EARS: Enabling Private Feedback Updates in
Anonymous Reputation Systems

Vishnu Teja Kilari, Ruozhou Yu, Satyajayant Misra, Guoliang Xue

Abstract—Reputation systems, designed to remedy the lack of
information quality and assess credibility of information sources,
have become an indispensable component of many online systems.
A typical reputation system works by tracking all information
originating from a source, and the feedback to the information
with its attribution to the source. The tracking of information and
the feedback, though essential, could violate the privacy of users
who provide the information and/or the feedback, which could
both cause harm to the users’ online well-being, and discourage
them from participation. Anonymous reputation systems have
been designed to protect user privacy by ensuring anonymity
of the users. Yet, current anonymous reputation systems suffer
from several limitations, including but not limited to a) lack of
support for core functionalities such as feedback update, b) lack of
protocol efficiency for practical deployment, and c) reliance on a
fully trusted authority. This paper proposes EARS, an anonymous
reputation system that ensures user anonymity while supporting
all core functionalities (including feedback update) of a reputation
system both efficiently and practically, and without the need of
a fully trusted central authority. We present security analysis of
EARS against multiple types of attacks that could potentially vio-
late user anonymity, such as feedback duplication, bad mouthing,
and ballot stuffing. We also present evaluation of the efficiency
and scalability of our system based on implementations.

Index Terms—Reputation system, privacy, anonymity

I. INTRODUCTION

Many online forums such as Stack Overflow, TripAdvisor
and Yelp utilize reputation systems to evaluate the quality of
information posted by users, while online marketplaces, such as
Amazon and eBay employ reputation systems to ensure product
quality and establish trust between sellers and buyers.

A typical reputation system works by tracking and publi-
cizing information along with the reputation of its sources,
feedbacks regarding it from other sources, and in many cases
the reputation of the feedback sources as well. To achieve
this, the system maintains a record of all users including both
information providers and feedback providers, along with the
reputation score that is intrinsically tied to each user’s identity.

Let us consider how a typical reputation system works at
present. When a user Alice wants to post information, the
system creates a post and associates Alice’s username and
her reputation score to the post. This score plays a key role
in determining the effect of the post, e.g., in visibility and
scope. Later when a user Bob wants to give feedback to this

Kilari and Xue ({vkilari, xue} @asu.edu) are with Arizona State University,
Tempe, AZ 85287. Yu (ryu5S@ncsu.edu) is with North Carolina State Uni-
versity, Raleigh, NC 27606. Misra (misra@cs.nmsu.edu) is with New Mexico
State University, Las Cruces, NM 88003. This research was supported in part
by NSF grants 1704092, 1717197, 1719342, 1345232, 1914635, and EPSCoR
Cooperative Agreement OIA-1757207 and DOE SETO award ED-EE0008774.
The information reported here does not reflect the position or the policy of the
funding agencies.

post, the reputation system also associates that feedback with
Bob’s username and his reputation score. The reputation system
continuously tallies the feedback received for Alice’s post and
updates Alice’s reputation score. All the subsequent posts by
Alice are associated with this new reputation score. The role of
reputation in determining the effect of the post and the role of
the feedback in determining the new reputation score depend
on the specific algorithms used in the reputation system.

One significant problem of such a system is the violation
of privacy of user’s identity by the system or other users of
the system. Let us consider the following scenario. A user,
Eve, provided a negative feedback on a post of Alice. Another
user, Charlie, provided positive feedback on the same post.
The current reputation systems let Alice learn the identities of
Eve and Charlie (either directly or indirectly), which enables
Alice to take biased actions, such as leaving unwarranted
positive feedback for some or all of Charlies’ posts and/or
unwarranted negative feedback on some or all of Eves’ posts.
In extreme cases, Alice may take legal actions against Eve
or cause physical and/or monetary harm to Eve. Another
scenario involves other users or the system learning sensitive
information about a user by tracking all the posts and feedbacks
of that user. For example, based on the posts and feedbacks,
a user’s political inclination can be inferred [1]. Both these
problems can have a huge impact on users’ participation in
these systems.

The goal of this paper is to address the privacy issues of
existing reputation systems, which are present in several oper-
ational steps including registration, information posting, feed-
back posting, and feedback update. To ensure user anonymity
and protect user privacy, a reputation system should function
without relying on the true identities of the users. Further, the
system should be general, practical, and scalable, in order to
attain wide adoption in various real-world scenarios.

A. Motivation

Pseudonyms were traditionally regarded as an effective solution
to the privacy concerns in online systems such as reputa-
tion systems. Unfortunately, Minkus er al. [2] showed that
pseudonyms are not enough for identity anonymity via an
attack that successfully exposed sensitive purchase histories
of eBay users through analysis of transactions anonymized
with pseudonyms. Before our work, many solutions have been
proposed to address privacy in reputation systems [3]-[8]. Yet
we find that none of the previously proposed solutions to
this problem is sufficiently general, scalable, or practical for
real world use. For instance, a number of systems [7], [8]

mandate verified usage of the concerned information or service
by a user before the user can provide feedback (a user has to
buy a product or use a service to provide feedback). These
systems are not generic, but are more tailored towards online
systems such as marketplaces or exchanges. Other limitations
of existing works include dependence on a fully trusted central
authority [3], [6], or vulnerability to attacks such as ballot
stuffing [5].

A fair number of existing works rely on the existence of
a fully trusted central authority [3], [6], which is violated
when the authority can benefit from private user information,
a situation inline to what happens in reality (e.g., Google and
Amazon’s handling of our data). Zhai et al. [4] proposed an
anonymous reputation system based on the anytrust assumption
(only an arbitrary one among a set of authorities is trusted).
However, the system operates as a series of message and
feedback rounds that may can take an arbitrary long period
of time to complete. This makes the system impractical since
a feedback phase might last perpetually long.

Another limitation of existing works is the lack of support
for feedback update. In practice, the need of revising feedbacks
is very important in many systems, e.g., when a buyer of a
product who initially gave a positive feedback wants to modify
it because of a later found problem with the product. Existing
works fail to find a way to address this issue because of the
seemingly incompatibility between providing full anonymity to
users and still maintaining user states to allow future updates.
However, we believe that such a functionality is crucial to
practical adoption of an anonymous reputation system due to
its apparent need in many real-life scenarios, such as in the
aforementioned marketplace example.

Based on these, our goal is to design a practical anonymous
reputation system which enables feedback update in addition
to all supported functionalities of existing reputation systems
(including user registration, information posting and feedback),
while still protecting the anonymity and privacy of the benign
users from malicious users and a curious system operator.

B. Our Contributions

We propose EARS, a secure, practical, and scalable anonymous
reputation system that achieves our goal, without relying on any
fully trusted central authority. In EARS, every information or
feedback post by a user will be associated with a unique name
and a unique reputation score. This unique score is (less than
but) close enough to the actual score so that it reflects the true
reputation of a user, yet far enough that the user cannot be
tracked using it, thus protecting user anonymity and privacy.
EARS tallies the feedback received for a post and provides
a way to anonymously update the reputation of the user who
posted the information. EARS also enables users to provide
or change their feedback anonymously on a post anytime in
the future. EARS does not track users’ historical activities or
build long term identities. Neither EARS nor its users can
link different posts/feedback of a user, or learn the identity
of a user through its reputation score. Another advantage of
EARS is that it enables weighted feedback. In other words,

since the reputation of the user providing feedback is included
in the feedback (vote), this reputation can be used in order
to determine the weight (effect) of the feedback. These are
realized utilizing known cryptographic primitives, including
blind signatures [9] and partially blind signatures [10], whose
security has been rigorously studied in the literature.

To summarize, the main contribution of this paper is the
design of EARS, a secure, scalable and practical anonymous
reputation system that implements all required functionalities
(registration, information posting, feedback posting, and feed-
back update) while ensuring the anonymity and privacy of all
users, along with detailed security analysis and implementation-
based performance evaluation of the proposed system.

The rest of the paper is organized as follows. In Section II,
we present our system and threat models. In Section III, we
describe the details of EARS. In Section IV, we analyze the
security of EARS. In Section V, we present our experiments
and results. In Section VI, we discuss the related work. In
Section VII, we present our conclusions and future work.

II. SYSTEM AND THREAT MODELS
A. System Model

We assume EARS is implemented on a server controlled by the
system operator. In our system, many users can interact with
EARS. Since each user interacts with EARS independently, we
describe and evaluate the performance of EARS in terms of the
interactions between a specific user and the system. However,
since each user’s actions may affect other users (e.g., when
a malicious user is trying to break the privacy of others), our
security analysis in Section I'V takes into account all users in the
system. A user may hold one or both of two independent roles:
as a poster who provides information, and/or as a voter who
provides feedback. We describe the relevant protocols for these
two roles independently. In practice, multiple servers may be
used for load-balancing or back-up. Since the security of our
system does not rely on having multiple servers, we assume
only one server in our narrative for brevity.

For illustration, we use P to represent a user posting some
information (poster), V' to represent a user providing feedback
on some information (voter), and S to represent the EARS
system, respectively. A Public Key Infrastructure (PKI) is used
by EARS and all users. Note that a decentralized PKI can
be used [11], [12], which waives the need for relying on
a trusted central authority in system setup. The system S
is assigned with (and identified by) one public-private key
pair (pu,pr). Each user performs account initialization when
joining the system, which associates the user identity /D, its
initial reputation r, and a credential token h(ID||r),,. (blindly)
signed by S. All the communications happen over established
secure channels which ensure the confidentiality and integrity
of the communications.

B. Threat Model

We model the server deploying EARS as semi-honest (a.k.a.,
honest-but-curious [13]), and the users of EARS as malicious.
The EARS server follows the defined protocol but will attempt

TABLE 1
TABLE OF NOTATIONS

h(m) Hash of the message m

(m), Signature on message m using key k

I Voting token

TP Posting token

il Feedback collection token

~V Feedback update token

be(m) Blinding factor e applied to message m
we(m) Unblinding factor e applied to message m
BS(m) Blind Signature on m

PBS(m); | Partial Blind Signature on m with value x
(pu, pr) Public/Private key pair of EARS

to learn all possible information from messages received. The
assumption of a semi-honest system is realistic due to the
various practical factors that prevent the system operator from
deviating from the pre-defined protocols, including oversight
from regulating authorities, the huge potential cost at stake, and
the fear of reputation damage. Users can be malicious as they
can deviate from the protocol, collude among themselves, or try
to violate the anonymity of other users by tracking reputation
scores, pseudonyms, and reputation updates within EARS.

We assume all adversaries are computationally bounded.
Public key encryption, symmetric key encryption, and hash
functions are correctly implemented. We also assume that
the network and upper-layer protocols do not leak the users’
identifiable information to the EARS. In order to thwart traffic
analysis attacks, we assume that the network connections
between the users and EARS are established over anonymous
communication channels such as Tor [14]. The works on k-
anonymization [15] observe that content of the information
itself is enough to identify the source if additional information
about the source is available through auxiliary data sources.
This is orthogonal to the problem addressed by this paper. In
Table I, we summarize the notations used in the paper.

III. DESIGN OF THE EARS PROTOCOLS

In this section, we discuss the detailed protocol design of
EARS. A user can be a poster (information provider) and/or
a voter (feedback provider), and we assume that they have
already initialized their credentials with the system. Fig. 1
illustrates the protocols followed by a poster, voter, and the
system (EARS). These protocols include: poster registration,
voter registration, posting, voting, reputation update, and feed-
back update. Fig. 1(a) shows three protocols that a poster
uses to interact with the system: registration, posting, and
reputation update. Fig. 1(b) shows the three protocols for the
voter: registration, voting, and feedback update.

In poster registration, a poster provides her credentials to
the server, and requests an anonymous posting token certifying
her identity, reputation, and intention to post, along with an
anonymous feedback collection token that is coupled with this
post to enable feedback attribution. The tokens are only issued
after the credentials of the poster are verified by the system.

In the posting protocol, the poster provides the posting token
along with the information she wishes to post. The system
verifies that the posting token is valid, and then proceeds to post

the information given by the poster along with the reputation
of the poster enclosed in the posting token. The poster token
was blinded during registration to ensure the anonymity of the
poster during the posting protocol.

Similar to poster registration, in the voter registration proto-
col, a voter intending to provide feedback proves her credentials
and requests an anonymous voting token certifying her identity,
reputation, and intention to vote on a specific post, along with
an anonymous feedback update token that is coupled with this
voting token to enable feedback update. The server verifies the
credentials, and issues the anonymous voting token and the
anonymous feedback update token to the voter.

Then, during the voting protocol, the voter provides the
voting token along with the feedback she wishes to post. The
system verifies the voting token, and then posts the feedback
given by the voter along with the reputation of the voter,
which is enclosed in the voting token. The blinded voting token
protects the anonymity of the voter during the voting protocol.

A poster executes the reputation update protocol to collect
feedback to its post, by submitting the feedback collection
token to the system. After verifying the feedback collection
token, the system tallies all the feedback received by the
post until then and issues a partially blind signature on the
reputation token which is an anonymous token containing the
feedback score and the timestamp. This reputation token is
only redeemable by the poster who posted the information. Any
subsequent changes to the feedback will result in issuance of a
new anonymous reputation token reflecting the changes to the
feedback score.

After receiving partially blind signature of the system on
the reputation token, the poster applies the unblinding factor
to it and retrieves the signed reputation token. This token must
be redeemed within a week (specified by the timestamp) and
when the poster redeems this token, she submits this signed
reputation token to the system along with her credentials. The
system verifies that the credentials are valid and the time to
redeem the token has not expired and updates the reputation
score of the poster based on the reputation token and issues
new credentials to the poster reflecting the updated reputation
score. In the feedback update protocol, the voter will submit
the feedback update token issued during voter registration along
with the updated feedback. The system verifies the token and
if the token is valid, the system updates the feedback of a post
corresponding to the token with the new feedback.

In the following, we explain these protocols in detail.

A. Poster Registration Protocol

Protocol 1 shows the registration protocol, which is used to
verify a poster’s credentials and credibility and issue an anony-
mous posting token and an anonymous feedback collection to-
ken to the poster by S. In Step 1, a poster PP sends S its identity
(IDp), a reputation score (r), the credential (h(I Dp”’)”)mn)
and a credibility token (h(IDp|[t),,) where ¢ is the number
of reputation tokens redeemed during previous week. This
credibility token is issued by the system to the poster after
verifying that the number of reputation tokens redeemed by

% Poster Registration

1. Credentials + Token request

2. Posting & feedback collection tokens

% Posting
1. Posting token + Post

Poster

A 4

1. Feedback collection token

2. Reputation Token

% Reputation
Update

3. Reputation token + Credentials

4. Updated reputation credentials

(a) Poster protocols: Poster Registration, Posting, and Reputation Update

% Voter Registration
1. Credentials + Token request

2. Voting & feedback update tokens

% Voting

1. Voting token + Vote EARS

Voter

1. Feedback update token + New feedback

2. New feedback update token
% Feedback Update

(b) Voter protocols: Voter Registration, Voting, and Feedback Update

Fig. 1. Illustration of protocol interactions between user and EARS.

the user is same as the number of posting tokens issued to
her and all the reputation tokens are redeemed recently. This
can be easily verified using the timestamp on the reputa-
tion tokens. The poster also sends a blinded posting token,
bi(ak; Tk, h(arl|re), Bi(h(IDp)), h(ax||Br(h(IDp)))) and a
value p. The term (b, By,) corresponds to the blinding values;
ax is a random nonce; 7 corresponds to a reputation score
less than the actual reputation score 7; and p is a tag informing
the system that this is a request for a posting token by the
user (to perform posting). Then, S verifies the validity of the
arguments inside the blind posting token using cut-and-choose
protocols. The verification using the cut-and-choose protocols
involves P sending n blind tokens to S. Each of the n blind
tokens will have unique nonces, unique reputation scores less
than the actual reputation score, and unique blinding values.

Protocol 1 Registration Protocol for Poster P

Input: 1D, r, h(IDpl||r),,. and h(IDpl|t),, of poster P.

Output: Poster P acquires a posting token and a feedback

collection token from S
1: P sends its credentials along with blind tokens to S

P—S: IDp,r,h(IDp\|r)pT7p,h(IDth)pr

bk(ak, Tk, h(akHrk), Bk(h(IDp)), h(akHBk(h(IDp))))

P sends the feedback collection token to S:

P — S:bpi1(z), bpga(h(ak||z)).

3: After S verifies the blind token, it issues a partially blind
signature on a posting token (k' token) and a blind
signature on the feedback collection token to P:

S — P: PBS(bk(ak,Tk, h(akHrk), Bk(h(IDp)),
W(ar || Bi(h(IDp))))ps BS by (),
BS (bnsa(hlax|2))).

In Step 2, after S ensures that arguments
blind token from P are valid using the
choose protocol, P also sends feedback collection
token, bpi1(z) and byio(h(ag||z)). In Step 3, S
issues a partially blind signature on the posting token,
PBS(b(ak, vk, h(a||rr), Be(M(IDp)), h(ay||Be(h(IDp))))p.
and a blind signature on the feedback collection
token, BS(bp41(z)), BS(bpt2(h(akl|lx))). The poster P

in the
cut-and-

applies the unblinding factors to retrieve the signature
of S on the posting token which is denoted as 7'
PBS (ar, e hlaglre), Bo(h(IDp)), h(ai]| Be(h(IDp))))ps
and the feedback collection token which is denoted as
7V = BS(x), BS(h(ay|)).

The poster registration protocol can be executed offline since
it does not require any details regarding the information to be
posted. It can also be executed multiple times in advance to
collect multiple tokens. Since the tokens are anonymously ob-
tained and unlinkable, accumulation of tokens will not violate
the anonymity of the poster. While posting the information,
the poster can select one of the unused tokens and submit the
information to be posted along with it.

B. Posting Protocol

Protocol 2 presents the procedure for a poster to anony-
mously post information using an obtained posting token. As
described in Table I, PBS(q), denotes the partially blind
signature on ¢, with y as the mutually agreed upon value
by both the requester (P) and the issuer (S) of the partially
blind signature. In Step 1, P presents the posting token
PBS(ak, vk, h(a||rr), Be(M(IDp)), h(ak||Br(h(IDp))))p
to S along with values ay,r,Bi(h(IDp)) and post, where
ak, ri and Bg(h(IDp)) are the random nonce, reputation
score and blinded-hash of the identity (which serves as the
reputation token) respectively, and post,, is the information to
be posted. Then, S compares its signature on the entities ay,
ri and Bi(h(IDp)) with the submitted token, and if verified,
posts the information post;, with a unique identity idj, and the
reputation score 7. This identity idj, denotes the identity of
the post and not the identity of the poster who posted this post.

C. Voter Registration Protocol

Protocol 3 details the procedure for a voter V' to obtain from
S an anonymous voting token to provide feedback for a post
of identity ¢d;, and an anonymous feedback update token for
potential feedback update in the future.

In Step 1, V presents to S its identity /Dy, and repu-
tation ry along with the credential 2(/Dy||ry),, accompa-
nied by a blinded voting token b;(a;, v, h(a;||rv;)) and a

Protocol 2 Posting Protocol for Poster P

Input: Posting token issued by .S to the poster P.
Output: Poster P posts a message anonymously.
1: P sends its credentials aj, 75, the message post, and
By (h(IDp)) along with the posting token to S:
P — S: ay,ry, posty, Bp(h(IDp)),
PBS(ak,Tk,h(akHTk),
By (h(IDp)),h(ax||Br(h(IDp))))p-
2: .S posts message post; with idj, and reputation score 7.

bit v (tag signifying intent to vote) and the identity of the
post it wants to vote on, id;. Here, b; corresponds to the
blinding value, a; is a random nonce and ry; is a repu-
tation score less than V’s actual reputation score 7y . The
system S uses the cut-and-choose protocol to ensures the
validity of the arguments. The verification using the cut-and-
choose protocols involves V' sending m blind tokens to S.
Each of the m blind tokens will have unique nonces, unique
reputation scores less than the actual reputation score, and
unique blinding values. In Step 2,after S ensures that argu-
ments in the blind token from V' are valid using the cut-and-
choose protocol, V' sends the feedback update token, b, 1(2),
bm+2(h(ai]|z)). In Step 3, S issues a partially blind signature
on the voting token, PBS(b(ar, v, h(ail|[rv))) v,id,)» and a
blind signature on the feedback update token, BS(b,,+1(2)),
BS(bm+2(h(a;||z))). The voter V applies the unblinding fac-
tors to retrieve the signature of S on the voting token, which is
considered as ¢}, ¢ = PBS(a;, vy, h(ai||rv))(w,idy). and
then applies unblinding factors to the feedback update token,
which is considered as), 7Y = BS(z), BS(h(a)||2)).
Protocol 3 Registration Protocol for Voter V'
Input: Dy, ry, and h(IDV||rV)pT of the voter V.
Output: V' obtains voting token and feedback update token.
1: V sends its credentials along with blind tokens to S:
V—)S:IDv,Tv,h(IDvﬂ?"v) U,idl
bl(alﬂ”vl,h(alHT\/l)).
2: V sends the feedback update token to the S:
V = S: bpma1(2), bnaa(h(ar]]2)).
3: After S verifies the blind token, S issues a partially blind
signature on voting token (I*" token) and a blind signature
on the feedback update token to V:
S—=V: PBS(bl(alﬂ"Vl, h(alHTVl)))(v,id,,)a
BS(bm+1(2)), BS(bmy2(h(a]2))).

pr?

D. Voting Protocol

Protocol 4 explains the procedure followed by the voter V' to

Protocol 4 Voting Protocol for Voter V'
Input: Voting token issued by S to the voter V.
Output: Voter V' votes for a posting anonymously.
1: 'V sends its credentials a; and 7y; along with the signed
blind tokens to S:
V= St ay, vy, voter, PBS(ay, mvy, h(ail|rvi)) w,id,)-
2: S validates signature, and posts vote; for post id; and the
reputation score 7y; of the voter.

provide anonymous feedback for a post with identity id; using
the voting token acquired from S. In Step 1, V presents the
voting token PBS(a;, v, h(ai||rv))(v,iq,) to S along with
values a;, ry; and vote, vote; where a; is the random nonce,
ry; is the reputation score, and wvote; is the feedback of the
voter V for id;. Then, S compares its signature on the entities
a; and ry,; with the submitted token, and after verifying that
the signature is valid, it assigns wvote; to the post associated
with the id; along with the reputation score of V, ry .

E. Reputation Update Protocol

In the reputation update protocol, a poster interacts with .S to
update its reputation based on feedback it has received from
voters on its posts. The poster submits the feedback collection
token of the post to S. After verifying the token, S tallies all
the feedback received by the post and issues a partially blind
signature on the reputation token, which is an anonymous token
containing the current feedback score of the poster and the
timestamp, and sends it to the poster. This token is redeemable
only by the poster who posted the information. Only one token
for a post is issued per update period (e.g., a week, decided
by the system operator). Subsequent changes to the feedback
will result in issuance of a new anonymous reputation token
reflecting the changes to the feedback score. This protocol is
executed by the poster for each of its posts every update period.

Protocol 5 explains the procedure followed by S to update
the reputation of the poster P based on the feedback (votes)
its post idy, has received. Here, idy, is the identity of the post
and S does not know the identity of P or the voters that voted
on the post; thus their anonymity is preserved throughout the
process. In Step 1, P presents to S the feedback collection
token 7/ = BS(z), BS(h(ax||x)) (obtained during poster’s

7
registration for the post) along with the credentials in the token

Protocol 5 Reputation Update Protocol for Poster P
Input: Feedback collection token issued by S to poster P.
Output: Updated reputation score of the poster P with the
feedback f corresponding to the post idy.
1: P sends the feedback collection token along with the
credentials in the token to S:
P — S:ag,z, BS(z), BS(h(ag||z)).
2: S verifies arguments and its signature on the token and
issues a partial blind signature on the reputation token:
S — P: PBS(Bk(h(IDp)))(ﬁw).
3: P sends the new reputation token to S and requests a new
feedback collection token:
P — S:be(c),bet1(h(ak||c)), Bo(h(IDp)).
4: S replaces the reputation token with the new reputation
token and blind signs the new feedback collection token:
S — P: BS(b.(c)), BS(bet1(h(ak]|c)))-
5: P submits the signature of S on reputation token along
with its credentials:
P— S:IDp,r, h(IDpHT)pT,PBS(h(IDP))(ﬁw).
6: S verifies received credentials and signature and issues
updated reputation score and credentials to P:
S—P:IDp,r+ f, h(IDpHT' + f)pr.

ay, x. The system S signs = and matches it with BS(z), checks
the posts associated with the value a, computes h(ay||x) and
compares its signature on h(ag||z) with the submitted token
(BS(h(ag||x))). If all the credentials and the tokens submitted
by P are valid, then P is the poster of this information. In
Step 2, S performs a partially blind signature on the reputation
token (By(h(IDp))) of the post associated with a; with the
feedback f (the total feedback received for this post) and the
time stamp in terms of week (the week out of 52 weeks), w and
sends this partially blind signature, PBS(Bi(h(IDPp))) .
to P. Here, the time stamp w is added to ensure that the
reputation update protocol will be executed for each post
regularly. On receiving the partial blind signature, P applies the
unblinding factor and retrieves the signature on the reputation
token (PBS(M(IDp)) 1 .)-

In Step 3, P sends the new reputation token to S and requests
a new feedback collection token for the next (future) reputation
update. Then, S updates the post associated with aj with the
new reputation token and issues a new feedback collection
token to P in Step 4. In Step 5, to update his/her reputation,
P sends its credentials along with the signed reputation token
to S. In Step 6, S verifies the credentials and its signature on
the reputation token and updates the reputation score r of P
associated with the identity /D p with feedback f and issues
updated reputation score and corresponding credentials to P.

F. Feedback Update Protocol

Feedback update is one of the core functionalities that we
need to support in an anonymous reputation system. Protocol 6
details the procedure followed by V' to update her feedback
on a post identified with the identity id;. Voter V sends the
feedback update token she obtained during voter registration,
along with the credentials in the token and the updated feedback
(voteypdated): ai, 2, BS(z), BS(h(a;||2)), voteypdatea to S in
Step 1. S verifies that its signature on z matches with the
feedback update token submitted (BS(z)), checks the vote
associated with the value a;, computes h(a||z), and com-
pares its signature on the h(a;||z) with the submitted token
(BS(h(a;]|2))). If all the credentials and the tokens submitted
by V are valid, then V' is the voter who provided this feedback.
S then updates the old feedback wvote with the new feedback
VOteypdated- In Step 3, V requests a new feedback update token
from S for a future feedback update, which S issues in Step
4.

IV. SECURITY ANALYSIS

In this section, we perform detailed security analysis of EARS.
Proposition 1: Poster anonymity is guaranteed in EARS. [J

During poster registration, the poster P sends her credentials
IDp, r, and h(I Dp||r)pr along with the credibility token,
h(IDpl|t),, to the anonymous reputation system S. Then, S
verifies the submitted credentials with its database of users,
checks the validity of the credibility token and if they match,
S knows that P is authentic. Poster P sends n blinded tokens;
each token is composed of the following components that are
unique to each token: a random nonce; a reputation value less

Protocol 6 Feedback Update Protocol for Voter V'

Input: Feedback update token issued by S to the voter V.
Output: Updated feedback of the voter V' on the post id;.
1: 'V presents the blindly signed feedback update token, the
credentials in the token, and the updated feedback to S:
V — S:a,z,BS(2), BS(h(wl|2)), voteypdated-
2: S verifies the argument and the signature on the token, and
updates the vote associated with a; on id; by V.
3: V requests a new feedback update token from S:
V — S: ba(d), bgs1(h(a|d)).
4: S issues a new feedback update token to V:
S — V: BS(by(d)), BS(bg+1(h(ai]|d))).

than P’s actual reputation; a commitment with the nonce and
the reputation value; a reputation token; and the commitment
of the reputation token with the nonce. S uses cut-and-choose
protocol to verify these messages, and then issues a partially
blind signature on one of the tokens with p.

The security of partially blind signature ensures that .S’ cannot
know the nonce, reputation value, feedback collection token,
and their commitments, which are signed by it for the kth
token despite unblinding the other (n — 1) tokens. The blind
signature on the feedback collection tokens also ensures that
these values are concealed from S when it issues its signature
on them. So, S issues an anonymous blind token which
contains valid arguments (reputation score, feedback token, and
feedback collection token) to an authenticated poster. In the
posting protocol, P sends the anonymous blind token (with
the signature of S) along with the arguments in the token: ay,
Tk Bk<h(IDp)) to S.

Since the signature itself can only be verified and cannot
be compared to anything in the past (due to the application of
unblinding factors to the partially blind signature), S cannot
know the identity of the poster to which this signature was
issued. The arguments do not leak any information regarding
the identity of the poster because the nonce is random, the
reputation score is less than the original reputation score (which
is not known by the system), and the blinded hash is a result
of a cryptographic irreversible one-way function.

During the reputation update protocols, P presents the sig-
nature of S on the feedback collection token along with the ar-
guments in it: ag, x. Then, S verifies that the signature is valid
on the submitted arguments. Since this signature is obtained
by unblinding the blind signature on the feedback collection
token, S cannot connect this signature or the arguments with
the identity of the poster to which this signature was issued.
The reputation token (By(h(IDp))) itself was blinded with
blinding factor By, preventing S from knowing the identity of
the poster to which this token was going to be issued. The
signature of S on this token is a partially blind signature with
feedback score f and timestamp w. When P redeems this
reputation token, S can keep track of all the reputation tokens
of value f it issued and try to correlate that with the posters that
redeemed those tokens. Since many posters might have been
issued the reputation tokens of value f, deanonymizing the
identity of a specific poster using only the value of reputation

tokens is difficult (especially for large anonymity sets).
Proposition 2: Voter anonymity is guaranteed in EARS. (]

In the voter registration protocol, a voter V sends her
credentials IDy, rv, and h(IDy|ry),, to the system S.
Then, S verifies the submitted credentials as with the poster.
Then V' sends m blinded tokens; each token is composed of the
following components that are unique to each token: a random
nonce, a reputation value less than the actual reputation value of
the voter, and a commitment with the nonce and the reputation
value. The system uses cut-and-choose protocol to verify that
all these arguments are valid, and then .S issues a partially blind
signature on one of the tokens with (id;, v) (indicating that the
token is for voting on a post, id;). Since it is a partially blind
signature, S cannot know the nonce, reputation value, and their
commitments it had signed.

The system cannot infer these values from the values ob-
tained from (m — 1) unblinded tokens because they are unique
to each token. The blind signature on the feedback update token
also ensures that these values are concealed from S when it
issues its signature on them. So, S issues an anonymous blind
token which contains valid arguments (reputation score, and
feedback update token) to an authenticated voter V. During the
voting protocol, V' sends the anonymous blind token (signature
of S on its token) and also the arguments in the token: a;, 7y
to S. Since the signature itself can only be verified and not
compared to anything stored in the past (due to the application
of unblinding factors to the partial blind signature), S cannot
know the identity of V.

The arguments do not leak any information regarding the
identity of the voter because the nonce is random, and the
reputation score is less than the original reputation score (which
is not known by the system). The vote or the identity of the
post that is being voted on using this token cannot identify
the voter. So, S receives only a signed token, which contains
arguments necessary to vote on a specific post anonymously —
the voter is not identifiable. In the feedback update protocol,
V' presents the signature of S on the feedback update token
along with the arguments in it: a;, z. Then, S verifies that the
signature is valid on the submitted arguments. Due to the blind
signature on the feedback update token, S cannot connect this
signature or the arguments of the token with Vs identity.
Proposition 3: EARS cannot link the various tokens of the
poster or the voter. O

Since the tokens issued by the system .S to a user (a poster or
a voter) are always anonymous, S cannot differentiate between
the tokens issued to the same user or a different user. As such,
the system has no information regarding the various tokens of
a user (poster/voter) to link them.

Proposition 4: A poster cannot use higher reputation score of
another poster for posting. O

The commitment of the random nonce (used to post the
information) with the reputation score during the poster regis-
tration protocol prevents a poster from using a higher reputation
score of another poster to post. Only the poster who obtained
a token with her identity and a reputation score less than
her reputation score will be able to use the token issued

during poster registration protocol to post some information.
Reputation scores cannot be created unless the poster interacts
with S, further the several interactions between P and S end
up functioning as challenge-response ensuring that a simple
reputation of somebody else cannot be replayed or stolen and
used. Even if another poster obtains this token and posts some
information, the hash of the identity of the poster (who obtained
the token) in the reputation token will ensure that reputation
update based on the feedback for the post will only occur for
the poster whose token has been used to post.
Proposition 5: A poster can only redeem his/her feedback token
once. U
The hash of the identity of the poster (who posted the
information) in the feedback token will ensure that no other
poster can redeem this feedback token. The unique signature of
the system on this feedback token will prevent double spending
of this token — once a feedback token is redeemed, the system
S keeps track of it so that it cannot be redeemed again.
Proposition 6: EARS is immune to bad mouthing and ballot
stuffing. g
Since EARS enables weighted feedback, the reputation will
play a vital role in determining the effect of the feedback, which
in turn decides the reputation of the information source. As
such, unless the reputation of a malicious voter is significant
enough or a large group of voters collude, the effect of authentic
feedback will outweigh the fake feedback. Thus, attempts on
bad mouthing and/or ballot stuffing are not viable.
Non-goals: Our system cannot detect the malicious users but
is resilient against such users. Like many previous works on
anonymous reputation systems, our system is not immune to
sybil attacks but it mitigates their effect. Our system cannot
defend against network-level DoS and DDoS attacks.

V. EVALUATION

In this section, we discuss the implementation of EARS and
analyze the results to demonstrate that it is efficient, robust,
scalable, and can be implemented without any additional
hardware or software requirements. We implemented EARS
using standard crypto libraries in Java. To emulate real world
hardware, a user (poster/voter) is implemented on an Intel Core
15-2450M, 2.5 GHz machine with 8 GB RAM. To emulate
EARS, we implemented the server on an Intel Core 17-6700K,
4.0 GHz machine with 32 GB RAM. All the results were
averaged over 1000 runs. As we mentioned, the interaction of a
user (poster/voter) with EARS is independent of interactions of
other users with EARS — the system can interact with multiple
users in parallel. This would ensure that EARS is scalable,
since increase in the number of users would only increase the
computation requirements of EARS linearly.

For better scalability, in EARS more servers can be added
to serve an increasing number of clients with low latency. We
measure the time taken by the user and the server for each
protocol in our system. We consider only the computation steps
and not the data transmission steps as they are dependent on
the nature and traffic in the network. We also do not consider
the storage requirements because they are trivial (in the order

of several kilobytes for each client). Fig. 2 shows the time
taken at the user during the poster registration protocol (PRP),
the voter registration protocol (VRP), the reputation update
protocol (RUP), and the feedback update protocol (FUP). Fig. 3
shows the time taken at the server during PRP, VRP, the posting
protocol (PP), the voting protocol (VP), RUP, and FUP.

As shown in Fig. 2, the user part of the poster registration
protocol takes only 22.9 ms (n = 10). It involves creating
the blind tokens which in turn involve hashing, and applying
blinding factors. After receiving the posting token, the poster
applies the corresponding unblinding factor to retrieve the
signature of the system on the posting token and the feedback
collection token. The user part of the voter registration protocol
takes only 12.8 ms (m = 10). It involves creating the blind
tokens which involve hashing and applying blinding factors.
Since the voter registration protocol does not involve reputation
token, the number of blinding and hashing operations are less
compared to the poster registration protocol. This is the reason
that the time required for the voter registration protocol is less
than that of the poster registration protocol. After receiving the

20

15

10

Time (ms)

5

URP VRP RUP FuP
Protocols

URP VRP PP
Protocols

VP RUP FUP

Fig. 2. Time taken by a user in various
protocols of our system.

Fig. 3. Time taken by the server in
various protocols of our system.

the feedback update token, the poster applies the corresponding
unblinding factor to retrieve the signature of the system on the
feedback update token. The user part of the posting protocol
and the voting protocol are not mentioned because there are
no computation steps for the users in these protocols. They
submit the tokens (which are signed by the system) and the
arguments in the tokens along with the posts or votes to the
system. The users do not need to perform any computations in
these protocols. So, they are omitted from Fig. 2.

The reputation update protocol takes 4.8 ms; this is because
it only requires a few blinding and unblinding operations.
The feedback update protocol requires the voter to submit the
feedback update token along with the arguments in it and the
updated feedback (vote) to the system. The voter also applies
blinding factor to the new feedback update token request. After
receiving the blind signature on the new feedback update token,
it applies unblinding factor to retrieve the new signed token.
The user takes 3.7 ms to complete feedback update.

As shown in Fig. 3, the server part of the poster registra-
tion protocol takes 15.1 ms. It encompasses the unblinding
and verification of tokens in cut-and-choose protocols which
involves hashing. After verifying that the tokens are valid,
the system performs a partially blind signature on the posting
token and a blind signature on the feedback collection token
and send them to the poster. The server part of the voter
registration protocol takes 13.2 ms. It constitutes the unblinding

TABLE II
EXECUTION TIME FOR A SINGLE SERVER WITH VARYING CLIENTS
Clients VRP PP VP FUP
10 88.7 ms 23.9 ms 23.6 ms 92.8 ms
100 743.5 ms 215.8 ms 212.3 ms 848.1 ms
1000 | 68119 ms | 2059.6 ms | 2047.7 ms | 8191.9 ms

and verification of tokens in cut-and-choose protocols which
encompasses hashing. After verifying that the tokens are valid,
the system issues a partially blind signature on the voting token
and a blind signature on the feedback update token. The amount
of time taken by the system for the poster registration protocol
is more than the voter registration protocol because of the
presence of the reputation token, which increases the number
of hashing and verification operations.

In the posting protocol, the system verifies its own signature
on the posting token and verifies the arguments in the posting
token with the arguments submitted to it by the poster, which
involves hashing operations. The server takes 4.3 ms to execute
the posting protocol and 3.2 ms for the voting protocol. The
voting protocol involves the system verifying its own signature
on the voting token and verifying the arguments inside that
token with the arguments submitted to it by the voter, which
involves a hashing operation. In the reputation update protocol,
the server takes 18.2 ms. It requires several complex operations,
such as verifying signature on the feedback collection token and
integrity of the arguments inside the token, and issuance of a
partially blind signature on the reputation token.

After receiving a request for a new feedback collection
token, the system issues a blind signature on the new feedback
collection token. When the poster submits a reputation token for
redemption, the system verifies its signature on the reputation
token and the integrity of the arguments inside the token. After
verifying, the system updates the reputation score of the poster
and creates new credentials representing the updated reputation
score of the poster and sends these credentials to the poster.
This step involves signature of the system on the hash of the
identity of the poster and new reputation score. In the feedback
update protocol, the server takes 12.3 ms. The system part
of the feedback update protocol involves the system verifying
its signature on the feedback update token submitted by the
voter and the integrity of its arguments. It also involves issuing
blind signature on the new feedback update token submitted
by the voter. As mentioned previously, the poster registration
protocol and the reputation update protocol can be executed
offline. The voter registration protocol, the posting protocol,
the voting protocol and the feedback update protocol are the
only protocols that need to be executed in real time.

As shown above, the voting protocol and the posting protocol
take very little time to execute. The maximum amount of time
taken among them is 4.3 ms. A processor core of a server
running these protocols can service 200 users simultaneously
in less than a second in real time. Use of cloud computing can
easily enable our system to scale economically and efficiently.
The other protocols which can be executed offline can be run
during the off-peak hours of the system. Table II shows the time
taken by the server to simultaneously serve varying number

of users during the various online protocols of the system.
The poster registration and the reputation update protocols are
not shown in Table II, because they can be executed offline.
The experimental results from the implementation of EARS
demonstrate its efficiency and scalability.

VI. RELATED WORK

We discuss several proposed solutions for anonymous repu-
tation systems and make a case for the need of our system.
Anonymous reputation systems in P2P networks based on elec-
tronic cash (e-cash) have been proposed [16], [17]. Anonymity
in e-cash is essential to ensure the unlinkability of users’
transactions. The main drawback of e-cash based anonymous
reputation systems is their inability to support negative feed-
back. This drawback makes these systems untenable for many
application scenarios since negative feedback plays a vital role
in calculating the reputation of a user. Another drawback of
these systems is their inability to provide different levels of
granularity for feedback and reputation.

Blind signatures based anonymous reputation systems have
also been proposed [3], [18]. These systems leverage blind
signatures to hide the identity of users performing transactions.
The drawback of these systems is that they trust a central
authority. Wang et al. [3] proposed blind signatures for anony-
mous reputation and trust in participatory sensing, but this
scheme trusts the server to issue the feedback tallies. These
tallies can be used by the server to identify the participants.
Blomer et al. [6] proposed a group signature based anonymous
reputation system. But this system trusts an entity (group
manager) to be honest. Schaub er al. [5] proposed a blockchain
based trustless reputation system. This system is prone to
ballot stuffing attacks because the service provider issues the
credentials which are used by the customers to issue feedback.

Some anonymous reputation systems only allow a one-time
feedback per access to the service to be evaluated. For instance,
Soska et al. [8] proposed a decentralized anonymous market-
place with secure reputation. The system requires the clients to
purchase products from the vendor to be able to leave feedback.
While this property of requiring the feedback provider to
perform a prior action is useful in some scenarios, it is not
deployable in platforms such as Stack Overflow, TripAdvisor,
and Yelp where there is no service to be accessed. There are
many platforms on the web apart from the marketplaces which
rely on reputation systems to function effectively.

Zhai et al. [4] proposed a tracking resistant anonymous
reputation system using verifiable shuffles, linkable ring sig-
natures, and homomorphic cryptography. This system follows
the anytrust model. In order to scale efficiently and effectively,
the system makes a tradeoff between security and the efficiency
after a threshold of users. Another drawback of this system is
that it operates in a series of message and feedback rounds
which lasts for an arbitrary amount of time (with finite time
interval) based on the application scenario. This makes the
system impractical for realistic deployment since the feedback
phase might be perpetual for many real-world applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a secure, practical and scalable
anonymous reputation system named EARS. EARS allows
anonymous information (post) posting and feedback (voting)
by users. In both cases, the reputation of the user is associated
with the post/vote it submits to the system. After receiving the
feedback on a post, our system allows the reputation of the
posting user to be updated with the feedback received for that
post. This reputation update is also anonymous. In case a voter
decides to update her feedback on a specific post, our system
enables her to do so anonymously as well. Detailed security
analysis of our system shows that it is immune to attacks from
malicious users or any attempt to violate the anonymity of the
user by the system. We note that our system is not fully immune
to sybil attacks, which is an orthogonal problem to what we
solved. However, since our system enables weighted feedback,
such a feature can be leveraged to mitigate the effect of sybil
accounts. We will tackle sybil attacks in our future work.

REFERENCES

[1] T. Islam, A. R. Bappy, T. Rahman, and M. S. Uddin, “Filtering political
sentiment in social media from textual information,” in Proc. IEEE
ICIEV, 2016, pp. 663-666.

[2] T. Minkus and K. W. Ross, “I know what you’re buying: Privacy breaches
on ebay,” in Proc. PETS, 2014, pp. 164-183.

[3] X. O. Wang and et al., “Artsense: Anonymous reputation and trust in
participatory sensing,” in Proc. IEEE INFOCOM, 2013, pp. 2517-2525.

[4] E. Zhai, D. 1. Wolinsky, R. Chen, E. Syta, C. Teng, and B. Ford,
“Anonrep: towards tracking-resistant anonymous reputation,” in Proc.
USENIX NSDI, 2016, pp. 583-596.

[5] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A trustless privacy-
preserving reputation system,” in Proc. IFIP SEC, 2016, pp. 398—411.

[6] J. Blomer, J. Juhnke, and C. Kolb, “Anonymous and publicly linkable
reputation systems,” in Proc. FC, 2015, pp. 478-488.

[7]1 A. Kokoschka, R. Petrlic, and C. Sorge, “A reputation system supporting
unlinkable, yet authorized expert ratings,” in Proc. ACM SAC, 2015, pp.
2320-2327.

[8] K. Soska, A. Kwon, N. Christin, and S. Devadas, “Beaver: A decentral-
ized anonymous marketplace with secure reputation.” JACR Cryptology
ePrint Archive, vol. 2016, p. 464, 2016.

[9] D. Chaum, “Blind signatures for untraceable payments,” in Springer

Advances in Cryptology, 1983, pp. 199-203.

T. Okamoto, “Efficient blind and partially blind signatures without

random oracles,” in Proc. IACR TCC, 2006, pp. 80-99.

B. Qin, J. Huang, Q. Wang, X. Luo, B. Liang, and W. Shi, “Cecoin: A

decentralized pki mitigating mitm attacks,” Elsevier Future Generation

Computer Systems, 2017.

C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized pub-

lic key infrastructure with identity retention.” JACR Cryptology ePrint

Archive, vol. 2014, p. 803, 2014.

A. Paverd, A. Martin, and I. Brown, “Modelling and automatically

analysing privacy properties for honest-but-curious adversaries,” Tech.

Rep., 2014.

R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-

generation onion router,” in Proc. USENIX Security, 2004, pp. 303-320.

L. Sweeney, “k-anonymity: A model for protecting privacy,” World

Scientific International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, vol. 10, no. 05, pp. 557-570, 2002.

E. Androulaki, S. G. Choi, S. M. Bellovin, and T. Malkin, “Reputation

systems for anonymous networks,” in Proc. PETS, 2008, pp. 202-218.

J. Camenisch, S. Hohenberger, and A. Lysyanskaya, “Balancing account-

ability and privacy using e-cash,” in Proc. SCN, 2006, pp. 141-155.

D. Christin, C. RoBkopf, M. Hollick, L. A. Martucci, and S. S. Kanhere,

“Incognisense: An anonymity-preserving reputation framework for par-

ticipatory sensing applications,” Proc. IEEE PerCom, vol. 9, no. 3, pp.

353-371, 2013.

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

