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Abstract— In this paper, we study the problem of assessing
the effectiveness of a proactive defense-by-detection policy
with a network-based moving target defense. We model the
network system using a probabilistic attack graph–a graphical
security model. Given a network system with a proactive
defense strategy, an intelligent attacker needs to perform recon-
naissance repeatedly to learn about the locations of intrusion
detection systems and re-plan optimally to reach the target
while avoiding detection. To compute the attacker’s strategy
for security evaluation, we develop a receding-horizon planning
algorithm using a risk-sensitive Markov decision process with
a time-varying reward function. Finally, we implement both
defense and attack strategies in a synthetic network and analyze
how the frequency of network randomization and the number
of detection systems can influence the success rate of the
attacker. This study provides insights for designing proactive
defense strategies against online and multi-stage attacks by a
resourceful attacker.

I. INTRODUCTION

Cyber networks in industrial control systems are often
targeted by malicious and resourceful attackers. An attacker
can identify system vulnerabilities through reconnaissance
and compromise the security of a network through calcu-
lated, multi-stage attacks. To counter the attacks, a network
system can employ a mix of cybersecurity mechanisms,
from traditional firewalls and intrusion detection to moving
target defense [1] and cyberdeception [2] with honeypots
[3]. However, it is difficult to measure the effectiveness of
dynamic defense techniques. The lack of understanding their
security gains hinders the practical deployment of advanced
dynamic defenses.

Formal graphical security models, such as attack graphs
[4] and attack-defense trees [5], have been developed [6]
to evaluate security properties of a cyber system. An attack
graph captures multiple paths that an attacker can carry out
by exploiting vulnerabilities to reach the attack goal. Recent
works [7], [8] have investigated the security property of
Moving Target Defense (MTD) using probabilistic attack
graphs, where probabilistic transitions are uncertainties cre-
ated by network-based randomization. However, there has
not been an analytical model for evaluating the effectiveness
of MTD for detection.

To detect the presence of an attacker, network adminis-
trators often place Intrusion Detection Systems (IDSs) at
several points in the network to monitor traffic to and from
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all devices on the network and detect suspicious activities.
They are essential components of proactive defenses, where
the defender is not aware of the existence of the attacker but
deploys some pre-defined security protocols. The question
we aim to address is that, given a proactive defense strategy
and an attacker who performs a sequence of actions to reach
the target, as in lateral movement attacks [9], how effective
is a proactive defense strategy to detect the attacker before
the attacker succeeds?

For IDSs at fixed locations, an attacker can learn their
locations during reconnaissance and avoid them while car-
rying out an attack. An effective detection technique, called
“roaming IDSs”, is used to randomize the location of IDSs
in the network. For example, a flow-based IDS [10] allows
network flow to pass through and examined by IDS on a
per-flow basis using software-defined networking. Roaming
decoys [11] have also been used to mitigate Denial-of-
Service attacks by shuffling the decoy locations in a network.
This randomization creates uncertainty for the attacker and
also increases his cost, as the attacker has to perform
reconnaissance to determine the new IDS locations to avoid
detection.

To understand how effective the defense strategy is, we
need to understand how the attacker behaves given the
uncertainty. To this end, we model the network with dynamic
defense as a time-varying probabilistic attack graph, which
can be modeled as a Markov Decision Process (MDP) with
a time-varying probabilistic transition function and a reward
function. Then, we compute the attack strategy using risk-
sensitive finite-horizon planning, and iteratively re-plan the
attack strategy using a receding horizon framework. Given
the computed attack strategy, we can evaluate the effective-
ness of the detection and defense strategy by characterizing
the relation among the probability of successful and stealthy
attack, the number of IDSs, and the shuffling frequency of
the IDSs.

Finally, the paper is structured as follows: In Section III,
we introduce preliminaries on attack graphs, roaming IDS
defense strategy, and formulate the problem. In Section IV,
we design the receding-horizon attack planning in the time-
varying network. In Section V, we evaluate the performance
of defense against the proposed online attacker planner.
Section VI concludes the paper.

II. RELATED WORK

In the context of moving target defenses, attack graph
models [12], [13] and dynamic game models [14]–[18] have
been proposed to capture the strategic interactions between
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an attacker and a defender. In [14], a multi-stage game has
been proposed to model the kill chain of the adversary.
In [19], the authors have proposed a multi-stage game of
incomplete information to model a long-term interaction
of a proactive defender and a stealthy attacker. In recent
work [20]–[22], attack-defense trees are developed to in-
corporate defender’s countermeasure [23] and capture the
dependencies between actions and subgoals for both attacker
and defender. These models are used to verify quantitative
security properties expressed via temporal logic, based on
the solutions of omega-regular games [24]–[26]. In [27], the
authors have introduced online learning defense schemes that
proactively interact with attackers to increase the attack cost
and gather threat information. These approaches are applica-
ble to synthesize reactive defenses: the defender is aware of
the presence of the attacker and reacts to the attack actions
in real time. In this work, we study proactive defense when
the defender uses a fixed randomization strategy without
knowing whether there is an attacker in the network.

For both reactive and proactive defense, one of the
critical challenges in applying game theory to security is
the performance evaluation of the attack behaviors. This
work leverages a receding-horizon technique together with
probabilistic attack graphs to assess the effectiveness of
a class of cyber defenses that explicitly account for the
attacker’s uncertainties. The adversary model captures the
key properties of the cyber kill chain [28], [29], in which
an attacker explores the network and its vulnerability, moves
laterally in the network, and takes actions to achieve the
attack goals, such as data exfiltration, data destruction, or
encryption for ransom. Performance evaluation is an essen-
tial first step toward the design of effective moving target
defense. This work provides informative metrics that will be
useful to address issues related to defense design, resource
planning, and security investment.

III. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we present preliminaries on formal graph-
ical security models, and then formulate the problem to
evaluate the effectiveness of the proactive defense strategy.

Definition III.1 (Probabilistic attack graph). A Probabilistic
Attack Graph (PAG) is a probabilistic transition system G =
〈S,A, P, s0〉 where S is a set of network nodes, A is a set of
attack actions, and P : S × A → Dist(S) is a probabilistic
transition function–that is, P (s′|s, a) is the probability of
the attacker reaching node s′ from a (compromised) node s
with an attack action a (targeted at s′ only). The probability
of failing to exploit a vulnerability results in a self-loop
P (s|s, a) = 1 − P (s′|s, a). The state s0 is the initial entry
node for the attacker.

The reader can think of the PAG as an MDP, in which
the set of actions are the attacker’s exploitation actions. The
probability of an attacker successfully exploiting a vulnera-
bility can be estimated based on the Common Vulnerability
Scoring System (CVSS) [30], as used in [31], [32].

Using network-based MTD techniques, we can randomize
the software/hardware or the topology of the network. We
consider a case of IDS randomization techniques where the
locations of IDSs can be sampled from the set of nodes of
the network. For example, if s ∈ S is sampled, then all flows
into node s will be examined by an IDS and we say that node
s is equipped with an IDS.

For simplicity, we assume that when the attacker sends a
package to exploit the vulnerability of a target node and the
node is equipped with an IDS, the attacker will be detected
and blocked from the network.

We aim to evaluate the security level of the system for a
proactive defense strategy, defined as follows.

Definition III.2. A periodic defender strategy δ(t + Tr) =
δ(t) that randomly selects k out of a subset N ⊆ S of nodes
in the network as the IDS locations every Tr steps.

Assumption III.1. The following assumptions are made for
the attacker:
• The attacker knows the PAG but does not know the

defender strategy δ and Tr.
• The attacker can exercise the network scan every step,

before taking any attack action, to learn about the
locations of IDSs at that moment.

• The defender’s action of sampling IDSs is taken con-
currently with the attack actions.

It is noted that if the defender uses a Poisson distribution
over the period Tr, even if the attacker learns the mean and
variance, he cannot know exactly when the IDSs have been
shuffled. Thus, the assumption that the attacker does not
know Tr is not necessary. If we assume that the attacker
knows the defender’s strategy, then the attacker’s planning
problem reduces to a standard MDP whose solution provides
the worst case analysis of the network defense. In this work,
we are interested in studying how the attacker’s lack of
information can lead to a less conservative assessment of
defense strategy.

Definition III.3 (Reach-avoid attack objective). Given the
PAG and let sf ∈ S be the target for the attacker, the
objective of the attacker is to avoid detection until reaching
sf .

Definition III.4 (Detection events). An attacker can be
detected if he attempts any action a ∈ A at node s to reach
target s′, and s′ is equipped with an IDS.

In other words, the attacker can be detected by exploiting
a node equipped with an IDS, no matter whether the attack
action is successful or not.

Example III.1. We introduce an example to illustrate the
concept. Figure 1 depicts a small network with three hosts,
equipped with SDN-enabled roaming IDS. At each time
step, the IDS can be randomly assigned to a target host
and monitor the flow. Figure 2a shows a transition in the
PAG where the attacker has gained trust on host 1, which
is an FTP server. The FTP server consists of a vulnerability
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Fig. 1: An example of a small network with roaming IDS.

(a) Attack graph with no IDS.

(b) Attack graph with IDS.

Fig. 2: A fragment of the PAG: (a) Without IDS, the attacker
carries out action to reach host 1 with some probability. (b)
With IDS, the attack action is detected.

which allows the attacker to obtain reverse shell (rsh) on the
system. By carrying out rsh attack on host 1, the attacker
succeeds with probability p to gain user access on host 1,
and with probability 1−p that his action fails. When the IDS
is equipped with host 1, then the attacker’s action rsh will
be detected, leading to the sink state–detected–in Fig. 2b.

Problem 1. Given a defense strategy δ and an initial state
s0 ∈ S of PAG, with what probability can the attacker
achieve his attack objective? What is the best response of
the attacker given the lack of knowledge in the defender’s
strategy?

IV. ATTACKER’S BEHAVIOR MODELING

To understand how the attacker plans given the non-
stationary environment, we introduce an attack behavior
model using online planning in MDPs. In this section, we
first introduce a preliminary on risk-sensitive, finite-horizon
planning, and then present a receding horizon framework that
iteratively solves finite-horizon problems in a time-varying
MDP.

A. Preliminaries: Risk-sensitive planning in MDPs

Given an MDP G = (S,A, P, s0), where S,A, P are state,
action spaces and transition function, respectively; s0 is the
initial state. We introduce an immediate reward function as:

rt : S ×A→ R+, ∀ t ∈ [t0, t0 + T − 1], (1)

where T ≥ 0 is a constant for finite horizon length. The
terminal reward rt0+T : S → R+ depends only upon
the state s ∈ S. The finite-horizon risk-sensitive optimal
planning problem is described as follows: Given the MDP,

the immediate reward function rt, t ∈ [t0, t0 + T − 1]
and the terminal reward function rt0+T , compute a policy
Πt0 = (πt0 , πt0+1, . . . , πt0+T−1) where πt : S → Dist(A)
maximizes the following objective:

Jt0(ν,Πt0) =

Eν,Π
t0 [

exp
(
λ

t0+T−1∑
n=t0

rn(Sn, An)

+ rt0+T (St0+T )
)]
, (2)

where λ is a discounting factor; ν is the distribution over
states at t = t0, in our case it only resides on a single state
s0; the expectation Eν,Π

t0 is computed from the Markov
chain induced using policy Πt0 ; i.e., the state and action
processes {St}t0≤t≤t0+T , {At}t0≤t≤t0+T−1.

As shown in [33], the risk-sensitive objective can be
minimized using linear programming, with the primal and
dual linear programs formulated as follows.

Primal Linear Program:

min{
{ut(s)}s∈S,t0≤t≤t0+T−1

}∑
s∈S

ν(s)ut0(s),

subject to:
ut0+T−1(s) ≥ bs,a, ∀s ∈ S, ∀a ∈ A,

ut(s)− ert(s,a)
∑
s′∈S

P (s′|s, a)ut+1(s′) ≥ 0,

∀ s ∈ S, ∀a ∈ A, ∀t : t0 ≤ t ≤ t0 + T − 2,

(3)

where

bs,a := ert0+T−1(s,a)
∑
s′∈S

P (s′|s, a)ert0+T (s′). (4)

The solution of the primal LP provides {ut(s) | s ∈ S, t0 ≤
t ≤ t0 + T − 1}, where ut(s) = maxΠt Jt(s,Π

t) (see (2))
with Πt = [πt, . . . , πt−t0+T−1].

Dual Linear Program:

max
y

∑
a∈A

∑
s∈S

bs,ay(t0 + T − 1, s, a)

subject to:∑
a∈A

y(t0, s
′, a) = ν(s′), ∀s′ ∈ S,∑

a∈A
y(t, s′, a) =∑

a∈A

∑
s∈S

ert−1(s,a)P (s′|s, a)y(t− 1, s, a)

∀t : t0 + 1 ≤ t ≤ t0 + T − 1, ∀s′ ∈ S.

(5)

Here, the decision variables y are taken as y = {y(t, s, a) |
t0 ≤ t ≤ t0 + T − 1}. The solution to the dual LP would
define the optimal policy of the risk sensitive MDP: For each
t such that t0 ≤ t ≤ t0 + T − 1, the nonstationary policy is

πt(s, a) :=
y(t, s, a)∑
a′ y(t, s, a′)

, ∀ s ∈ S and ∀a ∈ A. (6)
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B. Receding-horizon attack planning

The receding-horizon model captures the lateral movement
of the reconnaissance-exploitation-actions kill chain of an
attacker. At each horizon, the attacker intends to map out
the locations of IDSs in the network using reconnaissance
techniques. Then, the attacker exploits the vulnerability to
act and move to the next node. This process iterates until
the attacker reaches his target.

At each step t, the attacker solves an MDP with set
SIDS,t ⊆ S of nodes equipped with IDSs. We treat these
nodes as obstacles which the attacker aims to avoid. Given
the MDP (S,A, P, st) with IDS placing at SIDS,t ⊆ S and
the current state st, the reward function is defined as follows:

rt+k(s, a) = 0, ∀s ∈ S, ∀a ∈ A; ∀k ∈ [t, t+ T − 1]; (7)

and
rt+T (s) =

{
1 if s = sf ;
0 otherwise. (8)

In addition, let sink be an absorbing state with zero reward.
The transition function is revised as follows: For each s ∈ S,
for each a ∈ A, if P (s′|s, a) > 0 and s′ ∈ SIDS,t, then
P (sink|s, a) = 1. In other words, when the attacker exploits
a vulnerability that has a positive probability to reach a node
with IDS, then he will reach a sink state with probability
one–that is, he is detected.

Remark 1. It is noted that the detection occurs due to
the concurrency of actions by the defender and an attacker.
If the attacker always knows where the IDSs are in the
next moment, then he can avoid these IDSs by either
doing nothing or exploits vulnerabilities only on hosts that
are not equipped with IDSs. However, randomization and
concurrency together create the unknown effects when the
attacker exploits.

Remark 2. The length of the planning horizon T is as-
sumed to be fixed. However, in practice, it can depend on
the dynamic tempo of the dynamic defense and attacker’s
computational resources. Future work will consider attackers
with bounded rationality [34]. In this paper, we examine one-
time interaction, where the attacker does not have enough
data to learn the defender’s strategy. Adaptive attacker who
can learn the defense strategy must collect data from multiple
interactions.

This receding-horizon attack planner is described in
Alg. 1. It starts with t = 0, the attacker scans the network
and determines the location SIDS,t of IDSs. Then, the attacker
generates the reward function rt+k and rt+T and solves the
finite-horizon risk-sensitive MDP and obtain the policy Πt.
The attacker then takes an action at from the policy. This
process iterates until either the attacker reaches the goal or
becomes detected.

Given that the attacker uses an online planner, the per-
formance can be evaluated based on regret. To evaluate
this regret, we need to solve the optimal policy of the
attacker assuming the attacker knows exactly the sequence of
locations for IDSs sampled over his planning horizon. This

Algorithm 1: The receding horizon attack planning
algorithm
Input: The PAG with initial state s0 and target sf .

Finite planning horizon T and total attack
horizon Tmax.

Output: πt at each time step t = 0 . . . Tmax.
1: (Initialization): t = 0.
2: while t < Tmax do
3: Netscan, obtain SIDS,t;
4: Get rewards rt+k, rt+T from SIDS,t with (7) and (8).
5: Solve Πt = {πt, πt+1, . . . , πt+T−1} with (5).
6: Take action at ∼ πt(st) to reach s′.

The IDSs replaced at SIDS,t+1.{The network
topology changes.}

7: if s′ ∈ SIDS,t+1 then
8: Break. {Attacker is detected.}
9: else

10: With probability p, reach s′, st+1 ← s′;
11: With probability 1− p, stay st, st+1 ← st.
12: end if
13: if st+1 = sf then
14: Break. {Attacker succeed.}
15: else
16: t← t+ 1; {Time increment.}
17: end if
18: end while

optimal policy can be obtained from the following MDP as
a stochastic shortest path problem, described below.

Definition IV.1. Given an MDP G = (S,A, P, s0) and the
attacker’s goal state sf , let [SIDS,0, SIDS,1, . . . , SIDS,Tmax

] be
a sequence of sampled subsets of nodes equipped with IDSs
over the time horizon [0, Tmax]. A time-augmented MDP
G̃ = 〈S×[0, 1, . . . , Tmax]∪{sink}, A, P̃ , (s0, 0), r̃〉 is defined
as follows: S× [0, . . . , Tmax]∪{sink} are the set of states, A
is the set of actions, (s0, 0) is the initial state. The transition
function is defined as: For each t ∈ [0, Tmax−1], each a ∈ A,
and each s ∈ S, there are four cases:

1) If s 6= sf , P (s′|s, a) > 0, s′ /∈ SIDS,t+1 and s′ 6= s,
then let P̃ ((s′, t+1)|(s, t), a) = P (s′|s, a) and P̃ ((s, t+
1)|(s, t), a) = P (s|s, a).

2) If s = sf , let P̃ (sink|(s, t), a) = 1, where sink is an
absorbing state for any action a ∈ A.

3) If P (s′|s, a) > 0, s′ ∈ SIDS,t+1, and s 6= s′, then let
P̃ (sink|(s, t), a) = 1.

4) If t = Tmax, P̃ (sink|(s, Tmax), a) = 1.

The reward function is defined by

r̃(s, t) = 1(s ≡ sf ). (9)

Let π̃∗ be the optimal solution of G̃ that maximizes the
following objective:

J((s0, 0), π̃) = E(s0,0),π̃

[
exp

(
λ

h∑
n=0

r((s, n), an)

)]
(10)
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where h is the first time when the policy-induced chain
reaches the sink state.

Let Π0 = [π0, π1, . . . πh] be the sequence of policies
performed by the attacker using the receding horizon plan-
ning with a finite horizon h. Based on the solution of time-
augmented MDP G̃, we can compute the dynamic regret:

R(Π0) = ‖J((s0, 0),Π0)− J((s0, 0), π̃∗)‖, (11)

where J((s0, 0),Π0) is the evaluation of the policy in the
time-augmented MDP G̃, J((s0, 0), π̃∗) is the reward that
can be obtained in the finite horizon by executing optimal
policy π̃∗. The dynamic regret captures the performance
difference of policy Π0 and optimal policy π̃∗. We will use
dynamic regret to analyze the performance of the defense
strategy. The proposed attack planning algorithm does not
learn and predict the changes in the network. Thus, it does
not minimize the dynamic regret. In the future work, we will
consider online attack learning-based planning with regret
minimization.

V. EXPERIMENTS

A. Experimental setup

We implement the proactive defense strategy in a synthetic
network and the proposed attack planning algorithm to eval-
uate how effective the defense strategy is. All experiments
in this section are performed on a computer equipped with
an Intel R CoreTM i7-5700HQ and 8GB of RAM running a
python 3.6 script on a 64-bit Ubuntu R 18.04 LTS.

The layout of PAG from the synthetic network is shown
in Fig. 3. The graph has twenty nodes. Note that the
self-loops are omitted in the graph for clarity. The IDSs
in the network are sampled using a random sampling
process using a uniform distribution from subset N =
{0, 12, 2, 8, 1, 13, 15, 10, 9, 5} at every Tr steps, i.e., sam-
pled at 1

Tr
frequency. When Tr approaches infinity (i.e., 0

frequency), the locations of IDSs do not change. The attacker
does not know Tr and recomputes his policy every step. We
assume that once the IDSs are selected, the attacker knows
their new locations of IDSs after scanning the network. Thus,
the analysis using this type of attacker provides a lower
bound on the security level of the system, measured by
the probability that the attacker can reach the target while
avoiding IDSs.

We conduct an experiment to investigate how the effective-
ness of the roaming IDSs policy can be influenced by (1) the
frequency in re-sampling and (2) the number of IDSs. In the
experiment, the number of IDSs in the network ranges from
one to five. The frequency of the sampling of the IDSs ranges
from zero (i.e., the location of the IDSs never changes) to
one (i.e., the locations of the IDSs change every time instant).
Table I shows the parameters used in the attacker’s receding
horizon planning.

B. The frequency of the re-sampling of the IDSs

The experiment results are shown in Fig. 4 and Fig. 5.
From Fig. 4, it is observed that the success rate of the
attacker reaching the target decreases as the re-sampling

Fig. 3: The layout of the probabilistic attack graph from a
synthetic network.

TABLE I: Experiment parameters

Parameters Values

Finite horizon length T 19
Maximum time length Tmax 100
Probability of successfully exploit a vulnerability p 0.9
Attacker initial state s0 17
Attacker target state sf 7
Discounting factor λ in (2) 1.0

frequency increases. The results are intuitive as a higher
sampling frequency leads to a higher probability of an
attacker reaching an IDS. However, the more frequent shuffle
of IDSs may incur overhead costs including traffic delay and
disruption. It is also interesting to observe that the success
rate of attack when re-sampling at 1

5 Hz is higher than that
at a frequency of zero. This is because re-sampling would
sometimes free the attacker from a deadlock. For example,
when the attacker is at state 0 and the IDS is at state 17,
the best strategy for the attacker is to remain put. When the
IDSs are being re-sampled every Tr steps, the deadlock is
lifted. However, the same observation may not be obtained
if the IDSs are located at different nodes initially or the
attacker starts with different initial nodes in the network.

Fig. 4: The effect of the frequency of the re-sampling of the
IDSs on the success rate of the attacker.
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The choice of sampling locations of IDSs requires game-
theoretic reasoning using, for example, resource-allocation
games [35], and it will be analyzed in the future work.

C. Number of IDSs

In Fig. 5, we show the experiment results that describe
how the number of the IDSs in the network influences the
effectiveness of the roaming IDS policy.

Fig. 5: The effects of the number of IDSs on the success rate
of the attacker.

From Fig. 5, it can be seen that the success rate of the
attacker reaching the target decreases as the number of the
IDSs in the graph increases. It suggests that a higher number
of IDSs leads to a more effective roaming IDS policy.

D. The distance to the target

In this experiment, we further evaluate the effect of the
distance of the attacker initial state to the target on the MTD
policy. Optimal and online policies are computed for ten
sequences of random IDS configurations. In each IDS con-
figuration, three IDSs are randomly sampled from the IDS
set N at 1

3Hz. Evaluation is performed for different initial
positions of the attacker, i.e., s0 ∈ {7, 13, 9, 11, 10, 0, 19}
with the distances to the target (measured by the shortest path
in the graph) ranging from zero to six, respectively. The final
results are show in Fig. 6 and 7. Fig. 6 shows the dynamic
regrets computed according to (11) with h = 19. Based on
the mean value of the regrets, the closer the attacker’s initial
position is to the target, the smaller the regret is, and hence
the less effective the MTD policy is against the attacker.
Particularly, when the distance to target is smaller than three,
the regret approaches zero and the MTD policy has almost
no effect.

Fig. 7 compares the success rate for optimal and online
policies at different attacker initial states. From Fig. 7, it
can be seen that with the optimal policy, regardless of the
distance from the attacker initial node to the target, the
attacker can always reach the target with a success rate of 1.
On the other hand, with online policy, the attacker’s success
rate decreases as the distance to the target increases. Chi-
squared test is performed on the two-way data set. The data
are classified into two mutually exclusive classes: winning
when the attacker reaches the target, and losing when the

Fig. 6: Dynamic regret analysis

attacker fails to reach the target. The p value is 8.2×10−13,
indicating that there is indeed a strong correlation between
the success rate and the distance to the target.

Fig. 7: Success rate analysis

VI. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced a method to evaluate
the effectiveness of a MTD policy to detect the presence
of adversaries. Given time varying locations of detection
systems in a network, we formulate planning problem for
a stealthy attacker using receding horizon framework. The
attacker repeatedly performs reconnaissance to figure out
where IDSs are placed and solves a risk-sensitive finite-
horizon planning problems based on a probabilistic attack
graph. We have assessed the effectiveness of the proactive
defense strategy using the detection rate in the presence of
such an intelligent attacker. This work provides foundations
for several future extensions. First, we will investigate an
adaptive attacker, who learns the dynamics of the network
from past iterations. Several no-regret learning algorithms
and online planning in MDPs with regret bounds can be
considered for attacker behavior modeling. Second, given
the evaluation result, we can construct the game between a
defender, who selects subsets of nodes for randomization,
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and an intelligent, potentially adaptive attacker. Through
game-theoretic reasoning, we can compute optimal detection
strategy that trades off multiple objectives, including max-
imizing the detection rate and minimizing the operational
cost.

ACKNOWLEDGMENT

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Agree-
ment No. HR00111990015. This work is also partially sup-
ported by grants CNS-1544782, SES-1541164 and ECCS-
1847056 from National Science Foundation (NSF), and by
award 2015-ST-061-CIRC01, U. S. Department of Homeland
Security.

REFERENCES

[1] S. Sengupta, A. Chowdhary, A. Sabur, D. Huang, A. Alshamrani, and
S. Kambhampati, “A Survey of Moving Target Defenses for Network
Security,” arXiv:1905.00964 [cs], May 2019.

[2] S. Jajodia, V. S. Subrahmanian, V. Swarup, and C. Wang, Eds., Cyber
Deception: Building the Scientific Foundation. Springer International
Publishing, 2016.

[3] N. Provos and T. Holz, Virtual honeypots: from botnet tracking to
intrusion detection. Pearson Education, 2007.

[4] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack
graphs,” in Proceedings 15th IEEE Computer Security Foundations
Workshop. CSFW-15, Jun. 2002, pp. 49–63.

[5] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Foundations
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