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Distributed Stabilization of Two Interdependent
Markov Jump Linear Systems
With Partial Information

Guanze Peng

Abstract—In this letter, we study the stabilization of two
interdependent Markov jump linear systems (MJLSs) with
partial information, where the interdependency arises as
the transition of the mode of one system depends on the
states of the other system. First, we formulate a framework
for the two interdependent MJLSs to capture the interac-
tions between various entities in the system, where the
modes of the system cannot be observed directly. Instead,
a signal which contains information of the modes can be
observed. Then, depending on the scope of the available
system state information (global or local), we design cen-
tralized and distributed controllers, respectively, that can
stochastically stabilize the overall interdependent MJLS. In
addition, we derive the sufficient stabilization conditions
for the system under both types of information struc-
ture. Finally, we use a numerical example to illustrate the
effectiveness of the designed controllers.

Index Terms—Interdependent systems, Markov jump lin-
ear systems, distributed stabilization, partial information.

[. INTRODUCTION

YNAMIC systems subject to random abrupt changes
Din their structures and parameters can be modeled by
stochastic jump systems. Particularly, when the random jump
process is described by a Markovian process with given tran-
sition rates, the system is categorized into the class of Markov
jump systems. Extensive research and investigations have been
done on the stability analysis and (optimal) control design of
Markov jump linear systems (MJLSs) [1]-[5]. Two common
features of the system models studied in these literature are: (i)
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the state transition rate matrix is time-invariant; (ii) the Markov
parameters of the transition matrix can be directly observed.

However, in many applications, the transition rate matrix of
a system can depend on the system state. For example, the
failure probability of a wind turbine is related to its use time,
level of wear, stress, and stiffness on the blades [6]. The gen-
eral Markov jump system models considered in [1], [7] are not
directly applicable to these scenarios. Moreover, the modes of
the system often cannot be observed, as seen in robot nav-
igation problems, machine maintenance, and planning under
uncertainty [8]-[10]. In these applications, the modes can only
be inferred from the emitted distorted signals. To address these
problems, [11] has modeled the system as a state-dependent
MILS with partial information, in which the transition rate
matrix is time-varying due to the evolution of the dynamical
system, and the controller has only partial information of the
system modes.

With the emerging advanced information and communica-
tion technologies (ICTs), the real-world systems are becoming
more complex. One main characteristic of these modern con-
trol systems is that they are interdependent, creating system-
of-systems [12]-[14]. In many examples, we see that the
state/condition of one system will have an impact on the
operation of other systems. This particular structure of interde-
pendencies can lead to cascading failures among various enti-
ties in homogeneous and heterogeneous networks [15]-[18].
One specific example is the interdependent communication
and power systems, which can be seen as a class of cyber-
physical systems (CPS). The power system operator leverages
the communication for real-time control of the grids, while
the communication system consumes energy from the power
system. A point of failure in one system will propagate to
the other one due to their interdependencies. We can use the
Markov jump mode to represent a failure mode of an infras-
tructure, where the transition rate is influenced by the state of
another connected system. Hence, the cascading failures can
be modeled through the interdependencies across mode and
state. For clarity, Fig. 1 depicts a framework of two coupled
MILSs. Note that the traditional single Markov jump system
is not sufficient to capture these interdependent features in the
networked systems. Therefore, we establish an interdependent
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Fig. 1.  Two interdependent Markov jump systems model. The oper-
ational mode of one system is influenced by the state of the other
system.

MILS framework in this letter, as shown in Fig. 1, to better
understand the interdependencies between different systems
and also design controllers for the complex systems.

In this letter, we first derive its stability criterion and design
stochastic stabilizing controllers by regarding the multiple
MIJLSs as an integrated system. In addition, to preserve the dis-
tributed nature of various coupled jump systems, we design the
distributed stabilizing controllers for each individual system.

The main contributions of this letter are summarized as the
following.

1) We establish an interdependent MJLS model with partial
information to capture the interactions and couplings,
where Markov modes are state-dependent and partially
observable.

2) We derive a sufficient stabilization condition using linear
matrix inequality (LMI), and design stochastic sta-
ble controllers for the integrated MIJLS with partial
information of the modes.

3) To reduce the complexity of controller design, we design
distributed stabilizing controllers for each individual
system which ensure the stability of the integrated
system-of-systems.

The rest of this letter is organized as follows. In Section II,
we describe the interdependent MJLS framework under par-
tial information and the corresponding integrated system.
Section III studies the stabilization problem from an integrated
system perspective. Section IV investigates the distributed
stabilizing controller design. Numerical examples are given
in Section V to validate the effectiveness of the designed
controllers, and finally Section VI concludes this letter and
discusses possible directions of future work.

Il. INTERDEPENDENT MJLSS AND THE INTEGRATED
SYSTEM MODEL

In this section, we present the interdependent MJLS frame-
work as illustrated in Fig. 1. Specifically, we consider a model
of two coupled MJLSs (namely, System 1 and System 2):

X (8) = Ak, gp(n Xk (£) + Bi gk () + Dy gpywic (), k=1,2,
(1)

where xp(f) € BNex: xi(tg) is a fixed (known) initial state of
the physical plant at starting time fp; u(f) RN is the con-
trol input; wi(f) RNew is the deterministic disturbance; and
all these quantities lie at the physical and control layers of the
system. Note that Ny x, Nk, and Ni ., kK = 1, 2, are all positive
integers. Furthermore, the system mode of System k, 6¢(f)
R, is a Markov jump process with right-continuous sample
paths and initial distribution my o. The possible values of 6 (f)
are assumed to be in the finite set . :={1,2,..., %%/}
Moreover, Ak.g,(), Bi,g.(n, and Dy, kK = 1,2, are system
matrices of appropriate dimensions whose entries are continu-
ous functions of time . We assume that the system disturbance
wi (1) satisfies [ wi()Twi(t)dt < oo, k=1,2.

The MILSs in (1) are interdependent in the sense that the
transition rate matrix of the system mode of one MILS is
dependent on the state of the other MJLS. Without loss of
generality, we consider the interdependency in a chain struc-
ture. Based on the interdependent structure of two MJLSs, we
have

Pr[01(t+ A) = j1161(H) = i1, x2(t) € €, ]
_[JJ"%A+0(A) if iy # i,

i1
1+ )L:T}I A + o(A) otherwise, @
and

Pr[6y(t + A) = j2|62(1) = i, x1(t) € €[]
[ wih A+ 0(A) if iy # ja,

2
1+ ppt A +o(A) otherwise,

3

where ‘ég,'ifz,...,‘éfk , k = 1,2, are nonempty and dis-
joint sets, and U,, . 4%, " denotes the space containing all
the possible states of xi(f), where .#;:={1,2, ..., Mi}. The
transition rates for the Markov jump process, 6(f) and 62(%),
are denoted by {A] )i, jieq and {1})} }i, e, respectively.
The finite partition of the state space in (2) and (3) is motivated
by the interdependent critical infrastructure applications. For
example, in the coupled power and communication systems,
communication delay will impact the power system opera-
tion. Power system operates under different conditions (e.g.,
efficient, delay-tolerant, conservative) depending on the signif-
icance of the delay (e.g., minimal, intermediate, enormous).

In the focused scenario, for each MILS, the system mode
6k (f) cannot be directly observed. Instead, a signal 9}(:) is
observed. At time f, given xx(f) € € * and 6 () = i,
the observation probabilities are assumed to be the following
conditional probabilities:

k,m,
= . k, k =
kg

PrBe(t) = il () = i, 1u(t) € 6| 12
where ék(t) € 51 is the observation of System k, and 5’1
denotes the set that contains all the possible observations of
System k.

The following assumptions are made to hold throughout this
letter.

Assumption 1: For each MILS, the observation does not
influence the transition of the system mode, i.e., for all A > 0,
Ot + A) € A, O(t) € Fh x(t) € 6", mp € My, and
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o(t) € Fr k=12,
Pr 01t + A)101 1), 61 (1), 22(8) | = Pel61 (1 + A) 161 1), x2)],
Pr| 02t + A)102(0), 620, 1 1) | = Pel6a(t + A)162(0), 31 ()],

Pr| {04t + M)zt 21060, B0, 2D 2
= Pr[{Ok(t + A)li=1,21{0k (D), Xk (D }i=1,2]-

Assumption 2: For each MILS, the set of observations is
the same as the set of system modes, i.e.,

yk:jk, k=1,2.

The two interdependent MJLSs can be jointly represented
as an integrated system, which is given as follows (where we
omit the time index for notational clarity):

X1 _ Ay, 0 X1 n By g, 0 Ui
X7 0 Az g, || X2 0 By g, || u2

Dip 0 w1
G @

The integrated system (4) can be rewritten more compactly as

X(t) = Agpx(t) + Banu(f) + Daryw(t), (5)
where x _[):l,):z]T u _[.'.qu,atz]T wi= [wFIF, wg]T, and 6
denotes the mode of the integrated system determined by 6;
and &,. Besides,

_ |ALe 0 By g, 0
Ag —[ 0 A?,‘GZ , and Bg = 0 B?,‘GZ .

In Section III, we focus on designing the stabilizing con-
troller of the integrated system (4) in a centralized fashion.
These results will facilitate the distributed stabilizing controller
design of system (1) in Section IV.

[1l. STOCHASTIC STABILITY ANALYSIS AND CONTROL OF
THE INTEGRATED MJLS

In this section, we analyze the stability of the integrated
system (5) and derive its state-feedback stabilizing control.
Note that there exists exact correspondences between (1)
and (5) in terms of system parameters including transi-
tion probabilities and observation probabilities. To ease the
presentation, we redefine the notations of critical variables
succinctly for the integrated system (5).

Recall that the integrated system mode @ is determined
by 61 € % and 62 € .%. Then, we define the finite
set & :={1,2,...,|%1|[-#2]}, which contains all the possible
system modes 6(f) of (5). Furthermore, let €l ¢t ..M
be nonempty and disjoint sets, and U, #%™ denotes the
space containing all the possible states of x(f), where
M ={1,2,...,M}. As x(t) contains both subsystems’ states,
its partition into M sets is based on the corresponding parti-
tions of x1(f) and x2(f), and thus M = M| M. Similar to (2)
and (3), the transition probabilities of system mode 8(¢) in (5)
are given by

Pr[0(t+ A) = jlo() = i,x(1) € €™

IyUA—I—o(A) if i # j,

14+ ¢"A +0(A) otherwise, ©)

where the transition rates for the Markov jump process 6(f)
are denoted by {yg’},- jes

Let O(f) denote the observation of the integrated system
determined by él (f) and éz(!) At time f, given the state
x(f) € €™ and the system mode 9(:) = i € .¥, we denote
the probability of observing b =ie 2 by ur w, ie,

Pr|d®) =ilo@ =i, x() e €™ | = a2, )

where . is the finite set that contains all the observations.

For each m € .#, we define the following notations which
will facilitate the controller design. Due to Assumption 2,
P = %, and [ur l;5c.o is a square matrix. If [a,, iles is
invertible, define

BT iesr = (I Tiier) - ®)

IJE

Otherwise,

¥
B e = (12)5e5) - ©)
where (-) stands for the pseudo-inverse of a matrix. In (8)
(resp. (9)), ,BI" is the (7, i)-th entry of the inverse (resp. pseudo-
inverse) of the observation probability matrix formed by a x.
Next, the definition of stochastic stability of a system is
given as follows.
Definition 1: The equilibrium point (i.e., origin) of
system (1) is stochastically stable if for arbitrary x(fp) € ]RNI,

and A(ty) € .,
]E[ f |x(r)|2dr] < 0.
]

In this section, we aim to design controllers such that
system (5) is stochastically stable. As the system mode 6(f)
cannot be observed directly, the control inputs can only be
designed based on @(t) and x(f). When x(f) € €™ and
f(f) = i, the control input is designed to take the following
state-feedback linear form:

u(f) = G;’(r)x(r)

(10)
As shown above, the control gain is dependent on the obser-
vation #(f) and the system state x(f). We can rewrite the

closed-loop system under control (10) as
Lo oAm
x=A e + Dgw,

where A™. = Ag + By Gg’.

Before deriving the stochastic stability criterion of the tar-
geted system, we present Dynkin’s formula in the following
lemma.

Lemma 1 [11]: Let a random process (x(f),8(f)) be
a Markov process, and its stopping times are denoted by
79, T, --., at step 0, 1, ..., respectively. For Lyapunov func-
tion V(x(f), 8(f)), the Dynkin’s formula admits the following
form:

E[V(x(2), 8(1))|x(f0), 8 (fo)] — V(x(f0), 6 (f0))
_ iEl:fmml
1=0 taT)

LV (x(v), 8(w)dvulx(t A 1), 0(t A r;)] .

(an
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where 19 =0, [ = 0,1,...,[*%, I* € [0,00], T+ < 00, and
LV (x(1), (1)) is the infinitesimal generator given by

ZV(x(1), (1))
= lim l{]E[‘ir’(x(ur A), B(t+ A))|x(D), 8(1)]
A=0 A

—V (), 9(:))].

Specifically, we choose the Lyapunov function in the fol-
lowing quadratic form:

Vx(®), 0(1) = xT ()Pax(1), (12)
where Py(y is a symmetric positive definite matrix.
Lemma 2: Assume that x(f) ¢ €™, 8() = i € %, and

é(t) =ie & Then, the infinitesimal generator of V is
equal to

ZV(x(@), 6(1)

=xT ()| PA™ + A"TP; + Z viP; |x(0) + 2xT (OPDiw (1),

jesf
where A =3 afA%.
Proof Due to page llrmt the proof can be found in the full
paper [20]. |

The following theorem gives a sufficient condition that
ensures the stochastic stability of the integrated MJLS under
partial information.

Theorem 1: System (5) can be stochastically stabilized if
there exist positive definite matrices X;, Y}", for all i € .,
m e #, and x; > 0, satisfying

XA] + Y™ BI + AiX; + BiY™ + yI'X;

1
+X| Y v X+ —DTD <0. (13)
e /i)
By Schur complement lemma [19], (13) is equivalent to
EM AT
[ N _é,{] <0, (14)

where
&M = XA +Y" BT +AX; + BiY™ + v X; + (1/k;)D] D,
A = [‘,‘ YirXi, ..., JV,'?:'_I)XE, J]’,‘?:'_H)Xis cees }’,‘Ty|Xi]s
Zi = diag{Xy, ..., Xi_1, Xig1, ..., X}

The control gain is given by G’" Yiew ﬁ’"Y’" X1
Proof: Due to page limit, the proof can be found in the full
paper [20]. |
In the case of full information where system’s mode 6(f) is
observable, we immediately have the following proposition.
Proposition 1: System (5) can be stochastically stabilized
if there exist positive definite matrices X;, Y;, for all i € .%,
me #, and k; > 0, satisfying

XiAl + Y} B} +AX; + BiY; + v'Xi

1
VXXt - DTD40
e /i)

+ X; (15)

By Schur complement lemma [19], (15) is equivalent to

AR
*

- ;
m ._ yv.oal TpRT V. . mys. Anln.
éa;‘ — XIA;' + Y,‘ B,‘ +AJXJ +BrY;'m + Yii Xx + (I,I‘IC;)D- Dr,

= VX Vi Xis Vi Xis oo i X,

Zi = diag{Xy, ..., Xi_1, Xiy1, ..., X| o9}

Then, when the system mode is i, the control gain of the
. . pd -1
system is given by G; = ¥;X; .
Sketch of Proof: Note that in the fully observable case, for
all m € .# , we obtain

(16)

where

o™ — 1 wheni=i,
it 0 otherwise.

Then, the proposition is an immediate result from Theorem 1.

V. DISTRIBUTED STABILIZATION OF THE
INTERDEPENDENT MJLSS

In this section, we focus on (1) which includes two
interdependent MJLSs. In Section III, we have studied the sta-
bility of the integrated MJLS which requires to know global
system’s state information. However, due to the distributed
structure and different types of the jump systems, obtaining the
overall system’s information is not always possible/convenient.
Thus, to enable the distributed control of the interdependent
Markov jump systems, we aim to investigate the criterion that
leads to the stochastic stability of each individual system in
this section.

Similar to (8) and (9), for k = 1,2, when [ai‘{:’(
invertible, we define

-1
k,my komgy
[’g:m ]rk ke ([aiﬁk ]ifc,ike.‘;"’}t) :

Otherwise,

]ik,?kE-S"k 18

ke my

k. mi .
1B, ]*k ke — ([aiﬁk ]fk,i.t 65‘1) '

Ikik

Furthermore, similar to (10), when x(f) € ‘é’{"l, x2(f)
%’2'"2, the controllers for the two interdependent MJLSs are
given by the following state-feedback form:

up(t) = G xi (1),

%.6,(0) k=1,2.

a7

That is, the control gain of System k is dependent on the
observation @k(t) and the state pair (x1(f), x2(f)).

Before proceeding to the main result of this section, we give
the following corollary, which presents how the individual sta-
bilizing control of each system can lead to a stable integrated
system.

Corollary 1: The stochastic stability of both MJLSs ensures
a stochastically stable integrated system. In addition, for x; €
€M, m € M, and x3 € €7, my € >, the stabilizing
control gains G'"1 "2 and G'"I s for all i) € % and iy € .,
of individual System 1 and System 2 lead to a stable integrated
interdependent MJILS (4).
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Proof: Due to page limit, the proof can be found in the full
paper [20]. |

The following theorem provides sufficient conditions for the
integrated MJLS under the stabilizing controllers designed in
a distributed fashion.

Theorem 2: The integrated MJLS is stochastically stabi-
lized if there exist positive definite matrices X;; > 0,
Yf'kmz > 0, for all iy € S, my € My, and k. ;, > 0,k=1,2,
satisfying

X1.4A7 , +Y7L el 1 i FAL XLy + By Y™ AT X

1,1 L i11]

11 /lir}
T

X, r2A2 J2+le " Bz iy +A2,p X2, + By xzyml "2+ *“’:2 X2

+X1,i| llJI(XlJl) Xl r1+ D] le] i {0

1
+ X2, x,, ;2+ Dg nD2i, <0,

D iy Xaj)”
jpe/{in}

which is equivalent to

[éa]m‘ll " Aq (i1 ] <0, and I:éafflz’mz Ay ) ] <0
* %,n * _‘Qfﬂ?.,rg
where
T
éa;nx1| = = X1 *IA] L0 + Y‘Im1 " Bl il +A1J'1X1J'I
+ B Y™ 4 A7 Xy + (U, )D]; Dy,
T
ELT = Xp pAy, + VU BY L+ Ar i Xo iy
+ Baiy ¥y )" + wiyi Xoip + (1/ke, i)D} D2
AT%I = A:TZ;XI,J] RERERY, lll(*l I)Xl irs
v A';T%;'1+1)Xl,i| LEERERY Ailf-gyl |X1,i| I,
AYL = i Xy o Bty -1y X2
m m
\/ !-",'2;,'2+1)X2,i2, ceeanyf P'f,'z;yﬂx?.,ig]s
21, = diag{X1 1, ..., X1ij 1. X1,ij41, - - X114 1
2o, = diag{Xa1, ..., X251, X2,i 41, - - - » X2 |55 }-

Moreover, the control gain for System k is

m| my __

k u_ Z ﬁk m;(le mZ(Xk,I})_l, k — 1, 2,

ik
lkeﬂ

for all ?k c .%.

Proof: The proof follows immediately from Theorem 1 and
Corollary 1. |

Remark: By comparing the designed stabilizing controllers
in Sections III and IV, we can find that the number of
controllers is different in these two scenarios. Specifically,
it requires M1M3|.#1|.-#2| controllers using the centralized
design method (Section IIT), while the distributed one reduces
it to MiM2(].#1| + |-#2|) (Section IV), which simplifies the
complexity of the control design.

V. NUMERICAL EXPERIMENTS

In this section, we present a numerical example to illustrate
the obtained analytical results. The parameters of the system
are 6y € 1 = {1,2} and 6 € %5 = {1, 2, 3}. The system
matrices of the independent MJLSs are given as follows:

[5 2 5 2
A= 2 4], Ap = [2 4],
K1 > 3 2 4
31,122,3121,A21— 5 2 6|,
- -9 0 2
1 3 4 -1 8
Ap=1(2 1 0], Ag3=1| 5 8 0f,
5 6 3 -1 7 5
1 1 2
By1= (21|, B22|0{, Ba= |1
1 1 0
In addition, the transition rate matrices are
L _[06 06] »_[-02 02] ,5_[-05 05
—-04 04/ -0.8 0.8]) —-1.2 12/
—0.8 0.2 0.6 —0.4 0.2 0.2
pl=102 —-09 07 |,u*=|[02 —05 04
0.5 0.4 —0.9 0.5 0.6 —1.1

Specifically, A!, A2 and A3 are transition rate matrices of
System 1 under the condition that xp € ’ifz.l = {x2: |)£g|2 < 5},
X €€ ={xn:5 < |n? < 10}, and x e’ifg‘ =
{xp : [x2> > 10}, respectively. Similarly, ! and u? are
transition rate matrices of System 2 under the condition that
x1 €€ = {x1:x1]? < 10}, and, x; € €2 = {x1 : [x1]> > 10},
respecuvely

Moreover, the observation matrlces of System 1 and
System 2 are given by P™ = = [a! ml]” hesr M= 1,2,

i
and 0™ = [& 12:”2];2 hesr M2 = 1,2,3, respectively, with

matrices taking the following forms:

y _[09 o01] ,, [07 03
P = 0.1 09 P*=lo3 o7
[0.8 0.1 0.1 07 02 0.1
o'=(01 08 o1}, ¢*?=|02 07 0.1/,
(0.1 0.1 08 02 01 07
[0.7 0.1 0.2
g*=|(01 07 02
(0.1 02 0.7

With the designed controllers based on solving LMIs
in Theorem 2, Fig. 2 shows the state trajectories of the
interdependent systems with the initial conditions x;(0) =
[—6, 51T, and x2(0) = [2, —5.5, 8]T. Fig. 3 depicts the sampled
Markov chains of the underlymg parameters 6 (f) and 6(1),
and their observations 91 (f) and 92(!) respectively. For com-
parison, Fig. 4 illustrates the results with the control designed
under complete observations. With a perfect knowledge on
the system mode, the state trajectories in Fig. 4 are relatively
smoother and reach the steady state faster than those in Fig. 2.
However, the advantage of the designed distributed control
strategy lies in the fact that, though the systems’ modes are
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- -

(a) System I’s States (b) System 2’s States

Fig. 2. (a) and (b) show the stabilized state trajectories of System 1
and System 2, respectively, with the control designed under partial
observation.

UMM

(a) System I's Mode (b) System 2's Mode

Fig. 3. The sampled Markov chains of System 1 and System 2,
respectively.

-

(a) System [’s States (b) System 2’s States

Fig 4.  (a)and (b) show the stabilized state trajectories of System 1 and
System 2, respectively, with the control designed under full observation.

not directly observable, it can still stabilize the interdependent
MIJLSs with satisfactory performance as shown in Fig. 2.

V1. CONCLUSION

In this letter, we have studied the interdependent multiple
MIJLSs. We have designed distributed stabilizing controllers
for each MJLS with partial information, which only require the
system state information and indirect observations of the local
mode. In addition, these designed controllers can stabilize the
integrated Markov jump system. The distributed feature of
these controllers reduces the information exchange and com-
munication costs among different Markov jump systems. The
future work would extend the stabilizing control design to an

optimal control framework considering state and control costs
for the coupled MJLSs under incomplete information.
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