
EARS: Enabling Private Feedback Updates in
Anonymous Reputation Systems

Vishnu Teja Kilari, Ruozhou Yu, Satyajayant Misra, Guoliang Xue

Abstract—Reputation systems, designed to remedy the lack of
information quality and assess credibility of information sources,
have become an indispensable component of many online systems.
A typical reputation system works by tracking all information
originating from a source, and the feedback to the information
with its attribution to the source. The tracking of information and
the feedback, though essential, could violate the privacy of users
who provide the information and/or the feedback, which could
both cause harm to the users’ online well-being, and discourage
them from participation. Anonymous reputation systems have
been designed to protect user privacy by ensuring anonymity
of the users. Yet, current anonymous reputation systems suffer
from several limitations, including but not limited to a) lack of
support for core functionalities such as feedback update, b) lack of
protocol efficiency for practical deployment, and c) reliance on a
fully trusted authority. This paper proposes EARS, an anonymous
reputation system that ensures user anonymity while supporting
all core functionalities (including feedback update) of a reputation
system both efficiently and practically, and without the need of
a fully trusted central authority. We present security analysis of
EARS against multiple types of attacks that could potentially vio-
late user anonymity, such as feedback duplication, bad mouthing,
and ballot stuffing. We also present evaluation of the efficiency
and scalability of our system based on implementations.

Index Terms—Reputation system, privacy, anonymity
I. INTRODUCTION

Many online forums such as Stack Overflow, TripAdvisor

and Yelp utilize reputation systems to evaluate the quality of

information posted by users, while online marketplaces, such as

Amazon and eBay employ reputation systems to ensure product

quality and establish trust between sellers and buyers.

A typical reputation system works by tracking and publi-

cizing information along with the reputation of its sources,

feedbacks regarding it from other sources, and in many cases

the reputation of the feedback sources as well. To achieve

this, the system maintains a record of all users including both

information providers and feedback providers, along with the

reputation score that is intrinsically tied to each user’s identity.

Let us consider how a typical reputation system works at

present. When a user Alice wants to post information, the

system creates a post and associates Alice’s username and

her reputation score to the post. This score plays a key role

in determining the effect of the post, e.g., in visibility and

scope. Later when a user Bob wants to give feedback to this

Kilari and Xue ({vkilari, xue}@asu.edu) are with Arizona State University,
Tempe, AZ 85287. Yu (ryu5@ncsu.edu) is with North Carolina State Uni-
versity, Raleigh, NC 27606. Misra (misra@cs.nmsu.edu) is with New Mexico
State University, Las Cruces, NM 88003. This research was supported in part
by NSF grants 1704092, 1717197, 1719342, 1345232, 1914635, and EPSCoR
Cooperative Agreement OIA-1757207 and DOE SETO award ED-EE0008774.
The information reported here does not reflect the position or the policy of the
funding agencies.

post, the reputation system also associates that feedback with

Bob’s username and his reputation score. The reputation system

continuously tallies the feedback received for Alice’s post and

updates Alice’s reputation score. All the subsequent posts by

Alice are associated with this new reputation score. The role of

reputation in determining the effect of the post and the role of

the feedback in determining the new reputation score depend

on the specific algorithms used in the reputation system.

One significant problem of such a system is the violation

of privacy of user’s identity by the system or other users of

the system. Let us consider the following scenario. A user,

Eve, provided a negative feedback on a post of Alice. Another

user, Charlie, provided positive feedback on the same post.

The current reputation systems let Alice learn the identities of

Eve and Charlie (either directly or indirectly), which enables

Alice to take biased actions, such as leaving unwarranted

positive feedback for some or all of Charlies’ posts and/or

unwarranted negative feedback on some or all of Eves’ posts.

In extreme cases, Alice may take legal actions against Eve

or cause physical and/or monetary harm to Eve. Another

scenario involves other users or the system learning sensitive

information about a user by tracking all the posts and feedbacks

of that user. For example, based on the posts and feedbacks,

a user’s political inclination can be inferred [1]. Both these

problems can have a huge impact on users’ participation in

these systems.

The goal of this paper is to address the privacy issues of

existing reputation systems, which are present in several oper-

ational steps including registration, information posting, feed-

back posting, and feedback update. To ensure user anonymity

and protect user privacy, a reputation system should function

without relying on the true identities of the users. Further, the

system should be general, practical, and scalable, in order to

attain wide adoption in various real-world scenarios.

A. Motivation

Pseudonyms were traditionally regarded as an effective solution

to the privacy concerns in online systems such as reputa-

tion systems. Unfortunately, Minkus et al. [2] showed that

pseudonyms are not enough for identity anonymity via an

attack that successfully exposed sensitive purchase histories

of eBay users through analysis of transactions anonymized

with pseudonyms. Before our work, many solutions have been

proposed to address privacy in reputation systems [3]–[8]. Yet

we find that none of the previously proposed solutions to

this problem is sufficiently general, scalable, or practical for

real world use. For instance, a number of systems [7], [8]

mandate verified usage of the concerned information or service

by a user before the user can provide feedback (a user has to

buy a product or use a service to provide feedback). These

systems are not generic, but are more tailored towards online

systems such as marketplaces or exchanges. Other limitations

of existing works include dependence on a fully trusted central

authority [3], [6], or vulnerability to attacks such as ballot

stuffing [5].

A fair number of existing works rely on the existence of

a fully trusted central authority [3], [6], which is violated

when the authority can benefit from private user information,

a situation inline to what happens in reality (e.g., Google and

Amazon’s handling of our data). Zhai et al. [4] proposed an

anonymous reputation system based on the anytrust assumption

(only an arbitrary one among a set of authorities is trusted).

However, the system operates as a series of message and

feedback rounds that may can take an arbitrary long period

of time to complete. This makes the system impractical since

a feedback phase might last perpetually long.

Another limitation of existing works is the lack of support

for feedback update. In practice, the need of revising feedbacks

is very important in many systems, e.g., when a buyer of a

product who initially gave a positive feedback wants to modify

it because of a later found problem with the product. Existing

works fail to find a way to address this issue because of the

seemingly incompatibility between providing full anonymity to

users and still maintaining user states to allow future updates.

However, we believe that such a functionality is crucial to

practical adoption of an anonymous reputation system due to

its apparent need in many real-life scenarios, such as in the

aforementioned marketplace example.

Based on these, our goal is to design a practical anonymous

reputation system which enables feedback update in addition

to all supported functionalities of existing reputation systems

(including user registration, information posting and feedback),

while still protecting the anonymity and privacy of the benign

users from malicious users and a curious system operator.

B. Our Contributions

We propose EARS, a secure, practical, and scalable anonymous

reputation system that achieves our goal, without relying on any

fully trusted central authority. In EARS, every information or

feedback post by a user will be associated with a unique name

and a unique reputation score. This unique score is (less than

but) close enough to the actual score so that it reflects the true

reputation of a user, yet far enough that the user cannot be

tracked using it, thus protecting user anonymity and privacy.

EARS tallies the feedback received for a post and provides

a way to anonymously update the reputation of the user who

posted the information. EARS also enables users to provide

or change their feedback anonymously on a post anytime in

the future. EARS does not track users’ historical activities or

build long term identities. Neither EARS nor its users can

link different posts/feedback of a user, or learn the identity

of a user through its reputation score. Another advantage of

EARS is that it enables weighted feedback. In other words,

since the reputation of the user providing feedback is included

in the feedback (vote), this reputation can be used in order

to determine the weight (effect) of the feedback. These are

realized utilizing known cryptographic primitives, including

blind signatures [9] and partially blind signatures [10], whose

security has been rigorously studied in the literature.

To summarize, the main contribution of this paper is the

design of EARS, a secure, scalable and practical anonymous

reputation system that implements all required functionalities

(registration, information posting, feedback posting, and feed-

back update) while ensuring the anonymity and privacy of all

users, along with detailed security analysis and implementation-

based performance evaluation of the proposed system.

The rest of the paper is organized as follows. In Section II,

we present our system and threat models. In Section III, we

describe the details of EARS. In Section IV, we analyze the

security of EARS. In Section V, we present our experiments

and results. In Section VI, we discuss the related work. In

Section VII, we present our conclusions and future work.

II. SYSTEM AND THREAT MODELS

A. System Model

We assume EARS is implemented on a server controlled by the

system operator. In our system, many users can interact with

EARS. Since each user interacts with EARS independently, we

describe and evaluate the performance of EARS in terms of the

interactions between a specific user and the system. However,

since each user’s actions may affect other users (e.g., when

a malicious user is trying to break the privacy of others), our

security analysis in Section IV takes into account all users in the

system. A user may hold one or both of two independent roles:

as a poster who provides information, and/or as a voter who

provides feedback. We describe the relevant protocols for these

two roles independently. In practice, multiple servers may be

used for load-balancing or back-up. Since the security of our

system does not rely on having multiple servers, we assume

only one server in our narrative for brevity.

For illustration, we use P to represent a user posting some

information (poster), V to represent a user providing feedback

on some information (voter), and S to represent the EARS

system, respectively. A Public Key Infrastructure (PKI) is used

by EARS and all users. Note that a decentralized PKI can

be used [11], [12], which waives the need for relying on

a trusted central authority in system setup. The system S
is assigned with (and identified by) one public-private key

pair (pu, pr). Each user performs account initialization when

joining the system, which associates the user identity ID, its

initial reputation r, and a credential token h(ID||r)pr (blindly)

signed by S. All the communications happen over established

secure channels which ensure the confidentiality and integrity

of the communications.

B. Threat Model

We model the server deploying EARS as semi-honest (a.k.a.,
honest-but-curious [13]), and the users of EARS as malicious.

The EARS server follows the defined protocol but will attempt

TABLE I
TABLE OF NOTATIONS

h(m) Hash of the message m
(m)k Signature on message m using key k

φV Voting token

τP Posting token

πP Feedback collection token

γV Feedback update token
be(m) Blinding factor e applied to message m
ue(m) Unblinding factor e applied to message m
BS(m) Blind Signature on m
PBS(m)x Partial Blind Signature on m with value x
(pu, pr) Public/Private key pair of EARS

to learn all possible information from messages received. The

assumption of a semi-honest system is realistic due to the

various practical factors that prevent the system operator from

deviating from the pre-defined protocols, including oversight

from regulating authorities, the huge potential cost at stake, and

the fear of reputation damage. Users can be malicious as they

can deviate from the protocol, collude among themselves, or try

to violate the anonymity of other users by tracking reputation

scores, pseudonyms, and reputation updates within EARS.

We assume all adversaries are computationally bounded.

Public key encryption, symmetric key encryption, and hash

functions are correctly implemented. We also assume that

the network and upper-layer protocols do not leak the users’

identifiable information to the EARS. In order to thwart traffic

analysis attacks, we assume that the network connections

between the users and EARS are established over anonymous

communication channels such as Tor [14]. The works on k-

anonymization [15] observe that content of the information

itself is enough to identify the source if additional information

about the source is available through auxiliary data sources.

This is orthogonal to the problem addressed by this paper. In

Table I, we summarize the notations used in the paper.

III. DESIGN OF THE EARS PROTOCOLS

In this section, we discuss the detailed protocol design of

EARS. A user can be a poster (information provider) and/or

a voter (feedback provider), and we assume that they have

already initialized their credentials with the system. Fig. 1

illustrates the protocols followed by a poster, voter, and the

system (EARS). These protocols include: poster registration,

voter registration, posting, voting, reputation update, and feed-

back update. Fig. 1(a) shows three protocols that a poster

uses to interact with the system: registration, posting, and

reputation update. Fig. 1(b) shows the three protocols for the

voter: registration, voting, and feedback update.

In poster registration, a poster provides her credentials to

the server, and requests an anonymous posting token certifying

her identity, reputation, and intention to post, along with an

anonymous feedback collection token that is coupled with this

post to enable feedback attribution. The tokens are only issued

after the credentials of the poster are verified by the system.

In the posting protocol, the poster provides the posting token

along with the information she wishes to post. The system

verifies that the posting token is valid, and then proceeds to post

the information given by the poster along with the reputation

of the poster enclosed in the posting token. The poster token

was blinded during registration to ensure the anonymity of the

poster during the posting protocol.

Similar to poster registration, in the voter registration proto-

col, a voter intending to provide feedback proves her credentials

and requests an anonymous voting token certifying her identity,

reputation, and intention to vote on a specific post, along with

an anonymous feedback update token that is coupled with this

voting token to enable feedback update. The server verifies the

credentials, and issues the anonymous voting token and the

anonymous feedback update token to the voter.

Then, during the voting protocol, the voter provides the

voting token along with the feedback she wishes to post. The

system verifies the voting token, and then posts the feedback

given by the voter along with the reputation of the voter,

which is enclosed in the voting token. The blinded voting token

protects the anonymity of the voter during the voting protocol.

A poster executes the reputation update protocol to collect

feedback to its post, by submitting the feedback collection

token to the system. After verifying the feedback collection

token, the system tallies all the feedback received by the

post until then and issues a partially blind signature on the

reputation token which is an anonymous token containing the

feedback score and the timestamp. This reputation token is

only redeemable by the poster who posted the information. Any

subsequent changes to the feedback will result in issuance of a

new anonymous reputation token reflecting the changes to the

feedback score.

After receiving partially blind signature of the system on

the reputation token, the poster applies the unblinding factor

to it and retrieves the signed reputation token. This token must

be redeemed within a week (specified by the timestamp) and

when the poster redeems this token, she submits this signed

reputation token to the system along with her credentials. The

system verifies that the credentials are valid and the time to

redeem the token has not expired and updates the reputation

score of the poster based on the reputation token and issues

new credentials to the poster reflecting the updated reputation

score. In the feedback update protocol, the voter will submit

the feedback update token issued during voter registration along

with the updated feedback. The system verifies the token and

if the token is valid, the system updates the feedback of a post

corresponding to the token with the new feedback.

In the following, we explain these protocols in detail.

A. Poster Registration Protocol

Protocol 1 shows the registration protocol, which is used to

verify a poster’s credentials and credibility and issue an anony-

mous posting token and an anonymous feedback collection to-

ken to the poster by S. In Step 1, a poster P sends S its identity

(IDP), a reputation score (r), the credential (h(IDP ||r)pr)

and a credibility token (h(IDP ||t)pr) where t is the number

of reputation tokens redeemed during previous week. This

credibility token is issued by the system to the poster after

verifying that the number of reputation tokens redeemed by

PosterPoster EARSEARS

1. Credentials + Token request

2. Posting & feedback collection tokens

1. Posting token + Post

1. Feedback collection token

 3. Reputation token + Credentials

4. Updated reputation credentials

2. Reputation Token

★ Poster Registration

★ Posting

★ Reputation
Update

★ Reputation
Update

Poster EARS

1. Credentials + Token request

2. Posting & feedback collection tokens

1. Posting token + Post

1. Feedback collection token

 3. Reputation token + Credentials

4. Updated reputation credentials

2. Reputation Token

★ Poster Registration

★ Posting

★ Reputation
Update

(a) Poster protocols: Poster Registration, Posting, and Reputation Update

VoterVoter EARSEARS1. Voting token + Vote
★ Voting

1. Credentials + Token request

2. Voting & feedback update tokens

★ Voter Registration

2. New feedback update token

1. Feedback update token + New feedback

★ Feedback Update

Voter EARS1. Voting token + Vote
★ Voting

1. Credentials + Token request

2. Voting & feedback update tokens

★ Voter Registration

2. New feedback update token

1. Feedback update token + New feedback

★ Feedback Update
(b) Voter protocols: Voter Registration, Voting, and Feedback Update

Fig. 1. Illustration of protocol interactions between user and EARS.

the user is same as the number of posting tokens issued to

her and all the reputation tokens are redeemed recently. This

can be easily verified using the timestamp on the reputa-

tion tokens. The poster also sends a blinded posting token,

bk(ak, rk, h(ak||rk), Bk(h(IDP)), h(ak||Bk(h(IDP)))) and a

value p. The term (bk, Bk) corresponds to the blinding values;

ak is a random nonce; rk corresponds to a reputation score

less than the actual reputation score r; and p is a tag informing

the system that this is a request for a posting token by the

user (to perform posting). Then, S verifies the validity of the

arguments inside the blind posting token using cut-and-choose

protocols. The verification using the cut-and-choose protocols

involves P sending n blind tokens to S. Each of the n blind

tokens will have unique nonces, unique reputation scores less

than the actual reputation score, and unique blinding values.

Protocol 1 Registration Protocol for Poster P

Input: ID, r, h(IDP ||r)pr, and h(IDP ||t)pr of poster P .

Output: Poster P acquires a posting token and a feedback

collection token from S
1: P sends its credentials along with blind tokens to S:

P → S : IDP , r, h(IDP ||r)pr, p, h(IDP ||t)pr
bk(ak, rk, h(ak||rk), Bk(h(IDP)), h(ak||Bk(h(IDP)))).

2: P sends the feedback collection token to S:

P → S : bn+1(x), bn+2(h(ak||x)).
3: After S verifies the blind token, it issues a partially blind

signature on a posting token (kth token) and a blind

signature on the feedback collection token to P :

S → P : PBS(bk(ak, rk, h(ak||rk), Bk(h(IDP)),
h(ak||Bk(h(IDP))))p, BS(bn+1(x)),
BS(bn+2(h(ak||x))).

In Step 2, after S ensures that arguments in the

blind token from P are valid using the cut-and-

choose protocol, P also sends feedback collection

token, bn+1(x) and bn+2(h(ak||x)). In Step 3, S
issues a partially blind signature on the posting token,

PBS(bk(ak, rk, h(ak||rk), Bk(h(IDP)), h(ak||Bk(h(IDP))))p,

and a blind signature on the feedback collection

token, BS(bn+1(x)), BS(bn+2(h(ak||x))). The poster P

applies the unblinding factors to retrieve the signature

of S on the posting token which is denoted as τUi =
PBS(ak, rk, h(ak||rk), Bk(h(IDP)), h(ak||Bk(h(IDP))))p,

and the feedback collection token which is denoted as

πU
i = BS(x), BS(h(ak||x)).
The poster registration protocol can be executed offline since

it does not require any details regarding the information to be

posted. It can also be executed multiple times in advance to

collect multiple tokens. Since the tokens are anonymously ob-

tained and unlinkable, accumulation of tokens will not violate

the anonymity of the poster. While posting the information,

the poster can select one of the unused tokens and submit the

information to be posted along with it.

B. Posting Protocol

Protocol 2 presents the procedure for a poster to anony-

mously post information using an obtained posting token. As

described in Table I, PBS(q)y denotes the partially blind

signature on q, with y as the mutually agreed upon value

by both the requester (P) and the issuer (S) of the partially

blind signature. In Step 1, P presents the posting token

PBS(ak, rk, h(ak||rk), Bk(h(IDP)), h(ak||Bk(h(IDP))))p
to S along with values ak,rk,Bk(h(IDP)) and postk where

ak, rk and Bk(h(IDP)) are the random nonce, reputation

score and blinded-hash of the identity (which serves as the

reputation token) respectively, and postk is the information to

be posted. Then, S compares its signature on the entities ak,

rk and Bk(h(IDP)) with the submitted token, and if verified,

posts the information postk with a unique identity idk and the

reputation score rk. This identity idk denotes the identity of

the post and not the identity of the poster who posted this post.

C. Voter Registration Protocol

Protocol 3 details the procedure for a voter V to obtain from

S an anonymous voting token to provide feedback for a post

of identity idl, and an anonymous feedback update token for

potential feedback update in the future.

In Step 1, V presents to S its identity IDV , and repu-

tation rV along with the credential h(IDV ||rV)pr accompa-

nied by a blinded voting token bl(al, rV l, h(al||rV l)) and a

Protocol 2 Posting Protocol for Poster P

Input: Posting token issued by S to the poster P .

Output: Poster P posts a message anonymously.

1: P sends its credentials ak, rk, the message postk and

Bk(h(IDP)) along with the posting token to S:

P → S : ak, rk, postk, Bk(h(IDP)),
PBS(ak,rk,h(ak||rk),
Bk(h(IDP)),h(ak||Bk(h(IDP))))p.

2: S posts message postk with idk and reputation score rk.

bit v (tag signifying intent to vote) and the identity of the

post it wants to vote on, idl. Here, bl corresponds to the

blinding value, al is a random nonce and rV l is a repu-

tation score less than V ’s actual reputation score rV . The

system S uses the cut-and-choose protocol to ensures the

validity of the arguments. The verification using the cut-and-

choose protocols involves V sending m blind tokens to S.

Each of the m blind tokens will have unique nonces, unique

reputation scores less than the actual reputation score, and

unique blinding values. In Step 2,after S ensures that argu-

ments in the blind token from V are valid using the cut-and-

choose protocol, V sends the feedback update token, bm+1(z),
bm+2(h(al||z)). In Step 3, S issues a partially blind signature

on the voting token, PBS(bl(al, rV l, h(al||rV l)))(v,idl), and a

blind signature on the feedback update token, BS(bm+1(z)),
BS(bm+2(h(al||z))). The voter V applies the unblinding fac-

tors to retrieve the signature of S on the voting token, which is

considered as φV
i , φV

i = PBS(al, rV l, h(al||rV l))(v,idl), and

then applies unblinding factors to the feedback update token,

which is considered as γV
i , γV

i = BS(z), BS(h(al||z)).
Protocol 3 Registration Protocol for Voter V

Input: IDV , rV , and h(IDV ||rV)pr of the voter V .

Output: V obtains voting token and feedback update token.

1: V sends its credentials along with blind tokens to S:

V → S : IDV , rV , h(IDV ||rV)pr, v, idl
bl(al, rV l, h(al||rV l)).

2: V sends the feedback update token to the S:

V → S : bm+1(z), bm+2(h(al||z)).
3: After S verifies the blind token, S issues a partially blind

signature on voting token (lth token) and a blind signature

on the feedback update token to V :

S → V : PBS(bl(al, rV l, h(al||rV l)))(v,idl),
BS(bm+1(z)), BS(bm+2(h(al||z))).

D. Voting Protocol

Protocol 4 explains the procedure followed by the voter V to

Protocol 4 Voting Protocol for Voter V

Input: Voting token issued by S to the voter V .

Output: Voter V votes for a posting anonymously.

1: V sends its credentials al and rV l along with the signed

blind tokens to S:

V → S : al, rV l, votel, PBS(al, rV l, h(al||rV l))(v,idl).

2: S validates signature, and posts votel for post idl and the

reputation score rV l of the voter.

provide anonymous feedback for a post with identity idl using

the voting token acquired from S. In Step 1, V presents the

voting token PBS(al, rV l, h(al||rV l))(v,idl) to S along with

values al, rV l and vote, votel where al is the random nonce,

rV l is the reputation score, and votel is the feedback of the

voter V for idl. Then, S compares its signature on the entities

al and rV l with the submitted token, and after verifying that

the signature is valid, it assigns votel to the post associated

with the idl along with the reputation score of V , rV l.

E. Reputation Update Protocol
In the reputation update protocol, a poster interacts with S to

update its reputation based on feedback it has received from

voters on its posts. The poster submits the feedback collection

token of the post to S. After verifying the token, S tallies all

the feedback received by the post and issues a partially blind

signature on the reputation token, which is an anonymous token

containing the current feedback score of the poster and the

timestamp, and sends it to the poster. This token is redeemable

only by the poster who posted the information. Only one token

for a post is issued per update period (e.g., a week, decided

by the system operator). Subsequent changes to the feedback

will result in issuance of a new anonymous reputation token

reflecting the changes to the feedback score. This protocol is

executed by the poster for each of its posts every update period.
Protocol 5 explains the procedure followed by S to update

the reputation of the poster P based on the feedback (votes)

its post idk has received. Here, idk is the identity of the post

and S does not know the identity of P or the voters that voted

on the post; thus their anonymity is preserved throughout the

process. In Step 1, P presents to S the feedback collection

token πU
i = BS(x), BS(h(ak||x)) (obtained during poster’s

registration for the post) along with the credentials in the token

Protocol 5 Reputation Update Protocol for Poster P

Input: Feedback collection token issued by S to poster P .

Output: Updated reputation score of the poster P with the

feedback f corresponding to the post idk.

1: P sends the feedback collection token along with the

credentials in the token to S:

P → S : ak, x, BS(x), BS(h(ak||x)).
2: S verifies arguments and its signature on the token and

issues a partial blind signature on the reputation token:

S → P : PBS(Bk(h(IDP)))(f,w).

3: P sends the new reputation token to S and requests a new

feedback collection token:

P → S : bc(c), bc+1(h(ak||c)), Bc(h(IDP)).
4: S replaces the reputation token with the new reputation

token and blind signs the new feedback collection token:

S → P : BS(bc(c)), BS(bc+1(h(ak||c))).
5: P submits the signature of S on reputation token along

with its credentials:

P → S : IDP , r, h(IDP ||r)pr, PBS(h(IDP))(f,w).

6: S verifies received credentials and signature and issues

updated reputation score and credentials to P :

S → P : IDP , r + f, h(IDP ||r + f)pr.

ak, x. The system S signs x and matches it with BS(x), checks

the posts associated with the value ak, computes h(ak||x) and

compares its signature on h(ak||x) with the submitted token

(BS(h(ak||x))). If all the credentials and the tokens submitted

by P are valid, then P is the poster of this information. In

Step 2, S performs a partially blind signature on the reputation

token (Bk(h(IDP))) of the post associated with ak with the

feedback f (the total feedback received for this post) and the

time stamp in terms of week (the week out of 52 weeks), w and

sends this partially blind signature, PBS(Bk(h(IDP)))(f,w)

to P . Here, the time stamp w is added to ensure that the

reputation update protocol will be executed for each post

regularly. On receiving the partial blind signature, P applies the

unblinding factor and retrieves the signature on the reputation

token (PBS(h(IDP))(f,w)).

In Step 3, P sends the new reputation token to S and requests

a new feedback collection token for the next (future) reputation

update. Then, S updates the post associated with ak with the

new reputation token and issues a new feedback collection

token to P in Step 4. In Step 5, to update his/her reputation,

P sends its credentials along with the signed reputation token

to S. In Step 6, S verifies the credentials and its signature on

the reputation token and updates the reputation score r of P
associated with the identity IDP with feedback f and issues

updated reputation score and corresponding credentials to P .

F. Feedback Update Protocol

Feedback update is one of the core functionalities that we

need to support in an anonymous reputation system. Protocol 6

details the procedure followed by V to update her feedback

on a post identified with the identity idl. Voter V sends the

feedback update token she obtained during voter registration,

along with the credentials in the token and the updated feedback

(voteupdated): al, z, BS(z), BS(h(al||z)), voteupdated to S in

Step 1. S verifies that its signature on z matches with the

feedback update token submitted (BS(z)), checks the vote

associated with the value al, computes h(al||z), and com-

pares its signature on the h(al||z) with the submitted token

(BS(h(al||z))). If all the credentials and the tokens submitted

by V are valid, then V is the voter who provided this feedback.

S then updates the old feedback vote with the new feedback

voteupdated. In Step 3, V requests a new feedback update token

from S for a future feedback update, which S issues in Step

4.

IV. SECURITY ANALYSIS

In this section, we perform detailed security analysis of EARS.

Proposition 1: Poster anonymity is guaranteed in EARS. �
During poster registration, the poster P sends her credentials

IDP , r, and h(IDP ||r)pr along with the credibility token,

h(IDP ||t)pr to the anonymous reputation system S. Then, S
verifies the submitted credentials with its database of users,

checks the validity of the credibility token and if they match,

S knows that P is authentic. Poster P sends n blinded tokens;

each token is composed of the following components that are

unique to each token: a random nonce; a reputation value less

Protocol 6 Feedback Update Protocol for Voter V

Input: Feedback update token issued by S to the voter V .

Output: Updated feedback of the voter V on the post idl.
1: V presents the blindly signed feedback update token, the

credentials in the token, and the updated feedback to S:

V → S : al, z, BS(z), BS(h(al||z)), voteupdated.

2: S verifies the argument and the signature on the token, and

updates the vote associated with al on idl by V .

3: V requests a new feedback update token from S:

V → S : bd(d), bd+1(h(al||d)).
4: S issues a new feedback update token to V :

S → V : BS(bd(d)), BS(bd+1(h(al||d))).

than P ’s actual reputation; a commitment with the nonce and

the reputation value; a reputation token; and the commitment

of the reputation token with the nonce. S uses cut-and-choose

protocol to verify these messages, and then issues a partially

blind signature on one of the tokens with p.

The security of partially blind signature ensures that S cannot

know the nonce, reputation value, feedback collection token,

and their commitments, which are signed by it for the kth

token despite unblinding the other (n − 1) tokens. The blind

signature on the feedback collection tokens also ensures that

these values are concealed from S when it issues its signature

on them. So, S issues an anonymous blind token which

contains valid arguments (reputation score, feedback token, and

feedback collection token) to an authenticated poster. In the

posting protocol, P sends the anonymous blind token (with

the signature of S) along with the arguments in the token: ak,

rk, Bk(h(IDP)) to S.

Since the signature itself can only be verified and cannot

be compared to anything in the past (due to the application of

unblinding factors to the partially blind signature), S cannot

know the identity of the poster to which this signature was

issued. The arguments do not leak any information regarding

the identity of the poster because the nonce is random, the

reputation score is less than the original reputation score (which

is not known by the system), and the blinded hash is a result

of a cryptographic irreversible one-way function.

During the reputation update protocols, P presents the sig-

nature of S on the feedback collection token along with the ar-

guments in it: ak, x. Then, S verifies that the signature is valid

on the submitted arguments. Since this signature is obtained

by unblinding the blind signature on the feedback collection

token, S cannot connect this signature or the arguments with

the identity of the poster to which this signature was issued.

The reputation token (Bk(h(IDP))) itself was blinded with

blinding factor Bk, preventing S from knowing the identity of

the poster to which this token was going to be issued. The

signature of S on this token is a partially blind signature with

feedback score f and timestamp w. When P redeems this

reputation token, S can keep track of all the reputation tokens

of value f it issued and try to correlate that with the posters that

redeemed those tokens. Since many posters might have been

issued the reputation tokens of value f , deanonymizing the

identity of a specific poster using only the value of reputation

tokens is difficult (especially for large anonymity sets).
Proposition 2: Voter anonymity is guaranteed in EARS. �

In the voter registration protocol, a voter V sends her

credentials IDV , rV , and h(IDV ||rV)pr to the system S.

Then, S verifies the submitted credentials as with the poster.

Then V sends m blinded tokens; each token is composed of the

following components that are unique to each token: a random

nonce, a reputation value less than the actual reputation value of

the voter, and a commitment with the nonce and the reputation

value. The system uses cut-and-choose protocol to verify that

all these arguments are valid, and then S issues a partially blind

signature on one of the tokens with (idl, v) (indicating that the

token is for voting on a post, idl). Since it is a partially blind

signature, S cannot know the nonce, reputation value, and their

commitments it had signed.
The system cannot infer these values from the values ob-

tained from (m− 1) unblinded tokens because they are unique

to each token. The blind signature on the feedback update token

also ensures that these values are concealed from S when it

issues its signature on them. So, S issues an anonymous blind

token which contains valid arguments (reputation score, and

feedback update token) to an authenticated voter V . During the

voting protocol, V sends the anonymous blind token (signature

of S on its token) and also the arguments in the token: al, rV l

to S. Since the signature itself can only be verified and not

compared to anything stored in the past (due to the application

of unblinding factors to the partial blind signature), S cannot

know the identity of V .
The arguments do not leak any information regarding the

identity of the voter because the nonce is random, and the

reputation score is less than the original reputation score (which

is not known by the system). The vote or the identity of the

post that is being voted on using this token cannot identify

the voter. So, S receives only a signed token, which contains

arguments necessary to vote on a specific post anonymously –

the voter is not identifiable. In the feedback update protocol,

V presents the signature of S on the feedback update token

along with the arguments in it: al, z. Then, S verifies that the

signature is valid on the submitted arguments. Due to the blind

signature on the feedback update token, S cannot connect this

signature or the arguments of the token with V ’s identity.
Proposition 3: EARS cannot link the various tokens of the
poster or the voter. �

Since the tokens issued by the system S to a user (a poster or

a voter) are always anonymous, S cannot differentiate between

the tokens issued to the same user or a different user. As such,

the system has no information regarding the various tokens of

a user (poster/voter) to link them.
Proposition 4: A poster cannot use higher reputation score of
another poster for posting. �

The commitment of the random nonce (used to post the

information) with the reputation score during the poster regis-

tration protocol prevents a poster from using a higher reputation

score of another poster to post. Only the poster who obtained

a token with her identity and a reputation score less than

her reputation score will be able to use the token issued

during poster registration protocol to post some information.

Reputation scores cannot be created unless the poster interacts

with S, further the several interactions between P and S end

up functioning as challenge-response ensuring that a simple

reputation of somebody else cannot be replayed or stolen and

used. Even if another poster obtains this token and posts some

information, the hash of the identity of the poster (who obtained

the token) in the reputation token will ensure that reputation

update based on the feedback for the post will only occur for

the poster whose token has been used to post.

Proposition 5: A poster can only redeem his/her feedback token
once. �

The hash of the identity of the poster (who posted the

information) in the feedback token will ensure that no other

poster can redeem this feedback token. The unique signature of

the system on this feedback token will prevent double spending

of this token – once a feedback token is redeemed, the system

S keeps track of it so that it cannot be redeemed again.

Proposition 6: EARS is immune to bad mouthing and ballot
stuffing. �

Since EARS enables weighted feedback, the reputation will

play a vital role in determining the effect of the feedback, which

in turn decides the reputation of the information source. As

such, unless the reputation of a malicious voter is significant

enough or a large group of voters collude, the effect of authentic

feedback will outweigh the fake feedback. Thus, attempts on

bad mouthing and/or ballot stuffing are not viable.

Non-goals: Our system cannot detect the malicious users but

is resilient against such users. Like many previous works on

anonymous reputation systems, our system is not immune to

sybil attacks but it mitigates their effect. Our system cannot

defend against network-level DoS and DDoS attacks.

V. EVALUATION

In this section, we discuss the implementation of EARS and

analyze the results to demonstrate that it is efficient, robust,

scalable, and can be implemented without any additional

hardware or software requirements. We implemented EARS

using standard crypto libraries in Java. To emulate real world

hardware, a user (poster/voter) is implemented on an Intel Core

i5-2450M, 2.5 GHz machine with 8 GB RAM. To emulate

EARS, we implemented the server on an Intel Core i7-6700K,

4.0 GHz machine with 32 GB RAM. All the results were

averaged over 1000 runs. As we mentioned, the interaction of a

user (poster/voter) with EARS is independent of interactions of

other users with EARS – the system can interact with multiple

users in parallel. This would ensure that EARS is scalable,

since increase in the number of users would only increase the

computation requirements of EARS linearly.

For better scalability, in EARS more servers can be added

to serve an increasing number of clients with low latency. We

measure the time taken by the user and the server for each

protocol in our system. We consider only the computation steps

and not the data transmission steps as they are dependent on

the nature and traffic in the network. We also do not consider

the storage requirements because they are trivial (in the order

of several kilobytes for each client). Fig. 2 shows the time

taken at the user during the poster registration protocol (PRP),

the voter registration protocol (VRP), the reputation update

protocol (RUP), and the feedback update protocol (FUP). Fig. 3

shows the time taken at the server during PRP, VRP, the posting

protocol (PP), the voting protocol (VP), RUP, and FUP.
As shown in Fig. 2, the user part of the poster registration

protocol takes only 22.9 ms (n = 10). It involves creating

the blind tokens which in turn involve hashing, and applying

blinding factors. After receiving the posting token, the poster

applies the corresponding unblinding factor to retrieve the

signature of the system on the posting token and the feedback

collection token. The user part of the voter registration protocol

takes only 12.8 ms (m = 10). It involves creating the blind

tokens which involve hashing and applying blinding factors.

Since the voter registration protocol does not involve reputation

token, the number of blinding and hashing operations are less

compared to the poster registration protocol. This is the reason

that the time required for the voter registration protocol is less

than that of the poster registration protocol. After receiving the

URP VRP RUP FUP
Protocols

0

5

10

15

20

25

Ti
m

e
(m

s)

Fig. 2. Time taken by a user in various
protocols of our system.

URP VRP PP VP RUP FUP
Protocols

0

5

10

15

20

Ti
m

e
(m

s)

Fig. 3. Time taken by the server in
various protocols of our system.

the feedback update token, the poster applies the corresponding

unblinding factor to retrieve the signature of the system on the

feedback update token. The user part of the posting protocol

and the voting protocol are not mentioned because there are

no computation steps for the users in these protocols. They

submit the tokens (which are signed by the system) and the

arguments in the tokens along with the posts or votes to the

system. The users do not need to perform any computations in

these protocols. So, they are omitted from Fig. 2.
The reputation update protocol takes 4.8 ms; this is because

it only requires a few blinding and unblinding operations.

The feedback update protocol requires the voter to submit the

feedback update token along with the arguments in it and the

updated feedback (vote) to the system. The voter also applies

blinding factor to the new feedback update token request. After

receiving the blind signature on the new feedback update token,

it applies unblinding factor to retrieve the new signed token.

The user takes 3.7 ms to complete feedback update.
As shown in Fig. 3, the server part of the poster registra-

tion protocol takes 15.1 ms. It encompasses the unblinding

and verification of tokens in cut-and-choose protocols which

involves hashing. After verifying that the tokens are valid,

the system performs a partially blind signature on the posting

token and a blind signature on the feedback collection token

and send them to the poster. The server part of the voter

registration protocol takes 13.2 ms. It constitutes the unblinding

TABLE II
EXECUTION TIME FOR A SINGLE SERVER WITH VARYING CLIENTS

Clients VRP PP VP FUP
10 88.7 ms 23.9 ms 23.6 ms 92.8 ms

100 743.5 ms 215.8 ms 212.3 ms 848.1 ms
1000 6811.9 ms 2059.6 ms 2047.7 ms 8191.9 ms

and verification of tokens in cut-and-choose protocols which

encompasses hashing. After verifying that the tokens are valid,

the system issues a partially blind signature on the voting token

and a blind signature on the feedback update token. The amount

of time taken by the system for the poster registration protocol

is more than the voter registration protocol because of the

presence of the reputation token, which increases the number

of hashing and verification operations.
In the posting protocol, the system verifies its own signature

on the posting token and verifies the arguments in the posting

token with the arguments submitted to it by the poster, which

involves hashing operations. The server takes 4.3 ms to execute

the posting protocol and 3.2 ms for the voting protocol. The

voting protocol involves the system verifying its own signature

on the voting token and verifying the arguments inside that

token with the arguments submitted to it by the voter, which

involves a hashing operation. In the reputation update protocol,

the server takes 18.2 ms. It requires several complex operations,

such as verifying signature on the feedback collection token and

integrity of the arguments inside the token, and issuance of a

partially blind signature on the reputation token.
After receiving a request for a new feedback collection

token, the system issues a blind signature on the new feedback

collection token. When the poster submits a reputation token for

redemption, the system verifies its signature on the reputation

token and the integrity of the arguments inside the token. After

verifying, the system updates the reputation score of the poster

and creates new credentials representing the updated reputation

score of the poster and sends these credentials to the poster.

This step involves signature of the system on the hash of the

identity of the poster and new reputation score. In the feedback

update protocol, the server takes 12.3 ms. The system part

of the feedback update protocol involves the system verifying

its signature on the feedback update token submitted by the

voter and the integrity of its arguments. It also involves issuing

blind signature on the new feedback update token submitted

by the voter. As mentioned previously, the poster registration

protocol and the reputation update protocol can be executed

offline. The voter registration protocol, the posting protocol,

the voting protocol and the feedback update protocol are the

only protocols that need to be executed in real time.
As shown above, the voting protocol and the posting protocol

take very little time to execute. The maximum amount of time

taken among them is 4.3 ms. A processor core of a server

running these protocols can service 200 users simultaneously

in less than a second in real time. Use of cloud computing can

easily enable our system to scale economically and efficiently.

The other protocols which can be executed offline can be run

during the off-peak hours of the system. Table II shows the time

taken by the server to simultaneously serve varying number

of users during the various online protocols of the system.

The poster registration and the reputation update protocols are

not shown in Table II, because they can be executed offline.

The experimental results from the implementation of EARS

demonstrate its efficiency and scalability.

VI. RELATED WORK

We discuss several proposed solutions for anonymous repu-

tation systems and make a case for the need of our system.

Anonymous reputation systems in P2P networks based on elec-

tronic cash (e-cash) have been proposed [16], [17]. Anonymity

in e-cash is essential to ensure the unlinkability of users’

transactions. The main drawback of e-cash based anonymous

reputation systems is their inability to support negative feed-

back. This drawback makes these systems untenable for many

application scenarios since negative feedback plays a vital role

in calculating the reputation of a user. Another drawback of

these systems is their inability to provide different levels of

granularity for feedback and reputation.

Blind signatures based anonymous reputation systems have

also been proposed [3], [18]. These systems leverage blind

signatures to hide the identity of users performing transactions.

The drawback of these systems is that they trust a central

authority. Wang et al. [3] proposed blind signatures for anony-

mous reputation and trust in participatory sensing, but this

scheme trusts the server to issue the feedback tallies. These

tallies can be used by the server to identify the participants.

Blömer et al. [6] proposed a group signature based anonymous

reputation system. But this system trusts an entity (group

manager) to be honest. Schaub et al. [5] proposed a blockchain

based trustless reputation system. This system is prone to

ballot stuffing attacks because the service provider issues the

credentials which are used by the customers to issue feedback.

Some anonymous reputation systems only allow a one-time

feedback per access to the service to be evaluated. For instance,

Soska et al. [8] proposed a decentralized anonymous market-

place with secure reputation. The system requires the clients to

purchase products from the vendor to be able to leave feedback.

While this property of requiring the feedback provider to

perform a prior action is useful in some scenarios, it is not

deployable in platforms such as Stack Overflow, TripAdvisor,

and Yelp where there is no service to be accessed. There are

many platforms on the web apart from the marketplaces which

rely on reputation systems to function effectively.

Zhai et al. [4] proposed a tracking resistant anonymous

reputation system using verifiable shuffles, linkable ring sig-

natures, and homomorphic cryptography. This system follows

the anytrust model. In order to scale efficiently and effectively,

the system makes a tradeoff between security and the efficiency

after a threshold of users. Another drawback of this system is

that it operates in a series of message and feedback rounds

which lasts for an arbitrary amount of time (with finite time

interval) based on the application scenario. This makes the

system impractical for realistic deployment since the feedback

phase might be perpetual for many real-world applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a secure, practical and scalable

anonymous reputation system named EARS. EARS allows

anonymous information (post) posting and feedback (voting)

by users. In both cases, the reputation of the user is associated

with the post/vote it submits to the system. After receiving the

feedback on a post, our system allows the reputation of the

posting user to be updated with the feedback received for that

post. This reputation update is also anonymous. In case a voter

decides to update her feedback on a specific post, our system

enables her to do so anonymously as well. Detailed security

analysis of our system shows that it is immune to attacks from

malicious users or any attempt to violate the anonymity of the

user by the system. We note that our system is not fully immune

to sybil attacks, which is an orthogonal problem to what we

solved. However, since our system enables weighted feedback,

such a feature can be leveraged to mitigate the effect of sybil

accounts. We will tackle sybil attacks in our future work.

REFERENCES

[1] T. Islam, A. R. Bappy, T. Rahman, and M. S. Uddin, “Filtering political
sentiment in social media from textual information,” in Proc. IEEE
ICIEV, 2016, pp. 663–666.

[2] T. Minkus and K. W. Ross, “I know what you’re buying: Privacy breaches
on ebay,” in Proc. PETS, 2014, pp. 164–183.

[3] X. O. Wang and et al., “Artsense: Anonymous reputation and trust in
participatory sensing,” in Proc. IEEE INFOCOM, 2013, pp. 2517–2525.

[4] E. Zhai, D. I. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford,
“Anonrep: towards tracking-resistant anonymous reputation,” in Proc.
USENIX NSDI, 2016, pp. 583–596.

[5] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A trustless privacy-
preserving reputation system,” in Proc. IFIP SEC, 2016, pp. 398–411.

[6] J. Blömer, J. Juhnke, and C. Kolb, “Anonymous and publicly linkable
reputation systems,” in Proc. FC, 2015, pp. 478–488.

[7] A. Kokoschka, R. Petrlic, and C. Sorge, “A reputation system supporting
unlinkable, yet authorized expert ratings,” in Proc. ACM SAC, 2015, pp.
2320–2327.

[8] K. Soska, A. Kwon, N. Christin, and S. Devadas, “Beaver: A decentral-
ized anonymous marketplace with secure reputation.” IACR Cryptology
ePrint Archive, vol. 2016, p. 464, 2016.

[9] D. Chaum, “Blind signatures for untraceable payments,” in Springer
Advances in Cryptology, 1983, pp. 199–203.

[10] T. Okamoto, “Efficient blind and partially blind signatures without
random oracles,” in Proc. IACR TCC, 2006, pp. 80–99.

[11] B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin: A
decentralized pki mitigating mitm attacks,” Elsevier Future Generation
Computer Systems, 2017.

[12] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized pub-
lic key infrastructure with identity retention.” IACR Cryptology ePrint
Archive, vol. 2014, p. 803, 2014.

[13] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically
analysing privacy properties for honest-but-curious adversaries,” Tech.
Rep., 2014.

[14] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. USENIX Security, 2004, pp. 303–320.

[15] L. Sweeney, “k-anonymity: A model for protecting privacy,” World
Scientific International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, vol. 10, no. 05, pp. 557–570, 2002.

[16] E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin, “Reputation
systems for anonymous networks,” in Proc. PETS, 2008, pp. 202–218.

[17] J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Balancing account-
ability and privacy using e-cash,” in Proc. SCN, 2006, pp. 141–155.

[18] D. Christin, C. Roßkopf, M. Hollick, L. A. Martucci, and S. S. Kanhere,
“Incognisense: An anonymity-preserving reputation framework for par-
ticipatory sensing applications,” Proc. IEEE PerCom, vol. 9, no. 3, pp.
353–371, 2013.

