
1

ICedge: When Edge Computing Meets
Information-Centric Networking

Spyridon Mastorakis, Abderrahmen Mtibaa, Jonathan Lee, and Satyajayant Misra

Abstract—In today’s era of explosion of Internet of Things
(IoT) and end-user devices and their data volume, emanating at
the network’s edge, the network should be more in-tune with
meeting the needs of these demanding edge computing applica-
tions. To this end, we design and prototype Information-Centric
edge (ICedge), a general-purpose networking framework that
streamlines service invocation and improves reuse of redundant
computation at the edge. ICedge runs on top of Named-Data
Networking, a realization of the Information-Centric Networking
vision, and handles the “low-level” network communication on
behalf of applications. ICedge features a fully distributed design
that: (i) enables users to get seamlessly on-boarded onto an edge
network, (ii) delivers application invoked tasks to edge nodes for
execution in a timely manner, and (iii) offers naming abstractions
and network-based mechanisms to enable (partial or full) reuse of
the results of already executed tasks among users, which we call
“compute reuse”, resulting in lower task completion times and
efficient use of edge computing resources. Our simulation and
testbed deployment results demonstrate that ICedge can achieve
up to 50× lower task completion times leveraging its network-
based compute reuse mechanism compared to cases, where reuse
is not available.

I. INTRODUCTION

The currently underway Internet of Things (IoT) revolution
and the significant growth of mobile end-user devices is
resulting in a significant increase in the number of devices,
and correspondingly significant growth in data volumes and
computation needs at the network edge. Most of these edge
devices will require high-bandwidth and low-latency remote
processing of the data they generate in order to take real-
time actions. To this end, the existing cloud computing model
has been proven to be inadequate [33]. The future calls for
networks with pervasive IoT device deployments (e.g., smart
cities, autonomous vehicles, smart homes, smart grid, aug-
mented/virtual reality) powered by edge computing services
that bring computation from the cloud closer to users [31].
The market share for edge computing has shown constant
growth, with a predicted annual growth rate of 27% until
2023 to more than $9 Billion [20]. New applications, such as
augmented/virtual reality and interactive games, with increas-
ingly larger amounts of generated data and extremely low-
latency communication requirements, pose new challenges for

Spyridon Mastorakis is with the University of Nebraska, Omaha (email:
smastorakis@unomaha.edu).

Abderrahmen Mtibaa is with the University of Missouri-St. Louis (email:
amtibaa@umsl.edu).

Jonathan Lee is with Duke University (email: jonathan.h.lee@duke.edu).
Satyajayant Misra is with the New Mexico State University (email:

misra@cs.nmsu.edu).
Copyright c© 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

the design and instrumentation of the network infrastructure,
even with edge computing [33].

In edge computing research, advancements thus far have
focused on application-related problems, such as task schedul-
ing [31], segmentation [5], [6], and energy consumption [28],
[24]. These advancements are the driving force behind edge
computing. In this paper, we look at another facet of the
problem. We “shed light” on the networking aspects of edge
computing, investigating whether the underlying network and
the functions it offers can enhance the performance of edge
computing applications. We argue that the network architecture
itself, as well as networking frameworks, are vital enablers of
edge computing and their design ought to be revisited in the
context of the varied needs of edge applications.

In line with this assertion, and to enable applications to
take advantage of edge computing resources, for the invocation
and execution of computational services1 (e.g., image or video
annotation, map navigation) offered by Compute Nodes (CNs)
at the edge (i.e., edge servers), we present Information-Centric
edge (ICedge). ICedge is a network-based edge computing
framework designed to handle the “low-level” communication
details on behalf of applications. ICedge interacts with the
underlying network to ensure that: (i) users can seamlessly
connect to an edge network through any operational CN
and discover available compute resources/services, (ii) user-
invoked tasks are distributed to CNs that have adequate
resources for their execution, and (iii) results of previous
computations are reused among multiple users to minimize
execution/completion time. At the same time, ICedge features
a fully distributed and general-purpose design, which can be
used by any edge computing application.

ICedge runs on top of the Named-Data Networking (NDN)
architecture [37], a popular realization of the Information-
Centric Networking (ICN) paradigm [36]. We argue that edge
computing is inherently service-centric; a user, seeking some
service from the edge network, can obtain it from any of the
many CNs offering the service [25]. To this end, the NDN
architecture (and the ICN paradigm in general) inherently
matches the objective of edge applications with the use of
application-defined naming at the network layer.

To deliver its functionality and serve edge computing ap-
plication needs as a generic network-based edge framework,
ICedge needs to overcome the following challenges:
• How to make an edge network, privy to minimal network

configuration information, aware of necessary information

1In the rest of this paper, we use the terms “services” and “tasks”
interchangeably to refer to the users’ requests for computation in an edge
network.

mailto:smastorakis@unomaha.edu
mailto:amtibaa@umsl.edu
mailto:jonathan.h.lee@duke.edu
mailto:misra@cs.nmsu.edu
mailto:pubs-permissions@ieee.org

2

(e.g., edge service utilization) so that application requests
can be delivered to the appropriate CN(s) (among all the
available CNs) offering a service, in a truly distributed
manner?

• How to help the network adapt to the highly dynamic
conditions of an edge ecosystem (e.g., highly variable rates
of user requests, CN load, and/or CN failures)?

• How to offer distributed network-based mechanisms to reuse
the results of previously executed computational tasks to
satisfy new, reusable user requests?

Contributions: ICedge is a fully distributed framework that
provides mechanisms for: (i) seamless user on-boarding onto
an edge network, allowing them to discover the offered
services (Section V), (ii) dynamic “learning” and building
of network paths to the CNs that offer each service (Sec-
tion VI-C), and (iii) adaptive forwarding of service requests
to CNs based on the current network conditions (e.g., CN
load, latency, energy consumption) (Section VI-D). To the
best of our knowledge, ICedge is the first network-based
framework that offers named-based compute reuse abstractions
to applications in a fully distributed manner (Section VII).
Finally, we implement an ICedge prototype, which we evaluate
through simulations (Section VIII) and testbed deployment
of a real-time face detection application (Section IX). Our
evaluation results demonstrate that ICedge achieves up to
50× lower task completion times through its network-based
compute reuse mechanism compared to cases of no reuse.
Compared to an IP-based solution consisting of one or more
task dispatchers, ICedge achieves 1.27 − 2.32× lower over-
heads with 1.06− 1.33× lower task completion times.

Section II presents the motivational examples for our work.
Section III presents the background and related work in the
area. Section IV presents the system model and assump-
tions. Section V presents the distributed service discovery,
while Section VI details the network-aware service invocation
mechanism. Section VII details the mechanisms for compute
reuse. Section VIII presents our simulation based evaluation of
ICedge and Section IX presents results from an experimental
proof-of-concept deployment. Section X concludes our paper.

II. MOTIVATION

We motivate our work by discussing how a network-based
edge framework, such as ICedge, could serve the needs of edge
computing applications and enhance user quality of experience
(QoE).

Let us consider a scenario, where visitors of the Louvre
museum would like to see as many exhibits as possible. For
a given painting, say the Mona Lisa by Leonardo da Vinci,
visitors take pictures of the painting using a smartphone (edge)
application in order to learn more about it. In such a scenario,
several visitors will be requesting similar computational tasks,
in the sense that they may take pictures of the Mona Lisa from
different angles or with different shades and ask for similar
information, such as the history of the painting.

The Louvre counts over 10 M visitors annually [1], which
roughly translates to 28 K visitors daily. Even if only half of
the visitors in a day request further information via a picture of

the of Mona Lisa, 14 K requests for similar information will be
re-executed daily if there is no mechanism to exploit reuse of
previously executed tasks. This number balloons if we consider
that the Louvre contains more than 410 K exhibits. Assuming
that visitors visit on average 20% of the exhibits in a given
day, the number of tasks (i.e., requests for exhibit information)
may exceed one billion every day, which represents more than
30 K requests for similar information per second during the
Louvre’s admission hours.

We argue that ICedge can help applications utilize the avail-
able edge resources to: (i) achieve low end-to-end latency and
high availability, thus being able to serve users under highly
dynamic conditions (e.g., visitors’ demand that may rapidly
and unpredictably change for one or more exhibits during
a day), as required by edge computing applications [30],
and (ii) enable reuse of previous computation at the edge.
We emphasize that ICedge is orthogonal to existing edge
computing research advancements (e.g., scheduling, resource
management, compute optimization). ICedge complements
and benefits such advancements by handling the low-level
communication complexity with the underlying edge network.
ICedge can also facilitate the design and implementation
of new edge computing applications via its rich networking
semantics with minimal development effort.
Why is ICedge built on top of an ICN substrate? ICN pro-
vides a context-aware network substrate that uses application-
defined naming as the identifier for communication purposes.
This shared identifier between applications and the network
enables edge applications to semantically represent compu-
tational tasks, making them directly visible to the underly-
ing network. Consequently, the ICN network forwards tasks
from users to CNs based on their names, allowing for an
adaptive forwarding behavior, where tasks/requests for edge
services are dispatched to the CNs that can execute them.
Once users receive the computation results, these results are
natively cached in the network for low latency access by users
requesting the same computation in the future.

Building on top and extending the ICN abstractions, ICedge
achieves: (i) adaptation to the highly dynamic edge conditions
by assessing to which CN to forward tasks for execution based
on a variety of objectives (e.g., CN load, energy consumption,
CPU and/or memory capability), (ii) seamless reuse of data
and computation within the edge network and at the CNs, and
(iii) a fully distributed operation paradigm, allowing the edge
network to be highly available for edge applications, without
relying on centralized coordination.

III. BACKGROUND AND RELATED WORK

A. Edge Computing Research

Different from cloud computing, various solutions for com-
putation offloading to less powerful surrogate machines [8],
known as cyber-foraging [4], have been proposed. Solutions
like Clone Cloud [5] and MAUI [6] alleviate the load on
the distant Cloud through an edge computing paradigm. Edge
computing research has expanded rapidly to multiple other
areas, including scheduling algorithms [13], task abstraction
mechanisms [5], as well as resource management [19] and

3

energy consumption [26] designs. Moreover, fully reusing the
results of another computational task (e.g., annotating the same
image) is rather rare in the edge computing context [11]. The
partial reuse of results (stemming from similar computational
tasks, e.g., annotating similar images) among users or applica-
tions has been purely considered from an application point of
view by mostly applying machine learning and optimization
techniques [12], [11]. The direction of leveraging partial reuse
of results among users over a network with multiple CNs
remain largely unexplored.

While most of this research considers application-specific
scenarios, we investigate a direction orthogonal to these areas:
a network-based framework that can be used by applications
for the invocation of edge services. Such a framework com-
plements the research outcomes mentioned above.

B. Named-Data Networking

The Named-Data Networking (NDN) architecture [37] of-
fers a receiver-driven communication model, where consumer
applications send requests for named data, called Interest
packets. An Interest consists of the name of the requested data
and other optional elements defined by consumers. Producer
applications receive Interests and send the data back to the
consumer(s) that requested it. A data packet consists of the
data name, the content, and carries the producer’s signature
which binds the data name to the actual content.

NDN is based on the following three fundamental ideas: (i)
identifying packets at the network layer through seman-
tically meaningful application-defined names–NDN itself
does not name the data, but rather carries packets that contain
application-defined names (e.g., existing network applications
use “names” in the format of urls); (ii) securing data directly–
each network-layer data packet carries the signature of the
producer, which secures the data at rest and in transit over the
network; and (iii) a stateful name-based forwarding plane–
each Interest is forwarded based on its name by NDN routers,
leaving state at each router. The corresponding data packet
uses this state to follow the same path as the corresponding
Interest back to the consumer(s), satisfying/consuming the
Interest state at each router.

To realize such a name-based stateful forwarding plane,
NDN routers are equipped with three data structures. The first
one is a Forwarding Information Base (FIB), which contains
name prefixes along with one or more outgoing interfaces,
and is used for Interest forwarding. The second is a Pending
Interest Table (PIT), which stores recently forwarded Interests
that have not brought back a data packet yet. The third one
is a Content Store (CS), where routers store recently retrieved
data packets to satisfy future Interests for the same data.

Note that NDN applications can define their own seman-
tically meaningful naming schemes, called “naming conven-
tions”; a set of principles/rules on how producers should name
the data they produce and how consumers should request it.
For example, applications that produce video files can define
that the first component of the name of a produced video
will be its title and the second component will be the index
of a chunk in the video file (e.g., “/video/0” will be the

first data chunk in a file with title “video”). Following the
defined conventions, consumer applications learn how to form
names in order to request the data they need. For example,
an application requesting “video” will send an Interest with
a name “/video/0” to fetch the first video chunk, an Interest
with a name “/video/1” to fetch the second video chunk, etc.

C. Edge Computing Research over NDN/ICN

The first attempt to explore an ICN-based edge computing
system was Named-Function Networking (NFN) [34]. NFN
uses function names to locate remote compute resources
and perform in-network computation over NDN. NFaaS [18],
building on top of NFN, focuses on placing functions in
the network and executing them through virtual machines.
Functions can be downloaded by any node in the network
through uni-kernels.

NFN and NFaaS are preliminary designs for in-network
function execution, thus they are inefficient for compute-
intensive applications, since they require the network to keep
long-lasting state during the execution of a function. To
overcome this limitation, RICE [16] decouples the invocation
of a function/service from the retrieval of the results. Mtibaa et.
al. [25], Grewe et. al. [10], and Amadeo et. al. [3] summarize
different challenges for the design and implementation of
edge computing systems over NDN and perform some initial
exploration of the design space. In our previous work, we
performed a preliminary investigation of the potential benefits
of NDN for the discovery of edge services and functions at
the edge [23]

ICedge differs from prior work, since it enables the network
to “learn” paths to all the CNs offering a service and to dy-
namically prioritize different paths based on the conditions of
the edge ecosystem (Section VI). ICedge allows for seamless
on-boarding of users onto the edge network (Section V) and
offers network-based compute reuse abstractions to applica-
tions (Section VII).

IV. SYSTEM MODEL & ASSUMPTIONS

We define an edge network as an autonomous network
consisting of end users, a set of forwarding nodes (i.e., routers)
and a set of CNs offering a set of pre-installed services to users
without requiring any a priori configuration or registration.
The CNs are small server-class nodes with computation and
storage capabilities. We assume that CNs belonging to an edge
network can be accessed though direct links, e.g., LTE, 5G,
or multihop links (2-4 hops).We assume that the CNs in a
specific edge environment are administered by a single entity
(e.g., stakeholder, ISP). Figure 1 illustrates an edge network
consisting of four routers, Router A through D, and three CNs,
CN1, CN2, and CN3.

Users can join an edge network (e.g., while visiting a
city or a museum), discover the offered edge services, and
invoke pre-determined services offered by CNs. We assume
that the edge network can scale up to several hundred CNs;
we deem larger numbers unnecessary, as they are subject to
diminishing returns. Further, if a service cannot be executed
by the local edge network (e.g., due to the CNs being fully

4

2

1

2
1

/Yolo
A

B
D

C

/Yolo

/Yolo

/Yolo 2,1

/PoI 1,2

FIB (A)

/Yolo 2,1

/PoI 1,2

FIB (C)

CN1

/Yolo local

/PoI local

FIB (CN1)

CN2

CN3

/PoI local

FIB (CN2)

/Yolo local

FIB (CN3)

Fig. 1: ICedge in action: A user requests a service, such as
/Yolo for image annotation or /PoI to find Points of Interests
(PoI) on a map. Routers forward the request to the most
suitable CN based on information in their FIBs. A FIB entry
consists of a service name prefix and a list of outgoing
interfaces towards a service.

utilized), the service request will be forwarded to a distant
Cloud for execution. This assumption is motivated by the fact
that forwarding tasks to the Cloud is generally faster than
accessing a distant edge, which may have longer round-trip
delays and slower processing capabilities than the Cloud [31].
System Model: We consider an edge network E consisting of
n CNs (CN1, · · · , CNn), m users (u1, · · · , um), and q routers.
E offers a set of k services, S = {s1, · · · , sk}, where each
CN offers a subset of services Si, such that S =

⋃n
i=1 Si.

Security Assumptions: Each entity (users and CNs) has a pair
of public/private keys and an identity: a name bound to the
entity’s public key through a certificate [40]. We assume that
the users and the CNs have common trust anchors established,
so that they are able to verify the certificate of each other on a
certificate chain with the common anchors as the root. In this
way, ICedge takes advantage of NDN abstractions to provide
mutual authentication between users and CNs and provenance
of data at different stages of processing.
System Components: ICedge delivers its functionality
through three building blocks, namely: (i) a service discovery
component that allows users to discover the services offered by
the edge network and how to invoke them, (ii) a service invoca-
tion framework that facilitates invoking a service, forwarding
a service request to the most suitable CN, and retrieving the
execution results, and (iii) a component that offers network-
assisted reuse of previously executed tasks to maximize the
efficiency of the utilization of edge computing resources. We
discuss these blocks in detail in the following sections.

V. DISTRIBUTED SERVICE DISCOVERY

In this section, we first discuss the need for a service dis-
covery mechanism that helps users identify available services
in the network. Then, we propose a scheme that enables
seamless service and resource discovery to bootstrap the
remote invocation and execution of services.

A. Problem Statement

Why Do We Need Discovery? Most existing frameworks
assume that users are a priori aware of the service name

they would like to invoke [16], [34], [17]. In reality, users
connecting to an edge network may be unaware of several
factors. For instance, they may not know the name of the
service of interest. If users are aware of the service name, they
may not know if the desired service is offered by the network
they are connected to. Multiple versions of the same service
or multiple services may exist, which one should be selected?
Applications may also have certain naming conventions for
service invocation (we discuss examples in Section VII).
What Exactly Needs to be Discovered? Applications need
to discover the following information: (i) the availability of
services, and (ii) the naming conventions to be used in order
to invoke edge services. The first piece of information is
needed so that users can discover the service(s) providing the
functionality they need in the most faithful way along with
service-related metadata (e.g., service description, version,
complexity). The second one defines how the application can
invoke a service (e.g., what are the service input parameters,
what are the components needed to form a name for a service).

B. Service Discovery Design

We propose a distributed discovery mechanism that runs
at each CN without relying on auxiliary entities deployed in
the network (e.g., network controllers). Users send a discovery
Interest under the “/discovery” namespace, which carries a
description of the service functionality they are looking for
(Interest I1 in Figure 2). This Interest reaches the closest
operational CN, which sends back a response. The response
contains the service (along with related metadata) that matches
the user description and a naming convention, so that the user
learns how to invoke the service (data packet D1 in Figure 2).
Distributed Service Synchronization: Given that any oper-
ational CN in the network needs to be able to respond to
the discovery Interests, every CN needs to be aware of the
services offered by the edge. This can be achieved through a
distributed synchronization protocol (sync for short), such as
RoundSync [7] or PSync [38]. Sync operates in a peer-to-peer
fashion, where CNs subscribe to a common namespace (e.g.,
“/CN/sync”) and exchange information about what services
they offer (along with metadata and naming conventions for
each service). When a change happens to the services offered
by a CN (a CN adds, removes, or updates a service), the CN
multicasts a signed sync Interest (publishes a message) under
the common namespace. For example, in Figure 2, CN2 sends
I2 to notify CN1 and CN3 that it has added a service “/PoI”,
so that users can find Points of Interest (PoI) on a map. A sync
Interest reaches all the CNs in the edge network and triggers
them to request the latest service change from the CN that
sent the sync Interest.

CNs periodically send sync Interests to other CNs in the
edge network to notify them about their latest offered services.
This period is called sync Interest interval. A given service si
will be removed if all the offering CNs explicitly publish a
removal of si or all the offering CNs fail. A CN is considered
to have failed, when other CNs do not hear back from it within
a certain timeout interval.

5

I1
2

1

2

1

A

B
D

CD1

I1

D1

D1

I1

I2

I2

I2

I2

CN1

CN2

CN3/Yolo 2,1

/Map 1,2

/Discovery 2,1

/CN/sync 2,1

FIB (A)

/Map local

/Discovery local

/CN/sync local

FIB (CN2)

/Yolo local

/Discovery local

/CN/sync local

FIB (CN3)

/Yolo local

/Map local

/Discovery local

/CN/sync local

FIB (CN1) Interest I1: /discovery
 [Param: image-annotation]
 Data D1: /discovery

 [Content: /Yolo, "object detection", <naming convention>]
 Interest I2: /CN/sync

 [Param: /Map, "map navigation", <naming convention>]

Fig. 2: Service discovery example. A user sends a discovery
Interest that typically reaches the closest operational CN,
which will help the user connect to the edge network.

VI. NETWORK-AWARE SERVICE INVOCATION

A. Problem Statement

After a user discovers the name of the service to invoke and
the appropriate naming conventions, we need a set of protocol
abstractions that enable users to request the execution of the
service by a CN. There are certain challenges that need to be
addressed here. The network may not be aware in advance of
which CNs offer each service and through which paths to reach
each of the CNs for a given service. If the network is unaware,
it has to learn how (i.e., through which paths) to forward user
requests to the CNs that offer the service. Given the highly
dynamic conditions of an edge ecosystem (e.g., in terms of
user service invocation rates, CN load), even if the network
knows the pertinent CNs, it has to adaptively forward requests
to the most suitable CN based on the current edge conditions.

Overall, the ICedge service invocation building block con-
sists of three sub-components: (i) a service invocation proto-
col, (ii) a network self-learning mechanism to establish service
reachability, and (iii) a service request forwarding component
that adapts to the dynamic edge conditions.

B. Service Invocation Protocol

In Figure 1, we illustrate a high level example of ICedge in
action. A user sends an Interest (request) for the execution of
an edge service named “/Yolo”. The network paths (routes)
to CNs are determined based on information in routers’ FIBs
(we explain how routers establish this information in Sec-
tion VI-C). Each router ranks its next-hops for a service based
on various metrics, such as network latency, CN load, and/or
compute capabilities (we present details in Section VI-D). As
two out of three CNs in Figure 1 (CN1 and CN3) offer
“/Yolo” (marked with a FIB entry with a “local” next-hop),
intermediate routers perform a FIB lookup to forward the user
request to the most suitable CN (CN1). We term the most
suitable CN, a selected CN.

Once a user reaches a selected CN for a service, further mes-
sage exchanges occur. First, the selected CN may request input
parameters/data for the service (if the service requires input,
e.g., a stream of frames in video annotation). Then, the selected
CN executes the invoked service using the required input data.
Once the service execution is complete, the user retrieves the
execution results. Figure 3 illustrates the exchanges between
a mobile user and a selected CN for service invocation.

Mobile
Device

Request Service
"service-name"

CN

Allocate Resources
Share: TTC, CN Thunk

/service-name/<hash-of-input>

Response: <TTC>, <Thunk>

Carries: <device-hint>, <deadline>,
<size-input>

...

...

Request for Input chunk1

...

...
Input Data chunk1

TTC
Expires

/service-name/<hash-of-input>
Hint: Thunk

Results

Request for Input chunkk

Input Data chunkk

Interest Packet

Data Packet

Hint: device-hint

Hint: device-hint

Task
E

xecution

Fig. 3: Service invocation design. The Interest/data exchanges
between a mobile device and a CN are illustrated. The device
invokes an edge service and retrieves the results when the
service execution is complete.

Service Invocation Initialization: A user initializes the ser-
vice invocation by sending a signed request with a name:
“/service-name/<hash-of-input>”. The first part of the name
indicates the invoked service and the second one includes the
hash of the input data (e.g., a hash of an input file) to leverage
cached service results in the network2. The request also carries
the size of the input data, a deadline for the service execution,
and the “forwarding hint” of the user device3–an identifier
used by the selected CN to reach the user device and retrieve
input parameters for the invoked service. Thus, Interests carry
both “what” (name of data) and “where” (forwarding hint) to
retrieve the data from, aiding the routers with forwarding.

Upon the reception of a service request, the selected CN
first authenticates the user by verifying the request signature.
It then verifies that it has enough resources (e.g., CPU and/or
memory) to execute the requested service within the requested
deadline. If the selected CN does not have adequate resources,
it sends a Negative Acknowledgment (NACK) to notify the
network [21] (e.g., this can happen when edge conditions are
changing fast). Then, the network can forward the request to
another CN. For instance, in Figure 1, if CN1 cannot execute
the “/Yolo” service, it sends a NACK, which is received by
Router C. C then forwards the request towards CN3. In case
of non-availability of resources in the entire edge network, the
device sends the request to a distant Cloud.

If the selected CN has sufficient available resources, it first
saves the service execution state, deadline, estimated Time
To Completion (TTC), and size of data, and then allocates
resources for the service execution. The selected CN sends

2The name of the initial invocation request may contain components specific
to the service naming conventions. We present examples in Section VII.

3In NDN, there is no source identifier that can be used to reach a user, thus
a hint helps the network route to the user that initiated the service invocation.

6

a response that includes the TTC and a thunk [15] for the
task back to the device. The thunk is a name used by devices
to fetch execution results from the selected CN. Without a
thunk, users may not be able to reach the same CN (e.g., if
the network does load balancing) that executed a task in order
to fetch the results (e.g., requests for results for the “/Yolo”
task in Figure 1 may be forwarded to CN3 instead of CN1).
Input Parameter Passing: After sending its response, the
selected CN also sends Interests to fetch service input data
(e.g., the frame that users need to annotate). In some cases,
input data may not be needed (e.g., request for current time)
or can be appended to the initial service invocation request
(e.g., provide a route to a given destination). In more general
cases, input data is requested by the selected CN using the
forwarding hint of the device. If the input size is large (it
cannot fit into a single network layer data packet), multiple
exchanges can be employed as illustrated in Figure 3.
Service Execution and Result Fetching: Once the selected
CN receives all input data from the user, it executes the service.
Users wait until the TTC expires to request the results from
the selected CN using the task thunk as a forwarding hint.
In this way, requests for results reach the selected CN, which
sends the results back to the user. If service execution is not
complete when results are requested, the selected CN sends a
new estimated TTC to the user.
Robustness to CN Failures: The network is aware of the paths
to the CNs that offer each service. For example, in Figure 1,
Router C is aware that “/Yolo” is offered through interfaces
1 and 2. If CN1 fails, C detects the failure, since requests for
“/Yolo” forwarded through interface 2 will timeout. C will
conclude that CN1 has failed, thus forward future requests
for “/Yolo” through interface 1 towards CN3.

C. Service Reachability Through Self-Learning

In broadcast-based self-learning [27], the first packet for an
unknown path (route) across the network is broadcast. When a
response is received, forwarding information is created at the
routers, so that future packets towards the same destination
are sent through the “learned” path. In the context of NDN,
self-learning has been proposed for the discovery of a single
path to a single producer [32]. However, in the context of edge
computing, a given service may be offered by multiple CNs,
introducing the challenge of learning paths from users to all
the CNs that offer a service.

To this end, we propose a multi-producer (multi-CN) self-
learning mechanism, which enables the network to dynam-
ically discover multiple network paths to all the CNs that
offer a given service. This mechanism may be enabled when
a service is invoked for the first time, since the network will
not be aware of which CNs offer the requested service and
how to reach them. Through this mechanism, edge routers are
able to create FIB entries and associate each entry with one
or more outgoing interfaces.

Given that paths to different CNs may be of a different
length or delay, the self-learning process may last arbitrarily
long. To avoid delays during service invocation, our mecha-
nism first discovers one of the CNs that offers the requested

service. This CN allocates resources and follows the protocol
of Figure 3 for seamless service invocation. In the background,
the network discovers paths to all the CNs that offer the
requested service, so that future requests for this service can
be forwarded to all the available CNs as needed.
Multi-Producer Self-Learning Design: A router might re-
ceive a service request (e.g., Router A receives a request for
“/Yolo” in Figure 4) that it does not know how/where to
forward (i.e., it does not have any forwarding information
for this service in its FIB). In such cases, the router initiates
the self-learning process by adding a self-learning tag to this
request. It also creates a duplicate request with a self-learning-
duplicate tag. The request with the self-learning tag will be
used for the discovery of a route to a CN offering the service
to make sure that users can invoke edge services without any
delay. The duplicate request, created by the router, initiates a
delay tolerant discovery of all the CNs that offer the service
which may last arbitrarily long (e.g., paths to different CNs
may be of a different length or delay).

While both Interests are broadcast towards all the CNs
offering “/Yolo”, only a single CN allocates resources and
replies with a data packet to a self-learning Interest4. All
CNs offering “/Yolo” reply to the self-learning-duplicate
Interest without allocating resources (CNs not offering the
requested service reply with a NACK). Each of these two
Interests creates a separate PIT entry in the network as shown
in Figure 4, where Router A created the duplicate Interest
(“/Yolo/self_learning_dup”) to gather information on all
the CNs running “/Yolo”. Responses to the self-learning
Interest (“/Yolo/self_learning”) are sent back to the user via
interface 1 of Router A, however, responses to the duplicate
Interest are consumed by A and are not forwarded to the user.

Routers wait for a response to the self-learning-duplicate In-
terest from each interface they forwarded the Interest through
before consuming the PIT entry. Once routers receive re-
sponses through all interfaces (or after a pre-defined timeout
period), they aggregate the responses into a single data packet,
sign this packet, and forward it to their downstream. This
“aggregated” data packet consumes the PIT entry for the self-
learning-duplicate Interest. In Figure 4, Router D waits for
a response from CN2 and CN3. Once both responses are
received (CN2 will send a NACK, since it does not offer
“Yolo”), D forwards a single response that contains only the
positive response of CN3 back to Routers C and B; B forwards
the response back to A. C might have already received a
response from CN1. Once C receives the response from D,
it aggregates the two responses and forwards them back to
A. Given that A is the router that initiated the self-learning
process, once it receives responses from B and C, it satisfies
its PIT entry for the self-learning-duplicate Interest, without
forwarding the responses back to the user.

Routers keep track of the interface, through which a re-
sponse to a self-learning and a self-learning-duplicate Interests
was received. They use the response to the former to create
a new FIB entry for the requested service (“/Yolo” in our

4The selection of this CN can be determined through the service syn-
chronization process (Section V-B), or be pre-configured by the network
administrator.

7

2

3

2 1
3

/Yolo
A

B

D

C
*

*

*

*

CN1

CN3

CN2

FIB
Router A

/Yolo/self_learn 1

/Yolo/self_learn_dup local

PIT
Router A /Yolo local

FIB (CN3)

/Yolo local

FIB (CN1)

*

*

*

 Self learning Interest
 Self Learning Duplicate Interest*

user

1

Fig. 4: Multi-producer self-learning mechanism; Router A
creates and sends a duplicate self-learning Interest to find
routes to all CNs that offer service “/Yolo”.

example) through the interface this response was received
(interface 2 for Routers C and A). This enables routers to
identify a network path from the user to the CN that responded
(CN1 in our example). Routers use the responses to the self-
learning-duplicate Interest to: (i) add more next-hops to an
existing FIB entry (e.g., Router C adds a next-hop through
interface 3 that can reach D), or (ii) create a new FIB entry
if the routers were not on the path between the user and the
CN that responded to the self-learning Interest (e.g., Router D
creates a new FIB entry towards CN3). Once this process is
done, routers have multiple paths to the multiple CNs offering
the service and can forward future service requests to all the
available CNs.

D. Adaptive Resource-Aware Forwarding

Operating conditions at the edge are highly dynamic (e.g.,
the user invocation rates may rapidly change, CNs may reach
their processing capacity). Routers need to be aware of the
current conditions of the edge resources, so that they can
forward (by selecting one among the many available outgoing
interfaces) service requests to one among the many CNs
offering a service based on one or more objectives. For
example, if the objective is to equally distribute load among
CNs, the network needs to be aware of how loaded each CN
is. If the objective is to minimize energy consumption, the
network needs to know the energy consumption of each CN.

The administrator of an edge network can define a num-
ber of objectives (e.g., CN energy consumption, computation
power of CNs, CN load, CN storage) that routers should take
into account when deciding how/where to forward a service re-
quest. This can be formulated as a multi-objective optimization
problem, which routers solve to rank their interfaces (next-
hops) towards the offered services. In this way, routers can
forward requests to the most suitable CN for each service as
determined by their solution to this optimization problem. For
instance, in Figure 1, this solution helps Routers A and C to
rank interface 2 as the best forwarding option for “/Yolo”.
Note that this ICedge component is general-purpose and the
optimization mechanism of choice is plug-and-play.
Making the Network Resource-Aware: To enable resource-
aware request forwarding, the network needs to know the state
of CNs (e.g., load, energy consumption, storage resources).
We call this information utilization information, which is

used by routers as input to their multi-objective optimization.
The frequency at which the network updates the utilization
information is important and may vary based on the rate of
requests, popularity of services, etc. We call a message that
contains the utilization information of one or more CNs for one
or more offered services a utilization update. We propose two
mechanisms, a proactive and a reactive one, for the network
to acquire up-to-date utilization information from CNs.
Proactive Utilization Updates: CNs periodically (every Up-
date Period–UP) broadcast a utilization update to the net-
work. For example, CN2 in Figure 1, broadcasts an Interest
with name “/util/CN2/s1/s2/../sn/util-info”. The prefix
“/util” allows the network to interpret the message as a
utilization update. The name contains the CN sending the
update (e.g., CN2), a list of services, {s1, s2, · · · , sn}, in-
stalled and running at this CN, and the CN’s current utilization
information. When routers receive an update, they update the
utilization information of the services executed by the CN
sending the update. To limit the overhead caused by updates,
CNs perform scoped flooding. Each update is propagated for
a certain number of hops in the network based on a Time-To-
Live (TTL) value set by the CN sending the update.
Reactive Utilization Updates: Routers update the utilization
information on a per service basis according to the rate that
users request each service. As a result, the network updates
utilization information more frequently for popular services.
Routers keep track of the number of invocations for any given
service. For every IPU (Invocations Per Update) forwarded
invocations for a service, routers generate an additional Interest
that they tag as a “utilization” request to update the service’s
utilization information. This Interest is multicast to all the CNs
offering the service. In Figure 1, for example, for every 30
invocations of “/Yolo” that Router A receives from users, A
creates an additional utilization Interest that is multicast to
CN1 and CN3.

The CNs send a utilization update in response to a utilization
Interest. Utilization update responses are aggregated by routers
into a single response in the same way as responses for
self-learning-duplicate Interests (Section VI-C). Once routers
receive a utilization response, they update the utilization
information for the service.

Services invoked infrequently might be associated with out-
dated utilization information. To mitigate the negative impact
in such cases, we attach to each update a Freshness Period
(FP), which is set by the CN sending the update. In addition
to the utilization information, routers store the freshness period
of an update. If a service is invoked after the expiration of the
freshness period of its last update, routers send a utilization
Interest for the service.

VII. COMPUTE REUSE

A. Problem Statement

Data gathering and execution of tasks at the edge can be
complex and compute-intensive. Often, users share needs, thus
request “similar” tasks, especially when they share a given
context or environment [29]. For instance, users attending
the same game in a stadium would often request similar

8

information, such as a player’s best videos/stats, or visitors
in a museum would request annotation of paintings or scenes
already requested by other visitors. The reuse of previously
executed computations at the edge could reduce the utilization
of edge resources, resulting in an increase of the edge network
capacity (e.g., in terms of the number of user requests that
the edge can serve). In this section, we explore the benefits
and challenges of designing network-based mechanisms to
facilitate the reuse of edge computing tasks.

B. Network-Based Compute Reuse

To take advantage of compute reuse, we argue that
application-defined metadata must be visible to the network.
This allows the network to make “informed decisions” and
forward tasks to CNs that may be able to reuse (fully or
partially) previously executed task output for current requests.
In IP-based frameworks, the required application-layer meta-
data is invisible to the network. In ICedge, which runs on top
of NDN, this metadata can be encoded in application-defined
names, which are visible to the network and are used as the
identifier for communication purposes between users and CNs.

The high level idea of ICedge’s compute reuse design is
to enable the network to seamlessly dispatch “similar” tasks
towards the same CNs by simply looking at the service requests
names. This involves a trade-off between the need of the
network operations to be general enough to cover the needs of
any application and the need of the operations to be specific
enough to forward service requests based on application-
specific metadata in order to facilitate reuse. To tackle this
tradeoff, we propose a set of general-purpose compute-aware
naming conventions (Section VII-B1), which can be used
by a variety of edge applications. Each convention provides
instructions to the application on how to encode the necessary
metadata in the names of its service requests, so that ICedge
can facilitate reuse. This is achieved through a compute-aware
forwarding scheme per convention, which is deployed on
network routers5 (Section VII-B2).

1) Compute-Aware Naming Conventions: We define a
set of compute-aware naming conventions, which indicate
how edge service providers or network administrators have
clustered the computation of tasks at CNs. Such clustering
can be pre-configured or dynamically determined based
on traffic, resources, etc. To facilitate the use of compute-
aware conventions, we extend the design presented in
Section VI-B, so that users initialize the service invocation
process by sending a request with a name “/<service-name>
/<compute-aware-convention>/<forwarding-scheme>

/<input-hash>”. The “forwarding-scheme” component
indicates the ICedge forwarding scheme for this convention
as we discuss in Section VII-B2. The hash of the input
enables reuse of results for the same task with the same
input from in-network caches. Users discover the conventions
during the discovery phase (Section V).

We define a preliminary set of compute-aware convention
examples, which do not represent an exhaustive list. We

5Forwarding schemes can be installed on routers by the network adminis-
trator or can be dynamically retrieved from CNs.

Sector1

1

2A

B

C

D

CN1

/Yolo 1,2

/PoI 1,2

FIB (Router A)

CN2

CN3

/Yolo/Louvre/East local

/PoI/Sector1 local XSW,YSW

XNE,YNE

user

/Yolo/Louvre/West local

/Yolo/Louvre/North local

W,NE

CATEGORY

Louvre
St.

Michel

2-4

Zone

Sector

1

2,11,2 1,2

To
 C

A
T

E
G

O
R

Y

F
o

rw
ar

d
in

g
 S

ch
em

e

To
 Z

O
N

E

F
o

rw
ar

d
in

g
 S

ch
em

e

Fig. 5: Example of ICedge’s reuse mechanism. Interests are
forwarded based on their names by compute-aware forward-
ing schemes, which aim to maximize the reuse of parts of
previously executed tasks.

envision that new conventions will be created as new edge
applications with different reuse needs emerge.
• “/<building_X/floor_y/Room_z>” for clustering of tasks
based on buildings, floors, and/or rooms. This convention can
be used by image annotation applications, so that annotation
requests for pictures taken in the same building, floor, and
room are forwarded by ICedge to the same CNs.
• “/<X_coordinate/Y_coordinate>” for clustering based on a
location on a map. This convention can be used by location-
based applications. For example, applications that request
information about points of interests on a map, so that requests
within a certain sector of the map are forwarded by ICedge to
the same CNs.
• “/<config_X/Param_Y>” for clustering based on specific
configuration and/or parameters. For example, applications
that require matrix multiplication (e.g., augmented/virtual re-
ality, video games) can indicate the matrix dimensions along
with a multiplier (e.g., “/20x20/3times” for the multiplication
of a matrix of size 20x20 to itself thrice). Requests are
forwarded to CNs based on the dimensions of the matrices
to be multiplied (e.g., requests for matrices with dimensions
from 1× 1 to 30× 30 are forwarded to one CN).

2) Compute-Aware Forwarding Schemes: Each naming
convention is associated with a compute-aware forwarding
scheme, which applications include in the name of their
requests. This scheme enables the network to forward similar
tasks to the same CNs by making routers aware of the logic
that task computation has been clustered at CNs. In the rest
of this section, we present three sample schemes to illustrate
service request forwarding under different clustering use-cases.
CATEGORY: This scheme allows for task clustering based
on disjoint categories, such as annotation of scenes in
different rooms of a museum. Routers receiving an an-
notation request, e.g., “/Yolo/Louvre/East/R123/CATEGORY
/<input-hash>”, utilize this scheme to dispatch tasks based
on a given building (“Louvre”), area (“East” aisle), and room
(“R123”). Tasks belonging to the same category reach the
same CN, maximizing the reuse potential. Routers implement
longest prefix match for the highest granularity–i.e., building,
area, or room. Routers learn which CN is responsible for which

9

building, area, or room during self-learning (Section VI-C).
In the example of Figure 5, when requests for service

“/Yolo” for pictures taken at the Louvre arrive at routers, such
requests are dispatched to the category forwarding scheme.
This scheme selects the most suitable next-hop based on
a longest-prefix match of the request name (“/Yolo/Louvre
/East” in our example, which reaches CN1) on the infor-
mation maintained by the scheme. Any additional processing
required for reuse purposes happens in the forwarding scheme
module of routers. As a result, the size of FIB stays the same
with and without reuse, allowing routers to provide fast path
forwarding to traffic that may not require reuse.
ZONE: Zone forwarding enables clustering of tasks based
on locations or regions, such as ZIP codes, grids, or sec-
tors on a map. For instance, a user looking for Points of
Interest (PoI) around the Eiffel Tower through its coordinates
(X = 2.29, Y = 48.85), can use the naming conven-
tion “/PoI/X/Y/ZONE/<input-hash>”. This request triggers the
zone scheme at routers, which guides the request towards the
CN that executes tasks for a map sector, where coordinates
(X = 2.29, Y = 48.85) fall into. In the self-learning phase,
routers receive the coordinates of the map area that each CN
is responsible for. In the example of Figure 5, the network
forwards the request for “/PoI” around the Eiffel Tower to
CN2, since we assume that the coordinates in the request
name fall into “Sector1”; a sector is defined as a square map
area represented by (XNE , YNE) and (XSW , YSW), its north
east and south west corner coordinates respectively.
CONFIG: In the configuration forwarding scheme, a CN
can be responsible for a range of parameters for a given
service. Let us consider a matrix multiplication example
(omitted from Figure 5), where CN1 performs multiplications
of matrices with dimensions from 1 × 1 to 30 × 30. As
a result, a request with a name “/multiply/20x20/3times
/CONFIG/<input-hash>” for the multiplication of a matrix
(with hash “<input-hash>”) of size 20 × 20 to itself three
times will be forwarded to CN1.

3) Estimation of Task Completion Time with Compute
Reuse: When compute reuse is utilized, the estimation of
task execution times might not be accurate prior to CNs
receiving the input data of the task. To tackle this problem, two
mechanisms may be applied: (i) the CNs can explicitly notify
users when a task is completed, allowing users to request the
execution results as soon as they become available, or (ii) the
CNs estimate the completion time of tasks based on the service
popularity. This sometimes results in CNs underestimating the
completion time. As a result, users may request the results
before the task execution is completed. The CNs, at this point,
can let users know about the updated completion time. We
have implemented and experimented with both mechanisms,
concluding that the choice of one or the other does not have
a noteworthy impact on the ICedge performance.

VIII. EVALUATION

In this section, we present the evaluation of ICedge via
an extensive simulation study. Our evaluation is two fold.
First, we disable reuse and evaluate the performance of

our service invocation design, which includes a comparison
of our proactive and reactive utilization update approaches
(Section VIII-C1). Then, we enable reuse to evaluate its
feasibility and benefits as well as compare ICedge to an IP-
based centralized approach, which emulates a software defined
network (Section VIII-C2).

A. ICedge Implementation

We implement ICedge using the ndn-cxx library to ensure
compatibility with the NDN router prototype [2]. The main
components of our prototype are the following: (i) a user
daemon interacting with mobile applications, (ii) a network
component, which can be dynamically deployed and config-
ured at NDN routers, and (iii) a CN daemon that interacts with
the CN framework. The user daemon invokes the edge services
requested by applications. The ICedge network component
contains plug-n-play forwarding schemes that are responsible
for self-learning operations, handling of utilization updates,
forwarding of service requests to CNs, and compute reuse.
The CN daemon is responsible for initializing the execution
of edge services, synchronizing with other CNs, participating
in the service and naming convention discovery process, and
responding to self-learning and utilization requests.

B. Experimental Setup

For our simulations, we run NDN directly on top of MAC
layer (IEEE 802.11n for wireless and IEEE 802.3 for wired
connections). We present the 90th percentile of the results
collected after 10 trials. We use the NetworkX library [14] to
generate 50 random edge network topologies of size 20 to 30
interconnected nodes.

For each topology, we randomly select 10 nodes to act as
CNs and we experiment with two traffic profiles; light and
heavy traffic, consisting of 10 and 100 randomly distributed
users respectively. Each user has a wireless connection to a
topology node through an Access Point (AP). All users are
mobile, following the random walk mobility model within
square-shaped cells, while they can also move from the cell of
one AP to another. We set the number of cores per CN to 12,
while varying the processing speed of each CN. Our complete
simulation setup and topology characteristics are presented in
Table I. We assume that the execution of each task occupies
one core for a given time period. If all the CNs for a service

TABLE I: Simulation setup and topology characteristics.
Parameter Value
Link delay 10ms
Wired link bandwidth 10Gbps
Wired link loss probability 1%
Wireless link bandwidth 10Mbps
Wireless link loss probability 5%
Hops between users and CNs [3,6]
Average node degree 3.2
Number of CNs 10
Number of services 100
Services per CN [30, 60]
User service request rate 15 request/min (Zipf)
Service execution deadlines [500, 5000]ms
Service execution time [300− 4500]ms (Zipf)
Cores per CN 12

10

are occupied, users invoke services on the Cloud. We assume
that the round-trip delay to/from Cloud is 200ms and that the
Cloud executes tasks 3× faster than edge CNs.
NDN-based Simulations: We ported our ICedge prototype
into the ndnSIM simulator [22], which is based on the ns-
3 network simulator to experiment with ICedge at scale.
ndnSIM features software integration with the real-world NDN
prototypes offering high fidelity simulation results. At the
beginning of each experiment, there is no service reachability
and utilization information in the network. We apply the
multi-producer self-learning mechanism to establish service
reachability (Section VI-C) and the mechanisms (proactive and
reactive) for the propagation of service utilization information
in the network (Section VI-D).
IP-based Simulations: We developed an IP-based centralized
prototype system, which we refer to as dispatcher-based
approach, and we ported it to ns-3. This system consists of
a centralized application-layer entity called a task dispatcher.
The dispatcher periodically receives information about the
utilization and previously executed tasks (for compute reuse
purposes) by CNs. User requests are forwarded to the dis-
patcher, which distributes them to CNs based on utilization
and/or compute reuse potential. We place the dispatcher at
most two hops away from CNs. The centralized scheme
resembles to Software-Defined Networking (SDN), where the
central entity represents a network controller at the edge.
Instrumenting the centralized task dispatcher: Our goal is
perform a fair performance comparison between the SDN-like
centralized (task dispatcher) and a fully distributed (ICedge)
solution. To achieve the ICedge features (e.g., adaptive task
forwarding, compute reuse), the centralized solution needs
to be augmented with awareness of the communication end-
points (e.g., IP addresses of the CNs offering each service)
and the communication context (e.g., semantics of the com-
putational tasks) to enable computation reuse. We extended
the typical SDN tuple semantics, so that the dispatcher un-
derstands the semantics of the adaptive forwarding of tasks.
However, to prevent the dispatcher from being a single point of
failure all the functions mentioned above need to be replicated
across redundant dispatchers. We present results for a single
task dispatcher and replicated dispatchers in Section VIII-C.

C. Results

Metrics: We consider two main metrics for the evaluation of
ICedge: (i) task completion time, and (ii) normalized overhead.
The task completion time is measured as the time elapsed
between users sending their request for task execution and
receiving the execution results from CNs. The normalized
overhead is measured as the ratio between the volume (in
bytes) of overhead messages and the volume (in bytes) of
service invocation traffic. The volume of overhead messages
includes: (1) the volume of network traffic transmitted for the
propagation of service reachability and utilization information
(Sections VI-C and VI-D), (2) the volume of traffic transmitted
during the sync process among CNs for service discovery
(Section V), and (3) the volume of traffic generated due to
NACKs sent by CNs when a service request is forwarded

TABLE II: Evaluation parameters for proactive and reactive
mechanisms (numbers in bold are nominal values used when
the value of a parameter is fixed).

Parameter Variable Value
Update Period (Proactive) UP {15, 30, 60}s
Scope of flooding (Proactive) TTL {2, 3, 4}hops
Invocations Per Update (Reactive) IPU {15, 30, 60}
Freshness Period (Reactive) FP {15, 30, 60}s

to a fully loaded CN (Section VI-B). Service requests are
forwarded to CNs based on two factors: (i) CN load, and (ii)
CN processing power. In other words, the network forwards
requests to the CN that can execute them as fast as possible,
while it also avoids overloading CNs that are fully utilized.

1) Evaluation of ICedge with Different Service Utilization
Mechanisms: In this subsection, we disable reuse and evaluate
our two proposed service utilization mechanisms (i.e., proac-
tive and reactive) in isolation. Then, we compare their per-
formance and discuss the trade-offs in different network and
traffic settings. Table II presents a list of evaluation parameters
and the values used for each parameter in our experiments. We
evaluate the impact of one parameter at a time; when we vary
a given parameter, the remaining parameters are equal to their
nominal values (numbers in bold in Table II).
Proactive Service Utilization Mechanism: We evaluate the
impact of the flooding diameter (scope of flooding in terms
of number of hops) and the frequency of updates on the per-
formance of the proactive approach. In Figure 6a, we present
the distribution of task completion times for varying scoped
flooding Time To Live (TTL) values of service utilization
updates. For light traffic, increasing the scope of flooding from
two to four hops results in 4-8% lower completion times. In
such cases, the CNs are rarely fully loaded; as a result, any
CN offering a service has the resources to execute it as well.
For heavy traffic, CNs are typically under full load, therefore,
increasing the scope of flooding helps the network forward a
request to the available CN with the highest processing power,
resulting in 13-28% lower task completion times.

In Figure 6b, we present the task completion time for
a varying Update Period (UP). The results show that fre-
quent updates help the network maintain up-to-date service
utilization information, resulting in 3-7% and 13-36% lower
completion times as we increase the update frequency for light
and heavy traffic respectively.

In Figure 7a, we present the overhead for varying flooding
scopes and periods of utilization updates. The results show
that the performance benefits of increasing the scope of update
flooding and/or the frequency of updates comes at the cost of
increased overheads especially in cases of light traffic loads.
The normalized overhead reaches 0.5 (i.e., the volume of
overhead traffic is 50% of the volume of the user service
invocation traffic) for frequent updates (with 3 hops of scoped
flooding) and 0.54 when updates propagate 4 hops into the
network (with an update period UP=30s).
Reactive Service Utilization Mechanism: In Figure 6c, we
present the task completion times when a service utilization
update is performed for every 15, 30, and 60 invocations
(denoted as Invocations Per Update or IPU for short). For light
traffic loads, completion times are almost independent of IPU

11

0 1000 2000 3000 4000 5000
Task Completion Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

4 hops, light traffic
3 hops, light traffic
2 hops, light traffic
4 hops, heavy traffic
3 hops, heavy traffic
2 hops, heavy traffic

(a) Proactive approach, varying the scope of service utiliza-
tion update flooding TTL (UP=30s)

0 1000 2000 3000 4000 5000
Task Completion Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

UP=15s, light traffic
UP=30s, light traffic
UP=60s, light traffic
UP=15s, heavy traffic
UP=30s, heavy traffic
UP=60s, heavy traffic

(b) Proactive approach, varying the service utilization update
period UP (TTL=3hops)

0 1000 2000 3000 4000 5000
Task Completion Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

IPU=15, light traffic
IPU=30, light traffic
IPU=60, light traffic
IPU=15, heavy traffic
IPU=30, heavy traffic
IPU=60, heavy traffic

(c) Reactive approach, varying the number of service IPU
(FP=30s)

0 1000 2000 3000 4000 5000
Task Completion Time (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

FP=15s, light traffic
FP=30s, light traffic
FP=60s, light traffic
FP=15s, heavy traffic
FP=30s, heavy traffic
FP=60s, heavy traffic

(d) Reactive approach, varying the FP of service utilization
updates (IPU=30)

Fig. 6: Task completion time results of ICedge’s service invocation design (markers in CDF figures do not represent actual
data points, but are only used for better readability).

2hops 3hops 4hops
0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

UP=30s

UP=15sUP=30sUP=60s

3hops

light
heavy

(a) Proactive approach, using various utilization update parameters
(TTL and UP)

IPU=15 IPU=30 IPU=60
0.0

0.1

0.2

0.3

0.4

0.5

0.6

N
o
rm

a
liz

e
d
 O

v
e
rh

e
a
d

FP=30s

FP=15s FP=30s FP=60s

IPU=30

light
heavy

(b) Reactive approach, using various utilization update parameters
(IPU and FP)

Fig. 7: Overhead results of ICedge’s service invocation design:
(a) proactive, and (b) reactive approaches.

(less than 4% impact); most utilization updates are triggered
due to the expiration of their Freshness Period (FP), since not
enough traffic is observed by the network to trigger updates.
For heavy traffic loads, frequent utilization updates (i.e., low
IPUs) can improve completion times by 9-34%.

In Figure 6d, we present the task completion time results

for a varying freshness period of utilization updates. As we
described above, in cases of light traffic, utilization updates
are mainly triggered due to expiration of their FPs. Therefore,
the freshness period can heavily impact performance (6-41%
based on our results). In cases of heavy traffic, updates are
mainly triggered due to the large traffic volume observed by
the network, therefore, the impact of FP on the completion
time is less than 12%.

In Figure 7b, we present the overhead while varying the
number of invocations per update (IPU) and the freshness
period of each update (FP). The overhead ranges from 0.16 to
0.34 for light traffic and from 0.32 to 0.45 for heavy traffic.
Trade-offs: Our results indicate that each approach has its
own merit and trade-offs. In terms of task completion time,
the proactive approach achieves 6-17% lower times in most
setups, since CNs proactively inform the network about their
utilization and the services they can execute. On the other
hand, in the reactive approach, routers request the utilization
of a service only when it is actually used, achieving 14-
238% lower overheads than proactive for light traffic. For
heavy traffic, the reactive approach results in 26-48% higher
overhead than proactive, since services are heavily used.

2) Evaluation of ICedge With Network-based Compute
Reuse Enabled: We consider two evaluation parameters of
compute reuse to model different task and application profiles:
(i) the reuse ratio, and (ii) the probability of reuse. The
reuse ratio (Ru) for a given task is defined as the ratio of
computation resources that can be reused compared to those
that need to be utilized for the execution of a task. For instance,
Ru = 40% indicates that the task can save up to 40% of
resources (thus time of execution) due to reuse. The probability
of reuse, P (reuse), indicates the probability for a given task

12

0 20 40 60 80 100
Ru (%)

1000

1250

1500

1750

2000

2250

2500

2750

Co
m

pl
et

io
n

Ti
m

e
(m

s)

P(re-use)=20%
P(re-use)=40%
P(re-use)=60%

Fig. 8: Task completion time, varying reuse ratios.

0 20 40 60 80 100
Ru (%)

1000

1250

1500

1750

2000

2250

2500

2750

Co
m

pl
et

io
n

Ti
m

e
(m

s)

P(re-use)=20% (Linear)
P(re-use)=40% (Linear)
P(re-use)=60% (Linear)
P(re-use)=20% (Log)
P(re-use)=40% (Log)
P(re-use)=60% (Log)

0 20 40 60 80 100
Ru (%)

Network-Based
Controller-Based (Linear)
Controller-Based (Log)

Fig. 9: Task completion time for dispatcher-based reuse
and comparison with network-based reuse. Completion time
for dispatcher-based reuse, varying reuse ratios (left). Com-
parison between dispatcher-based and network-based reuse
(P(reuse)=40%) (right).

to find previously executed results of similar tasks at a CN.
For instance, if P (reuse) = 20%, then out of 100 tasks, only
20 can benefit from reuse (reuse ratio applies).

We vary these parameters and present the task completion
time results in Figure 8. The results show that ICedge can
reduce completion times by 1.14-2.51× due to compute reuse
either at the CNs or in the network (through cached results).
Note that the testbed deployment of ICedge (Section IX)
showed that completion times can be further reduced (up to
50×) due to compute reuse.
Comparison to the Dispatcher-Based Solution: CNs pe-
riodically notify the dispatcher about their utilization and
previously executed tasks. The dispatcher stores the reuse
information onto a local database. Users send their requests to
the dispatcher and the dispatcher performs a lookup operation
on its database to identify which CN is the one that can offer
compute reuse. The dispatcher ensures that the CN identified
through this lookup is not fully loaded and forwards the service
request to it. The size of the dispatcher reuse database is the
aggregate of the size of the reuse database of each CN.

In Figure 9 (left), we present the task completion time
for the dispatcher-based design for varying compute reuse
ratios. We experiment with different probabilities of reuse
(20%, 40%, and 60%). As expected, the completion time
is lower as we increase the reuse ratio and the probability
of reuse. In Figure 9 (right), we compare the completion
time of the dispatcher-based reuse design to ICedge’s reuse
design (reactive service utilization mechanism) for probability
of reuse equal to 40%. The network-based approach results
in 6-33% lower completion times than the dispatcher-based
approach. This is due to the fact that ICedge takes advantage
of application-defined naming conventions to identify which
CN can offer reuse of previous results. On the other hand,

A

B

C

D

CN2

CN1

user2

user1

Fig. 10: IoT testbed topology.

CNs periodically notify the dispatcher about the tasks that
they have previously executed and their utilization information.
Even when these updates happen frequently, the dispatcher still
makes sub-optimal decisions in the time between the updates
being sent by CNs and being received by the dispatcher.

In Table III, we compare the overhead of the dispatcher-
based and the network-based reuse approaches. The overhead
of the dispatcher-based approach consists of: (i) the traffic vol-
ume of reuse notifications sent by each CN to the dispatcher,
and (ii) the traffic volume of notifications for the utilization
of each CN sent to the dispatcher. The results indicate that
the overhead of the network-based design is about 1.27×
lower than the design based on a single dispatcher. However,
having a single dispatcher per edge network introduces a single
point of failure. To provide fault tolerance, the dispatcher
needs to be replicated–for example, by introducing a second
(backup) dispatcher. In this case, the overhead significantly
increases, since each update eventually needs to received by
both dispatchers. The results demonstrate that having two
dispatchers results in 2.32× higher overhead than ICedge.

IX. PROOF-OF-CONCEPT DEPLOYMENT

We consider a video surveillance application, where rotating
security cameras in a city periodically send a video snapshot
to CNs, which provide face detection services. Each “camera”
instance produces snapshots of a fixed width ws at a constant
rate while moving from left to right for a full capture width of
wc (i.e., the range of the camera’s view). Once a camera takes
a snapshot, it transmits it to a CN, which receives the snapshot
and runs it through a Histogram of Oriented Gradients (HOG)
face detection algorithm. The CN returns an array sorted by the
coordinates of the faces it has detected. Assuming a reasonable
camera rotation speed, there will be an overlap between two
successive snapshots (quantified by an overlap percentage o).
This overlap can be leveraged for reuse to avoid detecting
faces on a fraction of the capture, where faces have already
been detected in a previous capture.

A. Experimental Setup

We deployed a ICedge prototype on a small-scale testbed
illustrated in Figure 10, which consists of four Raspberry Pi
devices acting as NDN routers, two 4-core 2.5GHz desktop
machines acting as CNs, and two Raspberry Pi devices acting

TABLE III: Overhead, dispatcher and network-based reuse
Solution Variant Normalized Overhead

Network-based w/o reuse 0.40
reuse 0.41

Dispatcher-based 1 dispatcher 0.52
2 dispatchers 0.95

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

C
D

F

Completion time (s)

reuse
no reuse

(a) CDF

 1

 10

 100

1000 2000

C
om

pl
et

io
n

tim
e

(s
)

Snapshot Width (pixels)

reuse
no reuse

(b) Avg. completion time
Fig. 11: Testbed results for a face detection application illus-
trating (a) the CDF of task completion times, and (b) the task
completion times for varying snapshot widths (o = 0.7)

as cameras. Our goal is to evaluate ICedge’s compute reuse
mechanism in terms of the task completion time speedup.

For our experiments, we implemented the configuration
naming and forwarding scheme presented in Sections VII-B1
and VII-B2. The two cameras are provided with full
camera captures with dimensions Dc = wc × hc =
{14070× 1100, 13978× 1180} pixels2. For each camera, we
vary ws = {1000, 2000} pixels and test o = {0.7, 0.8, 0.9}
for each ws. We run five trials of sending the entire capture,
snapshot-by-snapshot, for each 〈Dc, ws, o〉 camera capture.

B. Experimental Results

We evaluate the performance of ICedge with the compute
reuse mechanism enabled (reuse) and disabled (no reuse). We
plot the CDF of the task completion time (i.e., time elapsed
between users sending their camera capture tasks and receiving
the corresponding results) in Figure 11a for o = 0.7.

The results demonstrate that without reuse, 10% of tasks
barely finish in 10s. However, with reuse more than 61% of
tasks finish within this timeframe. Furthermore, 98% of tasks
finish within 20s using ICedge’s reuse mechanisms. Without
reuse, it takes more than twice the amount of time (42s) to
execute the same percentage of tasks.

In Figure 11b, we present the average task completion
time for o = 0.7 and varying snapshot widths. Note that the
snapshot width is proportional to the computation complexity.
While we confirm that with reuse ICedge outperforms the no
reuse case for all tasks sizes and complexities, we show that
the performance gain increases as the complexity increases
achieving more than 51% time reduction compared to no reuse.

We have also performed a set of experiments with a fixed
snapshot width ws = 2000 and varying overlap percentages
o. These experiments confirm that as o increases, the gain
in time reduction increases by 2× from o = 0.7 to o = 0.9
(results are omitted due to space limitations). Other application
use-cases (e.g., graphics applications such as virtual reality)
that utilize matrix multiplication tasks were implemented and
evaluated, demonstrating a reduction of completion times up-
to 50×. We note that compute reuse may not be suitable for
all computation profiles. Indeed, a task reuse assessment is
needed to determine if the cost of reuse (e.g., storage, lookup,
energy, etc.) may outweigh the benefits.

X. CONCLUSION & FUTURE WORK

In this paper, we presented ICedge, an edge networking
framework, designed with the objective to serve the application

needs. ICedge features a fully distributed design consisting of
building blocks that: (i) allow users to seamlessly on-board an
edge network, (ii) dispatch requests for computation to edge
resources in a timely manner, and (iii) provide network-based
mechanisms for the reuse of previous computations.

While ICedge is off to a promising start, several open
issues need to be addressed in the future. Currently, ICedge
is designed to operate in a single edge network. This design
can be augmented for large scale deployments, such as smart
cities consisting of multiple edge networks interconnected
via gateway nodes. Challenges for such deployments include
handling user mobility and handovers, user data replication
and protection, and economics. We envision placement of mul-
tiple gateway nodes per edge network for resilient handovers
leveraging mechanisms to handle mobility [39].

As an ICN-based framework, ICedge also inherits privacy
considerations related to ICN. Specifically, requests for edge
services expose the requested services through their names.
Several approaches to anonymize the names of Interests have
been proposed [35], which can be utilized in ICedge. Offloaded
tasks also expose the input data to CNs. We plan to explore
cryptographic schemes, such as homomorphic encryption [9],
for the task execution based on encrypted input data.

Finally, we plan to develop a set of ICedge libraries and pro-
gramming abstractions, so that edge applications can leverage
the ICedge functions. Our ultimate goal is to deploy ICedge
in large-scale real-world settings, where it could interact with
real-world applications and CN frameworks. To this end, we
will also need to extend the currently available naming con-
ventions and forwarding schemes for compute reuse to cover
a wider spectrum of application requirements and investigate
mechanisms for verifiable and secure computing.

REFERENCES

[1] 10.2 million visitors to the louvre in 2018. https://presse.louvre.fr/10-2-
million-visitors-to-the-louvre-in-2018/, May 2019.

[2] Alexander Afanasyev, Junxiao Shi, et al. NFD developer’s Guide.
Technical Report NDN-0021, NDN, 2015.

[3] Marica Amadeo, Claudia Campolo, and Antonella Molinaro. Ndne:
Enhancing named data networking to support cloudification at the edge.
IEEE Communications Letters, 20(11):2264–2267, 2016.

[4] Rajesh Balan, Jason Flinn, M. Satyanarayanan, Shafeeq Sinnamohideen,
and Hen-I Yang. The case for cyber foraging. In Proceedings of the
10th workshop on ACM SIGOPS European workshop, 2002.

[5] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. Clonecloud: elastic execution between mobile device and
cloud. In Proceedings of the sixth conference on Computer systems,
EuroSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[6] Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl. Maui: making
smartphones last longer with code offload. In MobiSys’10, pages 49–
62, 2010.

[7] Pedro de-las Heras-Quirós, Eva M Castro, Wentao Shang, Yingdi Yu,
Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. The
design of roundsync protocol. Technical report, Technical Report NDN-
0048, NDN, 2017.

[8] Jason Flinn. Cyber foraging: Bridging mobile and cloud computing.
Synthesis Lectures on Mobile and Pervasive Computing, 7(2):1–103,
2012.

[9] Craig Gentry and Dan Boneh. A fully homomorphic encryption scheme,
volume 20. Stanford University Stanford, 2009.

[10] Dennis Grewe et al. Information-centric mobile edge computing for
connected vehicle environments: Challenges and research directions. In
Proceedings of the Workshop on Mobile Edge Communications, pages
7–12. ACM, 2017.

14

[11] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. Foggycache: Cross-device
approximate computation reuse. In Proceedings of the 24th Annual
International Conference on Mobile Computing and Networking, pages
19–34. ACM, 2018.

[12] Peizhen Guo and Wenjun Hu. Potluck: Cross-application approximate
deduplication for computation-intensive mobile applications. In ACM
SIGPLAN Notices, volume 53, pages 271–284. ACM, 2018.

[13] Karim Habak, Ellen W Zegura, Mostafa Ammar, and Khaled A Harras.
Workload management for dynamic mobile device clusters in edge
femtoclouds. In Proceedings of the Second ACM/IEEE Symposium on
Edge Computing, page 6. ACM, 2017.

[14] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report, Los
Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

[15] Peter Zilahy Ingerman and ET IRONS. Thunks. a way of compiling
procedure statements with some comments on procedure declarations.
Technical report, PENNSYLVANIA UNIV PHILADELPHIA, 1960.

[16] Michał Król et al. Rice: Remote method invocation in icn. Proc. ACM
ICN’18, 2018.

[17] Michał Król, Spyridon Mastorakis, David Oran, and Dirk Kutscher.
Compute first networking: Distributed computing meets icn. In Proceed-
ings of the 6th ACM Conference on Information-Centric Networking,
pages 67–77, 2019.

[18] Michał Król and Ioannis Psaras. NFaaS: named function as a service.
In Proceedings of the 4th ACM Conference on Information-Centric
Networking, pages 134–144. ACM, 2017.

[19] Yuyi Mao et al. A survey on mobile edge computing: The com-
munication perspective. IEEE Communications Surveys & Tutorials,
19(4):2322–2358, 2017.

[20] Market Research Future. Edge Computing Market Research Report -
Global Forecast 2023 . https://www.marketresearchfuture.com/reports/
edge-computing-market-3239.

[21] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia
Zhang. nTorrent: Peer-to-Peer File Sharing in Named Data Networking.
In 26th International Conference on Computer Communications and
Networks (ICCCN), 2017.

[22] Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. On the
evolution of ndnsim: An open-source simulator for ndn experimentation.
ACM SIGCOMM Computer Communication Review, 47(3):19–33, 2017.

[23] Spyridon Mastorakis and Abderrahmen Mtibaa. Towards service dis-
covery and invocation in data-centric edge networks. In 2019 IEEE
27th International Conference on Network Protocols (ICNP), pages 1–
6. IEEE, 2019.

[24] Abderrahmen Mtibaa et al. Towards resource sharing in mobile device
clouds: Power balancing across mobile devices. In Proceedings of the
Second ACM SIGCOMM Workshop on Mobile Cloud Computing, MCC
’13, pages 51–56, 2013.

[25] Abderrahmen Mtibaa et al. Towards edge computing over named data
networking. In 2018 IEEE International Conference on Edge Computing
(EDGE), pages 117–120. IEEE, 2018.

[26] Abderrahmen Mtibaa, Khaled A Harras, Karim Habak, Mostafa Ammar,
and Ellen W Zegura. Towards mobile opportunistic computing. In
Cloud Computing (CLOUD), 2015 IEEE 8th International Conference
on, pages 1111–1114. IEEE, 2015.

[27] Radia Perlman. An algorithm for distributed computation of a span-
ningtree in an extended lan. In ACM SIGCOMM Computer Communi-
cation Review, volume 15, pages 44–53. ACM, 1985.

[28] Bhaskar Prasad Rimal, Eunmi Choi, and Ian Lumb. A taxonomy and
survey of cloud computing systems. In Proceedings of the 2009 Fifth
International Joint Conference on INC, IMS and IDC, NCM ’09, pages
44–51, Washington, DC, USA, 2009. IEEE Computer Society.

[29] Mahadev Satyanarayanan. Edge computing a new disruptive force. The
Second ACM/IEEE Symposium on Edge Computing, 2017.

[30] Mahadev Satyanarayanan. The emergence of edge computing. Com-
puter, 50(1):30–39, 2017.

[31] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel
Davies. The case for vm-based cloudlets in mobile computing. Pervasive
Computing, IEEE, 8(4):14–23, 2009.

[32] Junxiao Shi, Eric Newberry, and Beichuan Zhang. On broadcast-based
self-learning in named data networking. In 2017 IFIP Networking
Conference (IFIP Networking) and Workshops, pages 1–9. IEEE, 2017.

[33] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE Internet of Things Journal,
3(5):637–646, 2016.

[34] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian
Tschudin. An information centric network for computing the distribution

of computations. In Proceedings of the 1st international conference on
Information-centric networking, pages 137–146. ACM, 2014.

[35] Reza Tourani et al. Security, privacy, and access control in information-
centric networking: A survey. IEEE communications surveys & tutorials,
20(1):566–600, 2017.

[36] George Xylomenos et al. A survey of information-centric networking
research. IEEE Communications Surveys & Tutorials, 16(2):1024–1049,
2014.

[37] L. Zhang, , et al. Named data networking. ACM SIGCOMM Computer
Communication Review, 44(3):66–73, 2014.

[38] Minsheng Zhang et al. Scalable name-based data synchronization for
named data networking. In IEEE INFOCOM 2017-IEEE Conference on
Computer Communications, pages 1–9. IEEE, 2017.

[39] Yu Zhang, Zhongda Xia, Spyridon Mastorakis, and Lixia Zhang. KITE:
Producer Mobility Support in Named Data Networking. In Proceedings
of the 5th ACM Conference on Information-Centric Networking. ACM,
2018.

[40] Zhiyi Zhang et al. An overview of security support in named data
networking. IEEE Communications Magazine, 56(11):62–68, 2018.

Spyridon Mastorakis, Ph.D., joined the University
of Nebraska, Omaha in August 2019 as an Assistant
Professor in Computer Science. He received his
Ph.D. in Computer Science from the University of
California, Los Angeles (UCLA) in June 2019. He
also received an MS in Computer Science from
UCLA in 2017 and a 5-year diploma (equivalent
to M.Eng.) in Electrical and Computer Engineering
from the National Technical University of Athens
(NTUA) in 2014. His research interests include net-
work systems and protocols, Internet architectures

(such as Information-Centric Networking and Named-Data Networking), and
edge computing.

Abderrahmen Mtibaa, Ph.D., is currently an As-
sistant Professor at Department of Computer Science
in the University of Missouri–St. Louis. Prior to that
he has occupied several research positions including
a visiting assistant professor at the Computer Sci-
ence department in New Mexico State University; a
Research Scientist at Texas A&M University; and
a Postdoc in the School of Computer Science at
Carnegie Mellon University. He is an author in more
than 70 journal and conference papers with more
than 1300 citations. His current research interests

include Information-Centric Networking, Networked Systems, Social Com-
puting, Personal Data, Privacy, IoT, mobile computing, pervasive systems,
mobile security, and mobile opportunistic networks/DTN.

Jonathan Lee is a first-year student at Duke
University studying Computer Science and Statistics.
He will graduate with a BS in Computer Science
and Statistics in May 2023, where he is planning to
continue on to graduate school and attain his Ph.D.
in Computer Science. His research interests include
the design and optimization of computer networks,
specifically with regard to edge computing, and
various aspects of computer security, in which he
will continue to explore in the coming years.

Satyajayant Misra, Ph.D., is an associate pro-
fessor in Computer Science at New Mexico State
University. He completed his M. Sc. in Physics
and Information Systems from BITS, Pilani, India
in 2003 and his Ph.D. in Computer Science from
Arizona State University, Tempe, USA in 2009. His
research interests include security, privacy, and re-
silience in wireless networks, the Internet, IoT/CPS,
and supercomputing. He has served on several IEEE
journal editorial boards and IEEE/ACM conference
executive committees. He has authored more than

80 peer-reviewed IEEE/ACM journal articles and conference proceedings,
which have received over 4500 citations. More information can be obtained
at www.cs.nmsu.edu/∼misra.

https://www.marketresearchfuture.com/reports/edge-computing-market-3239
https://www.marketresearchfuture.com/reports/edge-computing-market-3239

	Introduction
	Motivation
	Background and Related Work
	Edge Computing Research
	Named-Data Networking
	Edge Computing Research over NDN/ICN

	System Model & Assumptions
	Distributed Service Discovery
	Problem Statement
	Service Discovery Design

	Network-Aware Service Invocation
	Problem Statement
	Service Invocation Protocol
	Service Reachability Through Self-Learning
	Adaptive Resource-Aware Forwarding

	Compute Reuse
	Problem Statement
	Network-Based Compute Reuse
	Compute-Aware Naming Conventions
	Compute-Aware Forwarding Schemes
	Estimation of Task Completion Time with Compute Reuse

	Evaluation
	ICedge Implementation
	Experimental Setup
	Results
	Evaluation of ICedge with Different Service Utilization Mechanisms
	Evaluation of ICedge With Network-based Compute Reuse Enabled

	Proof-of-Concept Deployment
	Experimental Setup
	Experimental Results

	Conclusion & Future Work
	References
	Biographies
	Spyridon Mastorakis, Ph.D.,
	Abderrahmen Mtibaa, Ph.D.,
	Jonathan Lee
	Satyajayant Misra, Ph.D.,

