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Abstract

This paper proposes a framework of L-BFGS based on the (approximate) second-
order information with stochastic batches, as a novel approach to the finite-sum
minimization problems. Different from the classical L-BFGS where stochastic
batches lead to instability, we use a smooth estimate for the evaluations of the gra-
dient differences while achieving acceleration by well-scaling the initial Hessians.
We provide theoretical analyses for both convex and nonconvex cases. In addition,
we demonstrate that within the popular applications of least-square and cross-
entropy losses, the algorithm admits a simple implementation in the distributed
environment. Numerical experiments support the efficiency of our algorithms.

1 Introduction

We consider the finite-sum minimization problem of the form

minw∈Rd

{
F (w) :=

1

n

∑
i∈[n]

f(w;xi, zi)
def
=

1

n

∑
i∈[n]

fi(w)

}
, (1)

where i ∈ [n]
def
= {1, . . . , n}, and {(xi, zi)}i=n

i=1 are the data pairs. Throughout the paper, we assume
there exists a global optimal solution w∗ of (1); in other words, we have a lower bound F (w∗) of (1).

In general, the problem of form (1) covers a wide range of convex and nonconvex problems in-
cluding logistic regression [9], multi-kernel learning [3, 40], conditional random fields [20], neural
networks [14], etc. Classical first-order methods to solve (1) are gradient descent (GD) [33] and
stochastic gradient descent (SGD) [36, 38]. A large class of optimization methods can be used to
solve (1), where the iterative updates can be generalized as follows,

wk+1 = wk + αkpk,with pk = −Hkgk, (2)

where pk is some descent direction, Hk is an inverse Hessian approximation of F at wk, and gk is an
estimate of∇F (wk).

When Hk is an identity matrix, the update is considered a first-order method. Numerous work has
focused on the choice of gk such as SAG/SAGA [37, 11], MISO/FINITO [23, 12], SDCA [39],
SVRG/S2GD [17, 19], SARAH [30, 31]. Nevertheless, with the importance of second-order opti-
mization providing potential curvature around local optima and thus promoting fast convergence, the
choice of non-identity Hk is crucial to the development of modern optimization algorithms.

Within the framework of second-order optimization, a popular choice for Hk is the inverse Hessian;
however, we lack an efficient way to invert matrices, leading to increases in computation and
communication costs to a problem for the distributed setting. Motivated by this, quasi-Newton
methods, among which BFGS is one of the most popular, were developed, including a practical
variant named limited-memory BFGS (L-BFGS) [33]. It has been widely known that batch methods
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have been successfully applied in first-order algorithms and provide effective improvements, but
it remains a problem for L-BFGS due to the instability caused by randomness between different
gradient evaluations.

Related Works In particular, Agarwal et al. [1] introduce a method to approximate the inverse
Hessian with Taylor expansion. Bach et al. [4] try to combine SGD and least-mean-square algorithms
with Hessian information and formulates a stochastic algorithm which inherits the O(1/t) conver-
gence rate. Byrd et al. [7] provides a framework for the batch L-BFGS, and subsequently, Moritz et
al. [29] proposes a stochastic L-BFGS algorithm as to combine SVRG stochastic gradient with the
L-BFGS to support linear convergence for strongly convex objectives. Berahas et al.[6] proposes
a multi-batch L-BFGS algorithm, evaluating the yk based on overlaps of two consecutive batches
in L-BFGS and they provide a sub-linear convergence for non-convex objectives under reasonable
assumptions. This work is extended e.g. in [16, 5, 15]

Our contributions In this paper, we analyze L-BFGS with stochastic batches for both convex and
nonconvex optimization (Section B), as well as its distributed implementation. We propose a few
variants of LBFGS algorithm (see Section A for more details). Instead of using the differences of
gradients, LBFGS-H uses Hessian information directly [7, 29]. LBFGS-F combines L-BFGS with
Fisher information matrix from the natural gradient algorithm [2, 25, 34]. We show that they are
efficient for minimizing finite-sum problems both in theory and in practice. The key contributions of
our paper are summarized as follows.

• We apply a technique for approximating the differences of gradients in the stochastic L-
BFGS algorithm [7, 29] that ensures stability for the general finite-sum problems. Further,
we introduce a variant of stochastic L-BFGS called LBFGS-F where the Hessian matrix is
replaced by the Fisher information matrix [25] and demonstrate it applicable to a distributed
environment with popular loss functions.

• We show that under standard assumptions [6], with any unbiased stochastic gradient, the
framework converges to a neighborhood of the optimal solution with a linear convergence
for strongly convex functions and a sublinear convergence for nonconvex functions. Addi-
tionally, under the same assumptions, it comes with a sublinear convergence for strongly
convex objectives.

• With a potential acceleration in practice using ADAM techniques [18], we verify the
competitive performances of both LBFGS-H and LBFGS-F against mainstream first- and
second-order optimization methods in both convex and nonconvex applications.

2 Algorithms

In this paper we extend the classical L-BFGS algorithm (Algorithm 1) in various ways (see Section A
for deeper motivation and derivations). Hence in this paper we will consider a few variants of L-BFGS
algorithm, namely

• L-BFGS is the classical batch version of the L-BFGS algorithm from [33]. The full gradient
is computed (i.e. using all n samples).

• L-BFGS-H is a stochastic version of L-BFGS but with a small change how yk is computed.
In this case we define yk to be yk = BSk

k (wk+1 − wk), where Sk is the stochastic batch

picked at iteration k and BSk

k
def
= 1
|Sk|
∑

i∈Sk
∇2fi(wk). Note that one is not forming the

BSk

k matrix, but yk us computing using a Hessian-vector multiplication.

• L-BFGS-F is a modification of L-BFGS-H, where instead of using BSk

k we are using a
Fisher information matrix (FIM) [25]. Note that when the predictor is linear, i.e. h(w;xi) =
xTi w, with the loss function L as either the cross-entropy or the least-squares, LBFGS-F
is identical to LBFGS-H (GGN = FIM = Hessian). Similarly, this also applies to the batch
version of the FIM.
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Algorithm 1 L-BFGS

Initialize: x0, integer m > 0
for k = 1, 2, . . . do

Choose H0
k

Compute a direction pk = −Hk∇f(wk) using two-loop recursion using {(si, yi)}k−1i=k−m
Choose a learning rate αk > 0
Update the iterate: wk+1 = wk + αkpk
Update the curvature pairs:

sk = wk+1 − wk, yk = ∇F (wk+1)−∇F (wk)
if k ≥ m then

Replace the oldest pair (sk−m, yk−m) by (sk, yk)
else

Store the vector pair (sk, yk)
end if

end for
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Figure 1: Comparisons of sub-optimality (top) and test errors (bottom) for different algorithms with batch sizes
16, 4096 on ijcnn1 (logistic regression) and 16, 64 on MNIST with 1 hidden layer neural network and LeNet-5.

3 Numerical Experiments

In this section, we present numerical results to illustrate the properties and performance of our
proposed algorithms (LBFGS-H and LBFGS-F) on both convex and nonconvex applications. For
comparison, we show performance of popular stochastic gradient algorithms, namely, ADAM [18],
ADAGRAD [13] and SGD (momentum SGD). Meanwhile, in Figure 1, we cover the performance of
SLBFGS [29] in the convex examples since the convergence analysis of SLBFGS is only provided for
the strongly convex setting. Besides, we include the performance for classical L-BFGS where H0

k =
yT
k−1sk−1

yT
k−1yk−1

I , and a stochastic L-BFGS as LBFGS-S where we set yk = ∇FSk(wk)−∇FSk−1(wk−1).

In the convex setting, we test logistic regression problem on ijcnn1 1, where LBFGS-H is identical to
LBFGS-F because of the linear predictor, so we omit the results for LBFGS-F (details available in
Section A.3). On the other hand, we show performance of 1-hidden layer neural network (with 300
neurons) and LeNet-5 (a classical convolutional neural network) [21] on MNIST 2. Across all the
figures, each epoch refers to a full pass of the dataset, i.e., n component gradient evaluations. Weight
decay regularizers have been added to all the experiments to enforce regularization.

Figure 1 shows sub-optimality F (wk)− F (w∗) (training loss F (wk) for the last column) and test
errors of various methods with batch sizes 16 and 4096 on the logistic regression problem with ijcnn1
for the first two columns. For a mini-batch size b = 16, LBFGS-H exhibits competitive performance
with ADAM, SGD, ADAGRAD and SLBFGS while LBFGS-S seems highly unstable; however, with

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/; we use the test/train
sets for training/testing, respectively, since the test set has more data samples.

2Available at http://yann.lecun.com/exdb/mnist/.
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a larger bath size b = 4096, LBFGS-H maintains the competitive performance as for the small batch
size while the performances of others suffer from the large batch size. On the nonconvex examples
for the last two columns in the figure, similar results are presented with LBFGS-S to be extremely
unstable and slow for small batch sizes 3.
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Figure 2: Comparisons of sub-optimality (top) and test errors (bottom) for different stochastic methods with
batch sizes 16, 64, 512, 4096 on ijcnn1, convex, logistic regression.

To further show the robustness of LBFGS-H (LBFGS-F), we run each method with different batch
sizes and 100 different random seeds on the logistic regression problem with dataset ijcnn1 in Figure 2,
and report the results. The dotted lines represent the best and worst performance of the corresponding
algorithm and the solid line shows the average performance. Obviously, with large batch sizes, the
performance of ADAM, ADAGRAD and SGD worsen while LBFGS-H behaves steadily fast and
outperforms the others in sub-optimality. This also conveys that to achieve the same accuracy, fewer
epochs are needed, leading to fewer communications for our framework when the batch size is large.
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The ability to use a large batch size is of particular in-
terest in a distributed environment since it allows us to
scale to multiple GPUs without reducing the per-GPU
workload and without sacrificing model accuracy. In
order to illustrate the benefit of large batch sizes, we
evaluate the stochastic gradient ∇FS(w) on a neural
network with different batch sizes (b = 20, 21, . . . , 214)
on a single GPU (Tesla K80), and compare the compu-
tational time against that of the pessimistic and utopian
cases in Figure 3. Up to b = 26, the computational time
stays almost constant; nevertheless, with a sufficiently
large batch size (b > 28), the problem becomes com-
putationally bounded and suffers from the computing
resource limited by the single GPU, hence doubling
batch size leads to doubling computational time. There-
fore, the efficiency of our proposed algorithm shown
in Algorithm 2 can benefit tremendously from a dis-
tributed environment.

4 Conclusion

We developed a novel framework for the L-BFGS method with stochastic batches that is stable and
efficient. Based on the framework, we proposed two variants – LBFGS-H and LBFGS-F, where the
latter tries to employ Fisher information matrix replacing the Hessian to approximate the difference
of gradients. LBFGS-F also admits a distributed implementation. We show that our framework
converges linearly to a neighborhood of the optimal solution for the strongly convex setting while
sublinearly for the nonconvex setting under standard assumptions. In addtion, sublinear convergence
to the optimal solution has been validated for strongly convex objectives. We provide numerical
experiments on both convex applications and nonconvex neural networks and compare our framework
with the prevalent optimization algorithms.

3Performances of larger batch sizes for nonconvex objectives exhibit similar trends and are available in
Appendix E.
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