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ABSTRACT
Why and why-not provenance have been studied extensively
in recent years. However, why-not provenance and — to a
lesser degree — why provenance can be very large, resulting
in severe scalability and usability challenges. We introduce a
novel approximate summarization technique for provenance
to address these challenges. Our approach uses patterns
to encode why and why-not provenance concisely. We de-
velop techniques for efficiently computing provenance sum-
maries that balance informativeness, conciseness, and com-
pleteness. To achieve scalability, we integrate sampling tech-
niques into provenance capture and summarization. Our
approach is the first to both scale to large datasets and gen-
erate comprehensive and meaningful summaries.
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1. INTRODUCTION
Provenance for relational queries [10] explains how results

of a query are derived from the query’s inputs. In contrast,
why-not provenance explains why a query result is missing.
Specifically, instance-based [11] why-not provenance tech-
niques determine which existing and missing data from a
query’s input is responsible for the failure to derive a miss-
ing answer of interest. In prior work, we have shown how
why and why-not provenance can be treated uniformly for
first-order queries using non-recursive Datalog with nega-
tion [16] and have implemented this idea in the PUG sys-
tem [18, 19]. Instance-based why-not provenance techniques
either (i) enumerate all potential ways of deriving a result
(all-derivations approach) or (ii) return only one possible,
but failed, derivation or parts thereof (single-derivation ap-
proach). For instance, Artemis [12], Huang et al. [13], and
PUG [20, 18, 19] are all-derivations approaches while the Y!
system [33, 32] is a single-derivation approach.
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r1 : AL(N,R) :− L(I,N, T,R, queen anne, E), A(I, 2016-11-09, P )

Listing (input)

Id Name Ptype Rtype NGroup Neighbor
8403 central place apt shared queen anne east
9211 plum apt entire ballard adams
2445 cozy homebase house private queen anne west
8575 near SpaceNeedle apt shared queen anne lower
4947 seattle couch condo shared downtown first hill
2332 modern view house entire queen anne west

Availability (input)

Id Date Price
9211 2016-11-09 130
2445 2016-11-09 45
2332 2016-11-09 350
4947 2016-11-10 40

AvailableListings (output)

Name Rtype
cozy homebase private
modern view entire

Attribute Id Name Ptype Rtype NGroup Neighbor Date Price
#Distinct Values 6 6 3 3 3 5 2 4

Figure 1: Example Airbnb database and query

Example 1. Fig. 1 shows a sample of a real-world data-
set recording Airbnb (bed and breakfast) listings and their
availability. Each Listing has an id, name, property type
(Ptype), room type (Rtype), neighborhood (Neighbor), and
neighborhood group (NGroup). The neighborhood groups are
larger areas including multiple neighborhoods. Availability
stores ids of listings with available dates and a price for
each date. We refer to this sample dataset as S-Airbnb and
the full dataset as F-Airbnb (https: // www. kaggle. com/
airbnb/ seattle ). Bob, an analyst at Airbnb, investigates
a customer complaint about the lack of availability of shared
rooms on 2016-11-09 in Queen Anne (NGroup = queen anne).
He first uses Datalog rule r1 from Fig. 1 to return all list-
ings (names and room types) available on that date in Queen
Anne. The query result confirms the customer’s complaint,
since none of the available listings are shared rooms. Bob
now needs to investigate what led to this missing result.

We refer to such questions as provenance questions. A pro-
venance question is a tuple with constants and placeholders
(upper-case letters) which specify a set of (missing) answers
the user is interested in (all answers that agree with the pro-
venance question on constant values). For example, Bob’s
question can be written as AL(N, shared). All-derivations ap-
proaches like PUG explain the absence of shared rooms by
enumerating all derivations of missing answers that match
Bob’s question. That is, all possible bindings of the vari-
ables of the rule r1 to values from the active domain (the
values that exist in the database) such that R is bound to
shared and the tuple produced by the grounded rule is miss-
ing. While this explains why shared rooms are unavailable

https://www.kaggle.com/airbnb/seattle
https://www.kaggle.com/airbnb/seattle


(any tuple with R = shared), the number of possible bind-
ings can be prohibitively large. Consider our toy example
S-Airbnb dataset. Let us assume that only values from the
active domain of each attribute are considered for a variable
bound to this attribute to avoid nonsensical derivations, e.g.,
binding prices to names. The number of distinct values per
attribute are shown on the bottom of Fig. 1. Under this
assumption, there are 6 · 6 · 3 · 5 · 4 = 2160 possible ways to
derive missing results matching AL(N, shared). For the full
dataset F-Airbnb, there are ∼ 15 · 1012 possible derivations.

Example 2. Continuing with Ex. 1, assume that Bob uses
PUG [18] to compute an explanation for the missing re-
sult AL(N, shared). A provenance graph fragment is shown
in Fig. 2a. This type of provenance graph connects rule
derivations (box nodes) with the tuples (ovals) they are de-
riving, rule derivations to the goals in their body (rounded
boxes), and goals to the tuples that justify their success or
failure. Nodes are colored red/green to indicate failure/-
success (goal and rule nodes) or absence/existence (tuple
nodes). For S-Airbnb, the graph produced by PUG consists
of all 2160 failed derivations of missing answers that match
AL(N, shared). The fragment shown in Fig. 2a encodes one
of these derivations: The shared room of the existing list-
ing Central Place (Id 8403) is not available on 2016-11-09
at a price of $130, explaining that this derivation fails be-
cause the tuple (8403, 2016-11-09, 130) does not exist in the
relation Availability (the second goal failed).

Single-derivation approaches address the scalability issue
of why-not provenance by only returning a single derivation
(or parts thereof). However, this comes at the cost of incom-
pleteness. For instance, a single-derivation approach may
return the derivation shown in Fig. 2a. However, such an
explanation is not sufficient for Bob’s investigation. What
about other prices for the same listing? Do other listings
from this area have shared rooms that are not available for
this date or do they simply not have shared rooms? A sin-
gle derivation approach cannot answer such questions since
it only provides one out of a vast number of failed deriva-
tions (or even only a sufficient reason for a derivation to fail
as in [33, 32]). For S-Airbnb, no shared rooms are available
in Queen Anne on Nov 9th, 2016 because: (i) all the ex-
isting shared rooms of apartments (listings 8403 and 8575)
in Queen Anne are not available on the requested date and
(ii) no listings in the West Queen Anne neighborhood (list-
ings 2445 and 2332) have shared rooms. Thus, returning
only one derivation is insufficient for justifying the
missing answer as only the collective failure of all
possible derivations explains the missing answer.

Summarizing Provenance. In this paper, we present a
novel approach that overcomes the drawbacks of both ap-
proaches. Specifically, we efficiently create summaries that
compactly represent large amounts of provenance informa-
tion. We focus on the algorithmic and formal foundation
of this method as well as its experimental evaluation (we
demonstrated a GUI frontend in [19] and our vision in [22]).

Example 3. Our summarization approach encodes sets
of nodes from a provenance graph using “pattern nodes”,
i.e., nodes with placeholders.1 A possible summary for AL(N,

1We deliberately use the term placeholder and not variable
to avoid confusion with the variables of a rule.

AL(central place, shared)

r1(central place, shared, 8403, apt, east, 130)

g2
1(8403, 2016-11-09, 130)

A(8403, 2016-11-09, 130)

(a) Partial provenance graph

AL(N, shared)

r1(N, shared, I, apt,E,P )

(0.128)

g2
1(I, 2016-11-09, P )

A(I, 2016-11-09, P )

(b) Provenance summary

Figure 2: Explanations for the missing results AL(N, shared)

shared) is shown in Fig. 2b. The graph contains a rule pat-
tern node r1(N, shared, I, apt, E, P ). N , I, E, and P are
placeholders. For each such node, our approach reports the
amount of provenance covered by the pattern (shown to the
left of nodes). This summary provides useful information
to Bob: all shared rooms of apartments in Queen Anne are
not available at any price on Nov 9th, 2016 (their ids are
not in relation Availability). Over F-Airbnb, ∼ 12.8% of
derivations for AL(N, shared) match this pattern.

The type of patterns we are using here can also be mod-
eled as selection queries and has been used to summarize
provenance [31, 25] and for explanations in general [8, 9].

Selecting Meaningful Summaries. The provenance of a
(missing) answer can be summarized in many possible ways.
Ideally, we want provenance summaries to be concise (small
provenance graphs), complete (covering all provenance), and
informative (providing new insights). We define informa-
tiveness as the number of constants in a pattern that are not
enforced by the user’s question. The intuition behind this
definition is that patterns with more constants provide more
detailed information about the data accessed by derivations.
Finding a solution that optimizes all three metrics is typi-
cally not possible. Consider two extreme cases: (i) any pro-
venance graph is a provenance summary (one without place-
holders). Provenance graphs are complete and informative,
but not concise; (ii) at the other end of the spectrum, an
arbitrary number of derivations of a rule r can be repre-
sented as a single pattern with only placeholders resulting
in a maximally concise summary. However, such a summary
is not informative since it only contains placeholders. We
design a summarization algorithm that returns a set of up to
k patterns (guaranteeing conciseness) optimizing for a com-
bination of completeness and informativeness. The rationale
behind this approach is to ensure that summaries are cover-
ing a sufficient fraction of the provenance and at the same
time provide sufficiently detailed information.

Efficient Summarization. While summarization of pro-
venance has been studied in previous work, e.g., [2, 34], for
why-not provenance we face the challenge that it is infeasi-
ble to generate full provenance as input for summarization.
For instance, there are ∼ 15 · 1012 derivations of missing
answers matching Bob’s question if we use the F-Airbnb
dataset. We overcome this problem by (i) integrating sum-
marization with provenance capture and (ii) developing a
method for sampling rule derivations from the why-not pro-
venance without materializing it first. Our sampling tech-
nique is based on the observation that the number of missing
answers is typically significantly larger than the number of
existing answers. Thus, to create a sample of the why-not
provenance of missing answers matching a provenance ques-
tion, we can randomly generate derivations that match the
provenance question. We, then, filter out derivations for



existing answers. This approach is effective, because a ran-
domly generated derivation is much more likely to derive a
missing than an existing answer. While sampling is neces-
sary for performance, it is not sufficient. Even for relatively
small sample sizes, enumerating all possible sets of candidate
patterns and evaluating their scores to find the set of size up
to k with the highest score is not feasible. We introduce sev-
eral heuristics and optimizations that together enable us to
achieve good performance. Specifically, we limit the number
of candidate patterns, approximate the completeness of sets
of patterns over our sample, and exploit provable upper and
lower bounds for the score of candidate pattern sets when
ranking such sets.

Contributions. To the best of our knowledge, we are the
first to address both the usability and scalability (compu-
tational) challenges of why-not provenance through sum-
maries. Specifically, we make the following contributions:

• Using patterns, we generate meaningful summaries for
the why and why-not provenance of unions of conjunc-
tive queries with negation and inequalities (UCQ¬<).

• We develop a summarization algorithm that applies
sampling during provenance capture and avoids enu-
merating full why-not provenance. Our approach out-
sources most computation to a database system.

• We experimentally compare our approach with a single-
derivation approach and Artemis [12] and demonstrate
that it efficiently produces high-quality summaries.

The remainder of this paper is organized as follows. We
cover preliminaries in Sec. 2 and define the provenance sum-
marization problem in Sec. 3. We present an overview of our
approach in Sec. 4 and, then, discuss sampling, pattern can-
didate generation, and top-k summary construction (Sec. 5
to 8). We present experiments in Sec. 9, discuss related work
in Sec. 10, and conclude in Sec. 11.

2. BACKGROUND

2.1 Datalog
A Datalog program Q consists of a finite set of rules

r : R(X) :− g1(X1), . . . , gm(Xn) where Xj denotes a tuple
of variables and/or constants. R(X) is the head of the rule,
denoted as head(r), and g1(X1), . . . , gm(Xn) is the body (each
gj(Xj) is a goal). We use vars(r) to denote the set of vari-
ables in r. The set of relations in the schema over which Q
is defined is referred to as the extensional database (EDB),
while relations defined through rules in Q form the inten-
sional database (IDB), i.e., the heads of rules. All rules r
of Q have to be safe, i.e., every variable in r must occur
in a positive literal in r’s body. Here, we consider union
of conjunctive queries with negation and comparison pred-
icates (UCQ¬<). Thus, all rules of a query have the same
head predicate and goals in the body are either literals, i.e.,
atoms L(Xj) or their negation ¬L(Xj), or comparisons of
the form a⋄b where a and b are either constants or variables
and ⋄ ∈ {<,≤, ̸=,≥, >}. For example, considering the Dat-
alog rule r1 from Fig. 1, head(r1) is AL(N,R) and vars(r1) is
{I,N, T,R,E, P}. The rule is safe since all head variables
occur in the body and all goals are positive.

The active domain adom(D) of a database D (an instance
of EDB relations) is the set of all constants that appear in
D. We assume the existence of a universal domain of val-
ues D which is a superset of the active domain of every
database. The result of evaluating Q over D, denoted as

Q(D), contains all IDB tuples Q(t) for which there exists a
successful rule derivation with head Q(t). A derivation of r
is the result of applying a valuation ν : vars(r) → D which
maps the variables of r to constants such that all compar-
isons of the rule hold, i.e., for each comparison ψ(Y ) the
expression ψ(ν(Y )) evaluates to true. Note that the set of
all derivations of r is independent of D since the constants
of a derivation are from D. Let c be a list of constants from
D, one for each variable of r. We use r(c) to denote the
rule derivation that assigns constant ci to variable Xi in
r. Note that variables are ordered by the position of their
first occurrence in r, e.g., the variable order for r1 (Fig. 1)
is (N,R, I, T,E, P ). A rule derivation is successful (failed)
if all (at least one of) the goals in its body are successful
(failed). A positive/negative literal goal is successful if the
corresponding tuple exists/does not exist. A missing answer
for Q and D is an IDB tuple Q(t) for which all derivations
failed. For a given D and r, we use D |= r(c) to denote that
r(c) is successful over D. Typically, as mentioned in Sec. 1,
not all failed derivations constructed in this way are sensi-
ble, e.g., a derivation may assign an integer to an attribute
of type string. We allow users to control which values to
consider for which attribute (see [18, 20]). For simplicity,
however, we often assume a single universal domain D.

2.2 Provenance Model
We now explain the provenance model introduced in Ex. 2.

As demonstrated in [20], this provenance model is equivalent
to the provenance semiring model for positive queries [10]
and to its extension for first-order (FO) formula [26]. In
our model, existing IDB tuples are connected to the suc-
cessful rule derivations that derive them while missing tu-
ples are connected to all failed derivations that could have
derived them. Successful derivations are connected to suc-
cessful goals. Failed derivations are only connected to failed
goals (which justify the failure). Nodes in provenance graphs
carry two types of labels: (i) a label that determines the
node type (tuple, rule, or goal) and additional information,
e.g., the arguments and rule identifier of a derivation, and
(ii) a label indicating success/failure. We encode (ii) as col-
ors in visualizations of such graphs. As shown in [18], pro-
venance in this model can equivalently be represented as
sets of successful and failed rule derivations as long as the
success/failure state of goals are known.

Definition 1. Let r be a Datalog rule Q(X) :− R1(X1), . . .
, Rl(Xl),¬ Rl+1(Xl+1), . . . ,¬ Rm(Xn), ψ(Y1), . . . , ψ(Yk) where
each ψi is a comparison. Let D be a database. An annotated
derivation d = r(c)− (g) of r consists of a list of constants
c and a list of goal annotations g = (g1, . . . , gm) such that
(i) r(c) is a rule derivation, and (ii) gi = T if i ≤ l ∧D |=
Ri(ci) or i > l ∧D ̸|= Ri(ci) and gi = F otherwise.

An example failed annotated derivation of rule r1 (Fig. 1)
is d1 = r1(central place, shared, 8403, apt, east, 130) − (T , F )
from Fig. 2a. That is, while A(8403, 2016-11-09, 130) failed,
L(8403, central place, apt, shared, queen anne, east) is success-
ful. Using annotated derivations, we can explain the exis-
tence or absence of a (set of) query result tuple(s). We use
A(Q,D, r) to denote all annotated derivations of rule r from
Q according to D, A(Q,D) to denote

⋃︁
r∈Q A(Q,D, r), and

A(Q,D, t) to denote the subset of A(Q,D) with head Q(t).
Note that by definition, valuations that violate any compar-
ison of a rule are not considered to be rule derivations.



We now define provenance questions (PQ). Through the
type of a PQ (Why or Whynot), the user specifies whether
she is interested in missing or existing results. In addition,
the user provides a tuple t of constants (from D) and place-
holders to indicate what tuples she is interested in. We
refer to such tuples as pattern tuples (p-tuples for short)
and use bold font to distinguish them from tuples with con-
stants only. We use capital letters to denote placeholders
and variables, and lowercase to denote constants. We say
a tuple t matches a p-tuple t, written as t ⋞ t, if we can
unify t with t by applying a valuation ν that substitutes
placeholders in t with constants from D such that ν(t) = t,
e.g., AL(plum, shared) ⋞ AL(N, shared) using ν := N → plum.
The provenance of all existing (missing) tuples matching t
constitutes the answer of a Why (Whynot) PQ.

Definition 2 (Provenance Question). Let Q be a
query. A provenance question Φ over Q is a pair (t, type)
where t is a p-tuple and type ∈ {Why,Whynot}.

Bob’s question from Ex. 1 can be written as Φbob = (tbob,
Whynot) where tbob = AL(N, shared), i.e., Bob wants an
explanation for all missing answers where R = shared. The
graph shown in Fig. 2a is part of the provenance for Φbob.

Definition 3 (Provenance). Let D be a database, Q
an n-nary UCQ¬< query, and t an n-nary p-tuple. We de-
fine the why and why-not provenance of t over Q and D as:

Why(Q,D, t) =
⋃︂

t⋞t∧t∈Q(D)

Why(Q,D, t)

Why(Q,D, t) = {d | d ∈ A(Q,D, t) ∧D |= d}

Whynot(Q,D, t) =
⋃︂

t⋞t∧t ̸∈Q(D)

Whynot(Q,D, t)

Whynot(Q,D, t) = {d | d ∈ A(Q,D, t) ∧D ̸|= d}

The provenance Prov(Φ) of a provenance question Φ is:

Prov(Φ) =

{︄
Why(Q,D, t) if Φ = (t,Why)

Whynot(Q,D, t) if Φ = (t,Whynot)

3. PROBLEM DEFINITION
We now formally define the problem addressed in this

work: how to summarize the provenance Prov(Φ) of a pro-
venance question Φ. For that, we introduce derivation pat-
terns that concisely describe provenance and, then, define
provenance summaries as sets of such patterns. We also de-
velop quality metrics for such summaries that model com-
pleteness and informativeness as introduced in Sec. 1.

3.1 Derivation pattern
A derivation pattern is an annotated rule derivation whose

arguments can be both constants and placeholders.

Definition 4 (Derivation Pattern). Let r be a rule
with n variables and m goals and P an infinite set of place-
holders. A derivation pattern p = r(ē)−(ḡ) consists of a list
ē of length n where ei ∈ D ∪ P and ḡ, a list of m booleans.

Consider pattern p1 = r1(N, shared, I, apt, E, P ) − (T , F )
for rule r1 (Fig. 1) shown in Fig. 2b. Pattern p1 represents
the set of failed derivations matching AL(N, shared) where
the listing is an apartment (apt) and for which the 1st goal

succeeded (the listing exists in Queen Anne) and the 2nd goal
failed (the listing is not available on Nov 9th, 2016). We use
p[i] to denote the ith argument of pattern p and omit goal
annotations if they are irrelevant to the discussion.

3.2 Pattern Matches
A derivation pattern p represents the set of derivations

that “match” the pattern. We define pattern matches as
valuations that replace the placeholders in a pattern with
constants from D. In the following, we use placeh(p) to de-
note the set of placeholders of a pattern p.

Definition 5 (Pattern Matches). A derivation pat-
tern p = r(ē) − (g1̄) matches an annotated rule derivation
d = r(c̄)− (g2̄), written as p ⋞ d, if there exists a valuation
ν : placeh(p) → D such that ν(p) = d and g1̄ = g2̄.

Consider p1 = r1(N, shared, I, apt, E, P )−(T , F ) and d1 =
r1(central place, shared, 8403, apt, east, 130)−(T , F ) (from Fig.
2). We have p1 ⋞ d1 since the valuation N → central place,
I → 8403, E → east, and P → 130 maps p1 to d1 and the
goal indicators (T , F ) are same for p1 and d1.

3.3 Provenance Summary
We call p a pattern for a p-tuple t if p and t agree on

constants, e.g., p1 is a pattern for tbob = AL(N, shared) since
p[2] = tbob[2] = shared. We use Pat(Q, t) to denote the set
of all patterns for t and Q.

Definition 6 (Provenance Summary). Let Q be a
UCQ¬< query and Φ = (t, type) a provenance question. A
provenance summary S for Φ is a subset of Pat(Q, t).

Based on the Def. 6, any subset of Pat(Q, t) is a sum-
mary. However, summaries do differ in conciseness, infor-
mativeness, and completeness. Consider a summary for
Φbob consisting of p2 = r1(N, shared, I, T, E, P )− (T , F ) and
p′2 = (N, shared, I, T, E, P ) − (F , F ). This summary covers
Prov(Φbob).

2 However, the pattern only consists of place-
holders and constants from Φbob — no new information is
conveyed. Pattern p3 = r1(plum, shared, 9211, apt, east, 130)
− (T , F ) consists only of constants. It provides detailed in-
formation but covers only one derivation.

3.4 Quality Metrics
We now introduce a quality metric that combines com-

pleteness and informativeness. We define completeness as
the fraction of Prov(Φ) matched by a pattern. For a ques-
tion Φ, query Q, and database D, we use M(Q,D, p,Φ) to
denote all derivations in Prov(Φ) that match a pattern p:

M(Q,D, p,Φ) := {d | d ∈ Prov(Φ) ∧ d ⋞ p}

Considering the pattern p1 from Fig. 2b and the derivation
d1 from Fig. 2a, we have d1 ∈ M(r1, D, p1,Φbob).

Definition 7 (completeness). Let Q be a query, D
a database, p a pattern, and Φ a provenance question. The

completeness of p is defined as cp(p) = |M(Q,D,p,Φ)|
|Prov(Φ)| .

We also define informativeness which measures how much
new information is conveyed by a pattern.

2Pattern p′′2 = r1(N, shared, I, T, E, P ) − (F , T ) has no
matches, because non-existing listings cannot be available.
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Definition 8 (Informativeness). For a pattern p and
question Φ with p-tuple t, let C(p) and C(t) denote the num-
ber of constants in p and t, respectively. The informative-

ness info(p) of p is defined as info(p) = C(p)−C(t)
arity(p)−C(t)

.

For Bob’s question Φbob and pattern p1 = r1(N, shared, I,
apt, E, P )− (T , F ), we have info(p1) = 0.2 because C(p1) is
2 (shared and apt), C(tbob) is 1 (shared), and arity(p1) is 6
(all placeholders and constants). We generalize complete-
ness and informativeness to sets of patterns (summaries) as
follows. The completeness of a summary S is the fraction
of Prov(Φ) covered by at least one pattern from S. For
patterns p2 and p′2 from Sec. 3.3, we have cp({p2, p′2}) =
cp(p2) + cp(p′2) = 1. Note that cp(S) may not be equal to
the sum of cp(p) for p ∈ S since the set of matches for two
patterns may overlap. We will revisit overlap in Sec. 8. We
define informativeness as the average informativeness of the
patterns in S.

cp(S) =
|
⋃︁

p∈S M(Q,D, p,Φ)|
|Prov(Φ)| info(S) =

∑︁
p∈S info(p)

|S|
The score of a summary S is then defined as the harmonic
mean of completeness and informativeness, i.e., sc(S) =

2 · cp(S)·info(S)
cp(S)+info(S)

. We are now ready to define the top-k pro-

venance summarization problem which, given a provenance
question Φ, returns the top-k patterns for Φ wrt. sc(S).

• Input: A query Q, database D, provenance question
Φ = (t, type), k ∈ N ≥ 1.

• Output: S(Q,D,Φ, k) = argmax
S⊂Pat(Q,t)∧|S|≤k

sc(S)

4. OVERVIEW
Before describing our approach in detail in the following

sections, we first give a brief overview. To compute a top-k
provenance summary S(Q,D,Φ, k) for a provenance ques-
tion Φ, we have to (i) compute Prov(Φ), (ii) enumerate
all patterns that could be used in summaries, (iii) calculate
matches between derivations and the patterns to calculate
the completeness of sets of patterns, and (iv) find a set of
up to k patterns for Φ that has the highest score among
all such sets of patterns. To compute the exact solution to
this problem, we would need to enumerate all derivations
from Prov(Φ). However, this is not feasible for why-not
provenance questions since, as we will discuss in the follow-
ing, the size of why-not provenance Whynot(Q,D, t) is in
O(|D|n), i.e., linear in the size of the data domain D, but
exponential in n, the maximal number of variables of a rule
from query Q that is not bound to constants by t ∈ Φ. In-
stead, we present a heuristic approach that uses sampling
and outsources most of the computation to a database for
scalability. Fig. 3 shows an overview of this approach.

Query: rex : Qex(X,Y ) :− R(X,Z), R(Z, Y ), X < Y

PQ: Φex = (tex,Whynot) where tex = Qex(X, 4)

Query Unified With P-Tuple tex:

rtex : Qtex(X, 4) :− R(X,Z), R(Z, 4), X < 4R

A B
1 2
2 3
2 4
5 3
5 5
5 6

Qex

A B
1 3
1 4
5 6

Answers matching tex
A B
1 4
2 4
3 4

Figure 4: Running example for summarization

Sampling Provenance (Phase 1, Sec. 5). As shown in
Fig. 3 (phase 1), we develop a technique to compute a sam-
ple S of nS derivations from Whynot(Q,D, t) that is un-
biased with high probability. We create S by (i) randomly
sampling a number of nOS > nS values from the domain of
each attribute (e.g., A and B in Fig. 3) individually, (ii) zip
these samples to create derivations, and (iii) remove deriva-
tions for existing results (e.g., the derivation d1 highlighted
in red) to compute a sample of Whynot(Q,D, t) that with
high probability is at least of size nS (in Fig. 3 we assumed
nS = 3). For why-provenance, we sample directly from the
full provenance for Φ computed using our query instrumen-
tation technique from [20, 18].

Enumerating Pattern Candidates (Phase 2, Sec. 6).
The number of patterns for a rule with m goals and n vari-
ables is in O(|D+ n|n · 2m). Even if we only consider pat-
terns that match at least one derivation from S, the number
of patterns may still be a factor of 2n larger than S. We
adopt a heuristic from [8] that, in the worst case, generates
quadratically many patterns (in the size of S). As shown in
Fig. 3, we generate a pattern p for each pair of derivations d
and d′ from S. If d[i] = d′[i] then p[i] = d[i]. Otherwise p[i]
is a fresh placeholder (shown as an empty box in Fig. 3).

Estimating Pattern Coverage (Phase 3, Sec. 7). To
be able to compute the completeness metric of a pattern set
which is required for scoring pattern sets in the last step,
we need to determine what derivations are covered by which
pattern and which of these belong to Whynot(Q,D, t). We
estimate completeness based on S. The informativeness of
a pattern can be directly computed from the pattern.

Computing the Top-k Summary (Phase 4, Sec. 8).
In the last step (phase 4 in Fig. 3), we generate sets of up to
k patterns from the set of patterns produced in the previous
step, rank them based on their scores, and return the set
with the highest score as the top-k summary. We apply
a heuristic best-first search method that utilizes efficiently
computable bounds for the completeness of sets of patterns
to prune the search space.

5. SAMPLING WHY-NOT PROVENANCE
In this section, we first discuss how to efficiently gener-

ate a sample S of annotated derivations of a given size nS

from the why-not provenance Whynot(Q,D, t) for a prove-
nance question (PQ) Φ (phase 1 in Fig. 3). This sample will
then be used in the following phases of our summarization
algorithm. We introduce a running example in Fig. 4 and
use it through-out Sec. 5 to Sec. 8. Consider the example
query rex shown on the top of Fig. 4 which returns start-



and end-points of paths of length 2 in a graph with integer
node labels such that the end-point is labeled with a lareger
number than the start-point. Evaluating rex over the ex-
ample instance R from the same figure yields three results:
Qex(1, 3), Qex(1, 4), and Qex(5, 6). In this example, we want to
explain missing answers of the form Qex(X, 4), i.e., answering
the PQ Φex from Fig. 4. Recall that, Whynot(Q,D, t) for
p-tuple t consists of all derivations of tuples t ̸∈ Q(D) where
t ⋞ t. Assuming D = {1, 2, 3, 4, 5, 6}, on the bottom right
of Fig. 4 we show all missing and existing answers matching
tex (missing answers are shown with red background).

5.1 Naive Unbiased Sampling
To generate all derivations for missing answers, we can

bind the variables of each rule r of a queryQ to the constants
from t to ensure that only derivations of results which match
the PQ’s p-tuple t are generated. We refer to this process as
unifying Q with t. For our running example, this yields the
rule rtex shown in Fig. 4. The naive way to create a sam-
ple of derivations from Whynot(Q,D, t) using this rule is
to repeatably sample a value from D for each variable, then
check whether (i) the predicates of the rule are fulfilled and
(ii) the resulting rule derivation computes a missing answer.
For example, for rtex , we may choose X = 2 and Z = 2 and
get a derivation d1 = rtex(2, 2). The derivation d1 fulfills the
predicate X < 4 and its head Qex(2, 4) is a missing answer.
Thus, d1 belongs to the why-not provenance of tex. Then,
to get an annotated rule derivation, we determine its goal
annotations by checking whether the tuples corresponding
to the grounded goals of the rule exists in the database in-
stance. For this example, d1 = rtex(2, 2)− (F , T ) since the
first goal R(2, 2) fails, but the second goal R(2, 4) succeeds.
There are two ways of how this process can fail to produce
a derivation of Whynot(Q,D, t): (i) a predicate of the rule
may be violated by the bindings generated in this way (e.g.,
if we would have chosen X = 5, then X < 4 would not
have held) and (ii) the derivation may derive an existing an-
swer, e.g., if X = 1 and Z = 3, we get the failed derivation
rtex(1, 3) of the existing answer Qex(1, 4).

Analysis of Naive Sampling. If we repeat the process
described above until it has returned nS failed derivations,
then this produces an unbiased sample of Whynot(Q,D, t).
Note that, technically, there is no guarantee that the process
will ever terminate since it may repeatedly produce deriva-
tions that do not fulfill a predicate or derive existing an-
swers. Observe that, typically the amount of missing an-
swers is significantly larger than the number of answers, i.e.,
|Whynot(Q,D, t)| ≫ |A(Q,D, t)−Whynot(Q,D, t)|. As
a result, any randomly generated derivation is with high
probability in Whynot(Q,D, t). We will explain how to
deal with derivations that fail to fulfill predicates in Sec. 5.2.

Batch Sampling. A major shortcoming of the naive sam-
pling approach is that it requires us to evaluate queries
to test for every produced derivation d whether it derives
a missing answer (head(d) ̸∈ Q(D)) and to determine its
goal annotations by checking for each grounded goal R(c⃗)
or ¬R(c⃗) whether R(c⃗) ∈ D. It would be more efficient to
model sampling as a single batch computation that we can
outsource to a database system and that can be fused into
a single query with the other phases of the summarization
process to avoid unnecessary round-trips between our sys-
tem and the database. However, for batch sampling, we have
to choose upfront how many samples to create, but not all

such samples will end up being why-not provenance or fulfill
the rule’s predicates. To ensure with high probability that
the batch computation returns at least nS derivations from
Whynot(Q,D, t), we use a larger sample size nOS ≥ nS

such that the probability that the resulting sample contains
at least nS derivations from Whynot(Q,D, t) is higher than
a configurable threshold Psuccess (e.g., 99.9%). We refer to
this part of the process as over-sampling. We discuss how
to generate a query that computes a sample of size nOS in
Sec. 5.2 and, then, discuss how to determine nOS in Sec. 5.3.

5.2 Batch Sampling Using Queries
For simplicity, we limit the discussion to queries with a

single rule, e.g., the query rex from Fig. 4. We discuss
queries with multiple rules at the end of this section. The
query we generate to produce a sample of size nOS consists
of three steps: generating derivations, filtering derivations
of existing answers, determining goal annotations.

1. Generating Derivations. We first generate a query
that creates a random sample OS of nOS derivations (not
annotated) for which there exists an annotated version in
A(Q,D, t) (all annotated derivations that match headQ(t)).
Consider a single rule r withm literal goals, n variables, and
h head variables: r : Q(X) :− g1(X1), . . . , gm(Xm), ψ1(Y1),
. . . , ψk(Yl). Let Ri be the relation accessed by goal gi, i.e.,
gi(Xi) is either Ri(Xi) or ¬Ri(Xi). Let k be the number
of head variables bound by the p-tuple t from the question
Φ for which we are sampling. We use Z = Z1, . . . , Zu to
denote the u = n − k variables of r that are not bound by
t. Recall that, to only consider derivations matching t, we
unify the rule with t by binding variables in the rule to the
corresponding constants from t. We use rt to denote the
resulting unified rule. Note that we will describe our sum-
marization techniques using derivations and patterns for rt.
Patterns for r can be trivially reconstructed from the re-
sults of summarization by plugging in constants from t. To
generate derivations for such a query, we sample nOS values
for each unbound variable independently with replacement,
and, then, combine the resulting samples into a sample of
A(Q,D, t) modulo goal annotations. Predicates comparing
constants with variables, e.g., X < 4 in rtex , are applied be-
fore sampling to remove values from the domain of a variable
that cannot result in derivations fulfilling the predicates.
Similar to [20, 18], we assume that the user specifies the do-
main DA for each attribute A as a unary query that returns
DA (we provide reasonable defaults to avoid overloading the
user). We extend the relational algebra with two operators
to be able to express sampling. Operator Samplen returns
n samples which are chosen uniformly random with replace-
ment from the input of the operator. We use #A to de-
note an operator that creates an integer identifier for each
input row that is stored in a column A appended to the
schema of the operator’s input. For each variable X ∈ Z
with attrs(X) = {A1, . . . , Aj} (attrs(X) denotes the set of
attributes that variable X is bound to by the rule contain-
ing X), we create a query QX that unions the domains of
these attributes, then applies predicates that compare X
with constants, and then samples nOS values.

QX := #id(SamplenOS(σθX (ρX((DA1 ∪ . . . ∪ DAj ))))

Here, θX is a conjunction of all the predicates from rt that
compare X with a constant. The purpose of # is to allow
us to use natural join to “zip” the samples for the individual



variables into bindings for all variables of rt:

Qbind := σθjoin(QZ1 ▷◁ . . . ▷◁ QZu)

Here, θjoin is a conjunction of all predicates from rt that
compare two variables. Note that the selectivity of θjoin has
to be taken into account when computing nOS (discussed in
Sec. 5.3). Each tuple in the result of Qbind encodes the
bindings for one derivation d of a tuple t ⋞ t.

Example 4. Consider unified rule rtex from Fig. 4. As-
sume that DA = DB = ΠA(R) ∪ ΠB(R) and nOS = 3. Vari-
able X is bound to attribute A and Z is bound to both A and
B. Thus, we generate the following queries:

QX := #id(SamplenOS(σX<4(ρX(DA))))

QZ := #id(SamplenOS(ρZ(DA ∪ DB)))

Qbind := σtrue(QX ▷◁ QZ)

Evaluated over the example instance, this query may return:

QX

id X
1 1
2 2
3 2

QZ

id Z
1 4
2 2
3 4

Qbind

id X Z
1 1 4
2 2 2
3 2 4

2. Filtering Derivations of Existing Answers. We
now construct a query Qder, which checks for each deriva-
tion d ∈ OS for a tuple t ⋞ t whether t ̸∈ Q(D) and only
retain derivations passing this check. This is achieved by
anti-joining (▷) Qbind with Q which we restricted to tuples
matching t since only such tuples can be derived by Qbind.

Qder := Qbind ▷θder σθt(Q)

The query Qder uses condition θder which equates at-
tributes from Qbind that correspond to head variables of
rt with the corresponding attribute from Q and condition
θt that filters out derivations not matching t by equating
attributes with constants from t.

Example 5. From Qex in Fig. 4, we remove answers
where Y ̸= 4 (since tex binds Y = 4) and anti-join on X,
the only head variable of rtex , with Qbind from Ex. 4. The
resulting query and its result are shown below. Note that
tuple (1, 1, 4) was removed since it corresponds to a (failed)
derivation of the existing answer Qex(1, 4).

Qder := Qbind ▷X=X σY =4(Qex)

id X Z
2 2 2
3 2 4

3. Computing Goal Annotations. Next, we determine
goal annotations for each derivation to create a set of an-
notated derivations from Whynot(Q,D, t). Recall that a
positive (negative) grounded goal is successful if the corre-
sponding tuple exists (is missing). We can check this by
outer-joining the derivations with the relations from the
rule’s body. Based on the existence of a join partner, we
create boolean attributes storing gi for 1 ≤ i ≤ |body(r)| (F
is encoded as false). For a negated goal, we negate the result
of the conditional expression such that F is used if a join
partner exists. We construct query Qsample shown below to
associates derivations in Qder with the goal annotations ḡ.

Qsample := δ(ΠZ1,··· ,Zu,e1→g1,··· ,en→gm(Qgoals))

Qgoals :=Qder ▷◁θ1 ΠR1,1→h1(R1) . . . ▷◁θn ΠR1,1→hm(Rm)

Note that we use duplicate elimination to preserve set se-
mantics. In projection expressions, we use e → a to denote

projection on a scalar expression e whose result is stored
in attribute a. Here, the join condition θi equates the at-
tributes storing the values from Xi in rt with the corre-
sponding attributes from Ri. Attributes at positions that
are bound to constants in rt are equated with the constant.
The net effect is that a tuple from Qder corresponding to a
rule derivation d has a join partner in Ri iff the tuple corre-
sponding to the ith goal of d exists in D. The expression ei
used in the projection of Qsample then computes the boolean
indicator for goal gi as follows:

ei :=

{︄
if (isnull(hi)) then F else T if gi is positive

if (isnull(hi)) then T else F otherwise

Example 6. For our running example, we generate:

Qsample := δ(ΠX,Z,if (isnull(h1)) then F else T→g1,
if (isnull(h2)) then F else T→g2

(Qgoals))

Qgoals := Qder ▷◁X=A∧Z=B ΠA,B,1→h1(R)

▷◁Z=A∧B=4 ΠA,B,1→h2(R)

Evaluating this query, we get the result shown below.

Qsample

id X Z h1 h2

2 2 2 F T
3 2 4 T F

The first tuple corresponds to the derivation rtex(2, 2) −
(F , T ) for which the first goal fails since R(2, 2) does not ex-
ist in R while the second goal succeeds because R(2, 4) exists.
Similarly, the second tuple corresponds to rtex(2, 4)− (T , F )
for which the first goal succeeds since R(2, 4) exists while the
second goal fails because R(4, 4) does not exist.

Queries With Multiple Rules. For queries with multiple
rules, we determine nOS separately for each rule (recall that
we consider UCQ¬< queries where every rule has the same
head predicate) and create a separate query for each rule
as described above. Patterns are also generated separately
for each rule. In the final step, we then select the top-k
summary from the union of the sets of patterns.

Complexity. The runtime of our algorithm is linear in nOS

and |D| which significantly improves over the naive algo-
rithm which is in O(|D|n).
Implementation. Some DBMS such as Oracle and Post-
gres support a sample operator out of the box which we can
use to implement the Sample operator introduced above.
However, these implementations of a sampling operator do
not support sampling with replacement out of the box. We
can achieve decent performance for sampling with replace-
ment using a set-returning function that takes as input the
result of applying the built-in sampling operator to generate
a sample of size nOS, caches this sample, and then samples
nOS times from the cached sample with replacement. The
#A operator can be implemented in SQL using ROW_NUMBER().
The expressions if (θ) then e1 else e2 and isnull() can be
expressed in SQL using CASE WHEN and IS NULL, respectively.

5.3 Determining Over-sampling Size
We now discuss how to choose nOS, the size of the sample

OS produced by query Qbind, such that the probability that
OS contains at least nS derivations from Whynot(Q,D, t)
is higher than a threshold Psuccess under the assumption
that the sampling method we introduced above samples uni-
formly random from A(Q,D, t). We, then, prove that our



sampling method returns a uniform random sample. First,
consider the probability pprov that a derivation chosen uni-
formly random fromA(Q,D, t) is inWhynot(Q,D, t) which
is equal to the faction of derivations from A(Q,D, t) that are
in Whynot(Q,D, t):

pprov =
|Whynot(Q,D, t)|

|A(Q,D, t)|
|A(Q,D, t)| can be computed from Q, t, and the attribute

domains as explained in Sec. 2.2. For instance, consider D =
{1, 2, 3, 4, 5, 6} as the universal domain and rule rtex from
our running example, but without the conditional predicate.
Then, there are |D|n = 62 possible derivations of this rule
because neither variable X nor Z are not bound by tex and
D has 6 values. To determine |Whynot(Q,D, t)|, we need
to know how many derivations in A(Q,D, t) correspond to
missing tuples matching t. Since in most cases the number
of missing answers is significantly larger than the number of
existing tuples, it is more effective to compute the number of
(successful and/or failed) derivations of t ∈ Q(D) with t ⋞ t,
i.e., |{t | t ∈ Q(D) ∧ t ⋞ t}|. This gives us the probability
pnotProv that a derivation is not in Whynot(Q,D, t) and
we get: pprov = 1− pnotProv.

Next, consider a random variable X that is the number
of derivations from Whynot(Q,D, t) in OS. We want to
compute the probability p(X ≥ nS). For that, consider
first p(X = i), the probability that the sample OS we pro-
duce contains exactly i derivations from Whynot(Q,D, t).
We can apply standard results from statistics for computing
p(X = i), i.e., out of a sequence of nOS picks with probabil-
ity pprov we get i successes. The probability to get exactly i
successes out of n picks is

(︁
n
i

)︁
· pprovi · (1− pprov)

n−i based
on the Binomial Distribution. For i ̸= j, the events X = i
and X = j are disjoint (it is impossible to have both exactly
i and j derivations from Whynot(Q,D, t) in OS). Thus,
p(X ≥ nS) is

∑︁
p(X = i) for i ∈ {nS, . . . , nOS}:

p(X ≥ nS) =

nOS∑︂
i=nS

(︄
nOS

i

)︄
· pprovi · (1− pprov)

nOS−i

Given pprov, nS, and Psuccess, we can compute the sample
size nOS such that p(X ≥ nS) is larger than Psuccess ([1, 29]
presents an algorithm for finding the minimum such nOS).

Handling Predicates. Recall that we apply predicates
that compare a variable with a constant before creating a
sample for this variable. Thus, we do not need to consider
these predicates when determining nOS. Predicates com-
paring variables with variables are applied after the step
of creating derivations. We estimate the selectivity of such
predicates using standard techniques [15] to estimate how
many derivations will be filtered out and, then, increase nOS

to compensate for this, e.g., for a predicate with 0.5 selec-
tivity we would double nOS.

5.4 Analysis of Sampling Bias
We now formally analyze if our approach creates a uni-

form sample of Whynot(Q,D, t). We demonstrate this by
analyzing the probability p(d ∈ S) for an arbitrary deriva-
tion d ∈ Whynot(Q,D, t) to be in the sample S. If our
approach is unbiased, then this probability should be inde-
pendent of which d is chosen and for d′ ̸= d the events d ∈ S
and d′ ∈ S should be independent.

Theorem 1. Given derivations d, d′ ∈ Whynot(Q,D, t)
and sample sizes nS and nOS, p(d ∈ S) = c where c is a

constant that is independent of the choice of d. Furthermore,
the events d ∈ S and d′ ∈ S are independent of each other.

Proof. We present the proof in [21].

6. GENERATING PATTERN CANDIDATES
We now explain the candidate generation step of our sum-

marization approach (phase 2 in Fig. 3). Consider a prove-
nance question (PQ) Φ = (t,Whynot) for a query Q. For
any rule r of Q, let n be the number of unbound variables,
i.e., |vars(rt)| where rt is the unified rule for r and t, and m
be the number of goals in r. The number of possible patterns
for rt is in O((|D|+ n)n · 2m), because for each variable of
rt we can choose either a placeholder or a value from D and
for each goal we have to pick one of two possible annotations
(F or T ). Note that the names of placeholders are irrelevant
to the semantics of a pattern, e.g., patterns p = (A, 3) and
p′ = (B, 3) are equivalent (matching the same derivations).
That is, we only have to decide which arguments of a pat-
tern are placeholders and which arguments share the same
placeholder. Thus, it is sufficient to only consider n distinct
placeholders Pi (where 1 ≤ i ≤ n) when creating patterns
for a unified rule rt with n variables.

Example 7. Consider rule rtex from Fig. 4. Let D =
{1, 2, 3, 4, 5, 6} and P = {P1, P2}. Let us for now ignore goal
annotations. Note that, taking the predicate X < 4 into ac-
count, any pattern where X ≥ 4 cannot possibly match any
derivations for this rules and, thus, we only have to con-
sider patterns where X is bound to a constant less than 4 or
a placeholder. The set of viable patterns is:

rtex(P1, P2), rtex(P1, 1), . . . , rtex(P1, 6), rtex(1, P2), . . . , rtex(6, P2),

rtex(1, 1), . . . , rtex(1, 6), . . . rtex(3, 1), . . . , rtex(3, 6)

This set contains 31 elements. Considering goal annotations
(F , F ), (F , T ), and (T , F ), we get 31 · 3 = 93 patterns.

Given the O((|D|+ n)n · 2m) complexity, it is not feasible
to enumerate all possible patterns. Instead, we adapt the
Lowest Common Ancestor (LCA) method [8, 9] for our pur-
pose which generates a number of pattern candidates from
the derivations in a sample S that is at most quadratic in nS.
Thus, this approach sacrifices completeness to achieve better
performance. Given a set of derivations (tuples in the work
from [8, 9]), the LCA method computes the cross-product
of this set with itself and generates candidate explanations
by generalizing each such pair. The rationale is that each
pattern generated in this fashion will at least match two
derivations (or one derivation for the special case where a
derivation is paired with itself). In our adaptation, we match
derivations on the goal annotations such that only deriva-
tions with the same success/failure status of goals are paired.
For each pair of derivations d1 = (a1, . . . , an)− (ḡ) and d2 =
(b1, . . . , bn)−(ḡ), we generate a pattern p = (c1, . . . , cn)−(ḡ).
We determine each element ci in p as follows. If ai = bi then
ci = ai. That is, constants on which d1 and d2 agree are
retained. Otherwise, ci is a fresh placeholder.

Example 8. Reconsider the unified rule rtex and instance
R from Fig. 4. Two example annotated rule derivations are
d1 = rtex(2, 1) − (F , F ) and d2 = rtex(2, 5) − (F , F ). LCA
generate a pattern p = rtex(2, Z) − (F , F ) to generalize d1
and d2 because d1[1] = d2[1] = 2 (and, thus, this constant is
retained) and p[2] = Z since d1[2] = 1 ̸= 5 = d2[2].



We apply LCA to the sample S created using Qsample

from Sec. 5.2. Using LCA, we avoid generating exponen-
tially many patterns and, thus, improve the runtime of pat-
tern generation fromO(|D|n) toO(nS

2) where typically nS ≪
|D|. Furthermore, this optimization reduces the input size
for the final stages of the summarization process leading to
additional performance improvements. Even though LCA
is only a heuristic, we demonstrate experimentally in Sec. 9
that it performs well in practice.

Implementation. We implement the LCA method as a
query Qlca joining the query Qsample (the query producing
S) with itself on a condition θlca :=

⋀︁m
i=0 gi = gi where m

is the number of goals of the rule r of Q (recall that we
create patterns for each rule of Q independently and merge
in the final step). Patterns are generated using a projection
on an list of expressions Alca, where the ith argument of a
pattern is determined as if (Xi = Xi) then Xi else NULL.
Note that the LCA method never generates patterns where
the same placeholder appears more than once. Thus, it is
sufficient to encode placeholders as NULL values.

Qlca := δ(ΠAlca(Qsample ▷◁θlca Qsample))

The query generated for our running example is:

Qlca := δ(ΠeX→X,eZ→Z(Qsample ▷◁(g1=g1)∧(g2=g2) Qsample)

eX := if (X = X) then X else NULL

eZ := if (Z = Z) then Z else NULL

7. ESTIMATING COMPLETENESS
To generate a top-k summary in the next step, we need

to calculate the informativeness (Def. 8) and completeness
(Def. 7) quality metrics for sets of patterns. Informativeness
can be computed from patterns without accessing the data.
Recall that completeness is computed as the fraction of pro-

venance matched by a pattern: cp(p) = |M(Q,D,p,Φ)|
|Prov(Φ)| . Since

we can materialize neither |M(Q,D, p,Φ)| nor |Prov(Φ)| for
the why-not provenance, we have to estimate their sizes. In
this section, we focus on how to estimate the completeness
of individual patterns. How to compute the completeness
metric for sets of patterns will be discussed in Sec. 8.

To determine whether a derivation d ∈ Prov(Φ) with goal
annotations g1̄ matches a pattern p with goal annotations
g2̄ that is in M(Q,D, p,Φ), we have to check that g1̄ = g2̄
and a valuation exists that maps p to d. Then, we count the
number of such derivations to compute |M(Q,D, p,Φ)|. The
existence of a valuation can be checked in linear time in the
number of arguments of p by fixing a placeholder order and,
then, assigning to each placeholder in p the corresponding
constant in d if a unique such constant exists. The valuation
fails if p and d end up having two different constants at the
same position.

Example 9. Continuing with Ex. 8, we compute com-
pleteness of the pattern p = rtex(2, Z)− (F , F ). For sake of
the example, assume that Prov(Φex) =:

d1 = rtex(2, 1)− (F , F ) d2 = rtex(2, 2)− (F , T )

d3 = rtex(2, 3)− (T , F ) d4 = rtex(2, 4)− (T , F )

d5 = rtex(2, 5)− (F , F ) d6 = rtex(2, 6)− (F , F )

The completeness of p is cp(p) = 3
6
because p matches all 3

derivations (d1, d5, and d6) for which both goals have failed
by assigning Z to 1, 5, and 6.

To estimate the completeness of a pattern p, we compute
the number of matches of p with derivations from the sam-
ple S produced by Qsample as discussed in Sec. 5. As long
as S is an unbiased sample of Prov(Φ), then the fraction of
derivations from S matching the pattern is an unbiased es-
timate of the completeness of the pattern. Continuing with
Ex. 9, assume that we created a sample S = {d1, d3, d4, d5}.
Estimating the completeness of pattern p based on S, we get
cp(p) ≃ 1

2
.

Implementation. We generate a query Qmatch which joins
the query Qlca generating pattern candidates with Qsample,
the query generating the sample derivations. Let rt be the
rule for which we are generating patterns and A be the result
attributes of Qlca. We count the number of matches per
pattern by grouping on A:

Qmatch := γA,count(∗)(Qlca ▷◁θmatch Qsample)

Recall that we encode placeholders as NULL values. Con-
dition θmatch is a conjunction of conditions, one for each
argument X of the pattern/derivation: X = X ∨ isnull(X).
Since the number of candidates produced by LCA is at most
nS

2, matching is in O(nS
2 · nS) = O(nS

3). For our running
example, we would create the following query:

Qmatch := γX,Z,g1,g2,count(∗)(Qlca ▷◁θmatch Qsample)

θmatch := (X = X ∨ isnull(X)) ∧ (Z = Z ∨ isnull(Z))

8. COMPUTING TOP-K SUMMARIES
We now explain how to compute a top-k provenance sum-

mary for a provenance question Φ (phase 4 in Fig. 3). This
is the only step that is evaluated on the client-side. Its input
is the set of patterns (denoted as Patlca) with completeness
estimates returned by evaluating query Qmatch (Sec. 7). We
have to find the set S ⊆ Patlca of size k that maximizes
sc(S). A brute force solution would enumerate all such
subsets, compute their scores (which requires us to com-
pute the union of the matches for each pattern in the set to
compute completeness), and return the one with the high-

est score. However, the number of candidates is
(︁|Patlca|

k

)︁
and this would require us to evaluate a query to compute
matches for each candidate. Our solution uses lower and up-
per bounds on the completeness of patterns that can be com-
puted based on the patterns and their completeness alone
to avoid running additional queries. Furthermore, we use
a heuristic best-first search method to incrementally build
candidate sets guiding the search using these bounds.

8.1 Pattern Generalization and Disjointness
In general, the exact completeness of a set of patterns can-

not be directly computed based on the completeness of the
patterns of the set, because the sets of derivations match-
ing two patterns may overlap. We present two conditions
that allow us to determine in some cases whether the match
sets of two patterns are disjoint or one is contained in the
other. We say a pattern p2 generalizes a pattern p1 writ-
ten as p1 ⪯p p2 if ∀i : p1[i] = p2[i] ∨ p2[i] ∈ P (infinite
set of placeholders), and they have the same goal annota-
tions. For instance, (X,Y, a)− (F , F ) generalizes (X, b, a)−
(F , F ). From Def. 5, it immediately follows that if p1 ⪯p p2
then M(Q,D, p1,Φ) ⊆ M(Q,D, p2,Φ) since any deriva-
tion matching p1 also matches p2 and, thus, cp({p1, p2}) =
cp(p2). We say pattern p1 and p2 are disjoint written as



p1⊥pp2 if (i) they are from different rules, (ii) they do not
share the same goal annotations, or (iii) there exists an i
such that p1[i] = c1 ̸= c2 = p2[i], i.e., the patterns have a
different constant at the same position i. If p1⊥pp2, then
M(Q,D, p1,Φ) ∩ M(Q,D, p2,Φ) = ∅ and, thus, we have
cp({p1, p2}) = cp(p1) + cp(p2). Note that for any S, cp(S)
is trivially bound from below by maxp∈S cp(p) (making the
worst-case assumption that all patterns fully overlap) and by
min(1,

∑︁
p∈S cp(p)) from above (completeness is maximized

if there is no overlap). Using generalization and disjoint-
ness, we can refine these bounds. Note that generalization
is transitive. To use generalization to find tighter upper
bounds on completeness for a pattern set S, we compute
the set Sub = {p | p ∈ S ∧ ¬∃p′ ∈ S : p ⪯p p

′}. Any pattern
not in Sub is generalized by at least one pattern from Sub.
For disjointness, if we have a set of patterns S for which
patterns are pairwise disjoint, then cp(S) =

∑︁
p∈S cp(p).

Based on this observation, we find the subset Slb of pairwise
disjoint patterns from S that maximizes completeness, i.e.,
Slb = argmaxS′⊆S∧∀p̸=p′∈S′:p⊥pp′

∑︁
p∈S′ cp(p).

3 We use Slb

and Sub to define an lower bound cp(S) and upper-bound
cp(S) on the completeness of a pattern set S:

cp(S) :=
∑︂

p∈Slb

cp(p) cp(S) :=
∑︂

p∈Sub

cp(p)

Example 10. Consider the following patterns for rtex :
p = (2, Z)−(F , F ), p′ = (3, Z)−(F , F ), p′′ = (2, 1)−(F , F ).
Assume that cp(p) = 0.44, cp(p′) = 0.55, and cp(p′′) = 0.1.
Consider S = {p, p′, p′′} and observe that p⊥pp

′, p′⊥pp
′′,

and p′′ ⪯p p. Thus, Sub = {p, p′} (the pattern p′′ is gener-
alized by p) and Slb = {p, p′} (while also p′⊥pp

′′ holds, we
have cp(p) + cp(p′) > cp(p′) + cp(p′′)). We get: cp(S) =

cp(p)+cp(p′) = 0.99 and cp(S) = cp(p)+cp(p′) = 0.99 from
which follows that cp(S) = 0.99. Note that, without using
generalization and disjointness, we would have to settle for
a lower bound of maxp∈S cp(p) = 0.55 and upper bound of
min(1,

∑︁
p∈S cp(p)) = 1.

8.2 Computing the Top-K Summary
We apply a best-first search approach to compute a ap-

proximate top-k summary given a set of patterns Patlca.
Our approach maintains a priority queue of candidate sets
sorted on a lower bound sc for the score of candidate sets
that we compute based on the completeness bound cp intro-
duced above. We also maintain an upper bound sc. For a set
S of size k, we can compute info(S) exactly. For incomplete
candidates (size less than k), we bound the informativeness
and completeness of any extension of the candidate into a
set of size k using worst-case/best-case assumptions. For
example, to bound completeness for an incomplete candi-
date S from above, we assume that the remaining patterns
will not overlap with any pattern from S and have maximal
completeness (maxp∈Patlca cp(p)). We initialize the priority
queue with all singleton subset of Patlca and, then, repeat-
ably take the incomplete candidate set with the highest sc
and extend it by one pattern from Patlca in all possible
ways and insert these new candidates into the queue. The
algorithm terminates when a complete candidate Sbest is
produced for which sc is higher than the highest sc value

3Note that this is the intractable weighted maximal clique
problem. For reasonably small k, we can solve the problem
exactly and otherwise apply a greedy heuristic.

r1 : InvalidD(C) :− LICENSE(I, B,G,C, T, d),¬VALID(I)

r2 : Fsenior(C) :− LICENSE(I, B, f, C, T, L), VALID(I), B < 1953

r3 : CasualWatch(T,E,N) :− MOVIES(I, T, Y,R, P,B, V ), GENRES(I, E),

PRODCOMPANY(I, C), COMPANY(C,N), RATINGS(U, I,G, S),

¬GENRES(I, thriller), R < 100, G >= 4

r4 : Players(A) :− MOVIES(I, T, Y,R, P,B, V ), CASTS(I, C,H,A,G),

GENRES(I, romance), RATINGS(U, I,N, S), Y > 1999, N >= 4

r
′
4 : Players(A) :− MOVIES(I, T, Y,R, P,B, V ), CASTS(I, C,H,A,G),

GENRES(I, comedy), KEYWORDS(I, love),

RATINGS(U, I,N, S), Y > 1999, N >= 4

r
′′
4 : Players(A) :− MOVIES(I, T, Y,R, P,B, V ), CASTS(I, C,H,A,G),

GENRES(I, drama), KEYWORDS(I, relationship),

RATINGS(U, I,N, S), Y > 1999, N >= 4

Figure 5: Queries used in the experiments (excerpt)

of all candidates we have produced so far (efficiently main-
tained using a max-heap sorted on sc). In this case, we re-
turn Sbest since it is guaranteed to have the highest score (of
course completeness is only an estimation) even though we
do not know the exact value. The algorithm also terminates
when all candidates have been produced, but no Sbest has
been found. In this case, we apply the following heuristic:
we return the set with the highest average ((sc+ sc)/2).

9. EXPERIMENTS
We evaluate (i) the performance of computing summaries

and (ii) the quality of summaries produced by our technique.

Experimental Setup. All experiments were executed on
a machine with 2 x 3.3Ghz AMD Opteron CPUs (12 cores)
and 128GB RAM running Oracle Linux 6.4. We use a com-
mercial DBMS (name omitted due to licensing restrictions).

Datasets. We use two real-world datasets: (i) the New
York State (NYS) license dataset4 (∼ 16M tuples), and (ii)
a movie dataset5 (∼ 26M tuples). For each dataset, we
created several subsets; Rx denotes a subset of R with x rows.

Queries. Fig. 5 shows the queries used in the experiments.
For the license dataset, we use InvalidD (r1) which returns
cities with invalid driver’s licenses and Fsenior (r2) which
returns cities with valid licenses held by female seniors. For
the movie dataset, CasualWatch (r3) returns movies with
their genres and production companies if their runtime is
less than 100 minutes and they have received high ratings
(G ≥ 4). Players (r4) computes actresses/actors who have
been successful (rating higher than 4) in a romantic comedy
after 1999. We report additional experiments in [21].

9.1 Performance
We consider samples of varying size (Sx denotes a sample

with x rows). Furthermore, Full denotes using the full pro-
venance as input for summarization. Missing bars indicate
timed-out experiments (30 minute default timeout).

Dataset Size. We measure the runtime of our approach
for computing top-3 summaries varying dataset and sample
size over the queries from Fig. 5. On the x-axis of plots, we
show both the provenance size (#derivations) and dataset

4
https://data.ny.gov/Transportation/Driver-License-

Permit-and-Non-Driver-Identificatio/a4s2-d9tt
5
https://www.kaggle.com/rounakbanik/the-movies-dataset

https://data.ny.gov/Transportation/Driver-License-Permit-and-Non-Driver-Identificatio/a4s2-d9tt
https://data.ny.gov/Transportation/Driver-License-Permit-and-Non-Driver-Identificatio/a4s2-d9tt
https://www.kaggle.com/rounakbanik/the-movies-dataset
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Figure 6: Measuring performance of generating summaries.
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Figure 7: Runtime for computing top-k summaries when
patterns are provided as input.

size (#rows). In Fig. 6a and 6b, we show the runtimes of the
individual steps of our algorithm (sampling, pattern gener-
ation, computation of quality metrics, and computing the
top-3 summary) for query r1 when using a provenance ques-
tion that binds C to new york (why) and swanton (why-not),
respectively. Observe that, even for the largest dataset, we
are able to generate summaries within reasonable time if
using sampling. Overall, pattern generation dominates the
runtime for why provenance. From now on, we focus on why-
not provenance. For queries r3 (many joins with a negation)
and the union of r4, r

′
4, and r

′′
4 , the runtimes are shown in

Fig. 6c and 6d, respectively. For why-not provenance, sam-
pling dominates the runtime for smaller sample sizes while
pattern generation is dominant for S10K. FULL does not fin-
ish even for the smallest license dataset (1K). We observe
the same trend as for r1 even though why-not provenance is
significantly larger (up to 1052 derivations).

Generating Top-k summaries. Fig. 7 shows the runtime
of computing the top-k summary over the patterns produced
by the first three steps (Sec. 5 through Sec. 7). We selected
sets of patterns from different queries and sample sizes to
get a roughly exponential progression of the number of pat-
terns. We vary k from 1 to 10. The runtime is roughly
linear in k and in the number of patterns. Note that this
is significantly better than the theoretical worst-case of our
algorithm (O(nk) where n is the number of patterns). The
reason is that typically a large number of patterns is clearly
inferior and will be pruned by our algorithm early on.
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Figure 8: Varying #joins and #variables for why-not
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Figure 9: Quality metric error caused by sampling.

Query Complexity and Structure. In this experiment,
we vary the query complexity in terms of number of joins
and variables. We randomly generated synthetic queries
whose join graph is either a star or a chain. We compute the
top-3 patterns for why-not provenance. In Fig. 8a and 8b
we vary the number of joins. The results confirm that our
approach scales to very large provenance sizes (more than
1060 derivations) regardless of join types. To evaluate the
impact of the number of variables on performance, we use
chain queries with 8-way joins and star queries with 5-way
joins. We vary the number of variables bound to constants
by the query from 1 to 16 (out of 25 variables). The head
and join variables are never bound. The results shown in
Fig. 8c and 8d confirm that our approach works well, even
for queries with up to 24 unbound variables (provenance
sizes of up to ∼ 1080).

9.2 Pattern Quality
We now measure the difference between the quality met-

rics approximated using sampling and the exact values when
using full provenance. For why-not provenance where it is
not feasible to compute full provenance, we compare against
the largest sample size (S10k) instead.

Quality Metric Error. Fig. 9 shows the relative quality
metric error for query r1 over InvalidD100K varying sample
size and k. The error is at most∼ 2% and typically decreases
in k. The results for other queries are presented in [21].

Summary Completeness. Fig. 10 shows the completeness
scores of summaries returned by our approach for queries
from Fig. 5. We measure this by calculating the upper bound
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Figure 10: Completeness - varying k.
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Figure 11: Performance comparisons for why-not

of completeness of the set of top-k patterns for each query as
described in Sec. 8. For k = 10, we achieve 100% complete-
ness for why provenance and ∼ 75% completeness for why-
not except for r2 (Fig. 10b) for which the relatively large
number of distinct values for the domains of unbound vari-
ables prevents us from achieving better completeness scores.

9.3 Comparisons with other systems
We now compare our system against [12] (all-derivations)

and a single-derivation approach implemented in our system.

Artemis. The authors of [12] made their system Artemis

available as a virtual machine (VM). We ran both systems
in this VM (4GB memory) and used Postgres as a backend
since it is supported by both systems. We used a query from
the VM installation that computes the names of witnesses
(N) who saw a person with a particular cloth and hair color
(C and H) perpetrating a crime of a particular type T .

CrimeDesc(T,N,C,H) :− CRIME(T, S), WITNESS(N,S),

SAWPERSON(N,H,C), PERSON(M,H,C), S > 97

We use the provenance question provided by Artemis which
bounds all head variables. The original dataset is CRIME1.4K
which we scaled up to CRIME22K. We use ∼ 10% as the sam-
ple size (e.g., S2K for CRIME22K) and compute top-5 sum-
maries. The result of this comparison is shown in Fig. 11a.
Our system (PUG-Summ) outperforms Artemis by ∼ 2 orders
of magnitude for the two smallest datasets for which Artemis
did not time out. Artemis returned the most general pat-
tern (all placeholders) as the top-1 explanation:

p = (tresp., aarongolden,midnightblue, lavender, S,M), S > 97

Unlike Artemis, PUG returned a summary that contains a
pattern which covers ∼ 50% of the provenance:

p′ = (tresp., aarongolden,midnightblue, lavender, 98,M)

Single Derivation Approach. We implemented a simple
single-derivation approach (SingleDer) in our system by ap-
plying nS = 1. That is, the explanation is computed based
on only one value from D for each unbound variable. We use

query r1 from Fig. 5, sample size S1K, and compute a top-
3 summary. As shown in Fig. 11b, SingleDer outperforms
PUG-Summ about an order of magnitude for small datasets.
The gap between the two approaches is less significant for
larger datasets (more than 1M tuples).

10. RELATED WORK
Compact Representation of Provenance. The need
for compressing provenance to reduce its size has been rec-
ognized early-on, e.g., [3, 7, 23]. However, the compressed
representations produced by these approaches are often not
semantically meaningful to users. More closely related to
our work are techniques for generating higher-level explana-
tions for binary outcomes [8, 30], missing answers [27], or
query results [25, 31, 2] as well as methods for summarizing
data or general annotations which may or may not encode
provenance information [34]. Specifically, like [8, 30, 25,
31] we use patterns with placeholders. Some approaches use
ontologies [27, 30] or logical constraints [25, 8, 31] to de-
rive semantically meaningful and compact representations
of a set of tuples. The use of constraints to compactly rep-
resent large or even infinite database instances has a long
tradition [14, 17] and these techniques have been adopted
to compactly explain missing answers [12, 24]. However,
the compactness of these representations comes at the cost
of computational intractability.

Missing Answers. The missing answer problem was first
stated for query-based explanations (which parts of the query
are responsible for the failure to derive the missing answer)
in the seminal paper by Chapman et al. [6]. Most follow-
up work [4, 5, 6, 28] is based on this notion. Huang et
al. [13] first introduced an instance-based approach, i.e.,
which existing and missing input tuples caused the miss-
ing answer [12, 13, 18, 20]). Since then, several techniques
have been developed to exclude spurious explanations and
to support larger classes of queries [12]. As mentioned be-
fore, approaches for instance-based explanations use either
the all-derivations (giving up performance) or the single-
derivation approach (giving up completeness). In contrast,
using summarizes we guarantee performance by compactly
representing large amounts of provenance without forsaking
completeness. Artemis [12] uses c-tables to compactly rep-
resent sets of missing answers. However, this comes at the
cost of additional computational complexity.

11. CONCLUSIONS
We have presented an approach for efficiently computing

summaries of why and why-not provenance. Our approach
uses sampling to generate summaries that are guaranteed
to be concise while balancing completeness (the fraction of
provenance covered) and informativeness (new information
provided by the summary). Thus, we overcome a severe
limitation of prior work which sacrifices either completeness
or performance. We demonstrate experimentally that our
approach efficiently produces meaningful summaries of pro-
venance graphs with up to 1080 derivations. In future work,
we plan to investigate how to utilize additional information,
e.g., integrity constraints, in the summarization process.
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