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Robust and Stochastic Optimization With a
Hybrid Coherent Risk Measure With an
Application to Supervised Learning

Shutian Liu

Abstract—This letter considers a hybrid risk mea-
sure for decision-making under uncertainties that trade-
offs between the solutions obtained from the robust
optimization and the stochastic optimization techniques.
In the proposed framework, the risk measure is shown to
satisfy the properties of coherent risk measures. We can
control the level of guaranteed robustness using a param-
eter. We formulate the stochastic and robust optimization
problem under the proposed risk measure and show its
equivalent formulation and sensitivity result. We introduce
the sample approximation of our technique by combin-
ing scenario program and sample average approximation,
making our framework amenable for practical usage. We
present a supervised learning problem as a case study to
corroborate our results and show the implications of the
proposed method in machine learning.

Index Terms—Optimization, stochastic systems, uncer-
tain systems, machine learning.

[. INTRODUCTION

ECISION-MAKING under uncertainties has been an
D active research area for decades [1]. It deals with optimal
decision-making when systems are exposed to uncertainties.
One important step to this problem is to quantify randomness
and incorporate it into the decision-making. To this end, many
methods have been proposed.

One major field of research is robust optimization (RO),
which deals with problems where the decision-maker (DM)
takes actions under the worst-case uncertainties. In this for-
mulation, the DM considers the events in the uncertainty set
as equally probable and cannot tolerate any uncertainty that
lies outside the set. Solutions to RO problems have been exten-
sively studied, such as in [2], [3], and [4]. One key feature of
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RO is that it protects the system away from the worst risk.
RO may overcome the pessimism if a proper uncertainty set
is chosen. Another feature of RO is that the optimizer yields
a safe or secure decision no matter how unlikely the risk is
as long as the corresponding events are included in the uncer-
tainty set. However, considering all feasible events would lead
to significant conservatism in solutions and unimplementable
decisions.

Stochastic programming (SP) is another decision-making
paradigm that captures uncertainties using random vari-
ables [1], [5]. In this formulation, not all events are treated
equally. Decisions are often made by minimizing the expected
loss that considers the average outcome of the random param-
eter. One advantage of SP is that we can obtain the solutions
using a data-driven approach where samples of the uncertain
scenarios are used to approximate the expected loss. However,
decisions made using SP do not provide a strict guarantee of
performance when an event is realized. The performance is
assured through the average sense.

SP and RO approaches yield different decisions that are suit-
able for distinct applications or criteria. One research direction
that boasts both features is distributionally robust optimization
(DRO) which optimizes the expected loss under a set of pos-
sible distributions. DRO makes assumptions on the set of
uncertain distributions and guarantees distributional robustness
of the solution by finding the worst-case distributions. For its
recent advances, readers can refer to [6].

In this letter, we introduce a new approach that couples
RO and SP. We consider an unconstrained uncertainty set
and partition it into two subsets. In one subset, we aim to
consider the worst-case risks to provide a strict guarantee
for all the uncertainties in the subset, while in the other
subset, we aim to consider the average risk and content
with the mean performance over the subset. The partition
of the subsets is determined by a parameter that controls
the degree of robustness. This approach enables a mixture
between two approaches and tradeoffs between the security
guarantee of the solution and the actionability of the decision.
The method is especially important when handling unbounded
uncertainties and unstructured objective functions where the
worst-case solution can result in either trivial or meaningless
scenarios.

2475-1456 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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We show that the problem formulation is equivalent to a SP
problem with a hybrid coherent risk measure (CRM) [7]. The
proposed measure can be viewed as a mixture of the potential
risk and the inner loss. The proposed approach can be inter-
preted as a DRO problem with the uncertainty set consisting of
density functions. We further investigate the sensitivity of the
optimal value with respect to the set partition parameter, which
measures the marginal effect of the robustness on the decision-
making. We also prove the differentiability of our CRM to
ensure its applicability in real-world applications. Furthermore,
we explore data-driven methods to enable sample-based com-
putation and use a supervised learning problem as a case
study.

This letter is organized as follows. Section II presents
the decision-making framework under the hybrid CRM.
Section III shows the coherency of the risk measure, the struc-
tural and differentiability results and the sensitivity analysis.
Section IV provides a sample-based method and a case study
is investigated in Section V. Section VI concludes this letter.

Il. PROBLEM FORMULATIONS

This section formulates a class of decision-making problems
under uncertainties. Let x € R” denote the decision variable;
Y is a random variable with image space S € R; and (£2, F)
is the underlying measurable space with probability measure
P. Denote by f : R" x § — R a real-valued loss function.
The loss incurred under the decision x and the uncertainties
captured by the random variable Y is given by

Z=fx,Y). (D

It is apparent that, for a given x, Z is a random variable defined
over the same probability space. Let Z be essentially bounded.
Denote the density function of ¥ by fy(y), and assume it to be
continuous and have a single peak. Since Z is also a random
variable, we need to select a risk measure to evaluate the risk
associated with Z.

We partition S into ST and S~ such that ST US™ = S
and St NS~ = @. We assume that S* is a convex closed set
and contains uncertainties on which we aim to impose robust-
ness guarantees while S~ contains uncertainties on which the
average outcome of the associated losses is defined.

Define the hybrid risk measure as follows:

R;(f(x,Y)) = B -esssupf(x,y) + f Ffy(dy,  (2)
ye§t 5-
where ,é = fS+ Jr(»)dy € [0, 1] is a level parameter that mea-
sures the size of S*. Risk measure (2) uses different criteria
to measure the risk associated with two mutually exclusive
partitions. Note that in (2), we use y to denote the uncertainty
parameter on ST, to distinguish it from its counterpart y on S—.
The optimization problem that takes into account the risk
measure is given as:

min R5(f(x, ). 3)

Problem (3) combines RO on S+ and SP on S~. On one hand,
as B gets close to 1, ST tends to S, and hence (3) tends to a

pure RO; on the other hand, when the level parameter goes
to 0, (3) tends to a pure SP.

The choices of ST can be based on experience, such as
advice from a sophisticated banker in the case of portfolio
management. We introduce one special partition based on how
frequently outcomes appear. Consider the level sets of fy. For
a given real number B € [0, supfy] C R, define the super-level
set of fy:

Sy =y :fr®) = Bl @
which is convex and closed under our assumptions, and
Sg =1y : fr() < B} )

is the sub-level set of fy. There are practical reasons to adopt
RO on (4) and SP on (5). Firstly, the events that corre-
spond to (4) have high probabilities. In cases where these
events correspond to disturbances of the system, it is clear that
robustness to these disturbances would yield desirable system
performances. In a portfolio management problem, the high
probability disturbances can be considered as common fluctu-
ations of the stock prices. A desirable portfolio would secure
payoffs under these common fluctuations. Secondly, for the
events associated with (5), they may lead to high losses despite
low probabilities of their occurances. Decisions based on the
worst-case criterion would be either trivial or meaningless.
Instead, average loss is a reasonable choice to quantify the
risk on (5), since it balances the low likelihood and the high
cost of these events. In the portfolio management problem,
an example of an event on (5) could be a price shock, which
has significant impact on stock prices but rarely happens. A
good portfolio design takes into account the low-probability
shocks but in a way that weighs its high-impact consequences
with the low probability. Thirdly, by combining the worst-
case scenario and the average performance, our metric enables
a decision that allows the portfolio to achieve a best-effort
performance under common disturbances while surviving from
the consequences of low probability but high-impact events.
With the partition of (4) and (5), we obtain

R5(f(x, Y)) = B -esssupf(x,) + fs_f(x, Wir(dy. (6)
6

ses;

The uncertainties captured by Y can be thought of being
controlled by an adversary. The set in (4) captures the fact
that the DM aims to prepare for the worst-case scenario,
while (5) takes into account possible losses from the adversar-
ial events. This problem formulation is applicable to decision
problems in cybersecurity, adversarial machine learning, and
risk management.

I1l. STRUCTURAL PROPERTIES AND ANALYSIS
A. Coherent Risk Measures

CRMs are a set of risk measures that satisfy four axiomatic
properties originally proposed for mathematical finance [7].
The axioms are natural for a certain class of problems.

Definition 1 (CRM, [7]): A risk function p(Z) that maps Z
to the extended real line R = R U {400} U {—oc0o} is a CRM,
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if p(-) satisfies (a) translation invariance, (b) subadditivity,
(c) positive homogeneity, and (d) monotonicity; namely,

@ p(Z+a)=pZ) +a,VacR, VZ.

(b) p(Z1 + 2) < p(Z1) + p(£2), V4, 2.

(©) p(@aZ) =ap(Z), Va c R, VZ.

(d) p(Z1) < p(Z2), VZ1, Z3, such that Zy < Z5.

One popular CRM is Conditional Value at Risk (CVaR), a
widely used substitute to Value at Risk (VaR) that does not
satisfy the subadditivity axiom [7], [8], [9].

Theorem 1: The hybrid risk measure (2) is a CRM.

Proof: For any given x, we compress the notation of f(x, ¥)
to f(¥) and check the four axioms of CRMs.

(a) Translation invariance.

Rz(f(Y) +a)
= Besssup(f(y) +a) + [g_ FO) +a)fr(dy

jes+

— pesssupf) + [ FOUr )y +a

yes+
=Rz(f(Y)) +a.
(b) Subadditivity.
Rz(fi(Y) +2(Y))

= Besssup(fi(¥) +/2(3) + [g_ (i +20Nfr(dy

Fest
< Besssupfi(y) + Besssupfa(¥)
yest yes§t
+ fs OOy + fs Oy
< Rz(fi(1) + Rz (2(Y)).

(c) Positive homogeneity.
R5(af (Y)) = Bess SUp(@f () + | (@ Ofy()dy

= aRz(f(Y)).
(d) Monotonicity. For fi(¥Y) < f2(Y) almost surely:

R5(fi(Y)) = Besssupfi(§) + f Hiofrdy
yes+t §-

< Besssupfa(y) -I—f LOfrMdy < Rz(f2(Y)).
yest 8-
Hence, we arrive at the result. |
The CRM in (2) differs from CVaR in nature. CVaR, is a
quantile-based measure that averages the upper 1 — « portion
of the loss. In contrast, (2) is not quantile-based. Both St and
S~ contribute to the CRM. Furthermore, in (2), we multiply
the worst-case loss by B. It is distinct from the formulation of
CVaR. However, our measure coincides with CVaR when both
of them reduce to either expectation or essential supremum.
In financial applications, there are inefficiencies associated
with CVaR, despite its popularity as a risk measure. For exam-
ple, [10] presents a case where CVaR fails to characterize the
severity of the tail risk. This failure is caused by the fact that
conditional expectation cannot handle concerns on the extreme
loss. With the RO part of the hybrid measure (2), it can capture
the extreme loss and the severity of losses.

B. Equivalent Formulation

In this subsection, we assume that the loss function is non-
negative and discuss the equivalent formulation of (3). First,
we introduce the dual problem associated with our formula-
tion [11]. Consider the linear space Z := L,(2, F, P) of F-
measurable functions ¢ : @ — R with fﬂ || (w)||PAP(w) <
+00, and the norm defined by |[¥/||, = (f, [¥ (@) PdP(w)) /7.
Denote the dual space of Z by Z* = L,(Q,F, P), where
:—, + % = 1, and the corresponding scalar product by:

€. 2) = fﬂ £ (@) Z(@)dP(),

where Z € £L,(Q, F,P) and { € L (R, F, P).
Theorem 2: The objective in (2) can be represented using
the following dual form:

R3(Z) = sup(§, Z),
EecA
where set A == {§ 1 § = £ 1o+ (@) +1lg- (@), ||§- 1o+ (@) | =
B,&(w) = 0}, with 1g(-) denoting the indicator function
defined on the subset ®. Denoting the Dirac delta function
by 8(-), we arrive at the optimal solution:

@)

E* (@) = B3(@ — 0*) + 1g- (), ®
where w* denotes argesssup,, o+ Z(w).
Proof: With Z nonnegative, we have the equality
[IZllp = sup (§,Z).
lIEll4=<1,6=0
Let p = +o00, and the first term in (2) can be written as:
B-esssupZ=B- sup (£,Z-lg+(w))
Q+ _ g =120
=pg- sup (§-1g+(w),Z)
gl =160
= p-sup(§,Z),
EcA
where
A=(§:§=£ 19+ ().l <1,§ = 0}.
Then, equivalently,
B -esssupZ = sup (£, Z),
Qr EcA
where
A={§:E=¢ 1g+(), |5l < B,& > 0}.
Adding the other term in (2), we arrive at
R5(Z) = sup (€, Z) +EIZ - 1o- ()]
EeA
= sup(§,Z) + (1g- (@), Z)
EcA
= sup (£.2), ©)
EeA

where the third equality comes from the fact that adding
the expectation term restricted on €~ does not affect our
choice of the decision variable § Finally, since the segment
on 7 does not contribute when both terms we maximize are
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positive, hence choosing a function £ with ||&[]; < B and using
the segment restricted on Q" to maximize the correspond-
ing scalar product with a positive function Z yields the same
result as in the problem where we require ||§ - Lo+ (w)||1 = B.
Therefore, we arrive at the third equality.

Furthermore, by inspecting the optimization problem stated
in equation (9), we note that on Q, the strategy for obtaining
the maximum is to pick a Dirac delta function (& — w*).
Hence, we arrive at (8). |

The dual form (7) allows us to interpret (3) as finding
the worst-case distribution from a closed convex set. This
interpretation reveals that (3) is equivalent to a class of
DRO problems [6], which can be further viewed as a game
between an adversary who controls the uncertainties and a
decision-maker who aims to minimize the loss.

The measure (2) and its equivalent formulation can be
applied and extended to control and dynamic decision prob-
lems. We can consider multistage scenarios of the risk
optimization problem as introduced in [11]. With sigma alge-
bras characterizing information available at different stages,
we can use (2) to quantify future risks given the accumu-
lated knowledge. The multistage problem under this metric
will yield solutions that make the system sufficiently robust
while maintaining a good performance.

C. Sensitivity

From (2), it is clear that the level parameter B, or the thresh-
old on the density B, is a design parameter that indicates the
robustness level of the decisions. It is important to understand
the role of this design parameter in (3). In this section, we
present results that characterize the sensitivity of the optimal
value with respect to the design parameter. First, we state the
following lemma.

Lemma 1 [12]:1letxeR", d,peR,d#0,and¢p: R, —
R, be a measurable function, such that [° m+*~1¢d)dt <
+o00. Let g, h be nonnegative positive homogeneous functions
of degree d, p, respectively. Then,

jl; i ¢ (g(x)h(x)dx

d [ =g (d)at
F((n+p)/d) R"
if the integrals are all finite.

This lemma reformulates an integral over a level set as an
integral on R” under the appropriate assumptions.

In (2), we assume that f is a non-negative bounded func-
tion, and f; fy are positive homogeneous with degree p and
d, respectively. An example of a positive homogeneous den-
sity function is Pareto distribution with fy(y) = ;—::'r, y €
(Ym, +00), and @ > 1. Assume that the expectations exist
under the probability density function fy. Further, we assume
that the density function has a single peak which results in
nested convex super-level sets. Consider the reformulation
of (6) with partition of S as in (4) and (5):

hexp (—g)dx,

Rp(f(x, 1)) = [ fs Lig () -fr(y)dy] -P*(B)

+ fS Lo (7) -FC0 Yy )y, (10)

where fy denotes max, fy(y); (4) and (5) are reformulated as
]lmﬁ](fy) and 1o g)(fy) respectively; and P*(B) is the optimal
solution of the following optimization problem:

min —f(x,¥)
st. B—fr(3) <0. (11)

The P*(B) term results in an unperturbed optimization
problem. To apply Lemma 1 to the two terms on the right hand
side of (10), we pick functions ¢ = ]l[ﬁﬁ], g=fr.and h =fy
for the first term and ¢ = 1jo,8), g = fr. and h = f(x, y)fy for
the second term. Then, we can transform (10) to the following:

Rz (f(x,Y))
_dfsfd]]_[‘gf]f](fd)df
= - . p*
i r((l-l—d)/'d) j;erle( fr)dy (ﬁ)
dfs“"”]l[om(fd)dff
' — 12
gue
f *
= W [ rexe-say | -Ps)
1+ +d
1 . ldptd. dy, 12b
r(1+—P—) fﬂx Vfy exp(—fr)dy (12b)

where (12b) directly follows from the properties of the inte-
ratlon and the gam{na i‘;unctlon Denote by y1 = I'(1 +
F, 2= T+ 255, O = [frexp(—fdy, € =

Jsf @, y)fy exp(—fy)dy, and 6 = fy_} Our result is sum-
marized as follows.

Theorem 3: Under the assumptions that f is a non-negative
bounded function; f, fy are positive homogeneous with degree
p and d, respectively; and fy has a single peak, the sensitivity
can be obtained from the partial derivative:

R Y)) 1 l+d I
V=T BaP*(B)
Bﬁ‘
1+d JP* G l+p+d 1+
+ S gt ('8) RS ALYS SE
Y1 ap n d
Proof: By directly taking the partial derivative of (12b) with
respect to B, we obtain (13). |
Note that the term %ﬂ indicates the sensitivity of the
optimization problem (11) when we perturb 8. PP charac-

terizes the difference of the optimal value of the optimization
problem per unit change in the value of the constraint of (11).
It is also referred to as the shadow price in the literature of eco-
nomics. The result of (13) characterizes how the parameters
influence the optimal value.

D. Differentiability of the Risk Measure

Many numerical algorithms rely on the gradient of the
objective with respect to the decision variable. To characterize
the gradient of our risk measure, we rewrite (2) as follows:

RE(f(x, Y) = ,é cesssupf (e, V) +E[f(x, ¥) - 1g-(W]. (14)
yes+

The following result states that with mild assumptions, the
objective function in Problem (3) is differentiable.
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Theorem 4: Let f(-, Y) be a differentiable and convex func-
tion. Assume that ST is a compact set and there exist a unique
solution of the problem esssupj.g+f(x,y), denoted by y*.
And further assume that f(x,y) is integrable for all x, and
differentiable for all y, and E[f(x, ¥)] < +oco. Then, (2) is
differentiable with respect to x, and the gradient is given by:

3 P 9
R D) = - ——f(.5) + El-fx, ¥) - 1s- ()]

Proof: The result follows directly from Danskin’s theorem
in [13] and [14, Sec. 3] by chosing the bounding random
variable corresponding to f(x, Y) since multiplying with the
indicator function only suppresses the absolute value. |

IV. SAMPLE-BASED METHOD

Computation is key to bridge theory and applications for
mathematical programming problems. In this section, we pro-
vide a data-driven method to solve (3). Assume that there are
N = g + r partitioned i.i.d. samples of ¥, and denote g of N
samples from Sg' by {¥1, ..., g}, and r of N samples from Sg
by {Zl yeees zr}. We leverage techniques from scenario program
(ScP) [15], [16] and sample average approximation (SAA) [1]
to develop a sample-based algorithm.

In the literature of ScP [15], a given x is feasible if the
constraint x € Xj is satisfied for all uncertainties § € A. The
set A is of infinite cardinality, and the sets X are assumed to
be closed and convex. Instead of solving for infinitely many
realizations, we directly create scenarios of the constraint with
samples §®,i=1,..., K of &, and obtain:

min ¢’x
xeX

st.xen Xzpn,i=1,...,K.

The violation probability V(x) of a given x is defined as P{§ €
A : x ¢ X;5}. Define a solution x* to a ScP to be e-robust if
V(x*) < e. Besides, {x € X : f(x) < f* + €} is defined as
the e-optimal solution set to the problem min,cx f(x) with f*
denoting the optimal value.

Denote by d the number of support constraints as defined
in [15], and by A, D and L the parameters as defined in
assumptions (M5) and (M6) in [1, Corollary 5.19].

Corollary 1: With N samples of Y, (3) can be approxi-
mated as:

min M
xeX McR

_ _ 1 « _
st. Bfeey+5 ) fEy) <M, j=12,....q
i=1
Suppose that there is a unique solution x¥ to the problem. The
probability of x* being in the €;-optimal solution set to (3) is
at least 1 —a, and x¥ is an e;-robust solution with probability
at least 1 — 6, if the sample size N satisfies:

N = max[i, ;_],
B 1-8
202
0((16)?)20 [ln(O(gLD)_'_

(15)

e-Lng +d), and r =

where ¢ = P e

In(3)].

Proof: By substituting the expectation term with the sample
mean and introducing the variable M, we obtain the formu-
lation of (15) through a similar argument as in [15]. Since y
is independent of the portion of Y restricted on S~, we can
rewrite the minimization of (14) in a SP formulation:

minE[S -esssupf(x,y) + f(x, ¥) - 1g- (V1.

xeX yest
Hence, according to [1, Corollary 5.19], with r satisfying the
conditions in the corollary, we obtain the probabilistic opti-
mality guarantee of x¥. To show the robustness guarantee of
x¥, with the independence of the expectation term and y, we
obtain an equivalent minimization problem of (14):

minfess sup [B - f(x, ) + E[f(x. ¥) - 1s- 0)1]}.
X Ses+
Observing that ess sup operates on the whole expression, we
use an epigraph form to obtain a problem suitable for ScPs.
Invoking [15] and [17], we obtain the results. [ |
With the reformulation, we obtain a deterministic problem
that becomes easily solvable using existing algorithms.

V. CASE STUDY: SUPERVISED LEARNING

In this section, we test the performance of our hybrid
measure in handling randomness. We compare different risk
measures in obtaining an efficient hinge loss for support-vector
machines (SVMs) when the data points are affected by noise.

We use the wireless indoor localization dataset from [18]
and [19]. Each data point x;,i = 1,..., N, represents sig-
nal strengths of seven routers. We add random noise e to
x;, i € I, corresponding to one class to make them diffi-
cult to be distinguished from x;, i € I_; corresponding to the
other class. Noise e can be considered as either consequences
of endogenous failures of the routers or results of exogenous
disturbances from an attacker aiming to mislead the classifier.

We use (2) to measure the risk associated with the random
distances between the margin and the data points. By intro-
ducing variables ¢;,i = 1,..., N, we formulate the following
problem to obtain an SVM with & denoting the normal vector
of the margin and b denoting a shift from the origin:

1 N
oo g3 2SI
st ;>0,i=1,...,N,
G>1—(=1)-wxi—b),iel,
G > Rgl1— (1) - W (xi+e) —b)lie L. (16)

We compare (16) with SVMs whose hinge loss functions are
obtained using expectation, worst-case losses, and CVaR. The
formulations of these counterparts take the same form as (16)
except that the right hand side of the last constraint is replaced
by E[1—(1)-w! (xi+e)—b)], maxeeg [1—(1)- W (x;+-€)—b)],
and CVaR,[1 — (1) - W (x; + €) — b)], respectively.

Let e;~N(—30,49). We pick ¢ = (1,0,0,0,0,0, 0T to
reduce the problem dimension. We have K = 500 i.i.d. sam-
ples of e;. We use the histogram of sampled e; to partition (4)
and (5). Given a choice of j, denoted by ﬁ, we can determine
the number of samples that belong to (4) using N* = NB.
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TABLE |
EXPERIMENT RESULTS FOR HYBRID RISK MEASURE

B8 0.164 0.286 0.390 0.490 0.586 0.680
Accuracy Rate  94.0% 94.0% 94.0% 935% 925% 92.5%
3 0768  0.830 0882 0918 0950
Accuracy Rate  93.0% 945% 94.5% 95.0% 94.5%

Then, we group highly populated bins until the number of
included samples is at least N*. This method yields two parti-
tioned sets over the uncertainties created by ;. The parameter
B follows directly from the partition.

The size of training set is N = 800. Parameters B in (2)
and « in CVaR take values ranging from 0.05 to 0.95 with
the lengths of the intervals set to 0.05. We use a histogram
of 20 bins. Uncertainty set E is the interval between the two
extreme samples. There are 200 testing data points.

Results for different values of B for our measure is presented
in Table 1. The accuracy rates are 93.5% and 93.0% for the
SVMs with expectation and worst-case scenario. The same
highest accuracy rate is 94.5% for the SVMs with CVAR,
with o = 0.70, 0.75, 0.80, 0.85, 0.90, 0.95. We can note that
the overall best accuracy rate 95.0% is achieved by the hybrid
measure with 8 = 0.918. Besides, for most of the choices
of B, the SVMs with the hybrid measure outperforms the RO
and SP counterparts. Moreover, the results for our measure
and CVaR share a similar trend. The accuracy rates of the
SVMs with CVaR are around 93.5% when a < 0.25. They
achieve 92.5% when 0.30 < a < 0.50. They gradually reach
the peak for larger values of a. This observation shows the
effectiveness of (2) in quantifying the risk of uncertain events.

V1. CONCLUSION

In this letter, we have proposed a hybrid coherent risk mea-
sure that arises from a mixture of two perspectives toward
uncertainties. One is the robust optimization approach that
views each uncertain event equally probable and makes the
worst-case decision. The other is the stochastic programming
that views uncertainties as a random variable and makes
decisions under average-performance criteria. We have formu-
lated a decision-making problem under the hybrid measure
and obtained an equivalent problem of finding the worst-
case density function. The sensitivity analysis provided a way
of capturing how the optimal value changes with respect to
perturbations of the level parameter. Differentiability of the
proposed measure is also proven to ensure the availability in
using gradient based algorithms to optimize. Furthermore, we
have proposed an approximation method combining scenario
programming and sample average approximation to com-
pute the optimal solution numerically. A supervised learning
problem is used as a case study to corroborate the analytical
results and computational algorithms.

The proposed methodology provides a fundamental tradeoff
between the risk neutralism from the stochastic programming
approach and the pessimism from the robust optimization
approach. As future work, we would like to study a game
setting with an opponent controlling the randomness. The equi-
librium behaviors of the players would provide insights on the
worst-case uncertainty and guide the efficient selection of a
level parameter. Besides, we would like to extend our work to
multistage optimization problems, and leverage the ideas of the
proposed measure to provide robust yet resilient performances
for dynamic systems.
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