
Accelerating Distributed Stochastic L-BFGS by
sampled 2nd-Order Information

Jie Liu1,2 Yu Rong1 Martin Takáč2 Junzhou Huang1

1Tencent AI Lab 2Lehigh University
jie.liu@alum.lehigh.edu, royrong@tencent.com, Takac.MT@gmail.com, joehhuang@tencent.com

Abstract

This paper proposes a framework of L-BFGS based on the (approximate) second-
order information with stochastic batches, as a novel approach to the finite-sum
minimization problems. Different from the classical L-BFGS where stochastic
batches lead to instability, we use a smooth estimate for the evaluations of the gra-
dient differences while achieving acceleration by well-scaling the initial Hessians.
We provide theoretical analyses for both convex and nonconvex cases. In addition,
we demonstrate that within the popular applications of least-square and cross-
entropy losses, the algorithm admits a simple implementation in the distributed
environment. Numerical experiments support the efficiency of our algorithms.

1 Introduction

We consider the finite-sum minimization problem of the form

minw∈Rd

{
F (w) :=

1

n

∑
i∈[n]

f(w;xi, zi)
def
=

1

n

∑
i∈[n]

fi(w)

}
, (1)

where i ∈ [n]
def
= {1, . . . , n}, and {(xi, zi)}i=n

i=1 are the data pairs. Throughout the paper, we assume
there exists a global optimal solution w∗ of (1); in other words, we have a lower bound F (w∗) of (1).

In general, the problem of form (1) covers a wide range of convex and nonconvex problems in-
cluding logistic regression [9], multi-kernel learning [3, 40], conditional random fields [20], neural
networks [14], etc. Classical first-order methods to solve (1) are gradient descent (GD) [33] and
stochastic gradient descent (SGD) [36, 38]. A large class of optimization methods can be used to
solve (1), where the iterative updates can be generalized as follows,

wk+1 = wk + αkpk,with pk = −Hkgk, (2)

where pk is some descent direction, Hk is an inverse Hessian approximation of F at wk, and gk is an
estimate of∇F (wk).

When Hk is an identity matrix, the update is considered a first-order method. Numerous work has
focused on the choice of gk such as SAG/SAGA [37, 11], MISO/FINITO [23, 12], SDCA [39],
SVRG/S2GD [17, 19], SARAH [30, 31]. Nevertheless, with the importance of second-order opti-
mization providing potential curvature around local optima and thus promoting fast convergence, the
choice of non-identity Hk is crucial to the development of modern optimization algorithms.

Within the framework of second-order optimization, a popular choice for Hk is the inverse Hessian;
however, we lack an efficient way to invert matrices, leading to increases in computation and
communication costs to a problem for the distributed setting. Motivated by this, quasi-Newton
methods, among which BFGS is one of the most popular, were developed, including a practical
variant named limited-memory BFGS (L-BFGS) [33]. It has been widely known that batch methods

Preprint. Under review.



have been successfully applied in first-order algorithms and provide effective improvements, but
it remains a problem for L-BFGS due to the instability caused by randomness between different
gradient evaluations.

Related Works In particular, Agarwal et al. [1] introduce a method to approximate the inverse
Hessian with Taylor expansion. Bach et al. [4] try to combine SGD and least-mean-square algorithms
with Hessian information and formulates a stochastic algorithm which inherits the O(1/t) conver-
gence rate. Byrd et al. [7] provides a framework for the batch L-BFGS, and subsequently, Moritz et
al. [29] proposes a stochastic L-BFGS algorithm as to combine SVRG stochastic gradient with the
L-BFGS to support linear convergence for strongly convex objectives. Berahas et al.[6] proposes
a multi-batch L-BFGS algorithm, evaluating the yk based on overlaps of two consecutive batches
in L-BFGS and they provide a sub-linear convergence for non-convex objectives under reasonable
assumptions. This work is extended e.g. in [16, 5, 15]

Our contributions In this paper, we analyze L-BFGS with stochastic batches for both convex and
nonconvex optimization (Section B), as well as its distributed implementation. We propose a few
variants of LBFGS algorithm (see Section A for more details). Instead of using the differences of
gradients, LBFGS-H uses Hessian information directly [7, 29]. LBFGS-F combines L-BFGS with
Fisher information matrix from the natural gradient algorithm [2, 25, 34]. We show that they are
efficient for minimizing finite-sum problems both in theory and in practice. The key contributions of
our paper are summarized as follows.

• We apply a technique for approximating the differences of gradients in the stochastic L-
BFGS algorithm [7, 29] that ensures stability for the general finite-sum problems. Further,
we introduce a variant of stochastic L-BFGS called LBFGS-F where the Hessian matrix is
replaced by the Fisher information matrix [25] and demonstrate it applicable to a distributed
environment with popular loss functions.

• We show that under standard assumptions [6], with any unbiased stochastic gradient, the
framework converges to a neighborhood of the optimal solution with a linear convergence
for strongly convex functions and a sublinear convergence for nonconvex functions. Addi-
tionally, under the same assumptions, it comes with a sublinear convergence for strongly
convex objectives.

• With a potential acceleration in practice using ADAM techniques [18], we verify the
competitive performances of both LBFGS-H and LBFGS-F against mainstream first- and
second-order optimization methods in both convex and nonconvex applications.

2 Algorithms

In this paper we extend the classical L-BFGS algorithm (Algorithm 1) in various ways (see Section A
for deeper motivation and derivations). Hence in this paper we will consider a few variants of L-BFGS
algorithm, namely

• L-BFGS is the classical batch version of the L-BFGS algorithm from [33]. The full gradient
is computed (i.e. using all n samples).

• L-BFGS-H is a stochastic version of L-BFGS but with a small change how yk is computed.
In this case we define yk to be yk = BSk

k (wk+1 − wk), where Sk is the stochastic batch

picked at iteration k and BSk

k
def
= 1
|Sk|
∑

i∈Sk
∇2fi(wk). Note that one is not forming the

BSk

k matrix, but yk us computing using a Hessian-vector multiplication.

• L-BFGS-F is a modification of L-BFGS-H, where instead of using BSk

k we are using a
Fisher information matrix (FIM) [25]. Note that when the predictor is linear, i.e. h(w;xi) =
xTi w, with the loss function L as either the cross-entropy or the least-squares, LBFGS-F
is identical to LBFGS-H (GGN = FIM = Hessian). Similarly, this also applies to the batch
version of the FIM.

2



Algorithm 1 L-BFGS

Initialize: x0, integer m > 0
for k = 1, 2, . . . do

Choose H0
k

Compute a direction pk = −Hk∇f(wk) using two-loop recursion using {(si, yi)}k−1i=k−m
Choose a learning rate αk > 0
Update the iterate: wk+1 = wk + αkpk
Update the curvature pairs:

sk = wk+1 − wk, yk = ∇F (wk+1)−∇F (wk)
if k ≥ m then

Replace the oldest pair (sk−m, yk−m) by (sk, yk)
else

Store the vector pair (sk, yk)
end if

end for

Number of Effective Passes

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, batch size:16

LBFGS-H

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

SLBFGS

Number of Effective Passes

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, batch size:4096

LBFGS-H

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

SLBFGS

Number of Epochs

0 20 40 60 80 100

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-4

10
-3

10
-2

10
-1

10
0

10
1

MNIST, batch size:16

LBFGS-H

LBFGS-F

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

Number of Epochs

0 20 40 60 80 100

T
r
a
i
n
i
n
g
 
L
o
s
s

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

MNIST, LeNet-5, batch size:64

LBFGS-H

LBFGS-F

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

Number of Effective Passes

0 10 20 30 40 50

T
e
s
t
 
E
r
r
o
r

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

ijcnn1, batch size:16

LBFGS-H

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

SLBFGS

Number of Effective Passes

0 10 20 30 40 50

T
e
s
t
 
E
r
r
o
r

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0.086

0.088

0.09

ijcnn1, batch size:4096

LBFGS-H

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

SLBFGS

Number of Epochs

0 20 40 60 80 100

T
e
s
t
 
E
r
r
o
r

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

MNIST, batch size:16

LBFGS-H

LBFGS-F

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

Number of Epochs

0 20 40 60 80 100

T
e
s
t
 
E
r
r
o
r

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

MNIST, LeNet-5, batch size:64

LBFGS-H

LBFGS-F

LBFGS-S

LBFGS

ADAM

ADAGRAD

SGD

Figure 1: Comparisons of sub-optimality (top) and test errors (bottom) for different algorithms with batch sizes
16, 4096 on ijcnn1 (logistic regression) and 16, 64 on MNIST with 1 hidden layer neural network and LeNet-5.

3 Numerical Experiments

In this section, we present numerical results to illustrate the properties and performance of our
proposed algorithms (LBFGS-H and LBFGS-F) on both convex and nonconvex applications. For
comparison, we show performance of popular stochastic gradient algorithms, namely, ADAM [18],
ADAGRAD [13] and SGD (momentum SGD). Meanwhile, in Figure 1, we cover the performance of
SLBFGS [29] in the convex examples since the convergence analysis of SLBFGS is only provided for
the strongly convex setting. Besides, we include the performance for classical L-BFGS where H0

k =
yT
k−1sk−1

yT
k−1yk−1

I , and a stochastic L-BFGS as LBFGS-S where we set yk = ∇FSk(wk)−∇FSk−1(wk−1).

In the convex setting, we test logistic regression problem on ijcnn1 1, where LBFGS-H is identical to
LBFGS-F because of the linear predictor, so we omit the results for LBFGS-F (details available in
Section A.3). On the other hand, we show performance of 1-hidden layer neural network (with 300
neurons) and LeNet-5 (a classical convolutional neural network) [21] on MNIST 2. Across all the
figures, each epoch refers to a full pass of the dataset, i.e., n component gradient evaluations. Weight
decay regularizers have been added to all the experiments to enforce regularization.

Figure 1 shows sub-optimality F (wk)− F (w∗) (training loss F (wk) for the last column) and test
errors of various methods with batch sizes 16 and 4096 on the logistic regression problem with ijcnn1
for the first two columns. For a mini-batch size b = 16, LBFGS-H exhibits competitive performance
with ADAM, SGD, ADAGRAD and SLBFGS while LBFGS-S seems highly unstable; however, with

1Available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/; we use the test/train
sets for training/testing, respectively, since the test set has more data samples.

2Available at http://yann.lecun.com/exdb/mnist/.

3

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://yann.lecun.com/exdb/mnist/


a larger bath size b = 4096, LBFGS-H maintains the competitive performance as for the small batch
size while the performances of others suffer from the large batch size. On the nonconvex examples
for the last two columns in the figure, similar results are presented with LBFGS-S to be extremely
unstable and slow for small batch sizes 3.

Number of Epochs

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, b=16

LBFGS-H

LBFGS-S

ADAM

ADAGRAD

SGD

Number of Epochs

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, b=64

LBFGS-H

LBFGS-S

ADAM

ADAGRAD

SGD

Number of Epochs

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, b=512

LBFGS-H

LBFGS-S

ADAM

ADAGRAD

SGD

Number of Epochs

0 10 20 30 40 50

S
u
b
o
p
t
i
m
a
l
i
t
y

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

ijcnn1, b=4096

LBFGS-H

LBFGS-S

ADAM

ADAGRAD

SGD

Figure 2: Comparisons of sub-optimality (top) and test errors (bottom) for different stochastic methods with
batch sizes 16, 64, 512, 4096 on ijcnn1, convex, logistic regression.

To further show the robustness of LBFGS-H (LBFGS-F), we run each method with different batch
sizes and 100 different random seeds on the logistic regression problem with dataset ijcnn1 in Figure 2,
and report the results. The dotted lines represent the best and worst performance of the corresponding
algorithm and the solid line shows the average performance. Obviously, with large batch sizes, the
performance of ADAM, ADAGRAD and SGD worsen while LBFGS-H behaves steadily fast and
outperforms the others in sub-optimality. This also conveys that to achieve the same accuracy, fewer
epochs are needed, leading to fewer communications for our framework when the batch size is large.

Batch Size

C
o
m
p
u
t
a
t
i
o
n
a
l
 
T
i
m
e

10
1

10
2

10
3

10
4

10
5

10
6

Pessim
estic

 B
ehavio

r

Realis
tic

 B
ehavio

r

Utopian Behavior

 2
0

 2
2

 2
4

 2
6

 2
8

2
10

2
12

2
14

Batch sizes vs Time complexity

Figure 3: Batch size vs time complexity.

The ability to use a large batch size is of particular in-
terest in a distributed environment since it allows us to
scale to multiple GPUs without reducing the per-GPU
workload and without sacrificing model accuracy. In
order to illustrate the benefit of large batch sizes, we
evaluate the stochastic gradient ∇FS(w) on a neural
network with different batch sizes (b = 20, 21, . . . , 214)
on a single GPU (Tesla K80), and compare the compu-
tational time against that of the pessimistic and utopian
cases in Figure 3. Up to b = 26, the computational time
stays almost constant; nevertheless, with a sufficiently
large batch size (b > 28), the problem becomes com-
putationally bounded and suffers from the computing
resource limited by the single GPU, hence doubling
batch size leads to doubling computational time. There-
fore, the efficiency of our proposed algorithm shown
in Algorithm 2 can benefit tremendously from a dis-
tributed environment.

4 Conclusion

We developed a novel framework for the L-BFGS method with stochastic batches that is stable and
efficient. Based on the framework, we proposed two variants – LBFGS-H and LBFGS-F, where the
latter tries to employ Fisher information matrix replacing the Hessian to approximate the difference
of gradients. LBFGS-F also admits a distributed implementation. We show that our framework
converges linearly to a neighborhood of the optimal solution for the strongly convex setting while
sublinearly for the nonconvex setting under standard assumptions. In addtion, sublinear convergence
to the optimal solution has been validated for strongly convex objectives. We provide numerical
experiments on both convex applications and nonconvex neural networks and compare our framework
with the prevalent optimization algorithms.

3Performances of larger batch sizes for nonconvex objectives exhibit similar trends and are available in
Appendix E.

4



Acknowledgements

Jie Liu was partially supported by the IBM PhD Fellowship. Martin Takáč was partially
supported by the U.S. National Science Foundation, under award number NSF:CCF:1618717,
NSF:CMMI:1663256 and NSF:CCF:1740796. We would like to thank Courtney Paquette for her
valuable advice on the paper.

References
[1] Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for

machine learning in linear time. The Journal of Machine Learning Research, 18(1):4148–4187,
2017.

[2] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–
276, 1998.

[3] Francis R. Bach, Gert R. G. Lanckriet, and Michael I. Jordan. Multiple kernel learning, conic
duality and the smo algorithm. In ICML, 2004.

[4] Francis R. Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation
with convergence rate o(1/n). In NIPS, pages 773–781, 2013.

[5] Albert S Berahas, Majid Jahani, and Martin Takáč. Quasi-newton methods for deep learning:
Forget the past, just sample. arXiv preprint arXiv:1901.09997, 2019.

[6] Albert S. Berahas, Jorge Nocedal, and Martin Takáč. A multi-batch L-BFGS method for
machine learning. In NIPS, pages 1055–1063, 2016.

[7] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

[8] Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale L-BFGS using mapreduce. In
NIPS, pages 1332–1340, 2014.

[9] David Roxbee Cox. The regression analysis of binary sequences. Journal of the Royal Statistical
Society, 20(2):215–242, 1958.

[10] Yu-Hong Dai. Convergence properties of the BFGS algoritm. SIAM Journal on Optimization,
13(3):693–701, 2002.

[11] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In NIPS, pages 1646–1654,
2014.

[12] Aaron Defazio, Justin Domke, and Tibério Caetano. A faster, permutable incremental gradient
method for big data problems. In ICML, pages 1125–1133, 2014.

[13] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[14] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer Series in Statistics, 2nd edition, 2009.

[15] Majid Jahani, Xi He, Chenxin Ma, Aryan Mokhtari, Dheevatsa Mudigere, Alejandro Ribeiro,
and Martin Takáč. Efficient distributed hessian free algorithm for large-scale empirical risk
minimization via accumulating sample strategy. arXiv preprint arXiv:1810.11507, 2018.

[16] Majid Jahani, Mohammadreza Nazari, Sergey Rusakov, Albert S Berahas, and Martin Takáč.
Scaling up quasi-newton algorithms: Communication efficient distributed sr1. arXiv preprint
arXiv:1905.13096, 2019.

[17] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, pages 315–323, 2013.

5



[18] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[19] Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. Mini-batch semi-stochastic gradient
descent in the proximal setting. IEEE Journal of Selected Topics in Signal Processing, 10:242–
255, 2016.

[20] John Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML, pages 282–289,
2001.

[21] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[22] Dong-Hui Li and Masao Fukushima. A modified BFGS method and its global convergence in
nonconvex minimization. Journal of Computational and Applied Mathematics, 129(1-2):15–35,
2001.

[23] Julien Mairal. Optimization with first-order surrogate functions. In ICML, pages 783–791,
2013.

[24] James Martens. Deep learning via hessian-free optimization. In ICML, pages 735–742, 2010.

[25] James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193, 2014.

[26] James Martens and Roger B. Grosse. Optimizing neural networks with kronecker-factored
approximate curvature. In ICML, pages 2408–2417, 2015.

[27] Walter F Mascarenhas. The BFGS method with exact line searches fails for non-convex objective
functions. Mathematical Programming, 99(1):49–61, 2004.

[28] A. Meenakshi and C. Rajian. On a product of positive semidefinite matrices. Linear Algebra
and its Applications, 295(1):3–6, 1999.

[29] Philipp Moritz, Robert Nishihara, and Michael Jordan. A linearly-convergent stochastic l-bfgs
algorithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.

[30] Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method for
machine learning problems using stochastic recursive gradient. In ICML, pages 2613–2621,
2017.

[31] Lam Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Stochastic recursive gradient
algorithm for nonconvex optimization. arXiv:1705.07261, 2017.

[32] Lam Nguyen, Phuong Ha Nguyen, Marten van Dijk, Peter Richtárik, Katya Scheinberg, and
Martin Takáč. SGD and Hogwild! convergence without the bounded gradients assumption. In
ICML, 2018.

[33] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, 2nd
edition, 2006.

[34] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. ICLR,
2014.

[35] Michael JD Powell. Some global convergence properties of a variable metric algorithm for
minimization without exact line searches. Nonlinear programming, 9(1):53–72, 1976.

[36] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of
Mathematical Statistics, 22(3):400–407, 1951.

[37] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, pages 1–30, 2016.

6



[38] Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal
estimated sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30, 2011.

[39] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized
loss. Journal of Machine Learning Research, 14(1):567–599, 2013.

[40] Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale
multiple kernel learning. Journal of Machine Learning Research, 7:1531–1565, 2006.

7


	Introduction
	Algorithms
	Numerical Experiments
	Conclusion
	Algorithms - Detailed Descriptions
	Limited-memory BFGS
	Stochastic L-BFGS with Hessian Information and Vector-free Two-loop Recursion
	Fisher Information Matrix as a Hessian Approximation and Distributed Optimization
	Implementation Details

	Convergence Analysis
	Strongly Convex Case
	Nonconvex Case

	Assumptions, Lemmas and Theorems
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 5
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	Additional Experiments
	Results on logistic regression (convex), ijcnn1
	Small Batch Sizes
	Larger Batch Sizes
	Randomization

	Results on cross-entropy (convex), MNIST
	Results on 1 hidden-layer neural network (nonconvex), MNIST
	Small Batch Sizes
	Larger Batch Sizes

	Results on a convolutional neural network – LeNet-5, MNIST


