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Abstract—In this work, we study a stopping time game
problem in sequential hypothesis testing, where both of the two
players perform hypothesis testing with distinct hypotheses. The
payoff of the players depends on the order of stopping times.
Therefore, apart from designing the decision function concerning
the hypotheses, the players also determine the optimal stopping
timings. We investigate the cases where the time horizon is
finite or infinite and provide sufficient conditions of finding the
equilibrium point. Moreover, we fully characterize the structural
properties of the equilibrium strategies.

Index Terms—Sequential hypothesis testing, stopping time
game, randomized stopping time, Nash equilibrium

I. INTRODUCTION

Over the past decades, hypothesis testing has been a funda-
mental problem in numerous areas, such as signal processing,
statistics, and economics [1]–[3]. Many variants of hypothesis
testing have been studied extensively, such as robust formula-
tion, M-ary hypothesis testing, and sequential probability ratio
test (SPRT) [4], [5].

In this paper, we explore the hypothesis testing problem
in a multiagent setting where each player makes decisions
sequentially to choose the stopping time and the hypothesis.
The payoff of a player depends on the order of the stopping
times of all the players and the risk associated with his
decision. The agent’s performance in terms of the hypothesis
testing improves as the number of observation increases.
However, if he stops later than the other agent, a large
cost incurs. Therefore, there exists trade-off between stopping
or continuing obtaining the observations. We formulate this
problem as a stopping time game and the players aim to find
an equilibrium strategies.

Our work is motivated by cybersecurity applications. Con-
sider a computer network, in which each node has two types,
normal node and honeypot node [6]. These two kinds of
nodes provide different services to the user of the network.
A user also has two types, normal user and attacker, each
of which behaves differently in the network. Both the owner
of the network and the user aim to determine each other’s
type by performing sequential hypothesis testing based on their
observations. The owner can choose to kick the user out of
the network or allow him to stay. The user can choose to leave
the network or stay. Therefore, due to the sequential nature, it
is natural to formulate this problem as a stopping time game
in sequential hypothesis testing.

The natural solution concept associated with the sequential
hypothesis testing game (SHTG) is the Nash equilibrium in
which one player can benefit from unilateral deviation in their
stopping time policy as well as decision function. We study the
SHTG in two scenarios. One is the finite-horizon problem and
the other one is the infinite-horizon one. We provide sufficient
conditions to characterize the equilibria solution in both cases
and obtain structural properties of the equilibrium strategies.
We show that finding the equilibrium is equivalent to solving
two interdependent dynamic programming problems. We show
that when the costs induced by the order of stopping are
sufficiently large, there exist fully randomized strategies. In
this fully-randomized case, the randomized strategy of one
player entirely depends on the other player’s costs.

Our work is closely related to Dynkin’s stopping time game
[7], [8]. The formulation of SHTG is a variant of Dynkin’s
game in which players determine both the stopping times
and their hypothesis. The formulation of sequential hypothesis
testing game is naturally nonzero-sum [9] and it is an extension
of one-player SPRT problem [5]. In our work, we do not
incorporate cost of taking sequential observations and do not
assume that the players have the same hypotheses as studied
in most multi-agent hypothesis testing problems [10].

This paper is organized as the following. In Section II,
we review the two classical hypothesis testing models and
some fundamental results. We also point out the equivalence
between these two models. In Section III, we formulate the
stopping time game in sequential hypothesis testing. We first
study the finite horizon case, provide sufficient condition for
find the equilibria, and then extend it to infinite horizon
case. In Section IV, we conclude this work and give possible
directions of the future work.

II. SEQUENTIAL HYPOTHESIS TESTING

In this section, we review the classical hypothesis testing
formulation and the important results, which we will be
revisited in subsequent sections. One may refer to [2], [5]
for further references. The objective of hypothesis testing is
to determine between two hypotheses H0 and H1 based on the
observation {xn}n∈N+ , which is the realization of independent
and identically distributed (i.i.d.) random variables {Xn}n∈N+ .
Let X be the space where the random variables Xn take values
in. Under the different hypothesis, for n ∈ N+, the random
variable has the following distribution.
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H0 : Xn ∼ f(xn|H0) := f0(xn),

H1 : Xn ∼ f(xn|H1) := f1(xn).

Given observations xN1 = {x1, x2, ..., xN}, a decision function
δ(xN1 ) is to decide the hypothesis. Formally,

δ : XN → {0, 1}.

If δ(xN1 ) = 0, then based on observations xN1 , we decide H0

is true; and if δ(xN1 ) = 1, we decide H1 is true.
We assume that there exist positive costs C01 and C10. The

cost C01 represents the cost of deciding that H0 is true when
H1 holds, and C01 represents the cost of deciding that H1 is
true when H0 holds. As a consequence, we can formulate the
hypothesis testing problem as an optimization problem. The
objective function, which is termed as Bayes risk, is given by
the following

BN (δ) =
1∑

i,j=0
i6=j

CijP
[
δ(XN

1 ) = i|Hj

]
πj , (1)

where π0 and π1 are the prior probabilities of H0 and H1

being true, respectively. Let L(xN1 ) be the likelihood ratio,
i.e.,

L(xN1 ) =

N∏
n=1

f1(xn)

f0(xn)
.

Proposition 1. The optimal decision function is given by

δ∗(xN1 ) =

{
0 if L(xN1 ) < T,

1 if L(xN1 ) ≥ T ,
(2)

where the threshold is T = C10π0/(C01π1).

In sequential hypothesis testing, one forms belief of the
hypothesis, which is denoted by bn. The belief bn is a posterior
probability,

bn = P [H0|xn1 ] , and b0 = π0.

The statistic bn is updated according to the Bayesian rule as

bn+1 =
f0(xn+1)bn

f0(xn+1)bn + f1(xn+1)(1− bn)

=
bn

bn + L(xn+1)(1− bn)
.

This posterior probability indicates the probability of H0 being
the true hypothesis given observation xn1 at time n.

Corollary 1. The Bayesian belief bN is the sufficient statistic
in optimizing (1).

Proof. See Appendix A.

Remark 1. The corollary implies that, bN provides the same
information as xN1 in optimizing the Bayes risk. As a result,
one can use bN to find the optimal decision function, instead
of using xN1 . Moreover, Corollary 1 points out the relation
between hypothesis testing with repeated observations and
the sequential hypothesis testing. For sequential hypothesis

testing with a fixed length of observations, it is equivalent
to a hypothesis testing with repeated observations.

The optimal decision function with bN as the argument is
of the form

δ̃∗N (bN ) =

{
0 if bN ≥ C01/(C10 + C01),

1 if bN < C10/(C10 + C01).
(3)

As Remark 1 indicates, the equivalence between (2) and (3)
holds for every N ∈ N+. Thus, we can replace this fixed
length N with arbitrary n ∈ N+.

The advantage of using bn is that it enables the sequential
extension of hypothesis testing in following sense. At time n,
the instantaneous Bayes risk induced by bn is

Rn

(
δ̃n

)
= C01bn + C10(1− bn). (4)

By optimizing (8), we obtain exactly (3).
It is worth noting that we can consider bn as a random

variable. Indeed, bn is a function of Xn
1 , thus its randomness

is induced by Xn
1 . As a function of bn, Rn also can be

considered as a random variable. By observation, we have two
fundamental lemmas.

Lemma 1. The sequences {bn}n∈N+ is martingale.

This lemma can be proved by computing E[bn+1|bn]. Let
Rn = minδ̃n Rn

(
δ̃n

)
.

Lemma 2. The Bayes risk satisfies the following:
1) Rn is a concave function in bn for every n ∈ N+;
2) The sequences {Rn}n∈N+ is supmartingale, i.e.,

E [Rn+1|bn] ≤ Rn.

Proof. See Appendix. B.

These two lemmas above are indispensable for the analysis
of the game defined in the following sections.

III. STOPPING TIME GAME

In this section, we discuss the stopping time game in
hypothesis testing. Assume that there are two players, P1 and
P2, both of which execute hypothesis testing. The hypotheses
of P1 are H1

0 and H1
1 , and the hypotheses of P1 are H2

0 and
H2

1 . P1 receives observations {xn}n∈N+ , which is distributed
according to

H1
0 : Xn ∼ f(xn|H1

0 ) := f0(xn),

H1
1 : Xn ∼ f(xn|H1

1 ) := f1(xn).

Likewise, P1 receives observations {yn}n∈N+ , which is dis-
tributed according to

H2
0 : Yn ∼ f(yn|H2

0 ) := g0(yn),

H2
1 : Yn ∼ f(yn|H2

1 ) := g1(yn).

Moreover, we assume that the hypotheses of P1 and P2 are
distinct.

Apart from devising the decision function, they also design
stopping rules. Their objective functions are composed of
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two parts: the Bayes risk and the cost induced by the order
stopping. Formally, their cost functions are given by

J1(δ̃1τ1 , τ1, τ2) = R1
τ1

(
δ̃1τ1

)
1{τ1≤τ2} +G1

1{τ1>τ2}, (5)

and

J2(δ̃2τ2 , τ1, τ2) = R2
τ2

(
δ̃2τ2

)
1{τ2≤τ1} +G2

1{τ2>τ1}, (6)

respectively. The costs G1 and G2 capture the cost incurred in
the case where the other player stops first. The costs R1

n and
R2
n are the instantaneous Bayes risk defined in Section II:

R1
n

(
δ̃1n

)
= C1

01b
1
n + C1

10(1− b1n), (7)

and
R2
n

(
δ̃2n

)
= C2

01b
2
n + C2

10(1− b2n). (8)

Here, b1n and b2n are the Bayesian beliefs of P1 and P2, which
are determined by xn1 and xn2 , respectively.

Based on the analysis in Section II, we note that for the
sequences of observations of different lengths, the optimal
decision function δ̃1∗n (or δ̃2∗n ) stays unchanged. With a slight
abuse of notation, define

R1
n := min

δ̃1n

R1
n

(
δ̃1n

)
, and R2

n := min
δ̃1n

R2
n

(
δ̃2n

)
.

Similarly, define

J̃ i(τ1, τ2) = min
δ̃i
τi

J i(δ̃iτ i , τ
1, τ2), i = 1, 2.

Definition 1. (Randomized Stopping Times) Randomized stop-
ping times for a strategy p = {pn}n∈N+ ∈ P and for a
strategy q = {qn}n∈N+ ∈ Q are defined as

τ̃1(p) = inf {n ≥ 1 : An ≤ pn} ,

and
τ̃2(q) = inf {n ≥ 1 : Bn ≤ qn} ,

respectively. Here {An}n∈N+ and {Bn}n∈N+ are i.i.d. random
variables taking values in [0, 1].

With a slight abuse of notation, let

J̃1(p,q) := J̃1(τ̃1(p), τ2(q)),

and
J̃2(p,q) := J̃2(τ̃2(p), τ2(q)).

A. Dynkin’s Game
Before we point out the relation of our formulation with

Dynkin’s game, we first define the filtration at time n as Fn.
The filtration Fn contains all the information up to time n.
More specifically,

Fn = σ(π1
0 , x1, ..., xn, π

2
0 , y1, ..., yn),

where σ(·) is the σ-algebra generator. π1
0 and π2

0 are the prior
probabilities of H1

0 and H2
0 , respectively. We first define the

truncated feasible sets of the randomized stopping times:

PNn =

pNn :
pm ∈ [0, 1] and is adapted to Fm,
∀ n ≤ m ≤ N − 1,
pN = 1

,

and

QNn =

qNn :
qm ∈ [0, 1] and is adapted to Fm,
∀ n ≤ m ≤ N − 1,
qN = 1

.
As we can see from the definition of these feasible sets, qN =
1 and pN = 1 force the players to stop at time N . Denote
Pn = limN→∞ PNn and Qn = limN→∞QNn . We are ready
to give the formal definition of the equilibrium in this game.

Definition 2. (Nash Equilibrium) A pair of randomized stop-
ping time strategies (p∗,q∗) is said to be a Nash equilibrium
point if the following are satisfied:

E
[
J̃1(p∗,q∗)

]
= sup

p∈P0

E
[
J̃1(p,q∗)

]
,

and
E
[
J̃2(p∗,q∗)

]
= sup

q∈Q0

E
[
J̃2(p∗,q)

]
.

Definition 3. (Equilibrium Point) A pair of stopping times
(τ1∗, τ2∗) is said to be a Nash equilibrium point if the
following are satisfied:

E
[
J̃1(p∗,q∗)|Fn

]
= ess inf

p∈Pn
E
[
J̃1(p,q∗)|Fn

]
,

and

E
[
J̃2(p∗,q∗)|Fn

]
= ess inf

q∈Qn
E
[
J̃2(p∗,q)|Fn

]
.

Before we proceed to the main results, we explain the rela-
tion between the game considered in this work and Dynkin’s
game. Dynkin’s game is a zero-sum stopping game, in which
the players’ costs (rewards) are modeled as three stochastic
processes, each one of which corresponds to an order of
stopping. We extend the classical Dynkin’s game to a nonzero-
sum setting [10]. In this extended Dynkin’s game, the costs
functions for P1 and P2 are given by

J̄1(p,q) = X1
τ̃1(p)1{τ̃1(p)<τ̃2(q)} +W 1

τ̃1(p)1{τ̃1(p)=τ̃2(q)}

+ Y 1
τ̃2(p)1{τ̃1(p)>τ̃2(q)},

and

J̄2(p,q) = X2
τ̃2(p)1{τ̃2(p)<τ̃1(q)} +W 2

τ̃2(p)1{τ̃2(p)=τ̃1(q)}

+ Y 2
τ̃1(p)1{τ̃2(p)>τ̃1(q)},

respectively. Moreover, we assume that each of the six stochas-
tic processes is integrable1. It is clear that the game is a
variant of Dynkin’s game. In the following subsection, we
give a generalized theorem to provide sufficient conditions to
characterize equilibrium points in this game.

1Integrability: A random variable X is said to be integrable if the following
is satisfied

E [|X|] < ∞.
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B. Finite-Horizon Case

We first consider the finite-horizon case, where both players
are forced to stopping at the terminal time N . Define the bi-
sequence

{(
αNn , β

N
n

)}N
n=1

, as the following. For n = N ,(
αNn , β

N
n

)
= (W 1

N ,W
2
N ),

and for n = 1, 2, ..., N − 1,(
αNn , β

N
n

)
= VAL

[
(W 1

n ,W
2
n) (X1

n, Y
2
n )

(Y 1
n , X

2
n)

(
E[αNn+1|Fn],E[βNn+1|Fn]

)] .
The operator VAL(·) operators on a bimatrix and it generates
the pair of values of a bimatrix game defined by this bimatrix.

Now we present the main result of this section. The follow-
ing proof is by extending the proof in [12].

Theorem 1. For n = 1, 2, ..., N , the bisequence (pn, qn)
which constitutes (αNn , β

N
n ) is an equilibrium point for the

finite-horizon stopping time game.

Proof. We commence by showing that for given q∗, the
following is satisfied:

E
[
ess inf
p∈PNn

E
[
J̄1(p,q∗)|Fn

] ∣∣∣∣Fn−1]
= ess inf

p∈PNn
E
[
J̄1(p,q∗)|Fn−1

]
(9)

In order to prove (9), we first note that ∀ p ∈ PNn , ∀ q ∈
QNn , ∀ n ∈ {1, 2, ..., N},

J̄ i(p,q) ≤ max
1≤n≤N

{
Xi
n + Y in +W i

n

}
, i = 1, 2.

With the assumption of Xi
n, Y in, and W i

n, i = 1, 2, n ∈
{1, 2, ..., N}, all being integrable, J̄ i(p,q) is also integrable.
Construct a new random variable as follows: for p̃, p̄ ∈ PNn ,

τ̄1(p) =

{
τ̃1(p̃) if E

[
J̄1(p̃,q∗)|Fn

]
≥ E

[
J̄1(p̄,q∗)|Fn

]
,

τ̃1(p̄) if E
[
J̄1(p̃,q∗)|Fn

]
< E

[
J̄1(p̄,q∗)|Fn

]
.

Then clearly, E
[
J̄1(p,q∗)

]
is integrable. So, p ∈ PNn .

Therefore, for every p̃, p̄ ∈ PNn , there exists p ∈ PNn , such
that

E[J̄1(p,q∗)|Fn]

= min
{
E
[
J̄1(p̃,q∗)|Fn

]
,E
[
J̄1(p̄,q∗)|Fn

]}
.

Then, by definition, E
[
J̄1(p,q∗)|Fn

]
is an upwards directed

set2. By Proposition VI-1-1 in [13], there exists an increasing
sequence {fm}m∈N+ such that

ess inf
p∈PNn

E
[
J̄1(p,q∗)|Fn

]
= lim

m→∞
fm, a.s.,

where
fm = E

[
J̄1(pm,q

∗)|Fn
]
.

2Upwards Directed Set: A set F is said to be upwards directed if for all
the f1, f2 ∈ F , there exists f3 ∈ F such that

f3 ≥ f1 and f3 ≥ f2, a.s.

And by dominated convergence theorem, (9) is prove.
Subsequently, we want to show that α1

n =
E
[
J̄1(p∗,q∗)|Fn

]
, ∀ n ∈ {1, 2, ..., N}. By mathematical

backwards induction, at time N ,

αNN = W 1
N = E

[
J̄1(p∗N , q

∗
N )|FN

]
.

Assume that at time n+ 1, the following holds:

αNn+1 = E
[
J̄1(p∗,q∗)|Fn+1

]
= ess inf

p∈PNn+1

E
[
J̄1(p,q∗)|Fn+1

]
,

βNn+1 = E
[
J̄2(p∗,q∗)|Fn+1

]
= ess inf

q∈QNn+1

E
[
J̄2(p∗,q)|Fn+1

]
.

Define (VALI(·),VALII(·)) = VAL(·); i.e., given a bimatrix
game, the operator VALI(·) generates the value of the first
player and VALII(·) generates the value of the second player.
At time n,

αNn

= VAL1

[
W 1
n X1

n

Y 1
n E[αNn+1|Fn]

]
= VAL1

[
W 1
n X1

n

Y 1
n E

[
ess infp∈PNn+1

E
[
R1(p,q∗)|Fn+1

]
|Fn
]]

= VAL1

[
W 1
n X1

n

Y 1
n ess infp∈PNn+1

E
[
R1(p,q∗)|Fn

]]
= ess inf

p∈PNn
E
[
J̄1(p,q∗)|Fn

]
.

The first equality is by the construction of αNn . The second
equality is by the assumption of the induction. The third
equality is justified by (9). The induction is complete.

By similar arguments, we have

βNn = ess inf
q∈QNn

E
[
R2(p∗,q)|Fn

]
.

Then the theorem follows.

The following corollary gives the exact value of (αNn , β
N
n )

in the hypothesis testing game when the strategies are fully
randomized case.

Corollary 2. If G1 >
C1

01C
1
10

C1
01+C

1
10

and G2 > G1 >
C1

01C
1
10

C1
01+C

1
10

,
then the bimatrix game admits full randomized strategies at
each time instant. Besides,(

αNn , β
N
n

)
=
(
R1
n, R

2
n

)
, n = 1, 2, ..., N.

Proof. We prove this corollary by mathematical induction. At
time N − 1, by the indifference principle [1], the pair of
equilibrium point is given by

q∗N−1 =
R1
N−1 − E[R1

N |FN−1]

R1
N−1 − E[R1

N |FN−1] +G1 −R1
N−1

By the assumption of this corollary,

G1 >
C1

01C
1
10

C1
01 + C1

10

≥ R1
n, n = 1, 2, ..., N.
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Fig. 1. p∗n versus G2 when G1 > R1
n: the red solid line stands for the fully

randomized case and the blue solid line stands for the fully pure case .

Moreover, by Lemma 2, we can show that 0 ≤ q∗N−1 ≤ 1.
The similar arguments hold for p∗N−1, where

p∗N−1 =
R2
N−1 − E[R2

N |FN−1]

R2
N−1 − E[R2

N |FN−1] +G2 −R2
N−1

The value of the game for the first player at time N − 1 is

αNN−1 = p∗N−1q
∗
N−1R

1
N−1 + p∗N−1(1− q∗N−1)G1

+ (1− p∗N−1)(1− q∗N−1)E [RN |FN−1]

+ (1− p∗N−1)q∗N−1R
1
N−1

= R1
N−1.

Similarly,
βNN−1 = R2

N−1.

Now, we assume that at time n+ 1(
αNn+1, β

N
n+1

)
=
(
R1
n+1, R

2
n+1

)
.

Then, at time n,

q∗n =
R1
n − E[R1

n+1|Fn]

R1
n − E[R1

n+1|Fn] +G1 −R1
n

.

Directly following similar procedures at time N − 1, we have(
αNn , β

N
n

)
=
(
R1
n, R

2
n

)
.

And
0 ≤ p∗n ≤ 1, 0 ≤ q∗n ≤ 1.

Hence the corollary follows.

We give a full characterization of the equilibrium strategies.
1) When G1 ≤ R1

n :
This game admits pure equilibria, (p∗n, q

∗
n) = (1, 1), as

there exists dominant strategies.
2) When G1 > R1

n: We present the figure of p∗n versus G2.
We see that, when G2 > R2

n, the strategies of P1 are
based on the costs of P2 entirely. what does it mean?
This implies that P1 behaves according to the P2’s
attitude towards stopping, which is quantified by G2.
Mathematically, at time n, P1 chooses to stop the game
with probability p∗n, which is given by

p∗n =
R2
n − E[R2

n+1|Fn]

G2 − E[R2
n+1|Fn]

.

As G2 increases, P1 chooses to stop less likely. Similar
arguments hold for P2.

C. Infinite-Horizon Case

In this subsection, we discuss the case where the time
horizon is infinite.

Theorem 2. As n goes to infinity, R1
n converges almost surely;

i.e.,
R1
∞ = lim

n→∞
R1
n, a.s.

Moreover,

R1
∞ = lim sup

n→∞
R1
n =

C01C10

C01 + C10
.

Proof. As 0 ≤ R1
n ≤ max{C01, C10} <∞, for n ∈ N,

sup
n∈N+

E
[
|R1
n|
]
<∞.

The rest of the proof follows Doob’s Martingale Convergence
Theorem.

By leveraging the theorem above, we can rewrite the first
term in J̃1(p,q) as

R1
τ11{τ1≤τ2} = R1

τ11{τ1≤τ2<∞} +R1
∞1{τ1=τ2=∞}

= R1
τ11{τ1≤τ2<∞} +

C01C10

C01 + C10
1{τ1=τ2=∞}.

Also, G1 > R1
∞.

Define

(αn, βn) =
(
E
[
J̃1(p∗,q∗)|Fn

]
,E
[
J̃2(p∗,q∗)|Fn

])
.

Then (αn, βn) can be found by solving

(αn, βn) = VAL

[
(R1

n, R
2
n) (R1

n, G
2)

(G1, R2
n) (E[αn+1|Fn],E[βn+1|Fn])

]
.

The main result is presented in the following theorem.

Theorem 3. The bi-sequence {(pn, qn)}n∈N+ which consti-
tutes {(αn, βn)}n∈N+ is an equilibrium point for the infinite
horizon stopping time game.

Proof. Let (q∗n, p
∗
n) be the associated strategy. τ∗ =

min{τ1(p∗), τ2(q∗)} that constitutes (αn, βn). Then, for n ≤
m ≤ τ∗,
E
[
J1(p∗,q∗)

]
|Fn]− αn

= E

[(
m∏
k=n

(1− p∗k)(1− q∗k)

)

·
(
E
[
J̃1(p∗,q∗)|Fm+1

]
− αm+1

) ∣∣∣∣Fn
]
.

By letting m→∞, we obtain

lim
m→∞

E
[
J̃1(p∗,q∗)|Fm+1

]
= R1

∞,

and
lim
m→∞

αm

= lim
m→∞

VALI

[
(R1

m, R
2
m) (R1

m, G
2)

(G1, R2
m) (E[αm+1|Fm],E[βm+1|Fm])

]
= VALI

[
(R1
∞, R

2
∞) (R1

∞, G
2)

(G1, R2
∞) (limm→∞ αm, limm→∞ βm)

]
,
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where the second equality is justified by Theorem 4. Define

α∞ = lim
m→∞

αm, and β∞ = lim
m→∞

βm.

Then
α∞ = VALI

[
(R1
∞, R

2
∞) (R1

∞, G
2)

(G1, R2
∞) (α∞, β∞)

]
.

By solving this fixed point equation, we obtain that

(α∞, β∞) =
(
R1
∞, R

2
∞
)
.

Thus,
E
[
J1(p∗,q∗)

]
|Fn]− αn = 0.

Then we can prove that it coincides the definition of equilib-
rium point.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions
In this work, we have studied the stopping time game

in sequential hypothesis testing using an extended Dynkin’s
formulation. We have showed that the equilibrium points can
be found backwards via two intertwined dynamic program-
ming equations. For finite-horizon game, we have provided
sufficient conditions of finding the equilibrium points. Besides,
we have fully characterized the equilibrium strategy structure.
And we have provided the condition under which the game
admits fully randomized equilibrium strategies. In the infinite-
horizon case, we have presented the theorem which also gives
sufficient condition of finding the equilibrium points. We have
also showed that in the fully-randomized case, the randomized
strategy of one player entirely depends on the other player’s
costs.

B. Future Work
1) Information-Asymmetric Game: In an information-

asymmetric game, the information is divided into two parts,
common information and private information. In the game
defined in this paper, there only exists common information as
both players share the same sequence of filtration {Fn}n∈N+ .
We would investigate the case where the private information
may be induced by delay of obtaining observation. For ex-
ample, at time n, one player has the access to contemporary
information Fn and the other player experiences one-step-
delay and only has access to Fn−1. A new concept of
equilibrium is indispensable as the standard Nash equilibrium
concept is defined under the assumption that both players only
have common information.

2) Stopping Game with Self-Stopping: Another possible
work can be explored in the case where the random processes
defined in Dynkin’s game do NOT satisfy supn∈N+ E [| · |] <
∞. Particularly, in hypothesis testing, we are interested in
the case where there exists cost of taking observations. For
example, the cost function of P1 is

J1(τ1, τ2) = (R1
τ1 + τ1)1{τ1≤τ2} +G1

1{τ1>τ2}.

Obviously, supn∈N+ E
[
|R1
n + n|

]
is not bounded anymore. In

this case, without the presence of P2, P1 himself will stop, as
when P2 is absent (set τ2 =∞), the problem reduces to SPRT.

Fig. 2. Rn versus bn: the red dotted line stands for the value of Rn.
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APPENDIX A
PROOF OF COROLLARY 1

By observation, we have bn = b0/(b0 + (1− b0)L(xn1 )).
Thus, there exits one-to-one correspondence between bN and
L(xN1 ) for N ∈ N+.

APPENDIX B
PROOF OF LEMMA 2

For the purpose of proof, with a slight abuse of notation,
let Rn(bn) = Rn.

1) The first statement is illustrated as shown in Fig. 2.
2) As Rk is a concave function in bn, using Jensen’s

inequality, we obtain

E [Rn+1(bn+1)|bn] ≤ Rn+1 (E [bn|bn]) = Rn(bn).
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