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Abstract. This paper studies a special class of games, which enables
the players to leverage the information from a dataset to play the game.
However, in an adversarial scenario, the dataset may not be trustworthy.
We propose a distributionally robust formulation to introduce robustness
against the worst-case scenario and tackle the curse of the optimizer. By
applying Wasserstein distance as the distribution metric, we show that
the game considered in this work is a generalization of the robust game
and data-driven empirical game. We also show that as the number of data
points in the dataset goes to infinity, the game considered in this work
boils down to a Nash game. Moreover, we present the proof of the exis-
tence of distributionally robust equilibria and a tractable mathematical
programming approach to solve for such equilibria.

Keywords: Data-driven optimization · Distributionally robust game ·
Mathematical programming

1 Introduction

In the past decade, game theory as a powerful mathematical tool has been used
by researchers to analyze security issues in Cyber-physical systems (CPS) [14],
Internet-of-Things [5], cloud computing [20], etc. As the advancements in data
analysis, attackers can deploy more sophisticated attacks using information from
the dataset [4,15,16]. The dataset can be log files, connection histories, or server
deployment diagrams. The defender can also use statistical methods to defend
herself from these attacks. The classical game theory approach does not capture
this data-driven feature of modern security concerns. Thus, there are potentials
in combining data science and game theory to further the analysis of the case
where the players extract information from data to play the game.

With reference to Fig. 1, consider the following cyber security scenario: both
the attacker and the defender have the access to an open-source dataset. Both of
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them aim to improve their performance by using this dataset. Nevertheless, fully
trusting this dataset is not plausible as the dataset can be either incomplete or
sometimes intentionally poisoned. Mathematically speaking, blindly extracting
information from a dataset in an empirical fashion oftentimes will result in an
overoptimistic result. We propose a distributionally robust game framework cap-
ture the balance between optimism and conservativeness. In this work, we assume
that all the players have the same uncertainty of the game, i.e., there is no infor-
mation privately possessed by any players. We also assume that the uncertainty
can be characterized by a random variable. Each player faces a distributionally
robust optimization problem and is robust to the worst-case distribution of the
uncertainty parameter in the system model.

Fig. 1. A block diagram of the interaction between the attacker and the defender.

Our contributions are summarized as follows: we first define a data-driven
empirical game (EG). A data-driven EG involves players estimating the distri-
bution of the uncertainty parameter in an empirical way, and the players are
able to learn the true distribution asymptotically. The empirical players suffer
from the curse of the optimizer and oftentimes are too optimistic. Therefore,
we propose a data-driven distributionally robust game framework to combat
the overoptimism, while making sure that players are too not conservative as in
robust games. We identify the relations between the proposed game with existing
games. We define a special class of equilibria, which is termed distributionally
robust equilibrium (DRE). As the ambiguity in distribution can be characterized
by a robustness parameter, this DRE can potentially simplify the distribution-
ally robust mechanism design problem. Besides, as the ambiguity is generated
by a dataset, the DRE considered in this work is endowed with the data-driven
feature, which allows the possibility of sequential mechanism design. We show
that when the robustness parameter goes to zero, the game boils down to an
empirical game which is a Nash game. And when the robustness parameter goes
to infinity, the game becomes a classical robust game. Then, we prove the exis-
tence of the DRE using Kakutani’s fixed point theorem. Finally, we present a
mathematical programming to solve for DRE.
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Our work is closely related to [4,11], in which the authors provide the perfor-
mance guarantees and tractable formulations for a data-driven distributionally
robust optimization problem using the Wasserstein metric. Moreover, as the
equilibrium concept considered here falls in the category of Knightian equilib-
rium, our work is related to [9] as well. There are also numerous papers on
distributionally robust game theory [3,12,17], in which the ambiguity sets are
not data-driven. Our work can be considered as a generalization of robust game
[1], where the authors focus on the distribution-free setting.

Section 3 reviews the robust game theory. Section 4 develops a data-driven
game model in which players utilize the information from data empirically. In
Sect. 5, we first motive the formulation of the data-driven distributionally robust
game. Then, we formally define such games, prove the existence of the equilib-
rium, and provide a tractable mathematical programming approach to solve for
such equilibria. In Sect. 6, we use a bimatrix game as a toy example to validate
the convergence result. Finally, Sect. 7 concludes the paper and points out the
possible directions for future work.

2 Preliminaries

Let ξ ∈ Ξ ⊆ R
m be a random variable, where m ∈ Z+. Let M(Ξ) be the space of

all probability distributions Q supported on Ξ with EQ[‖ξ‖] =
∫
Ξ

‖ξ‖Q(dξ) < ∞.
Here, ‖ · ‖ represents an arbitrary norm on R

m.

Definition 1. (Wasserstein Distance) [19] The Wasserstein metric d :
M (Ξ) × M (Ξ) → R+ is defined via

d (Q1,Q2) = inf
π∈Π

{∫

(ξ1;ξ2)∈Ξ×Ξ

‖ξ1 − ξ2‖π (dξ1, dξ2)

}

for all measures Q1,Q2 ∈ M (Ξ), where Π the space of all the joint distributions
of ξ1 and ξ2 with marginals Q1 and Q2, respectively.

Theorem 1. (Kakutani’s Fixed-Point Theorem) [8] If x → φ(x) has an
upper semicontinuous point-to-set mapping of an r-dimensional closed simplex
S in to ωi(S), then ∃ x0 ∈ S, such that x0 ∈ φ(x0).

3 Robust Game

Consider an incomplete-information game (I -game) with a finite set of players
I = {1, 2, ..., N} and a finite set of actions Ai ∈ R

Ai for each player i, where
Ai ∈ Z+. As mention by Harsanyi in [6], the incompetence of information induced
by uncertainty can be summarized and embedded in the cost functions (objective
functions, cost matrix). We denote the uncertain parameter by ξ ∈ Ξ. For player
i, we define his cost functions as Ci(ai, a−i; ξ) :

∏
i∈I Ai × Ξ → R, where a−i :=

(a1, ..., ai−1, ai+1, ..., aN ) is the collection of other players’ actions. Note that all
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the players considered in this work are minimizers. Moreover, we assume that
the uncertainty set Ξ is finite.

In [2,6], with the assumptions common prior and common knowledge of ratio-
nality, we can transform an I-game to a complete-information game (C-game),
which is commonly known as a Bayesian game. However, the Bayesian game
fails to characterize the case where common prior or stochastic information of
the uncertainty is unavailable.

In [1], the authors have proposed a distribution-free game framework to study
incomplete-information games. In their proposed game, robust game, players are
assumed to be robust to the uncertainty. Formally, a robust game can be defined
as a tuple,

G := (I,S) , (1)

where S is the state of nature. Every state of nature s ∈ S is a vector

s = (I, (Ai)i∈I , (ci)i∈I),

where Ai is a nonempty finite set of actions of Player i. ci : Ai × Ξ → R the
cost function of Player i where A = ×i∈I Ai. In this work, we assume that
the players do not have private information and this allows us to transform the
I-game G to a C-game.

For every i ∈ I, let xi be the mixed strategy of Player i, which is defined to be
a probability over the action space, i.e., xi = (xi(ai))ai∈Ai

∈ Δi := Δ(Ai) and
Δ(·) is the simplex of a finite set. For the ease of notation, define the expected
cost induced by the mixed strategy profile x = (xi,x−i) as the following

ci(xi,x−i; ξ) =
∑

ai∈Ai

∑

a−i∈A−i

Ci(ai, a−i; ξ)xi(ai)
∏

j �=i,j∈I
xj(aj),

where A−i =×j �=i,j∈I Ai. The equilibrium concept used in robust game G is
given by the following:

Definition 2. A mixed strategy profile x∗ = (x∗
i ,x

∗
−i) is robust-optimization

equilibrium solution in G if for i ∈ I,

max
ξ∈Ξ

ci(x∗
i ,x

∗
−i; ξ) � max

ξ∈Ξ
ci(xi,x∗

−i; ξ), (2)

where x−i ∈ Δ−i :=×j �=i,j∈I Δ(Aj).

The following theorem guarantees the existence of the robust-optimization
equilibrium in G.

Theorem 2. (Existence of Equilibria in Robust Finite Games) [1] In the game
defined by G, if Ci(ai, a−i; ξ) is bounded for all i ∈ I, (ai, a−i) ∈ A and ξ ∈ Ξ,
then there exists an ex post equilibrium.
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4 Data-Driven Empirical Game

In a data-driven empirical game (EG), we assume that the uncertainty parameter
is a random variable, and is selected according to some unknown distribution by
a chance move at the beginning of the game. Let P be the measure induced by the
random variable ξ. The players can observe N such games played independently
and the realizations of the uncertainty parameter. Then every player makes the
estimation from the same set

Ξ̂(N) =
{

ξ̂(1), ξ̂(2), . . . , ξ̂(N)
}

⊆ ΞN , (3)

which consists of N independent realizations of the random variable ξ. We call
Ξ̂(N) dataset, and each element in it data point. In [10], the author formalizes a
framework which enables the players to learn as statisticians. Formally, define
the learning rule as a mapping from the dataset (3) to the belief space:

� : ΞN → Δ(Ξ).

In particular, we are interested in empirical players in this work, who estimate
P using an empirical approach as follows

Q̂
(N) := �

(
Ξ̂(N)

)
=

1
N

N∑

n=1

δξ̂(n) ,

where δ is the Dirac delta function. We term Q̂
(N) as common empirical prior

in this work. The empirical learning rule not only is appealing for its neat and
simple form, but also enjoys the following property:

Lemma 1. Let the dataset Ξ̂(N) be defined as (3) which contains N indepen-
dent realizations of ξ. When the number of realizations (data points) N goes to
infinity,

�
(
Ξ̂(N)

)
→ P, a.s.

Proof. The proof of this lemma is an immediate result of law of large numbers.
�	

The lemma above says that as the number of samples goes to infinity, the empir-
ical players can learn the true distribution of ξ, P.

The empirical players can benefit from the information obtained from the
dataset. Indeed, it is not hard to show that given x−i ∈ Δ−i, for every possible
empirical measure Q̂

(N) induced by the dataset Ξ̂(N)

E
Q̂(N) [ci(xi,x−i; ξ)] � max

ξ∈Ξ
ci(xi,x−i; ξ).

By letting
ζ∗
i (x−i) ∈ arg min

xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)] ,
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we have that

E
Q̂(N) [ci(ζ∗

i (x−i),x−i; ξ)] � min
xi∈Δi

max
ξ∈Ξ

ci(xi,x−i; ξ).

This inequality says that by leveraging the stochastic information from the
dataset, the players behave less conservatively.

It is worth noting that as all the players make use of the same dataset to
estimate in the same empirical fashion, they share the same empirical distri-
bution. Thus, this distribution is also common knowledge. We further assume
that the fact that all the players being empirical is common knowledge. We pro-
ceed by defining the data-driven EG, which falls into the category of I -game. A
data-driven EG is given by a tuple

G(N) :=
(
I,S,P, Ξ̂(N)

)
,

where P is the true measure of ξ. Now, we are ready to show that data-driven
EBG as an I -game is equivalent to a C-game. As mentioned earlier, the players
acknowledge that all of them are empirical and they share the empirical distri-
bution, the data-driven EG is equivalent to a Nash game by replacing the cost
matrix Ci(ai, ai; ξ) with

C̃i(ai, a−i) := E
Q̂(N) [Ci(ai, ai; ξ)] ,

where the expectation is taken over ξ with respect to Q̂
(N). Thus, data-driven

EG is also equivalent to a C-game. Moreover, as it is equivalent to a Nash game,
the existence of the Nash equilibrium is also guaranteed.

5 Data-Driven Distributionally Robust Game

In this section, we propose a new class of games which is termed data-driven
Distributionally Robust Game (DRG) in which we use Wasserstein distance as
the distribution metric. To motive this framework, we first answer a few essential
questions.

5.1 Motivation

Why Distributionally Robust Formulation? The direct application of
empirical distribution as estimated distribution suffers from optimizer’s curse
[18]. It is well known that the empirical estimator Q̂

(N) is be an unbiased esti-
mator of P, i.e.,

EQ(N)

[
Q̂

(N)
]

= P.

where Q
(N) is the measure induced by the N data points. With fixed x−i,

EQ(N)

[
E
Q̂(N) [ci(xi,x−i; ξ)]

]
= EP [ci(xi,x−i; ξ)] .
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By Jensen’s inequality,

EQ(N)

[

min
xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)]

]

� min
xi∈Δi

EQ(N)

[
E
Q̂(N) [ci(xi,x−i; ξ)]

]

= min
xi∈Δi

EP [ ci(xi,x−i; ξ)] .

Let
ζ∗
i (x−i) ∈ arg min

xi∈Δi

E
Q̂(N) [ci(xi,x−i; ξ)] .

Then, for every x−i ∈ Δ−i,

EP [ ci(ζ∗
i (x−i),x−i; ξ)] � min

xi∈Δi

EP [ ci(xi,x−i; ξi)] .

As shown above, given the other players’ strategies, a player inclines to be
overoptimistic due to the optimizer’s curse. Therefore, it is reasonable to employ
some “robustness” to deal with this overoptimism. In this work, given a tuple
of his counterparts’ strategies, we suppose that each player formulates the best
response as the solution of a distributionally robust optimization problem.

Note that, in our framework, we assume that a player’s opponents are outside
the scope of the player’s viewpoint. That is, the player takes the distributionally
robust view only of the uncertainties of his cost function, with a tuple of the
other players’ strategies given. From this perspective, each player does not take
a distributionally robust approach to his uncertainty with respect to this tuple
itself. Moreover, we assume that each player’s distributionally robust view of
the game is common knowledge, which allows the players to predict each other’s
best-response correspondences. Thus, the players in the game defined by (4) can
reach consistent predictions of what each other will play.

We interpret the distributionally robust game in a security setting. Suppose
the players (defender and attacker) have the access to the same open-source
dataset. On one hand, the players aim to obtain useful information from this
dataset to achieve better defend/attack results. On the other hand, the dataset
may not be reliable. It is natural for the players to be robust to the inference
of the dataset. Hence, the distributionally robust formulation is a reasonable
choice in a security problem in order to balance the optimism and conserva-
tiveness. However, one may have the concern over the reason why the players
are assumed to know the same dataset. Indeed, in real world, the defender and
the attacker oftentimes have different information (knowledge) due to different
financial capabilities, backgrounds, identities, etc. In such cases, one may need to
resort to Bayesian game framework. The information-asymmetric case is beyond
the scope of this work and we leave it to future work.

Why Wasserstein Distance? In this work, we assume that each player adopts
Wasserstein Distance as the metric measuring the difference between two dis-
tributions. Formally, a distributionally robust game using Wasserstein distance
is defined by the following vector

G(N)
ε =

(
I, S̃,P, Ξ̂(N)

)
, (4)
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where s̃ := (I, (Ai)i∈I , (ci)i∈I , ε) and s̃ ∈ S̃. The parameter ε is the radius of the
Wasserstein ball, which stands for the robustness of the players. It is determined
by the nature and assumed to be common knowledge and the same for all the
players. The key feature distinguishing Wasserstein distance as a distribution
metric from other distribution metrics is that the worst-case distribution can be
supported outside the dataset. In a game setting, the utilization of Wasserstein
distance can be interpreted as the following: the knowledge of the support set
the types are common knowledge shared between the players. Using Wasserstein
distance as distribution metric enables the players to utilize this support infor-
mation. Moreover, this allows the players to be robust against perturbations of
the data points [4]. It also makes sense in a security scenario: both of the defender
and the attacker want to use every bit of information available to improve their
performance while maintaining certain level of robustness.

5.2 Equilibrium Concept

With the empirical distribution Q̂
(N) being centered, we construct a Wasserstein

ball as follows:

Bε

(
Q̂

(N)
)

=
{
Q ∈ M(Ξ) : d(Q, Q̂(N)) � ε

}
,

which contains all the possible probability measures, whose Wasserstein distance
with the empirical distribution is less than ε. Here, M(Ξ) is the set of all the
possible distributions whose support is Ξ.

Definition 3. A mixed strategy profile x = (x∗
i ,x

∗
−i) is an distributionally

robust equilibrium (DRE) solution if no player can decrease their interim
expected cost by unilaterally changing their strategy: for i ∈ I and every mixed
strategy xi ∈ Δi,

sup
Q∈Bε(Q̂(N))

EQ

[
ci(x∗

i ,x
∗
−i; ξ)

]
� sup

Q∈Bε(Q̂(N))
EQ

[
ci(xi,x∗

−i, ; ξ)
]
. (5)

Remark 1. By definition, DRE is a relaxation of Knightian equilibrium. In a
homogeneous game where each player has the same objective function and action
set, DRE falls in the category of Knightian equilibrium. The DRE exhibits several
advantageous features:

1. The proposed DRE can be used as a solution concept in mechanism design
and characterize the incentive compatibility such that each player has the
incentive to truthfully reveal his private information in DRE. The players’
uncertainty about their cost functions provides a potential opportunity for the
mechanism designer to strategically design the ambiguity set as an additional
rule of encounter to achieve the designer’s social goal.

2. Suppose that the ambiguity set is given and not a part of the design. When
the ambiguity set is different, one will need to solve the design problem all
over again. The ambiguity set in DRE being induced by a dataset enables
one to design a data-driven mechanism sequentially, as the only difference in
ambiguity sets is the center of the Wasserstein ball.



A Data-Driven Distributionally Robust Game Using Wasserstein Distance 413

When the robustness parameter ε goes to 0, then the Wasserstein ball col-
lapses inward to {Q̂(N)}. Consequently, a data-driven DRG becomes a data-
driven EG, i.e.,

lim
ε→0

G(N)
ε = G(N).

On the other hand, when ε goes to infinity, Data-Driven DRG becomes a classi-
cal robust game, as all the probability mass will concentrate on the worst-case
support, i.e.,

lim
ε→∞ G(N)

ε = G.

If we see ε as a tuning parameter, then G(N)
ε can be regarded as a generalization

which bridges the robust game and data-driven EG.

5.3 Existence of DRE

In this section, we give the theoretical guarantee of the existence of DRE, which
largely follows from Theorem 1 in [1]. In order to prove the existence of DRE in
the game defined by G(N), we first define the mapping ρ

(N)
i,ε : Δ × ΞN → Δi as

the following

ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) = sup

Q∈Bε(Q̂(N))
EQ [ci(xi,x−i; ξ)] . (6)

Moreover, we define the following “point-to-set” mapping for game G(N),

Φ(N)
ε : Δ × ΞN → Δ.

Specially, we choose Φ(N)
ε to be the following

Φ(N)
ε (x, Ξ̂(N)) =

{

x̃ = (x̃i, x̃−i)
∣
∣
∣ x̃i ∈ arg min

ui∈Δi

ρ
(N)
i,ε (ui,x−i, Ξ̂(N)), i ∈ I

}

,

(7)
which is the set of all the best response strategies given the strategy profile x.

Theorem 3. Let Ξ be finite, and Ci(ai, a−i; ξ) be bounded for all ξ ∈ Ξ. There
exists at least one DRE in the game defined by G(N)

ε .

Sketch of Proof. We start the proof by proving that ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) is contin-

uous on Δ, and that for each i ∈ I, ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) is convex in xi. Then, the

mapping Φ(N)
ε can be shown to be non-empty, convex and upper semicontinuous.

Applying Kakutani’s fixed-point theorem immediately gives us the theorem. �	
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5.4 Asymptotic Consistency

We must notice that there may exist more than one equilibrium, i.e., the equi-
librium may not be unique. Then, from now on, it will be reasonable to work on
the set of equilibriums, which is given by

E(N)
ε (Ξ̂(N)) =

{
x | x ∈ Φ(N)

ε (x, Ξ̂(N))
}

.

This set is non-empty due to Theorem 3.
When the true distribution of ξ is known to all the players, the problem boils

down to a standard Nash game. This Nash game can be represented by a tuple
GNash = (I,S,P). Similar to (6) and (7), define

ρi(xi,x−i) = EP [ci(xi,x−i; ξ)] ,

and

Φ(x) =
{

x̃ = (x̃i, x̃−i)
∣
∣
∣ x̃i ∈ arg min

ui∈Δi

ρi(ui,x−i), i ∈ I
}

,

respectively. Characterized by fixed points, the set of equilibria in GNash is given
by

E = {x | x ∈ Φ(x)} .

It is not hard to see that E is non-empty.

Proposition 1. Define a sequence of Wasserstein ball radius {εN}∞
N=1 with the

following property
lim

N→∞
εN = 0.

Then,
lim

N→∞
E(N)

εN
(Ξ̂(N)) = E , a. s.

Proof. When N goes to infinity, by using Lemma 3.7 from [4], we obtain that

Q
∞

[
lim

N→∞
d(P, Q̂(N)) = 0

]
= 1.

Hence,

lim
N→∞

ρ
(N)
i,ε (xi,x−i, Ξ̂(N)) = lim

N→∞
sup

Q∈Bε(Q̂(N))
EQ [ci(xi,x−i; ξ)]

= EP [ci(xi,x−i; ξ)]
= ρi(xi,x−i), a. s.

Then, it is clear that

lim
N→∞

Φ(N)
ε (x, Ξ̂(N)) = Φ(x), a. s.

The argument in the proposition follows.
�	

Remark 2. Proposition 1 exhibits the convergence result concerning the equi-
librium set. As the number of data points goes to infinity, the distributionally
robust game G(N) is equivalent to the standard Nash game G in terms of the
equilibria.
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5.5 Tractable Formulations

In this section, we derive a tractable formulation using which one can solve for
the DRE (as defined in (5)) in G(N)

ε . Without loss of generality, we study a
two-player game, i.e., I = {1, 2}. Denote the cost matrix of the i-th player by

Ci(ξ) = [Ci(a1, a2; ξ)]a1∈A1,a2∈A2
, i ∈ I.

Recall that the i-th player faces the following optimization problem:

min
xi∈Δi

sup
Q∈Bε(Q̂(N))

EQ

[
xT

1 Ci(ξ)x2

]
. (8)

We drop the outer minimization for the clarity of notations. By the definition of
Wasserstein ball, (8) can be rewritten as

sup
Q

∑

ξ∈Ξ

xT
1 Ci(ξ)x2 Q(ξ)

s.t. d(Q̂(N),Q) � ε.

(9)

By the definition of Wasserstein distance,

sup
Q

∑

ξ∈Ξ

xT
1 Ci(ξ)x2 Q(ξ)

s.t. min
Π

∑

ξ;ξ′∈Ξ

|ξ − ξ′|Π(ξ; ξ′) � ε

∑

ξ∈Ξ

Π(ξ; ξ′) = Q̂
(N)(ξ′)

∑

ξ′∈Ξ

Π(ξ; ξ′) = Q(ξ).

(10)

By eliminating the variable Q, we reduce (9) equivalently to

sup
Π

∑

ξ;ξ′∈Ξ

xT
1 Ci(ξ)x2 Π(ξ; ξ′)

s.t.
∑

ξ;ξ′∈Ξ

|ξ − ξ′|Π(ξ; ξ′) � ε

∑

ξ∈Ξ

Π(ξ; ξ′) = Q̂
(N)(ξ′), ∀ ξ′ ∈ Ξ.

(11)

The dual optimization of (11) is given by

min
λ�0

λε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′)

s.t. s(ξ′) + λ|ξ − ξ′| � xT
1 Ci(ξ)x2, ∀ ξ; ξ′ ∈ Ξ.

(12)
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It is worth noting that there is no duality gap between (11) and (12) as (11) is
essentially a linear programming. We can also write (12) as

min
λ�0

λε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′)

s.t. s(ξ′) � max
ξ∈Ξ

[
xT

1 Ci(ξ)x2 − λ|ξ − ξ′|] , ∀ ξ′ ∈ Ξ

So far, we have reduced the robust formulation using Wasserstein to a simpler
form.

5.6 Mathematical Programming for DRE

By expanding the constraint that xi ∈ Δi and writing down (12) in the epigraph
form, we have that for Player i,

min
xi,λi�0,ηi,{s(ξ′)}ξ′∈Ξ

ηi

s.t. λiε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)si(ξ

′) � ηi

si(ξ
′) + λi|ξ − ξ′| �

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x2(a2),

∀ ξ; ξ′ ∈ Ξ

xi(ai) � 0, ∀ ai ∈ Ai
∑

ai∈Ai

xi(ai) = 1.

(13)

The Lagrange function of (13) is given by

Li(xi, λi, ηi, {s(ξ′)}ξ′∈Ξ, {ωi(ξ, ξ
′)}ξ,ξ′∈Ξ, θi, σi)

=ηi +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)

(
xT

1 Ci(ξ)x2 − si(ξ
′) − λi|ξ − ξ′|

)

+ θi

⎛

⎝λiε +
∑

ξ′∈Ξ

Q̂
(N)(ξ′)s(ξ′) − ηi

⎞

⎠ + σi

⎛

⎝1 −
∑

ai∈Ai

xi(ai)

⎞

⎠

=(1 − θi)ηi + λi

⎛

⎝θiε −
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′|

⎞

⎠ + σi

+
∑

ai∈Ai

⎛

⎝
∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)Ci(a1, a2; ξ)x−i(a−i) − σi

⎞

⎠ xi(ai)

+
∑

ξ′∈Ξ

⎛

⎝θiQ̂
(N)(ξ′) −

∑

ξ∈Ξ

ωi(ξ, ξ
′)

⎞

⎠ si(ξ
′).
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Here, xi(ai) � 0, λi � 0, and ηi and {si(ξ′)}ξ′∈Ξ are free variables. Thus, we
need

1 − θi = 0,

θiε −
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)|ξ − ξ′| � 0,

θiQ̂
(N)(ξ′) −

∑

ξ∈Ξ

ωi(ξ, ξ′) = 0,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x−i(a−i) � σi.

After some algebraic operations, we can write the dual problem to (13) as

max
{ωi(ξ,ξ′)�0}ξ,ξ′∈Ξ,σi

σi

s.t.
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′| � ε,

Q̂
(N)(ξ′) =

∑

ξ∈Ξ

ωi(ξ, ξ
′), ∀ ξ ∈ Ξ,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)Ci(a1, a2; ξ)x−i(a−i) � σi, ∀ ai ∈ Ai.

The mathematical problem used to solve for DRE is given by the following,

max
κ

∑

i∈I
(σi − ηi)

s.t. λiε +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) � ηi, ∀ i ∈ I,

si(ξ′) + λi|ξ − ξ′| �
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x2(a2),

∀ ξ, ξ′ ∈ Ξ
∑

ai∈Ai

xi(ai) = 1, ∀ i ∈ I,

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)|ξ − ξ′| � ε, ∀ i ∈ I,

∑

a−i∈A−i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x−i(a−i) � σi, ∀ ai ∈ Ai, i ∈ I,

Q̂
(N)(ξ′) =

∑

ξ∈Ξ

ωi(ξ, ξ′), ∀ ξ′ ∈ Ξ, i ∈ I,

(14)
where

κ = {xi(ai) � 0, λi � 0, ηi, {si(ξ′)}ξ′∈Ξ, {ωi(ξ, ξ′) � 0}ξ,ξ′∈Ξ, σi}i∈I
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is the collection of decision variables.

Theorem 4. Solving the mathematical programming above is equivalent to find-
ing the DRE (as defined in (5)) in G(N)

ε .

Proof. “⇐” Let (x∗
1,x

∗
2) be an DRE. Then, for i ∈ I, x∗

i is the best response to
x∗

−i. As there is no duality gap between dual and primal,
∑

i∈I (σ∗
i − η∗

i ) =
0. Show κ∗ is global maximum. We first notice that

∑

a1∈A1,a2∈A2

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x2(a2)x1(a1) � σi.

By the second, the fourth and the fifth constraints in (14),

ηi =
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) + λiε

�
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)si(ξ′) +
∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)λi|ξ − ξ′|

�
∑

a1∈A1

∑

a2∈A2

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ′)Ci(a1, a2; ξ)x1(a1)x2(a2).

Thus,
ηi � σi.

“⇒” Let κ∗ be the maximizer of (14). Then, we show that

σ∗
i = η∗

i , i ∈ I. (15)

From the first, the second and the fourth constraints, we have

σ∗
i = η∗

i

� λ∗
i ε +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)

[
x∗T

1 Ci(ξ)x
∗
2 − λ∗

i |ξ − ξ′|
]

� λ∗
i

∑

ξ;ξ′∈Ξ

ωi(ξ, ξ
′)|ξ − ξ′| +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)

[
x∗T

1 Ci(ξ)x
∗
2 − λ∗

i |ξ − ξ′|
]
,

s∗(ξ′) � max
ξ

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x
∗
1(a1)x

∗
2(a2) − λ∗

i |ξ − ξ′|,

and

η∗
i � λ∗

i ε +
∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′)s∗

i (ξ′)

� λ∗
i ε +

∑

ξ;ξ′∈Ξ

ω∗
i (ξ; ξ′) max

ξ

∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x
∗
1(a1)x

∗
2(a2) − λ∗

i |ξ − ξ′|.
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Fig. 2. The comparison of data-driven EG, Nash Game, and data-driven DRG.

From the last constraint,

σ
∗
i

�
∑

a1∈A1

∑

a2∈A2

∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
)Ci(a1, a2; ξ)x1(a1)x

∗
2(a2)

=
∑

a1∈A1

∑

a2∈A2

∑

ξ′∈Ξ

Q
∗(N)

(ξ
′
)Ci(a1, a2; ξ)x1(a1)x

∗
2(a2)

� λ
∗
i ε +

∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
)

⎛

⎝
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x
∗
2(a2) − λ

∗
i |ξ − ξ

′|
⎞

⎠

� λiε +
∑

ξ;ξ′∈Ξ

ω
∗
i (ξ; ξ

′
) max

ξ

⎛

⎝
∑

a1∈A1

∑

a2∈A2

Ci(a1, a2; ξ)x1(a1)x
∗
2(a2) − λ

∗
i |ξ − ξ

′|
⎞

⎠

Thus, we have

sup
Q∈Bε(Q̂(N))

EQ

[
ci(x∗

i ,x
∗
−i; ξ)

]
� σ∗

i = η∗
i � sup

Q∈Bε(Q̂(N))
EQ

[
ci(xi,x∗

−i; ξ)
]
.

Therefore, (x∗
1,x

∗
2) is a DRE.

�	

6 Numerical Example

Consider a security game which is captured by a nonzero-sum game. The uncer-
tainty parameter ξ represents the security environment, which influences the
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payoff. Assume that the payoff matrices are given by the following:
[
(1 + ξ, 3) (0, 2)

(2, 0) (−1, 1)

]

,

where ξ ∈ Ξ = {−1, 1}. The true distribution of ξ is P[ξ = 1] = 1/2, and
P[ξ = 1] = 1/2. When there is perfect distribution information (both players
know the true distribution), the Nash equilibrium is (1/2, 1/2), and the expected
value of the game is (1/2, 3/2). For the distributionally robust case, let the
radius of Wasserstein ball be εN = 1/N . As illustrated in Fig. 2, the value and
equilibrium of both data-driven EG and data-driven DRG converge to the ones
in Nash Game. We notice that the strategy of Player 1 and the value of Player
2 stay unaltered. By the indifferent principle [13], the bimatrix game considered
here is fully mixed. In this case, the strategy of Player 1 only depends the payoff
matrix of Player 2, and the value of Player 2 only depends on the strategy of
Player 1.

7 Conclusions and Future Work

7.1 Conclusions

In this paper, we have proposed a new type of data-driven game model in which
the players are capable of exploiting the information in the dataset. We have
adopted the distributionally robust formulation to address the issue arising from
the curse of the optimizer. We have used Wasserstein ball as the ambiguity set
with the empirical distribution centered. By tuning the radius of the Wasser-
stein ball, we have demonstrated the relations between the proposed game and
the existing games. We have also given the mathematical programming whose
solutions are a subset of data-driven DRE.

7.2 Future Work

1. Data-Driven Distributionally Robust Bayesian Game In this work, we
did not consider the case where there exists private information. As Harsanyi
pointed out, the incomplete information is quite involving as there is belief
hierarchy. We can use the information from the dataset to form the player’s
beliefs. As the belief are not generated from the common prior, the players are
suspicious about the data-based belief. Therefore, it is reasonable to introduce
robustness.

2. Data-Driven Dynamic Game It is also possible to extend the data-driven
dynamic game. In a dynamic system, the agents do not have perfect nor
complete knowledge of the system. While making decisions, they observe the
outcomes of the system and update their knowledge. And with the updated
knowledge, the agents are able to make better decisions.

3. One-Sided Data-Driven Game Consider a two-player game. One player
has the access to the dataset Ξ̂ and the other player has the access to the
dataset Ξ̃. If Ξ̃ ⊆ Ξ̂, this becomes a one-sided information game, in which one
player has more information than the other [7].
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