antecedents from fuzzification layer.  The resulted 
output of this layer is so called firing strength, which 
mathematically is in the form of multiplication of associated 
membership function values.  The firing strength is 
capable of differentiating the samples in terms of samples’ 
input features.  The discrepancy of samples will become 
more obvious especially when more features are introduced.  

4. Defuzzification layer – it fundamentally is a fully connected 
layer that is widely used in any type of NN model.   

5. Softmax layer – it performs normalization function of the 
output values from defuzzification layer to yield probability 
values of all classes.   

6. Output layer – it assigns the class in terms of probability 
values from softmax layer. 

 

 
FIGURE 1: ARCHITECTURE OF FUZZY NEURAL NWTEORK 

(FNN) MODEL. 
  
2.2 Principal component analysis (PCA) 

Principal component analysis (PCA) is a statistical 
procedure that uses an orthogonal transformation to convert a set 
of observations of possibly correlated variables (entities each of 
which takes on various numerical values) into a set of values of 
linearly uncorrelated variables called principal components [17].  
The principal components (PCs) are ranked in terms of feature 
variances among all data samples.  Therefore, PCA not only 
results in the most differential features of samples, but also 
achieves the input data compression to facilitate the succeeding 
FNN model training.  The significantly reduced input features 
greatly favor the computational efficiency enhancement. On the 
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other hand, more input features (some of them may not be quite 
influential to output) much likely result in overfitting issue and 
hence degrade the performance of FNN.  

 
3. CASE ILLUSTRATION 

In this section, we carry out a case study, i.e., gear fault 
classification with fuzzy expression based on the experimentally 
measured time-series data.  
3.1 Data acquisition 

In this research, the experimental data are collected from a 
benchmark two-stage gearbox with replaceable gears a shown in 
Figure 2.  The gear speed is controlled by a motor.  The torque 
is supplied by a magnetic brake which can be adjusted by 
changing its input voltage.  A 32-tooth pinion and an 80-tooth 
gear are installed on the first stage input shaft.  The second 
stage consists of a 48-tooth pinion and 64-tooth gear.  The input 
shaft speed is measured by a tachometer, and gear vibration 
signals are measured by an accelerometer.  The signals are 
recorded through a dSPACE system (DS1006 processor board, 
dSPACE Inc.) with sampling frequency of 20 KHz.  

 

Motor
Input Shaft

Accelerometer
Idle Shaft

Output Shaft

Brake
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Tachometer

 
FIGURE 2: BENCHMARK GEARBOX SETUP. 

  
There are 9 different gear conditions that are intentionally 

created onto pinion on the input shaft including healthy 
condition, missing tooth, root crack, spalling, and chipping tip 
with 5 different severities (Figure 3).  For each gear condition, 
104 signals are collected using the experimental gearbox system.  
For each signal, 3,600 angle-even samples are recorded in the 
course of 4 gear revolutions first for the case study.    

 

 
FIGURE 3: 9 PINIONS WITH DIFFERENT HEALTH 
CONDITIONS (5 SEVERITIES FOR CHIPPING TIP). 

 
3.2 Training and implementation 
Data configuration and problem set-up 

We have a total of 936 time-series samples with 9 labeled 
fault types. Each fault type has 104 samples, showing the data 
balance required for classification analysis.  We formulate a 
fault classification problem.  Here we assume we have 
unknown labels for 2 fault types with continuous severities. We 
aim at building a discriminative FNN model by training samples 
with other 7 fault types, and use that model to test samples with 
2 unknown fault types. Details can be referred to Table 1.  
 

Table 1. GEAR HEALTH CONDITIONS 
ID Fault Types Fault Type 

Attribute 
1 Healthy Labeled/train 
2 Missing tooth Labeled/train 
3 Crack Labeled/train 
4 Spalling Labeled/train 
5 Chipping_tip_5 (least 

severe) 
Labeled/train 

6 Chipping_tip_4 Unknown/test 
7 Chipping_tip_3 Labeled/train 
8 Chipping_tip_2 Unknown/test 
9 Chipping_tip_1 (most 

severe) 
Labeled/train 

 
This set-up yields a total of 728 training samples and 208 

testing samples.  Each sample has 3,600 acceleration time 
series data points.  In order to fit FNN model with tractable 
training effort, PCA is implemented on each sample for data 
dimensionality reduction. The 2-D projections of first 4 PCs 
based upon training datasets are given in Figure 4. Different 
colors indicate different fault types. Apparently, lower-order PCs 
generally have more clear boundaries of formed clusters.  Care 
should be taken when analyzing classification accuracy.  As 
samples with unknown fault types are not used for training and 
these samples essentially fall within specified continuous 
severities on chipping tip, the result will be considered as correct 
when the samples with true label chipping_tip_4 are identified 
as chipping_tip_5 or chipping_tip_3. Similarly, it’s considered 
to be correct when the samples with true label chipping_tip_2 are 
identified as chipping_tip_3 or chipping_tip_1. 

 

 
Figure 4. PRINCIPLE COMPONENTS EXTRACTED FROM 

TRAINING SAMPLES WITH 7 LABELED FAULT TYPES. 
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Establishment of fuzzy neural network (FNN) model 

Following the architecture shown in Figure 1, here we 
specify the parameters required to finalize the establishment of 
FNN for training: 
1. Input layer.  Since in this study each time series sample is 

pre-processed and converted to several primary features 
through dimensionality reduction utilizing PCA, the number 
of nodes in input layer, i.e., n therefore denotes the number 
of principal components (PCs). Here we use 3 PCs to initiate 
our analysis. 

2. Fuzzification layer.  In this study, we choose the Gaussian 
membership function to describe the fuzzy sets.  Each 
input feature will be processed by ( m q ) numbers of 
membership functions. Therefore, the number of 
membership functions in this layer is ( )n m q  . Here, m 
denotes the number of fault types (7 in this case), and q 
denotes the size of clusters (set as 1 in this case for sake of 
model simplicity).  Note, the size of clusters definitely will 
increase the scale of model.  

3. Fuzzy reasoning/rule layer.  The total number of possible 
rules to cover all scenarios theoretically is ( )nm q  (q is 
selected as 1).  For the sake of simplicity, here we assume 
that the rules are subject to self-correlation, which reduces 
( )nm q   to ( )m q  . The details of rules are included in 
Table 2. Such rule set-up has some merits: 1). each rule in 
Table 2 solely affects the probability output of one relevant 
fault type, which matches our basic understanding; 2). the 
model stays simple by keeping a small number of nodes in 
this layer. 

4. Defuzzification layer.  The total weights in this layer to be 
optimized is m , which is equal to the number of outputs in 
fuzzy reasoning layer when 1q  in this case. This can be 
easily paired with m probability values of relevant fault 
types in final output.  

 
Table 2. FUZZY LOGIC RULES 

Rule ID Fuzzification layer #2 
/antecedent 

Fuzzy reasoning 
layer 

#3/consequent 
1 If ( 1x is 11MF ) AND 

( 2x is 21MF )AND 
…AND ( nx is 1nMF

) 

1 ,1
1

n

i
i

 


  

2 If ( 1x is 12MF ) AND 
( 2x is 22MF )AND 

…AND ( nx is 

2nMF ) 

2 ,2
1

n

i
i

 


  

3 If ( 1x is 13MF ) AND 
( 2x is 23MF )AND 3 ,3

1

n

i
i

 


  

…AND ( nx is 

3nMF ) 
4 If ( 1x is 14MF ) AND 

( 2x is 24MF )AND 
…AND ( nx is 

4nMF ) 

4 ,4
1

n

i
i

 


  

5 If ( 1x is 15MF ) AND 
( 2x is 25MF )AND 

…AND ( nx is 

5nMF ) 

5 ,5
1

n

i
i

 


  

6 If ( 1x is 16MF ) AND 
( 2x is 26MF )AND 

…AND ( nx is 

6nMF ) 

6 ,6
1

n

i
i

 


  

7 If ( 1x is 17MF ) AND 
( 2x is 27MF )AND 

…AND ( nx is 

7nMF ) 

7 ,7
1

n

i
i

 


  

 
According to the definition of model architecture, we can 

train the model based on training datasets and use the well-
trained model to predict the output under other testing inputs. 
The analysis is facilitated by MATLAB Fuzzy Logic Toolbox. 
Here, it’s noteworthy that the architecture shown in Figure 1 is 
used for training. When we test the samples that essentially do 
not belong to those 7 fault types, we extract the outputs from 
fuzzy reasoning layer and directly normalize the outputs for fault 
type classification. In other words, we remove the 
defuzzification layer in current architecture in order to enable the 
classification result with fuzzy nature.  

The testing/classification results of 104 samples for each 
unknown fault type, i.e., chipping_tip_4 and chipping_tip_2 are 
shown in Figures 5 and 6.  In those two plots, the horizontal  
and vertical axes respectively indicate the testing sample index 
and the normalized probability values of 7 known fault types 
given the testing samples.  Therefore, at each testing sample, 
there are 7 probability values distributed vertically.  It can be 
observed that healthy condition and chipping_tip_5 are two 
dominant fault types identified for the testing samples with true 
fault type: chipping_tip_4 as their identified probability data 
points locate at the top area (approach probability value 1).  On 
the other hand, other fault types make very little contribution.  
While fault type chipping_tip_3 is primarily identified for the 
testing samples with true fault type: chipping_tip_2, relatively 
uniform distribution of probability data points illustrates the 
engagement of other identified fault types.  
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Figure 5. NORMALIZED PROBABILITIES OF FAULT TYPES 

OVER TESTING SAMPLES WITH TRUE FAULT TYPE:  
chipping_tip_4 (NUMBER OF PCS = 3).  

 
 

 
Figure 6. NORMALIZED PROBABILITIES OF FAULT TYPES 

OVER TESTING SAMPLES WITH TRUE FAULT TYPE: 
chipping_tip_2 (NUMBER OF PCS = 3). (same legend with Figure 5) 
 

In terms of the highest probability values, the most possible 
fault types of all testing samples can be determined. The 
distributions of total numbers for identified fault types are given 
in Figure 7.  According to the accuracy definition of fuzzy 
classification, the numbers of correctly identified samples for 
fault type chipping_tip_4 and chipping_tip_2 respectively are 79 
and 91 (out of 104) from Figure 7.   

The results illustrate the effectiveness of FNN for coping 
with the fuzzy classification analysis in this study. Moreover, one 
may interestingly notice that the second largest number of 
samples with chipping_tip_4 are identified as healthy condition. 
It may be reasonable since the chipping_tip_4 is a minor fault 
scenario whose input features may resemble that of healthy 
condition in many relevant testing samples.  The optimized 
Gaussian membership functions in FNN are shown in Figure 8.  
It can be seen that the membership functions of higher-order PC 

become less differentiable. Generally, these 3 PCs are 
necessarily incorporated into training because their membership 
functions among different fault types vary, either with the change 
of mean or variance.  

 

 
Figure 7. FUZZY CLASSIFICATION ACCURACY 

EXAMINATION: NUMBERS OF FAULT TYPES IDENTIFIED 
GIVEN TESTING VIBRATION SIGNALS (NUMBER OF PCS = 3). 

 

 
Figure 8. OPTIMIZED GAUSSIAN MEMBERSHIP FUNCTIONS 

(NUMBER OF PCS = 3). 
 

It’s noteworthy here that the FNN is able to magnify the 
probability of the most possible fault type identified following 
the mathematical form of firing strength. The firing strength 
enables the normalized probability values of the most possible 
fault type and others respectively to approach 1 and 0 as long as 
the sufficient differentiable features are involved.  Therefore, 
except the most possible fault type, other fault types cannot be 
ranked due to their nearly zero probability values, which can be 
clearly illustrated in Figure 5. Figure 6 on the other hand can 
indicate the ranking of involved fault types given certain testing 
sample.   
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4. CONCLUDING REMARKS 
In this research, we establish a fuzzy neural network (FNN) 

model that is trained upon measured vibration data labeled with 
limited gear fault types. We use this well-trained FNN model to 
fuzzily classify other possible fault types that are not included in 
the fault types in training data.  To facilitate the training, we 
apply principal component analysis (PCA) onto measured gear 
vibration time series data to extract its features and consider 
these as input features of FNN model.  In the case study, only 
first 3 principal components are selected to feed the FNN model. 
The results clearly verify the feasibility of this proposed 
methodology with good fuzzy classification accuracy. 
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