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Abstract. Zero-sum games have been used to model cybersecurity scenarios
between an attacker and a defender. However, unknown and uncertain environ-
ments have made it difficult to rely on a prescribed zero-sum game to capture the
interactions between the players. In this work, we aim to estimate and recover
an unknown matrix game that encodes the uncertainties of nature and oppo-
nent based on the knowledge of historical games and the current observations
of game outcomes. The proposed approach effectively transfers the past expe-
riences that are encoded as expert games to estimate and inform future game
plays. We formulate the game knowledge transfer and estimation problem as a
sequential least-square problem. We characterize the structural properties of the
problem and show that the non-convex problem has well-behaved gradient and
Hessian under mild assumptions. We propose gradient-based methods to enable
dynamic and adaptive estimation of the unknown game. A case study is used to
corroborate the results and illustrate the behavior of the proposed algorithm.

Keywords: Zero-sum games · Security games · Neural networks · Least-square
estimation · Sensitivity analysis · Gradient-based methods

1 Introduction

In many adversarial scenarios, such as a battlefield and cyber threats, a defender plays
against unknown opponents in uncertain environments. The prior knowledge or experi-
ence of the game may provide the defender a way to estimate the game by leveraging
his past experience with the environment, or transfering other experiences of his own or
from someone else. These experiences are encoded or represented by games that capture
critical characteristics of an adversarial entity, including the incentives, the capabilities,
and the information structures. The direct estimation of the game provides the defender
a sufficient situational awareness of the unknown environment and enables dependable
reasoning for making decisions.
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Dealing with uncertainties in games has a long history. Harsanyi in 1967 [9] intro-
duced Bayesian games and the notion of “type”, encapsulating all uncertainties in pay-
offs, actions, and psychological attributes of a player into the “type” space to overcome
the technical difficulty created by the reasoning using infinite hierarchies of beliefs [15].
Built on Harsanyi’s Bayesian game framework, many recent efforts have been on identi-
fying and estimating structures of the game model, given the data of multiple equilibria
[12,23] or the observed frequency of choices [10,19].

The estimation of games within Bayesian frameworks often requires the structural
knowledge of baseline game models. However, in many security applications, this
knowledge may not be directly available. It is difficult, if not impossible, to specify
the set of uncertain parameters and the unknowns in security games, since mapping out
the structural unknowns can be a challenging task, let alone the unknown unknowns.
Hence, there is a need to shift the paradigm from a Bayesian-based approach to a com-
pletely data-driven and model-agnostic one. To this end, this work presents an estima-
tion framework that is purely based on the past experiences and the real-time obser-
vations. We focus on the estimation of finite zero-sum static games, which are central
to security applications, such as in network configurations [24], network provisioning
[20], and jamming attacks [25].

We formulate MASAGE, a sequential least-square estimation problem over the
game space, which is formed by the past transferable experiences. This approach dis-
penses with the knowledge of parametric uncertainties and the payoff structure of the
game but takes the game as an object for estimation instead. In this work, we focus on
a class of linear game estimators. Under mild assumptions, the static least-square game
estimation problem is probably solvable by gradient-based algorithms. We extend the
static framework to its sequential counterpart, in which the security game is estimated
dynamically based on sequential observations. We characterize the structural properties
of the estimation problem and show the convergence properties of the gradient-based
data-driven adaptive algorithm.

2 Related Work

Game identification and estimation [2,10,12,18,19] have been investigated in eco-
nomics literature. Hotz et al. in [10] have first considered a conditional choice probabil-
ity estimator of the structural parameters in dynamic programming models. Following
this work, [18,19] have proposed an identification and estimation framework based on
time-series data using observed choices. They have considered a class of asymptotic
least-square estimators defined by the equilibrium conditions. For discrete games and
normal-form games, Bajari et al. in [1] and [2] have proposed simulation-based estima-
tors for parametric games using algorithms that compute all the game equilibria. With a
focus on the multiplicity of equilibira, Jovanovic in [12] has highlighted that the infor-
mation of multiple solutions affects the statistical inference strategy. These works share
a common structure that uses equilibria data from firms or companies to estimate the
structural parameters of static or dynamic models. Our work studies this problem from
a model-agnostic perspective by formulating the estimation directly on the game space.
This work focuses on the class of zero-sum matrix games, which plays an important
role in cybersecurity.
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The analysis of the least-square game estimation problem relies on the perturba-
tion theory of matrix games. Two closely related works are [8] and [6]. Gross in [8]
has considered a general case of real matrices and computed the left and right value
derivative with respect to arbitrary matrix entries. The author has observed that when
the matrix has only one Nash equilibrium pair, the derivative exists, and the right and
left derivatives are equal. Cohen et al. in [6] and [7] have studied the completely mixed
matrix games and bi-matrix games, and have given the value derivatives with respect to
the matrix entries. The authors have provided useful results of strategy derivative and
higher-order derivatives of saddle-point values.

3 Problem Formulation

3.1 Preliminary

Game Description. Consider a two-player zero-sum finite game G represented by
a triplet 〈N ,{A1,A2},{u1,u2}〉. Here, N = {P1,P2} is the player set containing a
defender P1 and an attacker P2; A1 = {1,2, . . . ,N1} and A2 = {1,2, . . . ,N1} are action
sets for P1 and P2, respectively, with N1 = |A1| and N2 = |A2|; u1 :A1 ×A2 → R and
u2 : A1 ×A2 → R are the utility functions of P1 and P2, respectively. Since the game
is zero-sum, u1 + u2 = 0. The zero-sum game can be fully characterized by a single
matrix of the size N1 ×N2. P1 is the row player. P2 is the column player. Each row and
column is indexed by the corresponding actions of the player. Each entry of the matrix
is associated with a payoff value that is viewed as cost to P1 but utility to P2.

We consider the scenario where the payoffs of the games are uncertain. To cap-
ture the uncertainties, we define a random matrix M : Ω → R

N1×N2 over an underlying
probability space (Ω ,F ,P). Each entry of matrixM is a random variable defined on the
probability space. The underlying distributions of the random variables are unknown to
the players. Let val(·) be the saddle-point value of a matrix game. Random matrix game
M gives rise to its associated game value z= val(M).

Expert Games and Game Estimation. We consider the following scenario. The play-
ers do not know their game prior to the play. However, they are given a set of expert
games that they have played before and know that their game will be similar and related
to the set of expert games. The game is determined by nature, i.e., ω ∈ Ω is realized
when the game starts. Let M̄ ∈R

N1×N2 denote this game. The players cannot observe ω
but can observe the outcome of the play of the game, i.e., the value of the sampled game
M̄, denoted by z̄. M̄ is also called the target game as the goal of the sequential play of
the game is to estimate its value based on the prior information of the expert games and
the sequential observations of z̄. The formulation of this problem will be made clear
later in Subsect. 3.2.

A Nonlinear Least-Square Estimator. To provide a formal framework of the estima-
tion problem, we first consider the following non-sequential estimation problem. At
the start of the game, the defender has a set of S expert games M = {M1, . . . ,MS}
that is non-random and observable, where S ∈ N is the number of expert games; Let
S := {1, . . . ,S}, Mi, i ∈ S are informed to the player from past interactions or experi-
ences that satisfy following properties:
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(i) All expert games have nonzero saddle-point values, i.e., for all i ∈ S ,

val(Mi) �= 0; (1)

(ii) each pair of expert games are not strategically equivalent, i.e., for all i, j ∈ S ,

∀c ∈ R, Mi �= cMj; (2)

(iii) entries of expert games are bounded, i.e., for all i ∈ S , a ∈ A1, b ∈ A2,

∃B ∈ R, (Mi)ab ≤ B. (3)

The defender can observe the value of the game of the unknown game M̄, z̄ before the
play of the game. The information that is available to the defender is I = {M , z̄}. The
goal of the defender is to find an estimator μ :I → R

N1×N2 that maps the information
set of the defender to find an estimate M̂ = μ(I). Here,I denotes the set of all possible
information to the defender.

We consider a class of linear estimators L(M ;α) that are parameterized by a weight
vector α ∈ X , where X ⊆ R

S is the parameter space, α = [α1,α2, . . . ,αS]T. The esti-
mators take the following form:

M̂ = L(M ;α) =
S

∑
i=1

αiMi (4)

From (4), we can see that the linear estimator is taken as the linear combination of
expert games. A natural criterion of an optimal estimator is the one that minimizes the
error between the outcomes of the estimated game and the target game. The outcome
of the estimated game is given by val(L(M ;α)), while the outcome of the target game
is assumed to be observable by the defender, which takes the value of z̄. Hence, the
residue error of the estimation is

ε = z̄−val(L(M ;α)) (5)

An optimal linear estimator μ∗ = L(M ;α∗) with the optimal parameters α∗ is the one
that minimizes the residue error (5) using the following squared error criterion J(α):

J(α) := |val(L(M ;α))− z̄|2. (6)

To sum up, finding an optimal linear estimator is equivalent to solve the following
finite-dimensional unconstrained problem (SP):

(SP) min
α

J(α) (7)

The solutions to optimization problem (SP) provide a foundation for sequential esti-
mation of the game. One trivial solution to the problem is to let α� such that J(α�) = 0.
Consider ratio κi := z/val(Mi), i ∈ S . A subset of optimal points α� would be
{κiei}Si=1, where {ei}Si=1 represents the standard basis of RS. These vectors are triv-
ial solutions obtained by degenerating the set of multiple expert games into a singleton.
The resulting estimation is a scaling of a chosen expert game. It is apparent that they
are strategically equivalent games. However, these trivial solutions are arguably biased
in terms of combining the information given by the experts and we need optimal points
that take multiple expert games into consideration. In Sect. 4, we study J(α) further to
develop iterative algorithmic solutions.
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3.2 Dynamic Linear Estimation Problem

Building on the estimation problem above, we formulate a dynamic linear estimation
problem. Consider that the game is played sequentially. At the beginning of each time
step t, the player has cumulated t expert-game sets {M (t ′)}tt ′=1. At step t, an unknown
game M̄(t) is sampled from the underlying probability space (Ω ,F ,P). The defender
can observe the outcome of the play z̄(t), which is the saddle-point value of the unknown
game, i.e., z̄(t) = val(M̄(t)). By the end of the play, the defender has accumulated infor-
mation I(t) = { {M (t ′)}tt ′=1,{z̄(t

′)}tt ′=1 }.
The goal of the defender is to find a sequential estimator μt(I(t)) to estimate a

sequence of unknown games M̄(t) based on his accumulated information.
At each step t, we consider a linear estimator μt(I(t)) taking the form of

μt(I(t)) := L(M (t);α) := α1M
(t)
1 +α2M

(t)
2 + . . .+αSM

(t)
S .

Here, the linear mapping L :RS →R
N1×N2 is parameterized by a fixed vector α . At time

t, the optimal parameters α∗(t) minimize the time-average accumulated residue error
as follows:

J(t)(α) =
1
t

t

∑
t ′=1

|z̄(t ′) −val(L(M (t ′);α))|2. (8)

It is clear that J(t) depends on the samples of the game at each step t. We formulate
the nonlinear regression problem at time t called DP-t.

(DP− t) min
α

J(t)(α) (9)

Discussion on Asymptotic Behavior. The formulated problem coincides with the stan-
dard form of nonlinear regression with a linearly parameterized function class, in which
the following presumption holds:

z̄t
′
= val(L(M (t ′);α0))+ ε(t

′) t ′ = 1, . . . , t (10)

where ε(t ′) are i.i.d. errors with zero mean and bounded variance, and α0 is the true
parameter. The least-square estimator α∗(t) is said to be strongly (weakly) consistent if
α∗(t) → α0 a.s. (in prob.) as t → ∞ [22].

The strong or weak consistency of α∗(t) depends on a series of conditions rigor-
ously proved in [11,14,22]. Under the assumption of consistency, α∗(t) is asymptot-
ically unbiased and induces minimum variance. In such case, while the estimation of
game matrix is not necessarily unbiased, it still provides valuable information, since the
value of estimated game enjoys asymptotic optimality.

4 Objective Function Analysis

In this section, we provide analytical results to give theoretical insights on the prob-
lem. We first characterize several properties of the objective functions including their
continuity, differentiability, and convexity. In the second part of this section, we study
parameter perturbations on the objective function.
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4.1 Basic Properties

Let v(t)(α) be the error between observations and value of output game at step t for a
linear estimator with parameter α , given by

v(t)(α) := val(L(M (t);α))− z̄(t) = val(L(M (t);α)− z(t)E) (11)

Let f (t)(α), and g(t)(α) be the saddle-point strategies of estimated game M for a given
α . The error (11) can be rewritten as

v(t)(α) = f (t)T(α)(L(M (t);α)− z(t)E)g(t)(α)

where E ∈R
N1×N2 is a matrix with all entries being 1. In dynamic estimation problems,

the accumulated squared error up to time t is J(t)(α) = ∑t
t ′=1

(
v(t

′)(α)
)2
.

Lemma 1. v(t)(α) is continuous differentiable in domain R
S, so is J(t)(α).

Proof. From [21], |val(A)−val(B)| ≤ d(A,B) for any real matrices A,B ∈ R
N1×N2 with

metric d(A,B) =maxi∈A1, j∈A2 |Ai j −Bi j|. For sufficiently small ε and all-one S dimen-
sion vector 1S,

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))| ≤ ε max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

v(t)(α) is continuous as the term maxi∈A1 j∈A2 |∑s∈S (Ms)i j| is bounded. Picking the
‖ · ‖2 norm, we arrive at

lim
ε→0

|v(t)(L(M ;α + ε1S))− v(t)(L(M ;α))|
‖α + ε1S −α‖2 ≤ 1

‖1S‖2 max
i∈A1 j∈A2

| ∑
s∈S

(Ms)i j|.

Thus, given bounded expert game matrices, v(t)(α) is continuous differentiable in R
S,

and so is J(t)(α) since it is a sum of squares of v(t
′)(α). ��

Lemma 2. J(α) is non-convex in domain R
S.

Proof. We prove the result by contradiction. Suppose that J(α) is convex in the convex
domain R

S, then it must satisfy that ∀λ ∈ [0,1] and ∀α1,α2 ∈ R
S,

J(λα1+(1−λ )α2) ≤ λJ(α1)+(1−λ )J(α2). (12)

Pick arbitrary λ ∈ (0,1) and two fundamental solutions: α1 = κ1e1, α2 = κ2e2 in (12)
and yield

|val(L(M (t);λα1+(1−λ )α2))− z̄|2 ≤ 0

⇒ val
( M2

val(M2)
+λ (

M1

val(M1)
− M2

val(M2)
)
)
= 1

Thus, for bounded matrix M1 and M2 which has nonzero saddle-point values, it must
hold that

M1 =
val(M1)
val(M2)

M2,

which contradicts to property (2). This contradiction indicates that J(α) is not convex.
��
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4.2 Perturbation Theory of Parameterized Matrix Game

In this subsection, we determine the first-order and second-order derivatives of the game
value with respect to entries of the payoff matrix. We first introduce the concept of
completely mixed games.

Definition 1. A matrix game M is said to be completely mixed if, for every saddle-point
solution ( f ,g), no element of f or g is zero. If M is completely mixed, then N1 = N2 and
the saddle-point solution of M is unique.

Let M̂(t) := L(M (t);α) denote the estimation of the game at time t. We make the
following assumptions on the parameter space and estimated game.

Assumption 1. The parameter space X is a subset of Euclidean space RS where for
all α ∈ X , c(α) ≤ ‖α‖ ≤C(α).

Assumption 1 restricts the parameter to a compact space. It prevents the output estima-
tion from approaching infinity or 0.

Assumption 2. M̂(t) is completely mixed for all t.

Assumption 2 implies that the estimated game matrix is square and nonsingular. It
enables the computation of first-order and second-order derivatives of the objective
functions.

For games that are not completely mixed, their computations remain an open prob-
lem. Lloyd Shapley [6] has observed that the nonexistence of any derivatives as a func-
tion of a given matrix element correspond to degeneracies in the linear-programming
solution of the game. Assumption 2 coincides with the facts in [5] that the set of
N1 ×N2 matrices which have unique saddle-point points is open and everywhere dense
in N1 ×N2-space; i.e., solutions are unique for most of the N1 ×N2 matrices. With
Assumption 2, we avoid equilibrium selection by degenerating saddle-point solution
sets into singletons and ensure the uniqueness of f (t)(α) and g(t)(α). The explicit
expression of saddle-point solutions are feasible under Assumption 2, as shown in
Lemma 3 following [21].

Lemma 3. Assume that 1T[M̂(t)]−11 is nonzero. For every t and given α , under
Assumption 2 and we have:

(i) v(t)(α) = 1/1T[M̂(t)]−11− z(t).
(ii) f (t)T(α) = 1T[M̂(t)]−1val(M̂(t)).
(iii) g(t)(α) = [M̂(t)]−11val(M̂(t)).

Here, vector 1 is a vector of appropriate dimension with all entries being 1. The assump-
tion of 1T[M̂(t)]−11 being nonzero is without loss of generality. Lemma 3 enables the
following direct computation of the gradient of the error (11).

Theorem 1. For every t, under Assumption 2, the gradient vector of the error (11) is
given by

∇v(t)(α) = (δ (t)
1 (α), . . . ,δ (t)

S (α))T, (13)

where δi(α) = f (t)T(α)M(t)
i g(t)(α), i ∈ S . Furthermore, ‖∇v(t)(α)‖ is bounded by

some positive constant.
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Proof. Given that M̂(t) is completely mixed, the results in Lemma 3 hold. According to
the product rule of derivatives, we have ∀i ∈ S :

∂v(t)(α)
∂αi

= f (t)T(α)M(t)
i g(t)(α)+

∂ f (t)T(α)
∂αi

M̂(t)g(t)(α)+ f (t)T(α)M̂(t) ∂g(t)(α)
∂α

= f (t)T(α)M(t)
i g(t)(α)+

∂ f (t)T(α)
∂αi

M̂(t)[M̂(t)]−11v(t)(α)

+ v(t)(α)1T[M̂(t)]−1M̂(t) ∂g(t)(α)
∂αi

= f (t)T(α)M(t)
i g(t)(α)+ v(t)(α)

(
∂ f (t)T(α)1

∂αi
+

∂1Tg(t)(α)
∂αi

)

= f (t)T(α)M(t)
i g(t)(α).

Stacking all the partial derivatives of i’s gives the gradient. For any α ∈X that satisfies
Assumption 2, we have

‖∇v(t)(α)‖ ≤ ‖( max
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , max

i∈A1, j∈A2

|(M(t)
S )i j|

)T‖

‖∇v(t)(α)‖ ≤ ‖( min
i∈A1, j∈A2

|(M(t)
1 )i j|, . . . , min

i∈A1, j∈A2
|(M(t)

S )i j|
)T‖.

Thus, for bounded expert matrices, ‖∇v(t)(α)‖ is bounded too, which can be viewed as
a corollary of Lemma 1. ��
Corollary 1. Under Assumption 2, the gradient of J(t)(α) is given by

∇J(t)(α) =
2
t

t ′

∑
t ′=1

(
(δ (t)

1 (α), . . . ,δ (t ′)
S (α)

)T
v(t

′)(α). (14)

Remark 1. The entry δ (t)
i (α) indicates the sensitivity or the change in the accumulated

square error with respect to a perturbation of αi. It can be interpreted as the partial

contribution by expert i to the reduction of the error. Note that f (t)T(α)M(t)
i g(t)(α) is the

expected outcome of the expert game i, M(t)
i , achieved with the saddle-point strategies

of M̂(t).

We are also interested in the sensitivity of ∇J(t)(α) with respect to the changes in
variable α .

Theorem 2. For every t, under Assumptions 1 and 2, v(t)(α) is twice continuously

differentiable, and so is J(t)(α). The Hessian of v(t)(α) :=

[
∂ 2v(t)(α)
∂αi∂α j

]

i, j∈S
is given

by

∂ 2v(t)(α)
∂αi∂α j

= φ (t)
i j M

(t)
i g(t)(α)+ f (t)T(α)M(t)

i ϕ(t)
i j , i, j ∈ S , (15)
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where

φ (t)
i j =

(
1T f (t)T(α)M(t)

j g(t)(α)− f (t)T(α)M(t)
i

)
[M̂(t)]−1

ϕ(t)
i j = [M̂(t)]−1

(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)
.

Furthermore, the Hessian ∇2J(t)(α) is bounded; i.e., there exists a positive constant,
such that ‖∇2J(t)(α)‖ ≤ 1

2β , where ‖∇2J(t)(α)‖ is the maximum (real) eigenvalue.

Proof. Under Assumption 2, the derivative of (13) exists, for i, j ∈ S :

∂ 2v(t)(α)
∂αi∂α j

=
∂ f (t)(α)

∂α j
M(t)

i g(t)(α)+ f (t)T(α)M(t)
i

∂g(t)(α)
∂α j

From Lemma 3, we have

f (t)T(α)M̂(t) = 1Tval(M̂(t))

M̂(t)g(t)(α) = val(M̂(t))1.

Take derivative w.r.t α j on both sides and we arrive at the derivative of the saddle-point
strategies:

φ (t)
i j =

∂ f (t)(α)
∂α j

=
(
1T f (t)T(α)M(t)

j g(t)(α)− f (t)T(α)M(t)
i

)
[M̂(t)]−1

ϕ(t)
i j =

∂g(t)(α)
∂α j

= [M̂(t)]−1
(
f (t)T(α)M(t)

j g(t)(α)1−M(t)
i g(t)(α)

)

The Hessian ∇2J(t)(α) can be constructed using the first and second-order derivatives
of v(t)(α). Its entry takes the following form:

[∇2 J(t)(α)]i j =
t

∑
t ′=1

∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

+
∂ 2v(t

′)(α)
∂αi∂α j

v(t
′)(α).

Using triangular inequality, we obtain

‖[∇2 J(t)(α)]i j‖ ≤
t

∑
t ′=1

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

+
∂ 2v(t

′)(α)
∂αi∂α j

v(t
′)(α)‖

≤
t

∑
t ′=1

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

‖
︸ ︷︷ ︸

first term

+‖∂ 2v(t
′)(α)

∂αi∂α j
v(t

′)(α)‖
︸ ︷︷ ︸

second term

.

The boundedness of Hessian entry is determined by the first term and the second term.
We have for any t ′ ∈ {1, . . . , t}, the first term is bounded according to Theorem 1:

‖∂v(t ′)(α)
∂αi

∂v(t ′)(α)
∂α j

‖ ≤ ‖max
a,b

[M(t ′)
i ]ab‖ · ‖max

a,b
[M(t ′)

j ]ab‖.
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For the second term,

‖∂ 2v(t
′)(α)

∂αi∂α j
v(t

′)(α)‖ ≤ ‖v(t ′)(α)φ (t ′)
i j M(t ′)

i g(t
′)(α)‖+‖ f (t ′)T(α)M(t ′)

i ϕ(t ′)
i j v(t

′)(α)‖

≤ (Q+P)‖val(M̂)− z̄(t
′)‖‖[M̂(t ′)]−1‖

≤ (Q+P)(‖val(M̂)‖‖[M̂(t ′)]−1‖+‖z̄(t ′)‖‖[M̂(t ′)]−1‖),
where Q and P are positive constants such that

‖1T f (t)T(α)M(t)
j g(t)(α)− f (t)T(α)M(t)

i ‖ · ‖M(t)
i g(t)(α)‖ ≤ Q

‖ f (t)T(α)M(t)
j g(t)(α)1−M(t)

i g(t)(α)‖ · ‖ f (t)T(α)M(t)
i ‖ ≤ P.

The parameterized ‖[M̂(t ′)]‖−1 is bounded since α is lower bounded by positive con-
stant according to Assumption 1. Since the eigenvalue of a square matrix is bounded
by its maximum entry multiplied by its order, ‖[M̂(t)]−1‖‖val(M̂(t))‖ is also bounded,
according to Lemma 3:

‖[M̂(t)]−1‖‖val(M̂(t))‖ = ‖[M̂(t)]−1‖/‖1T[M̂(t)]−11‖

≤
N1maxi, j

(
[M̂(t ′)]−1

)
i j

∑i, j

(
[M̂(t ′)]−1

)
i j

Similarly, boundedness of Hessian entries implies that its eigenvalues are bounded by
some constant, and thus we arrive at a bound β . ��
In the following, we provide a lemma that establishes the relation between bounded
Hessian and Lipschitz continuity, and then give the main theorem that ensures the con-
vergence of gradient-based algorithms.

Lemma 4. Let f :RS →R be a twice continuously differentiable function. If there exists
a positive constant β such that ‖∇2 f‖ ≤ β , where ‖∇2 f‖ is the matrix norm, then

∀α, α̃ ∈ R
S : ‖∇ f (α)−∇ f (α̃)‖ ≤ β‖α − α̃‖.

Proof. The result can be proved by using a second-order Taylor expansion around α
and α̃ , i.e.,

f (α)− f (α̃) = ∇ f (α̃)T(α − α̃)+
1
2
(α̃ −α)T∇2 f (ξ1)(α̃ −α)

= −∇ f (α)T(α̃ −α)− 1
2
(α − α̃)T∇2 f (ξ2)(α − α̃),

where ξ1 = α + t1(α̃ − α) and ξ2 = α̃ + t2(α − α̃) and t1, t2 ∈ (0,1). We combine the
two relations and obtain

‖∇ f (α)−∇ f (α̃)‖ ≤ 1
2
‖∇2 f (ξ2)‖‖α̃ −α‖+ 1

2
‖∇2 f (ξ2)‖‖α − α̃‖

≤ β‖α̃ −α‖.

��
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Theorem 3. For every t, under Assumption 2, the vector functions |v(t)(α)|2 are Lips-
chitz continuous; i.e., there exists a Lipschitz constant β > 0, such that for all α, α̃ ∈X
that satisfies

‖∇v(t
′)(α)v(t

′)(α)−∇v(t
′)(α̃)v(t

′)(α̃)‖ ≤ β‖α − α̃‖; (16)

and
‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2β‖α − α̃‖. (17)

Furthermore, the following holds:

J(t)(α)− J(t)(α̃) ≤ (∇J(t)(α̃))T(α − α̃)+β‖α − α̃‖2. (18)

Proof. Inequality (16) immediately follows Lemma 4 and the analysis in Theorem 2.
To obtain (17), we add up (16) for all t ′ and use the triangular inequality.

‖∇J(t)(α)−∇J(t)(α̃)‖ ≤ 2
t

∑
t ′=1

‖∇v(t
′)(α)v(t

′)(α)−∇v(t
′)(α̃)v(t

′)(α̃)‖

≤ 2β‖α − α̃‖.

Inequality (18) is a basic result following (17):

J(t)(α)− J(t)(α̃) =
∫ 1

0
(α − α̃)T∇J(t)(α̃ +ξ (α − α̃))dξ

≤
∫ 1

0
(α − α̃)T∇J(t)(α̃)dξ

+
∫ 1

0
‖α − α̃‖‖∇J(t)(α̃ +ξ (α − α̃))−∇J(t)(α̃)‖dξ

≤ (∇J(t)(α̃))T(α − α̃)+β‖α − α̃‖2.
��

The gradient and the Hessian of the errors, together with the property of Lipschitz
continuity, provides a theoretical foundation for developing gradient-based algorithms,
which will be discussed in Sect. 5.

5 Algorithmic Analysis

In this section, we develop gradient-based algorithms to find the linear optimal esti-
mator, and study their convergence properties. We first formally present the optimality
conditions that characterize the solutions to the dynamic problem 8.

Proposition 1 (Stationary Points). For every t, due to non-convexity, we are satisfied
at finding a solution α∗(t) for J(t)(α) in DP-t that satisfies the first-order conditions,

∇J(t)(α∗) = 0

which we refer to as stationary points.
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A descent algorithm starts from initial point α0, proceeding iteratively as follows:

αk+1 = αk+ γksk, k = 0,1,2, . . . ,

where γk ∈ R+ is the stepsize and sk ∈ R
S represents the descent direction. Many

choices are plausible for the descent direction, resulting in different algorithmic imple-
mentations; e.g., steepest gradient (i.e., sk = −∇J(t)(αk)), Newton’s method (i.e., sk =
−(∇2J(t)(αk))−1∇J(t)(αk)), and other variants (e.g., quasi-Newton methods). Algo-
rithm 1 gives a steepest gradient descent algorithm, which is well known to achieve a
linear convergence rate. The tolerance ε denotes the stopping criteria.

Algorithm 1: Optimal Linear Estimation Using Steepest Gradient

Data: {M (t ′)}tt ′=1, {z(t
′)}tt ′=1;

Input: α0, {γk}, ε;
for k ← 1,2, . . . do

foreach i ← 1 to t do
( f (i),g(i)) ← saddle-point(L(M (i),α)− z(i)E)

end

∇J(t)(αk) ← 1
t ∑t

i=1

(
∇v(i)(α)

)
v(i)(α);

if ‖∇J(t)(αk)‖ ≤ ε ;
then

Break
end
αk+1 ← αk − γk∇J(t)(αk);

end
Result: α∗

Pseudo-Gradient Approximation. As saddle-point strategies are computationally
costly to obtain, determining a steepest direction is relatively inefficient. In fact, the
descent direction can be approximated once the approximation error is sufficiently
small. We hereby provide a pseudo gradient method that uses a surrogate descent direc-
tion s̄k, where for all i ∈ S

s̄ki =
t

∑
t ′=1

1
N1N2

∑
i, j
(M(t ′)

i )i j

(
1

N1N2
∑
i, j
(M̂(t ′))i j − z̄(t

′)
)

. (19)

In short, the pseudo-gradient approximates the gradient by replacing δ (t ′)
i with the mean

value of M(t ′)
i and replacing val(M̂(t ′)) with average entry value of M̂(t ′). By doing so,

we eliminate the problem for computing the saddle-point strategies and game values,
significantly reducing the computational complexity.

5.1 Sequential Observation and Adaptation

When t becomes large, steepest gradient methods are inefficient as it needs to sweep
through the entire dataset. It is more attractive to use an incremental method that can
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sequentially update the gradient. The incremental gradient method is described as fol-
lows:

αk+1 = αk − γk
(

t

∑
i=1

∇v(i)(ψ i−1)v(i)(ψ i−1)

)

, (20)

where at iteration k:

ψ i = ψ i−1 − γk∇v(i)(ψ i−1)v(i)(ψ i−1) i= 1, . . . , t.

The stepsize selection is essential to ensure the convergence of the iterations. Usually
when γk does not diminish to 0, there will be an oscillation within ψ i.

Assumption 3. The following conditions are satisfied:

(a) The product of every error (11) and its gradient is bounded for all α ∈ X and
every t ′, t; i.e.,

‖∇v(t
′)(α)v(t

′)(α)‖ ≤ c1+ c2‖∇J(t)(α)‖ (21)

for positive constants c1 and c2;
(b) Diminishing stepsize, i.e., ∑∞

k=0 γk = ∞ and ∑∞
k=0(γk)2 < ∞.

Corollary 2. Under Assumption 3, for all α ∈ X , we have

(1−2c2)‖∇J(t)(α)‖ ≤ 2c1. (22)

Particularly, when 0 < c2 < 1
2 , ‖∇J(t)(α)‖ is bounded by

2c1
1−2c2

.

This bound can be obtained through triangular inequality:

‖∇J(t)(α)‖ =
2
t
‖

t

∑
t ′=1

∇v(t
′)(α)v(t

′)(α)‖

≤ 2
t

t

∑
t ′=1

‖∇v(t
′)(α)v(t

′)(α)‖

≤ 2c1+2c2‖∇J(t)(α)‖
Proposition 2. Under Assumption 3, the incremental gradient method 20 applied to 8
generates a sequence {αk}. J(t)(αk) converges to a finite value and limk→∞ ∇J(t)(αk)=
0. Every limit point of αk is a stationary point of problem 8.

Proof. We provide a sketch of the proof here. At iteration k, we have

ψ1 = αk − γk∇v(1)(αk)v(1)(αk)

ψ2 = αk − γk∇v(2)(ψ1)v(2)(ψ1)
...

...

ψ t = αk − γk∇v(t)(ψ t−1)v(t)(ψ t−1)
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Adding them up, we obtain

αk+1 = αk − γk
(
∇J(t)(αk)−

t

∑
t ′=2

(∇v(t
′)(αk)v(t

′)(αk)−∇v(t
′)(ψ t ′−1)v(t

′)(ψ t ′−1))
)

= αk − γk
(
∇J(t)(αk)−wk)

Using Theorem 3, we see that the error term wk = ∑t
t ′=2 ∇v(t

′)v(t
′)(αk) −

∇v(t
′)v(t

′)(ψ t ′−1) = ∑t
t ′=2w

k
t ′ is bounded, for every t

′:

wk
t ′ ≤

t−1

∑
i=2

‖∇v(t
′)v(t

′)(ψ i)−∇v(t
′)v(t

′)(ψ i−1)‖

+‖∇v(t
′)v(t

′)(αk)−∇v(t
′)v(t

′)(ψ1)‖

≤ β
(‖αk −ψ1‖+

t−1

∑
i=2

‖ψ i −ψ i−1‖)

= βγk(‖∇v(t
′)v(t

′)(αk)‖+
t−2

∑
i=1

‖∇v(t
′)v(t

′)(ψ i)‖).

According to Assumption 3 (21),

wk
t ′ ≤ βγk((t−1)(c1+ c2‖∇J(t

′)(αk))‖+
t−2

∑
i=1

‖∇J(t
′)(αk)−∇J(t

′)(ψ i)‖)

Leveraging Corollary 2, we recursively eliminate ∇J(t
′)(ψ i) and see that the error term

wt is bounded; i.e., there exist positive constants C1 and C2 such that

wk ≤ γk(C1+C2‖∇J(t)(αk)‖) (23)

Here, we omit the algebraic calculation of constantsC1 andC2. Note that the elimination
procedures are similar. Using (18), we obtain

J(t)(αk+1)− J(t)(αk) ≤ γk(−‖∇J(t)(αk)‖2+‖∇J(t)(αk)‖‖wk‖)
+ γ2β‖∇J(t)(α)+wk‖2

≤ γk(−1+ γk(C2+2β )+2(γk)3C2
2β )‖∇J(t)(α)‖2

+(γk)2(C1+4γ2C1C2β )‖∇J(t)(α)‖+2(γk)4C2
1β

As Assumption 3 states that (γk)2 diminishes to 0, the terms multiplying γk with order
2 or higher will go to 0. For k sufficiently large, γk → 0, for some positive constants c′

1
and c′

2,

J(t)(αk+1)− J(t)(αk) ≤ −γkc′
1‖∇J(t)(α)‖2+(γk)2c′

2‖∇J(t)(α)‖+2(γk)4C2
1β .

Observe that if ‖∇J(t)(α)‖ ≥ 1, then ‖∇J(t)(α)‖ < ‖∇J(t)(α)‖2, or else ‖∇J(t)(α)‖2 ≤
‖∇J(t)(α)‖ ≤ 1, and thus ‖∇J(t)(α)‖ ≤ 1+‖∇J(t)(α)‖2. Then,

J(t)(αk+1)− J(t)(αk) ≤ −γk(c′
1 − γkc′

2)‖∇J(t)(α)‖2+o((γk)2). (24)
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For k sufficiently large, c′
1−γkc′

2 ≤ 0, so that J(t)(αk+1)≤ J(t)(αk) and J(t)(αk+1)≥ 0.
(24) satisfies the deterministic form of supermartingale theorem. Hence J(α) converges
to some finite value and it must have ∑∞

k=0 γk‖∇J(t)(αk)‖2 ≤ ∞. Since we assume
∑∞
k=0 γk = ∞, it also has to satisfy liminfk→∞ ‖∇J(t)(αk)‖ = 0. Due to Lipschitz con-

tinuity, limsupk→∞ ∇J(t)(αk) is also 0 (the proof is omitted here), and hence the limit
points are stationary points. ��

Stochastic Gradient Descent (SGD). The surrogate estimated gradient is:

αk+1 = αk − γk∇Ĵ(t)(αk) (25)

= αk − γk
1
|B| ∑

b∈B
∇v(b)(αk)v(b)(αk), (26)

where the indices b is chosen from batch set B. SGD is a stochastic version of incre-
mental method, exhibiting a lower computational cost in one single iteration with less
gradient memory storage. SGD guarantees weak convergence in non-convex systems
under Lipschitz-smoothness, pseudo-gradient property, and bounded variance of the
descent direction [4]. In our problem where there may exist multiple minimum, SGD
potentially admits global optimum.

5.2 Extended Kalman Filter

We consider a commonly used iterative method for nonlinear least-square estimation,
Gauss-Newton method, which is given as follows:

αk+1 = αk − γk(JvJTv +λ I)−1Jvv(αk), (27)

where Jv =
(
∇v(1)(αk), . . . ,∇v(t)(αk)

)
is the Jacobian of the vector v(αk) =

(
v(1)(αk),

. . . ,v(t)(αk)
)T

and λ I stands for a possitive multiple of the identity matrix as proposed
in Levenberg-Marquardt method [17] to ensure nonsingularity caused by the rank defi-
ciency of Jv.

Gauss-Newton iteration (27) is obtained by approximating Hessian with (JvJTv +Δt)
as result of solving quadratic subproblems iteratively using linearized objective function
around every αk. This approximation avoids computing the individual residue Hessian
∇2v(t

′)(α), t ′ = 1, . . . , t, in Theorem 2.
Extended Kalman Filter (EKF) [3,4,16] is an incremental version of the Gauss-

Newton method. Starting with some point α0, a single cycle of the method updates
the α via iterations that aims to minimize the partial sums ∑ j

t ′=1 |v(t ′)(α)|2 j = 1, . . . , t
successively. Thus, it sequentially generates the vectors:

ψ t ′ = argmin
α

t ′

∑
i=1

∣
∣v(i)(ψ i−1)+

(
∇v(i)(ψ i−1)

)T(α −ψ i−1)
∣
∣2 t ′ = 1, . . . , t

We consider the algorithm where ψ t ′ are obtained through increments:

ψ i = ψ i−1 − (Hi)−1∇v(i)(ψ i−1)v(i)(ψ i−1), i= 1, . . . , t, (28)
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with ψ0 = αk at step k, where matrices Hi are generated by:

Hi = λHi−1+∇v(i)
(
ψ i−1)∇v(i)

(
ψ i−1)T , i= 1, . . . , t, (29)

with λ being a positive constant and H0 = λ I at iteration k = 0. The algorithm uses ψ t

at the end of an iteration to update αk:

αk+1 = αk − (Ht(k+1))−1(
t

∑
i=1

∇v(i)(ψkt+i−1)v(i)(ψkt+i−1)
)
, (30)

where

Ht(k+1) = λ I+
k

∑
j=0

t

∑
i=1

∇v(i)
(

ψkt+i−1
)

∇v(i)
(

ψkt+i−1
)T

. (31)

Proposition 3 (Extended Kalman Filter (EKF) [3]). Assuming that there is a constant
c > 0 such that scalar λk used in the EKF algorithm at iteration k satisfies:

0 ≤ 1−λ t
k ≤ c

k
, k = 1,2, . . . .

Then, the EKF algorithm generates a bounded sequence of vectors ψ i. Each of the limit
points of {αk} is a stationary point of the least-square problem 8.

Proof. One can follow the argument in Proposition 2 of [3] to show the convergence
of EKF, when a series of conditions are satisfied, among which the Lipschitz condition
has been verified. ��
Remark 2. λ represents the discount factor that discounts the effects of old information.
An interpretation of this algorithm is that, as the defender proceeds to estimate, the
previous experience tends to be gradually out-of-date, while newly encountered ones
should be highly valued in the estimation.

6 Case Study

In this section, we study a network configuration game to corroborate the results and
investigate the numerical properties of the algorithms. Consider a game with an attacker
and a defender in a network of server group. The defender chooses a subset of servers
to monitor and protect, while the attacker selects a subset of them to attack. The inter-
actions induce some value for both players.

Assuming that each player has four strategies and the defender does not know the
game, we can use a N1 ×N2 matrix game with random entries to capture this scenario.
The defender sequentially estimates the game based on past experiences (i.e., expert
games) and value observation. This situation is illustrated in Fig. 1.
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(a) Network configuration (b) Game estimation

Fig. 1. Illustration of adversarial interaction and estimation process.

6.1 Experimental Setting and Results

Here, we conduct the experiment by fixing configuration parameters shown in
Table 1. We generate the matrices M(t ′) and values of z̄(t

′) from i.i.d. distributions
N (μ14,σ2I4×4) and N (μz,σ2

z ), with a fixed random seed. As a result, the differ-
ences between values of expert games and target games scale well. We compare the
performances of different methods for both SP and DP-t, and show their convergences
in Fig. 2.

Table 1. Configurations

Variables Values Variables Values

Data horizon t 30 M (t ′) entry distribution (μ , σ) (1,1)

Vector α Size S 5 z̄(t
′) value distribution (μz, σz) (1,1)

Stepsize γk 0.98k ×0.01 Parameter α initialization 1S
Tolerance ε 1e−5 Batch size |B| 1

Game size 4×4 Fading factor λ for EKF 0.9

The well-known Lemke-Howson algorithm [13] is implemented to find the saddle-
point strategies and values of matrix games.

6.2 Discussions

From Fig. 2, one shall see Gauss-Newton method as well as EKF exhibit convergence
faster than others as they naturally tune the stepsize. Meanwhile, the pseudo-gradient
method displays promising convergence behavior. It can be seen in (a) that the partial
contribution by expert 2 dominates the learning process, indicating greater similarity

between expert game M(1)
2 and M̂.

We notice that the output square matrix M̂ usually does not satisfy Assumption 2
as the estimated saddle-point mixed strategies have 0 elements in the iterative process.
However, despite this, the algorithms still converge, indicating that Assumption 2 is a
conservative assumption for practice.
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(a) Single observation at t = 1

(b) Multiple observation at t = 30

Fig. 2. Estimation curve for both static (a) and dynamic (b) problems

7 Conclusions and Future Research

This work has formulated and analyzed static and dynamic least-square game estima-
tion problems for a class of finite zero-sum security games. The formulation captures
the scenario where the players do not know the adversarial environments they interact
with. We have studied the basic properties of least-square errors and developed itera-
tive algorithms to solve the game estimation problem. The proposed approach effec-
tively transfers the past experiences that are encoded as expert games to estimate the
unknown game and inform future game plays. We have seen that the algorithms work
over randomly generated datasets despite certain assumptions are not strictly satisfied.

There are many open research problems that could be addressed as future work.
First, it has been observed that the assumption for completely mixed game is conser-
vative. The future work would investigate the properties of the error functions when
the assumption does not hold. Second, it would be possible to extend this framework
for stochastic games. We would capture the dynamic adversarial environment using a
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stochastic game representation, and estimate the environment using multi-time scale
observations.
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