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We consider the space of n × n non-Hermitian Hamiltonians (n = 2, 3, ...) that are equivalent to a single n × n
Jordan block. We focus on adiabatic transport around a closed path (i.e., a loop) within this space, in the limit as
the time scale T = 1/ε taken to traverse the loop tends to infinity. We show that, for a certain class of loops and
a choice of initial state, the state returns to itself and acquires a complex phase that is ε−1 times an expansion in
powers of ε1/n. The exponential of the term of nth order (which is equivalent to the “geometric” or Berry phase
modulo 2π ) is thus independent of ε as ε → 0; it depends only on the homotopy class of the loop and is an
integer power of e2π i/n. One of the conditions under which these results hold is that the state being transported
is, for all points on the loop, that of slowest decay.
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I. INTRODUCTION

A. Background

The introduction of weak linear dissipation or amplifica-
tion into a system of n classical harmonic oscillators results
in time evolution that can be described using an n × n Hamil-
tonian matrix H that is non-Hermitian. The non-Hermiticity
of H gives rise to the familiar decay (or growth) of such a
system’s eigenstates (normal modes). It also opens the pos-
sibility of “exceptional points” (EPs) in parameter space, at
which H is not fully diagonalizable. In the neighborhood
of an EP, the eigenvalues exhibit branch-point behavior as
functions of the parameters, and so encircling it permutes the
eigenvalues and eigenspaces [1–3], an effect referred to as
flipping, monodromy, or spectral flow.

In recent years, EPs have been studied experimentally in a
wide range of settings, including microwave [4,5], electrical
[6], optical [7], cavity QED [8], exciton [9], acoustic [10],
and mechanical [11] systems. While each of these realiza-
tions has offered some degree of control over H , in most
experiments the number m of independent control param-
eters is insufficient to specify an arbitrary H . As a result,
EPs are typically observed to occur at isolated points within
the m-dimensional space of control parameters. In contrast,
if we consider the space Mn(C) ∼= Cn2

of all n × n com-
plex matrices H , then EPs are not isolated, but in fact form
subspaces of Mn(C) of dimension larger than zero [2,12].
These subspaces are topological spaces (not vector spaces),
and in the neighborhood of a generic point in such a sub-
space it is a smooth (indeed, complex analytic) manifold;
we usually refer to these subspaces simply as spaces of EPs.
One part of the following paper is the description of the
geometry and topology of these spaces in the simplest cases;
we also explain how this is relevant to the topic of adia-
batic evolution that we wish to study, and to which we now
turn.

Leaving aside EPs for a moment, the evolution of a system
under an asymptotically slow (“adiabatic”) smooth variation
of some parameters in time has been the subject of much
study in both Hermitian and non-Hermitian cases. In what
follows, we concentrate on evolution along a closed path (a
loop) in parameter space [for example, Mn(C)]. In Hermitian
systems, the adiabatic theorem [13,14] guarantees, in terms
of the eigenstates of the “instantaneous” Hamiltonian at any
point of the loop, that if the system is initially in an eigenstate
(or in a subspace in Hilbert space of degenerate eigenvalues)
and if the degeneracy of that eigenvalue does not change at
any point during the evolution then at the end of the adiabatic
evolution the system will be found in the same eigenspace
in which it started. Moreover, the phase of the state vector
changes by an amount the asymptotic form of which, as the
time T taken for the loop tends to infinity, has two leading
contributions: the integral of the eigenvalue along the loop
(the dynamical phase), which typically is linear in T , and the
geometric or Berry phase, which is independent of T [15]. The
Berry phase modulo 2π , or phase factor, is the holonomy of
a natural connection (i.e., “vector potential”), and may have
further topological significance [15,16]. (For evolution of a
degenerate eigenspace, the phase factor becomes a unitary
map [17].)

In contrast, in non-Hermitian systems there exists a mode
or modes that are “dominant,” meaning they have the largest
rate of exponential growth (or the slowest decay). During
adiabatic evolution along a generic loop the system tends to
transition into one of these modes, which then dominates at
long times, even when the eigenvalue (or its real or imagi-
nary parts) of the chosen mode does not coincide with that
of another mode at any point on the loop. In this situation
the adiabatic theorem does not hold for all the modes, but
only for the dominant one [18]. If a different mode be-
comes dominant somewhere along the loop, then even this
statement breaks down. This occurs generically (because of
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monodromy, which was mentioned already) when the loop
encircles an EP without passing through one; as a result, no
adiabatic theorem applies for strict adiabatic transport around
such a loop [19,20]. We note that some of the experimental
literature (e.g., Refs. [4,5,11]) is concerned instead with a
“quasiadiabatic” limit of evolution that is slow, but not asymp-
totically slow. In that regime, after evolution along a loop that
encircles an EP, the system may end in a mode different from
the one in which it began [19,21], demonstrating the mon-
odromy around the EP. We emphasize that this is not the same
as the strict (i.e., asymptotically slow) adiabatic evolution that
we consider in this paper.

B. Overview of results

In this paper, instead of adiabatic transport along a loop
that never passes through any EP, we consider loops that
lie entirely within one of the spaces of EPs that were
mentioned already. The simplest example concerns a 2 × 2
non-Hermitian Hamiltonian matrix H ; its EPs occur when
H is similar to a single 2 × 2 Jordan block. [We recall the
Jordan canonical form: an arbitrary matrix can be transformed
by change of basis (i.e., similarity transformation) into block-
diagonal form, where the diagonal blocks are Jordan blocks,
and the other blocks are zero; in each Jordan block, the di-
agonal elements are all the same eigenvalue. The vectors in
such a basis are termed generalized eigenvectors. The Jordan
canonical form of the matrix is unique up to permutations
of the blocks.] The eigenvalue on the diagonal in the Jordan
block can be set to zero by adding a multiple of the identity;
throughout our discussion, we will assume this is already
done, as allowing it to be nonzero produces only very simple
changes.

These EPs form a single space that we call EP2, which is a
subspace of SMn(C) ⊂ Mn(C), the space of traceless complex
n × n matrices, here with n = 2 (we give details below); trace-
less 2 × 2 Hamiltonians not in EP2 are fully diagonalizable.
This example has simple geometry and is quite tractable. As
it can be readily generalized to the case of traceless n × n
Hamiltonians similar to a single n × n Jordan block Jn,

Jn =

⎛
⎜⎜⎜⎜⎝

0 1
0 1

. . .
1
0

⎞
⎟⎟⎟⎟⎠, (1)

and with similar results for all n > 1, we carry out the analysis
in this more general case. For each n, we denote the space of
these EPs by EPn ⊂ SMn(C). For n > 2, there are also EPs in
SMn(C) but not in EPn at which other Jordan block structures
arise, and the situation becomes much more complex. We do
not consider those cases in the present paper.

We first describe the geometry of the space EPn, with
particular emphasis on the simplest case, n = 2. We find in
particular that these spaces are n-fold connected (doubly con-
nected for n = 2), in the sense that there are closed paths
(loops) lying in EPn that cannot be contracted (within EPn)
to a point, but traversing such a loop n times produces a loop
that can be so contracted. In other words, one may associate a

winding number (defined modulo n) to any loop, and concate-
nation of two loops that both begin and end at the same point
gives a loop the winding number of which is the sum of those
of the two given loops, modulo n.

Then, as for the usual adiabatic theorems, we consider a
loop in EPn, parametrized by Hamiltonians H (s) for 0 � s �
1, where H (1) = H (0), and evolve the system in time t with
s = t/T ; finally the asymptotics as T → ∞ are studied, with
the loop H (s) fixed (independent of T ). We find that the result
of adiabatic transport in EPn has features in common with the
case of a nondegenerate eigenstate in a Hermitian system, but
also substantial differences. For a class of loops and a choice
of initial state vector (to be described in a moment), we find
that as T → ∞ the state vector returns to itself, multiplied
by a complex number the logarithm of which has the Puiseux
series form

n∑
r=1

T 1−r/n
∫ 1

0
ds ar (s) (2)

(plus terms higher order in 1/T 1/n), where ar (s) are com-
plex functions that can be calculated from H (s). Thus the
(complex) dynamical phase (the terms with r < n) includes
fractional powers of T−1 (of which the r = 1 term at least
has been noticed previously [22]). The term of order T 0 (the
r = n term) is the geometric or Berry phase, and is only well
defined modulo 2π i. Remarkably, the exponential of this term
is again the holonomy of a connection, and is precisely e2π i/n

raised to the power of the winding number of the loop in EPn;
it is invariant under small deformations of the loop within that
space.

To describe the conditions under which this result holds,
it is useful to change the basis in the evolution equation to
the basis of instantaneous generalized eigenvectors of H (s).
In this basis, the effective Hamiltonian describing evolution
is H ′ = Jn + T−1A(s), where A(s) is the adiabatic (Berry)
connection matrix along the loop at s (details appear below).
The most generic case is that in which the lower-left element
An1 of A is nonzero, and then H ′ is diagonalizable. For adia-
batic transport in EPn, it is H ′ (rather than H) that determines
the dominant mode. We assume that the same mode remains
dominant everywhere on the loop, which is ensured if An1 does
not touch the negative real axis or zero. Our result holds for
such loops and when the initial-state vector is this dominant
mode.

In addition, we identify an important subclass of such loops
for which adiabatic transport of any eigenstate of Jn + T−1A
stays in that state for all time. This consists of loops for which
A(s) = A is independent of s. As long as An1 is not zero, such
a “straight” loop in EPn produces the form (2) for each eigen-
state, not only for the dominant one (the coefficients ar for
r �= n differ for each eigenstate, however). Loops of this form
that possess nonzero winding number exist in EPn, and the
holonomy (Berry phase factor) of such a loop is independent
of which eigenstate of Jn + T−1A is transported.

We also explain how the effects can be studied experi-
mentally for n = 2 in two implementations, including one
described in Ref. [12].

In Sec. II, all the results just outlined are derived step
by step, except for some parts that can be skipped without
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significant loss of understanding and which are relegated to
the Appendices. Particular emphasis is placed on the simplest
case, n = 2, which we use to give examples. In Sec. III, we
describe the experimental implementations. Section IV is the
Conclusion.

II. DERIVATIONS OF RESULTS

A. Geometry of EPn

To obtain the results outlined in Sec. I B, it is conve-
nient to use the evolution (Schrödinger) equation in the form
∂t |ψ〉 = H |ψ〉, so iH would be the usual Hamiltonian of
quantum mechanics. We treat H as a matrix, and |ψ〉 stands
for a column vector. Adding a multiple of the identity I to
a Hamiltonian merely shifts all the eigenvalues by the same
amount, so we can assume that the trace of H is zero. An
n × n complex Hamiltonian that is similar to a single Jordan
block with eigenvalue zero, meaning that H = �Jn�−1 where
� is an invertible complex invertible matrix, is said to lie at an
EP of type EPn. (Note that the columns of � are generalized
eigenvectors of H ; we denote them by |ui〉 for i = 1, ..., n.)

To describe the geometry of the space EPn of all such
H , first notice that the matrices that commute with Jn have
the form aI + b1Jn + · · · + bn−1Jn−1

n , where I is the identity,
and a and bi are complex numbers. Such matrices with a �= 0
form a Lie group C× × Jn, which is a subgroup of GLn(C),
the group of invertible n × n complex matrices. Here C× is
the group of nonzero complex numbers (under multiplica-
tion), and Jn is the group of n × n matrices of the form
I + b′

1Jn + · · · + b′
n−1J

n−1
n , where b′

i are complex numbers.
Then EPn can be identified as the quotient space EPn

∼=
GLn(C)/[C× × Jn]; see Appendix A for further details. It is
a noncompact space of complex dimension n(n − 1), but has
a “deformation retract” [23] onto SU(n)/Zn, that is the group
SU(n) of unitary matrices of determinant 1, modulo its center
Zn, the cyclic group of order n. The fundamental group of
this space is π1(EPn) ∼= Zn (see Appendix A). That means
that loops in the space can be characterized (modulo small
deformations) by a single winding number defined modulo n,
as described in Sec. I B. We note that if we allowed the single
eigenvalue of H to be nonzero instead of requiring it to be
zero then the space of such Hamiltonians would be ∼=EPn × C
and have complex dimension higher by 1, but the fundamental
group would be unchanged.

Example: n = 2

As illustration, for n = 2, we can more explicitly describe
traceless Hamiltonians as

H =
(

Z X − iY
X + iY −Z

)
, (3)

where X , Y , and Z are complex numbers. With our conven-
tions, iH would be Hermitian (with respect to the standard
inner product) if X , Y , and Z were all imaginary. However,
for general non-Hermitian H , an inner product plays no es-
sential role, and we avoid using one on Cn at any stage. For
n = 2, clearly there are no exceptional points other than those
in EP2. If X = (X,Y,Z )T (the superscript T denotes trans-
pose), then H is in EP2 if and only if |ReX| = |Im X| > 0

and ReX · Im X = 0 [2] (here the standard inner product and
norm on R3 were used). If we fix |ReX| to 1, then because
an ordered pair of orthogonal unit vectors in R3 (such as
ReX, Im X) determines an orthonormal basis with positive
orientation in R3 the space of such pairs forms the special
orthogonal group in three dimensions, or real projective three-
space, SO(3) ∼= RP3 ∼= SU(2)/Z2. It is well known that the
fundamental group of this space is π1

∼= Z2 (i.e., it is doubly
connected; see Sec. I B) [23]. Then EP2

∼= SO(3) × R, where
the second factor represents ln |ReX| and is contractible.
Hence EP2 is doubly connected also, that is, π1(EP2) = Z2.

B. Adiabatic transport in EPn

1. General statements

Now we consider adiabatic transport in EPn for general n.
We choose a smooth loop in EPn, so we have H = H (s), a
smooth function of s ∈ [0, 1] with H (1) = H (0) and H ∈ EPn

for all s. We evolve the system in time t from zero to T > 0
with the time-dependent Hamiltonian H = H (s = t/T ) as in
the usual adiabatic evolution. If we express the evolution
equation ∂t |ψ〉 = H |ψ〉 in a basis of generalized eigenvec-
tors |ui(s)〉 of H (s) = �(s)Jn�(s)−1 at each s (that varies
smoothly with s) then, for the column vector |u〉 = �−1|ψ〉
of components in this basis, it takes the form

ε∂s|u〉 = (Jn + εA)|u〉, (4)

where ε = 1/T and Ai j = −〈ui|∂su j〉 (i.e., A = −�−1∂s�) is
the Berry connection evaluated on the tangent vector to the
loop. Here the bras 〈ui(s)| are a smooth basis set of row
vectors dual to the basis of kets |ui(s)〉, so 〈ui(s)|u j (s)〉 = δi j
for each s (this is not a use of an inner product); they are rows
of �−1. To keep later arguments simpler, we assume with-
out loss of generality that �(s) is periodic [�(1) = �(0)],
and so also A(1) = A(0). There is a residual gauge freedom
when we obtain Eq. (4): the form is preserved under a fur-
ther differentiable periodic s-dependent change of basis by
�̃(s) ∈ C× × Jn for all s (see Appendix B).

The key point now is that while Jn is not diagonalizable
Jn + εA often is. As ε → 0, det(Jn + εA) = (−1)n−1εA0 +
O(ε2), where we write A0 = An1(s) and we assume henceforth
that A0 is nonzero for all s. From the characteristic equa-
tion, we find that the s-dependent eigenvalues of Jn + εA are
λμ = ζμ(εA0)1/n (μ = 0, 1, . . . , n − 1) to leading order in
ε, where ζ = e2π i/n (see Appendix C). Here we choose one
nth root of A0, which we take to be the principal branch,
for which argA1/n

0 ∈ (−π/n, π/n], and denote it A1/n
0 , and

(εA0)1/n = ε1/nA1/n
0 (ε1/n > 0). Solving iteratively for each

eigenvalue, we can obtain series expansions

λμ =
∞∑
r=1

arε
r/nζμr (5)

with nonzero radius of convergence; such an expansion is
called a Puiseux expansion. Note that here the coefficients
ar = ar (s) (a1 = A1/n

0 ) are independent of μ (because ζμr has
been extracted), because if such an expansion satisfies the
characteristic equation for one value μ then it does so for all
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μ. Then as
∑

μ λμ = tr (Jn + εA) = ε tr A we find that

an = 1

n
tr A (6)

and a2n = a3n = · · · = 0. If A0 = 0 for some s (contrary to
our assumption), then the remaining elements of A become
important as ε → 0, and there are different cases to study; we
do not consider these in this paper.

If A0 �= 0 makes a circuit k times around the origin (say,
as s varies), then following the eigenvalues λμ continuously
along the circuit produces a net cyclic permutation μ → μ +
k (mod n). This monodromy of the eigenvalues has the same
form as that which we mentioned [1] in the first paragraph of
Sec. I. The situations are related because εA can be considered
as a perturbation from the exceptional point H = Jn to an “ef-
fective” Hamiltonian H ′ = Jn + εA, and we are considering
a case in which the degeneracy of eigenvalues is fully lifted.
Henceforth we assume that A0 does not encircle the origin as
s varies from 0 to 1.

If, in the adiabatic limit ε → 0 and under our assumptions,
a state prepared in the μth instantaneous eigenvector of Jn +
εA stayed in the corresponding eigenstate until s = 1, then
there would be a change in its “phase” (i.e., the log of the
amplitude, which here is complex) of

n∑
r=1

εr/n−1ζμr
∫ 1

0
ds ar (s) (7)

plus order ε1/n, plus possibly a further contribution to the
geometric phase, which we discuss in Sec. II B 3 below. Apart
from the r = n term, the terms displayed in expression (7) are
dynamical phases, which depend on T . In addition to the usual
one that is of order T (absent here because we subtracted off
the trace of H), there are also fractional powers of T [22].
These may be considered “stretched exponential” dependence
on the time scale T of adiabatic evolution.

In view of our choice that �(1) = �(0), the final r = n
term in (7) is a geometric phase, like the usual Berry phase
in the case of nondegenerate eigenvalues, but given by the
average

∫
ds n−1tr A of the diagonal elements of A. It can

change by a multiple of 2π i under a “large” residual gauge
transformation that winds in C× as a function of s (see
Appendix B); thus it is well defined only modulo 2π i. In other
words, it is the Berry phase factor or holonomy

en
−1

∫ 1
0 tr A (8)

that is well defined if we do not keep track of the choice
of basis along the path (i.e., it is fully gauge invariant). The
dynamical phase terms r < n are gauge invariant (again, see
Appendix B); these gauge-invariance properties are similar to
the usual Hermitian case.

2. A special class of loops

An important special case of adiabatic transport in EPn

is that in which A (and hence ar) is independent of s (for
all r). In that case, the coefficients in Eq. (4) are constant,
so the system does stay in an initial eigenstate of Jn + εA
for all s if it is in one initially, and the preceding remarks
conclude the calculation. We note that the corresponding path

is “straight” in GLn(C), with �(s) = �(0) exp(−sA), and that
such paths can return to the starting point, so �(1) = �(0).
Moreover, these loops can be nontrivial in both π1[GLn(C)]
and π1(EPn), that is, they can have nonzero winding number
(modulo n) when projected to EPn. In the general case, in
which A is not constant, there could be further contributions
to the geometric phase of the same order, which we discuss
next.

3. More general loops

In order to examine the general scenario, we apply the
adiabatic theorem to Jn + εA. At leading order, the μth eigen-
vector of Jn + εA can be chosen to be

|vμ〉 =

⎛
⎜⎜⎜⎝

1
(εA0)1/nζμ

·
·

(εA0)(n−1)/nζμ(n−1)

⎞
⎟⎟⎟⎠[1 + O(ε1/n)], (9)

which is periodic in s under our assumptions. If we use these
instantaneous eigenvectors as a basis set (together with a dual
basis as before), then in this basis the evolution equation
becomes

ε∂s|v〉 = (D + εA′)|v〉 (10)

where D = diag (λ0, . . . , λn−1), and A′
μν = −〈vμ|∂svν〉. Now

we use the adiabatic theorem for this non-Hermitian nonde-
generate situation [18]. As mentioned already, in this case,
with eigenvalues λμ with differences much larger than ε as
ε → 0, the adiabatic theorem in general does not hold for all
the eigenspaces of D, but only for the dominant mode (the
one with the largest real part of its eigenvalue). (In the less
general case in which a permutation of the |vμ〉s makes A′
block diagonal with the same block structure for all s, then the
adiabatic theorem holds for the dominant mode in each block.)
If we make the stronger assumption that | argA0(s)| < π for
all s (i.e., A0 does not touch or cross the negative real axis)
then, for all s and as ε → 0, Re λμ is largest when μ = 0, and
is nondegenerate. [Technically, we assume that A0(s) does not
approach the negative real axis or zero closer than some small
constant, say δ > 0.] With this assumption, it is not difficult to
show that if the initial state is purely the dominant mode then
it remains in it for all s with sufficient accuracy as ε → 0 (see
Ref. [18] and Appendix D). Moreover, the additional contri-
bution to the geometric or Berry phase is found by integrating
the diagonal element A′

00 for the dominant mode.
In the present case, we find that

A′
μν = −

n−1∑
r=1

r

n2
ζ (ν−μ)r ∂sA0

A0
+ O(ε1/n), (11)

so the diagonal elements are given by 1−n
2n ∂s lnA0 to leading

order. Integrating from s = 0 to 1, the change in the com-
plex amplitude is [A0(0)/A0(1)](n−1)/(2n). Because A0 does not
make a circuit around the origin, this factor is 1. Then the
net phase change through order ε0 is given by the integrated
Puiseux expansion (7). It is remarkable that, for adiabatic
transport in EPn, there is an order-ε0 part of A′, yet this part
still does not contribute to the geometric phase.
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4. Calculation of net holonomy

Finally, we need to calculate the net geometric phase for a
loop. First, because �(1) = �(0), the non-Abelian holonomy
[which is an element of GLn(C)] is P exp

∫ 1
0 Ads (P exp is

path ordering of the exponential). Hence the holonomy for any
loop is �(1)−1�(0) = I , and by considering a contractible
loop and using Stokes’s theorem it follows that the non-
Abelian Berry connection A has zero (Yang-Mills) curvature.

The trace of A is in the Lie subalgebra gl1(C) ∼=
C of gln(C), so the corresponding Abelian holonomy
is det �(0)/ det �(1) = 1 in GL1(C) ∼= C×. Then n−1tr A,
which determines the geometric phase, is again a flat connec-
tion (i.e., its Berry curvature is zero). Its holonomy is

en
−1

∫ 1
0 tr Ads = [det �(0)/ det �(1)]1/n (12)

[with the nth root defined by imposing continuity on
{det �(s)}1/n]; because of the vanishing curvature, it depends
only on the homotopy class of the loop. For any contractible
loop in GLn(C) this holonomy is 1, but for a noncontractible
loop it is an nth root of 1, and so a power of ζ . Note that
π1[GLn(C)] ∼= Z, so such loops exist; they are associated with
the noncontractibility of C×. It is precisely ζ−1 to the power
of the winding number of the path of det �(s) around the
origin in C×; note that this winding number changes by a
multiple of n under a residual gauge transformation. In EPn,
the fundamental group is Zn, so repeating a given loop n times
produces a loop that is contractible in EPn, and hence the nth
power of the holonomy for any loop must be 1, consistent
with our conclusion that the holonomy is a power of ζ . This
concludes the derivation of the general results. In Appendix A,
we also explain that the mapping from a loop in EPn to a
power of ζ , given by the holonomy, Eq. (12), can be viewed
as a torsion first Chern class c1.

5. Example: n = 2

As an illustration of the general results, we solve the n =
2 model explicitly for A constant and A0 �= 0. An example
of a noncontractible loop in EP2 is parametrized by X(s) =
(i cos φ(s), i sin φ(s), 1)T with φ(s) = 2πs. Then with |u1〉 =
(1, ieiφ )T and |u2〉 = (1, 0)T we find

A =
(−2π i 0

2π i 0

)
, (13)

so A0 = 2π i, and the eigenvalues of J2 + εA are

λ0,1 = − iπε ±
√

2π iε − π2ε2 (14)

= ± π1/2(1 + i)ε1/2 − iπε + O(ε3/2). (15)

The two leading terms agree with a1 = A1/2
0 and a2 = 1

2 tr A =
−iπ , and further a2k = 0 for k > 1; note that the Berry phase
is π (modulo 2π ). Our general theory tells us that these results
are independent of the choice of gauge, and that the Berry
phase is invariant under sufficiently slowly varying smooth
changes in the loop. More generally, if we choose φ(s) =
2πms for an integer m, giving a loop of winding number m,
then the holonomy is (−1)m.

III. EXPERIMENTAL IMPLEMENTATIONS FOR n = 2

The simplest demonstration of our results is for non-
Hermitian 2 × 2 Hamiltonians, which are of the general form
in Eq. (3). Here, we discuss two experimental setups which
realize such a Hamiltonian, and we propose noncontractible
loops along which adiabatic transport would produce the re-
sults in Eq. (15). In either setup, this means that if the system
were initialized in the dominant mode there would be a contri-
bution to the (complex) dynamical phase of (1 + i)

√
πT , and

the Berry phase factor would be −1.
The first setup consists of a qubit (two-level system) that

is coupled to a waveguide, and which can decay to a third
level. When the system is postselected for evolution that
remains within the qubit’s Hilbert space, the resulting dy-
namics can be described via an effective Hamiltonian that is
non-Hermitian, as demonstrated experimentally in Ref. [24].
In the rotating frame and rotating wave approximation, we
identify the three complex numbers X,Y, and Z in Eq. (3)
with experimental parameters: X = J cos(φ), Y = J sin(φ),
and Z = �/2 − iγ /4, where � is the detuning of the drive
applied to the qubit (via the waveguide), γ is the difference in
decay rates of the two qubit states, J is the coupling strength
(also known as Rabi frequency), and φ is the (Rabi) phase.
From the discussion below Eq. (3), we infer that exceptional
points lie at � = 0 and J = |γ |/4 for all α. For fixed � = 0
and J = |γ |/4, varying φ by 2π describes a noncontractible
loop. If γ is also controlled [24], then the accessible subspace
of EP2 forms a frustum—a cone without its apex (because
there H = 0 and so is diagonalizable).

Second, we argue that full control over Eq. (3) can be
achieved with the optomechanical device used in Ref. [12].
The device consists of a dielectric membrane in the middle
of an optical cavity. The membrane’s vibrational modes can
be coupled to each other by sending light at particular fre-
quencies into the cavity; in addition to the complex-valued
mutual coupling, light also introduces a complex-valued self-
coupling term to each oscillating normal mode [25]. In
Ref. [12], two pairs of light beams were used to couple two
oscillating normal modes. It is straightforward to show that
various combinations of laser tones (i.e., their power and
detuning) can be chosen to give independent control over the
complex parameters X , Y , and Z in Eq. (3).

IV. CONCLUSION

To conclude, we studied adiabatic transport around a loop
in a space of exceptional points of type EPn for n × n Hamilto-
nian matrices. We found that the dynamical phase is given by
a Puiseux series of fractional powers of T , and that the Berry
phase (modulo 2π ) depends only on the homotopy class of the
loop. The results hold for a choice of initial state that depends
both on the loop (which must be in a certain class of loops)
and on T .

Clearly, it would be of interest to carry out an analysis by
similar methods in other cases, such as when A0 = 0 all along
the loop. Alternatively, for n > 2 we can also consider, for
example, spaces of EPs of types EPn′ for n′ < n within Mn(C),
or spaces of Hamiltonians for which the Jordan canonical
form is a direct sum of several Jordan blocks with the same
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eigenvalue. We expect these cases to involve the non-Abelian
connection for transporting a proper subspace [17], as well as
effects similar to those we found for a Jordan block of size n.
We leave these cases for later study.
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APPENDIX A: GEOMETRY AND TOPOLOGY OF EPn

In this Appendix, we consider the geometry and topology
of the space EPn. We first show that it is a complex manifold
of complex dimension n(n − 1), and has the same topology
(i.e., what is called homotopy type [23]) as SU(n)/Zn [for
n = 2, this becomes SO(3), the space of real 3 × 3 orthogonal
matrices of determinant 1]. This space is connected but not
simply connected; its fundamental group is π1(EPn) ∼= Zn,
which is not the trivial group when n � 2, and corresponds
to the n-fold connectedness described in Sec. I B. (The cal-
culation in the main text is required in order to determine
the Berry phase factor, relate it to a holonomy, show that
there are loops for which it is not unity, and relate it to the
winding number of the loop.) Finally, we also determine the
low-dimensional homology and cohomology groups of EPn

with integer coefficients, including the second cohomology
group H2(EPn), which is again ∼=Zn. The latter group tells us
about the possible holonomy for a loop in EPn, and we explain
how the results in the text can be viewed as an example of a
torsion first Chern class, which is an element of H2(EPn).

To begin, for H = �Jn�−1 and � an invertible complex
matrix [an element of the general linear group GLn(C)], we
see that multiplying � on the right by any invertible matrix
that commutes with Jn produces the same H . The latter matri-
ces form the subgroup C× × Jn defined in Sec. II A. It follows
that the space of such H is EPn

∼= GLn(C)/[C× × Jn], which
is thus a homogeneous complex manifold. The complex di-
mension of GLn(C) is n2, and that of C× × Jn is n, so the
complex dimension of EPn is n(n − 1). This number can also
be understood heuristically as follows: Mn(C) has dimension
n2, and a generic matrix has n distinct complex eigenval-
ues. The condition that all eigenvalues be zero imposes n
constraints, leaving an n2 − n dimensional space. This space
contains points not in EPn, but it turns out that those points
form subspaces of dimension <n2 − n; for example, for any
n � 2 the space includes the zero matrix, which is not similar
to any nonzero matrix.

To study further the geometry and topology of EPn, a
useful first step is to analyze that of GLn(C). [The result of
the division of GLn(C) by the product group can then be
investigated afterward, one factor at a time.] If we arbitrarily
choose an inner product on Cn, say the standard one, then any
invertible matrix g ∈ GLn(C) can be expressed in the polar

decomposition g = Uh, whereU is unitary and h is a positive-
definite Hermitian matrix (i.e., all its eigenvalues are strictly
positive). This can be obtained from h = (g†g)1/2, where the
positive square root is taken for each positive eigenvalue of
g†g, and U = gh−1. The space of such h is contractible; h can
be deformed to the identity I . Hence GLn(C) has a deforma-
tion retract [23] to the space U (n) of unitary matrices.

For the second step, the group GLn(C)/C× [where C× is
embedded in GLn(C) as the subgroup of nonzero complex
multiples of the identity] is also known as the projective
linear group PGLn(C). It has a deformation retract onto
U (n)/U (1) ∼= SU(n)/Zn. Here Zn ⊂ U (1) ⊂ U (n) is embed-
ded in SU(n) as the subgroup of n × n matrices that are a
power of ζ times the identity; it is the center of SU(n). (Note
that, throughout the paper, we use ∼= to stand for topological
isomorphism [homeomorphism] of topological spaces; when
the space is also a group, the map is also an isomorphism of
groups. In the special case of a discrete group, the discrete
topology is used.)

Finally, we must also mod out by Jn. It is a contractible
subgroup of GLn(C), and intersects C×I only at I , so its image
is still a contractible subgroup in PGLn(C). As for any space
that is the quotient space G/H of a group G by a subgroup
H ⊆ G, PGLn(C) can be viewed as a fiber bundle [23] over
the quotient space EPn with fiber ∼=J . Because the fiber is
contractible, EPn has the same homotopy type as PGLn(C), or
as SU(n)/Zn. That is, these spaces are homotopy equivalent,
due to the existence of deformation retracts from PGLn(C) to
EPn, and from either of these to SU(n)/Zn.

The homotopy type of a space can also be studied by using
the homotopy groups. We can apply the homotopy long exact
sequence of a fibration to the fiber bundle G over G/H with
fiber H (where H ⊆ G are groups) [23],

· · · → πi+1(G) → πi+1(G/H ) → πi(H ) → πi(G) → · · · ,

(A1)
which holds down to π0(G/H ) [for i = 0, π0 of a space is
in general a set without a group structure, however for the
present case the π0s are groups, except for π0(G/H ) in the
case that H is not a normal subgroup of G]. If we apply this
with G = PGLn(C) and H = Jn, then as all homotopy groups
(or sets) of Jn are zero (because it is contractible) we of course
find again that πi(EPn) ∼= πi[PGLn(C)] ∼= πi[SU(n)/Zn] for
all i � 0. Applying the sequence again with G = SU(n),
H = Zn, and using (with n � 2 from here on) π1[SU(n)] =
π2[SU(n)] = 0, π3[SU(n)] ∼= Z, and of course πi(Zn) = 0 for
i > 0, π0(Zn) = Zn, we obtain π1(EPn) = Zn, π2(EPn) = 0,
π3(EPn) = Z. For n = 2, these results are well known for
EP2

∼= RP3 × R ∼= SO(3) × R, and for general n they are
fairly well known for SU(n)/Zn. We note that, when the fiber
is a discrete group, these results can also be understood in
terms of covering spaces; for example, SU(n) is the simply
connected covering space of SU(n)/Zn, which means that
π1(SU(n)/Zn) ∼= Zn.

Next we turn briefly to the homology and cohomology
of EPn, which depend only on the homotopy type of the
space, and their applications (these are not essential for un-
derstanding the main text). The first homology group, with
integer coefficients, is H1(EPn) ∼= π1(EPn) ∼= Zn as π1(EPn)
is Abelian. By the universal coefficient theorem [23], the
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cohomology with integer coefficients is H1(EPn) = 0, and
H2(EPn) ∼= F2 ⊕ T1, where F2 is the free part (group of el-
ements of infinite order) of H2(EPn), T1 is the torsion part
(group of elements of finite order) of H1(EPn), and the
isomorphism is noncanonical. Thus H2(EPn) contains a sub-
group ∼=Zn. For n = 2, H2(RP3) ∼= Z2, while H3(RP3) ∼=
Z. For n � 2, using theorems of Hopf (see Ref. [26],
pp. 1, 2, 41, 42), there is a surjection from π2(EPn) = 0
onto H2(EPn), because the group homology H2[π1(EPn)] =
H2(Zn) = 0, and so H2(EPn) = F2 = 0, implying H2(EPn) ∼=
Zn. Alternatively, we can use a Cartan-Leray spectral se-
quence (see Ref. [26], p. 173, or Ref. [27], Sec. 6.10) to obtain
H2(EPn) ∼= Zn.

In general, the elements of the second integral cohomology
group H2(X ) for a topological space X correspond one to
one with the isomorphism classes of complex rank-1 vector
bundles (also called line bundles) over X ; the group operation
corresponds to taking tensor products of line bundles. The el-
ement in H2(X ) for a given line bundle is the first Chern class
c1 of the bundle; thus c1 completely classifies line bundles up
to isomorphism.

Our adiabatic transport construction does not directly pro-
duce a line bundle (because, e.g., the dominant state depends
on the path used), but the gl1(C) connection n−1tr A, or more
precisely its holonomy around all possible loops, uniquely
determines a line bundle (up to isomorphism), and hence
determines its first Chern class c1 ∈ H2(EPn) ∼= Zn. (Our con-
nection is flat—see Sec. II B 4—but the statement would hold
even if the connection were not flat; see, e.g., Ref. [28], Sec.
2, for exposition and references.) Because our connection is
flat, our formula Eq. (12) for the holonomy is precisely this
c1; when given a homotopy class of loops [in π1(EPn)], or
the corresponding homology class of cycles [in H1(EPn)], it
specifies an element of Zn, represented multiplicatively as a
phase factor, which is the holonomy. Viewed as an element of
H2(EPn) (additively), c1 is nonzero and in fact is a generator
of H2(EPn). This c1 is an example of a torsion first Chern
class, that is, one that is not equivalent to an integer or set of
integers.

APPENDIX B: GAUGE TRANSFORMATIONS
AND INVARIANCE OF RESULTS

The evolution equation (4) is covariant under s-dependent
transformations lying in the subgroup C× × Jn. Precisely,
if the column vector |u〉 is replaced by |ug〉 = g|u〉, where
g ∈ C× × Jn, then the evolution equation becomes ε∂s|ug〉 =
(J + εAg)|ug〉, where

Ag = gAg−1 + ∂sgg
−1. (B1)

As g is upper triangular, the inhomogeneous term ∂sgg−1 is as
well (it is in the Lie algebra of C× × Jn).

We show in Appendix C below that the leading terms ∝ ε

in the coefficients ci in the characteristic equation contain
elements of A on or below the diagonal. It follows that the
inhomogeneous terms in Ag have no effect on the coefficients
cr in order ε except for the diagonal of Ag which affects
cn−1 ∝ tr A. Moreover, Jn + εgAg−1 = g(Jn + εA)g−1 has the
same eigenvalues as Jn + εA. Hence the terms displayed in ex-
pression (7) are gauge invariant to the order shown, except for

the r = n term; the latter transforms as a C× connection. Then
the s integrals of these terms are also gauge invariant, except
that the Berry phase (r = n) term changes by a multiple of
2π i (where here i is the square root of −1, not an index), and
thus is invariant except under a “large” gauge transformation,
that is, one that winds around the origin in C×.

APPENDIX C: SCALING OF THE CHARACTERISTIC
EQUATION AND EIGENVALUES

The characteristic equation of Jn + εA has the form

λn +
n−1∑
i=0

ciλ
i = 0 (C1)

where the ci are similarity invariants of Jn + εA, and all are of
order O(ε) as ε → 0. Indeed, the terms of first order in ε in ci
are ci = −ε

∑i
j=0 An+ j−i,1+ j + O(ε2) for all i = 0, ..., n − 1.

Because any root of the equation must tend to zero as ε →
0, it is not difficult to see that the c0 term is the most important
of the terms containing a ci, provided that limε→0 c0/ε �= 0.
Then λ ∼ (−c0)1/n ∝ ε1/n, and the other ci (i �= 0) do not
contribute at leading order in this limit.

APPENDIX D: GENERALIZED ADIABATIC THEOREM

Here for completeness we prove the generalized version
of the adiabatic theorem (including the Berry phase) in the
context of the main text. The result is contained in Ref. [18],
but our proof is different. We consider the evolution equation

∂s|v〉 = (ε−1D + A′)|v〉, (D1)

where D = diag (λ0, . . . , λn−1) and A′ is the Berry connec-
tion. In our case, D consists of eigenvalues proportional to
ε1/n that are never equal, and A′ has entries independent of ε.
We assume that λ0 has the largest real part (i.e., it is domi-
nant), and that the differences of the real parts of the λμs are
bounded away from zero (this holds under the assumptions in
the text). We also assume that all elements of A′ are bounded
in magnitude by the same constant B > 0 uniformly for all s.
First, we suppose that the system is prepared in the μ = 0
(dominant) eigenstate at s = 0, and consider the amplitude
for it to return to that eigenstate at s = 1. If the possible
transitions to other modes (μ �= 0) are neglected, then the
change in the complex amplitude of the dominant state will
be a factor exp{∫ 1

0 ds [ε−1λ0(s) + A′
00(s)]}. We will show that

corrections to this due to transitions, and the amplitude for
ending in a different state, are of relative size O(ε[n−1]/n) at
most. We emphasize that our general argument applies when-
ever D is diagonal and the differences of the real parts of the
diagonal entries from the dominant one are bounded below by
a nonzero constant times ε to any power <1.

We first extract the factor exp{∫ 1
0 ds [ε−1λ0(s) + A′

00(s)]},
to calculate relative to this expected factor; this has the effect
of taking λ0 = 0 (and A′

00 = 0) without loss of generality,
by subtracting these from the diagonal elements of D (re-
spectively, A′). Now we begin by considering n = 2, and set
A′

11 = 0 for now. The change in amplitude is

〈v0|P exp
∫ 1

0
ds [ε−1D + A′]|v0〉, (D2)
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where the initial |v0〉 = (1, 0)T is the dominant eigenstate of
Jn + εA in this basis (and 〈v0| is the corresponding element of
the dual basis). This transition amplitude is

=
∞∑
r=0

∫
D

2r∏
j=1

ds j A
′
01(s2r )A

′
10(s2r−1) · · ·A′

10(s1)

× e
∫ s2
s1

ε−1λ1(s′ ) ds′+···+∫ s2r
s2r−1

ε−1λ1(s′ ) ds′
, (D3)

where D is the region defined by s1 < s2 < · · · < s2r and all
s j in [0,1]. Subtracting the r = 0 term (which is unity), and
taking the absolute value, we have the bound

�
∞∑
r=1

∫
D

2r∏
j=1

ds j B
2re−ε−1/2L

∑r
j=1(s2 j−s2 j−1 ), (D4)

where ε1/2L > 0 is a lower bound on −Re λ1 > 0 for all s ∈
[0, 1], which exists by our assumptions. [This expression, with
1 added, can be viewed as the partition function of a statistical
mechanics problem of domain walls at positions s j , where at
s = 0 and 1 the state vector is fixed at |v0〉, and transitioning to
the other state |v1〉 = (0, 1)T carries a fugacity B and energy
penalty ε−1/2L > 0 per unit length. As this penalty is large,
domain walls are bound in pairs, and it is unlikely that state
|v1〉 is found.] This is in turn less than or equal to

�
∞∑
r=1

1

r!

∫
D′

2r∏
j=1

ds j B
2re−ε−1/2L

∑r
j=1(s2 j−s2 j−1 ) (D5)

(where D′ is the domain s1 < s2, s3 < s4, . . . , s2r−1 < s2r and
all s j in [0,1]), because the parts where some of the intervals
[s2 j−1, s2 j] overlap give positive contributions, and discarding
these leaves a region that covers D r! times. This multiple
integral is a product, and gives rise to an exponential series
with the initial term 1 omitted. Each two-dimensional integral

factor can be evaluated to give ε1/2/L + ε(e−ε−1/2L − 1)/L2,
where the subleading terms are introduced by the integration
limits at s = 0 and 1. Hence we have found the upper bound
equal to

exp
[
ε1/2B2/L + εB2

(
e−ε−1/2L − 1

)
/L2

] − 1. (D6)

As ε → 0, this gives ∼ε1/2B2/L, which is simply the first term
in the series.

In general, one should include A′
11. This can be added to

ε−1/2λ1, and can be absorbed into a change in the bound L
when ε is sufficiently small. Hence the full result is

〈v0|P exp
∫ 1

0
ds [ε−1D + A′]|v0〉

= exp

{∫ 1

0
ds [ε−1λ0(s) + A′

00(s)]

}
[1 + O(ε1/2)] (D7)

for the n = 2 case. Similarly, we can show that the amplitude
for making a transition to the state |v1〉 during the evolution is

〈v1|P exp
∫ 1

0
ds [ε−1D + A′]|v0〉

= O(ε1/2B/L) exp

{∫ 1

0
ds [ε−1λ0(s) + A′

00(s)]

}
(D8)

as ε → 0, and the same bound also applies to the amplitude
for starting in 1 and ending in zero.

Finally, for n > 2 we can absorb A′
μμ (μ > 0) into a change

in the lower bound on all −Re λμ, μ �= 0. The remaining ele-
ments of A′

μν with μ, ν �= 0, which produce transitions among
those modes, are bounded in magnitude by B, and in the
above argument simply lead to another order-1 contribution
that can also be absorbed into ε(1−n)/nL. Hence the result is
similar, with corrections smaller at least by ≈ε(n−1)/nB2/L,
and similarly for the amplitude for a transition to any state
μ �= 0.
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