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The fundamental building blocks in band theory are band representations—bands whose infinitely numbered
Wannier functions are generated (by action of a space group) from a finite number of symmetric Wannier
functions centered on a point in space. This paper aims to simplify questions on a multirank band representation
by splitting it into unit-rank bands via the following crystallographic splitting theorem: Being a rank-N band
representation is equivalent to being splittable into a finite sum of bands indexed by {1, 2, . . . ,N}, such that
each band is spanned by a single, analytic Bloch function of k, and any symmetry in the space group acts by
permuting {1, 2, . . . ,N}. We prove this theorem for all band representations (of crystallographic space groups)
whose Wannier functions transform in the integer-spin representation; in the half-integer-spin case, the only
exceptions to the theorem exist for three-spatial-dimensional space groups with cubic point groups. Applying
this theorem, we develop computationally efficient methods to determine whether a given energy band (of a
tight-binding or Schrödinger-type Hamiltonian) is a band representation and, if so, how to numerically construct
the corresponding symmetric Wannier functions. Thus we prove that rotation-symmetric topological insulators in
Wigner-Dyson class AI are fragile, meaning that the obstruction to symmetric Wannier functions can be removed
by addition of band representations to the filled-band subspace. An implication of fragility is that its boundary
states, while robustly covering the bulk energy gap in finite-rank tight-binding models, can be destabilized if the
Hilbert space is expanded to include all symmetry-allowed representations. These fragile insulators have pho-
tonic analogs that we identify; in particular, we prove that an existing photonic crystal built by Yihao Yang et al.
[Nature 565, 622 (2019)] is fragile topological with removable boundary states, which disproves a widespread
perception of “topologically protected” boundary states in time-reversal-invariant, gapped photonic/phononic
crystals. As a final application of our theorem, we derive various symmetry obstructions on the Wannier functions
of topological insulators; for certain space groups, these obstructions are proven to be equivalent to the nontrivial
holonomy of Bloch functions.
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I. INTRODUCTION

Solid-state physicists have predominantly held that to
know a band is to specify its properties in the space of crystal
momentum k [1–4]. The crystallographic space-group sym-
metry of a band is specified by the different representations
of little groups (in k space) [5,6], their compatibility relations
[7–11], and associated energy degeneracies [12–16].

As pioneered by Zak [17,18], a real-space formulation of
bands specifies how a space group G transforms an infinite set
of exponentially localized Wannier functions distributed over
a real-space lattice. Zak proposed that the fundamental build-
ing blocks of bands are band representations (BRs): bands
whose infinitely numbered Wannier functions are generated
(by action of G) from a finite number of symmetric Wannier
functions centered at a point in space (known as a Wyckoff
position). An intuitive example of a BR is the Hilbert space of
any tight-binding lattice model. Unfortunately, it is generally

difficult to identify if an energy band (of a tight-binding or
Schrödinger-type Hamiltonian) is a BR because one would
not a priori know the Wyckoff position or the symmetry
representation of the Wannier functions.

Such an identification would confer the following advan-
tages: (i) one may utilize comprehensive databases for the
k-space symmetry representations and compatibility relations
of BRs, which have been tabulated in the Bilbao crystallo-
graphic server [19]; (ii) some BRs exhibit symmetry-fixed
Berry-Zak phases [20,21] which are measurable in trans-
port [21] and cold-atomic experiments [21–23]; and (iii),
conversely, not being a BR manifests in various physical im-
plications, which may include nontrivial k-space holonomy
[20,21,24–26], quantum entanglement [11,27–31], and robust
boundary states [32–39].

Following Zak’s real-space definition of BRs, one may
heuristically test if an energy band—given numerically by
a set of Bloch functions on a k mesh—is a BR. Namely,

2469-9950/2020/102(11)/115117(43) 115117-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4499-4735
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.102.115117&domain=pdf&date_stamp=2020-09-09
https://doi.org/10.1038/s41586-018-0829-0
https://doi.org/10.1103/PhysRevB.102.115117


A. ALEXANDRADINATA et al. PHYSICAL REVIEW B 102, 115117 (2020)

one would postulate trial Wannier functions with a certain
symmetry representation and Wyckoff position, then com-
pute the overlap of these trial Wannier functions with the
Bloch functions [40–46]. Unfortunately, the possible symme-
try representations and Wyckoff positions are numerous in
complicated space groups; even if they are correctly chosen
for a given BR, it is still possible that a trial Wannier function
has zero overlap with a given Bloch function on the k mesh. (It
is worth interjecting that several groups have claimed to prove
band-representability based on k-space symmetry represen-
tations and/or k-space holonomy [47–49]; we will explain
why these alleged proofs are merely suggestive, and offer a
theorem that makes some of these proofs rigorous.)

With the goal of determining band representability without
trial Wannier functions, we propose to reformulate BRs from
a topological perspective. This perspective emphasizes the
notion of continuity that is fundamental to the topological
classification of vector bundles. Applied to band theory, a
rank-N vector bundle over the Brillouin torus is simply a band
comprising N linearly independent Bloch functions at each k,
and if such Bloch functions can be made continuous and peri-
odic over the torus, the band is said to be topologically trivial.
In two spatial dimensions, being topologically nontrivial is in
one-to-one correspondence with a nontrivial first Chern class
[50], which leads to a quantized Hall conductance for band
insulators [51].

Our topological formulation of BRs can be formalized
by the following crystallographic splitting theorem: being
a rank-N BR is equivalent to being splittable into a sum
of N unit-rank bands (indexed by {1, 2, . . . ,N}) which are
each topologically trivial, such that any symmetry in the
space-group symmetry acts by permuting {1, 2, . . . ,N}. Al-
ternatively stated, being a rank-N BR is equivalent to being
splittable into N independent sets of exponentially localized
Wannier functions, such that each set is obtained by Bravais-
lattice translations of a single Wannier function, and any
space-group symmetry acts by permuting these sets.

Our splitting theorem applies to any BR (of crystallo-
graphic space groups) whose Wannier functions transform
in the integer-spin representation. For half-integer-spin BRs,
the equivalence applies for any space group in two spa-
tial dimensions; exceptions to this equivalence exist only
for three-spatial-dimensional space groups with cubic point
groups. All the above statements generalize to time-reversal-
invariant BRs (in Wigner-Dyson [52] symmetry classes AI
and AII), with the semantic replacement of space group by
magnetic space group.

In comparing our topological formulation with Zak’s real-
space formulation, specifying the space group action on a
finite set of topologically trivial, unit-rank bands is simpler
than specifying the group action on an infinite set of Wannier
functions. A considerable volume of the paper is spent on
unpacking the conceptual simplifications and physical impli-
cations of the crystallographic splitting theorem, which we
summarize in the following section. This summary will also
serve as a guide to the structure of the paper.

To nip a possible confusion in the bud, we remark that
our use of topological triviality (as defined above) is based
on the standard definition in the theory of complex vector
bundles [53] and coincides with the notion of triviality for

Wigner-Dyson class A in the tenfold way [54]. We maintain
the same definition of triviality even in the context of time-
reversal symmetry: While a time-reversal-symmetric, rank-N
band (in class AI or AII) is always topologically trivial by our
definition, the same band may be decomposed into N unit-
rank bands which need not individually be trivial. A final word
of caution: Many other authors (e.g., in topological quantum
chemistry [10] and the method of symmetry-based indicators
[11]) have adopted a different definition of triviality, namely,
that a trivial band is a BR.

II. SUMMARY AND OUTLINE

Our main technical accomplishment is a topological for-
mulation of BRs, which is formalized by the crystallographic
splitting theorem in Sec. IV.

In comparison with the real-space formulation of BRs,
the topological formulation is conceptually closer to recent
developments in the band-theoretic description of topological
insulators. Indeed, the converse of the topological formulation
says that a topologically trivial, rank-N band that is not band
representable is spanned by N sets of exponentially localized
Wannier functions which cannot all be permuted by space-
group symmetry. (Being band representable is a convenient
shorthand for being a BR.) For this reason, we call a space-
group-symmetric band—that is not band-representabl—an
obstructed representation. The full implications of this ob-
struction are explored in Sec. VI. In particular, we will derive
three types of constraints on the Wannier functions of topo-
logical insulators:

(i) Wannier functions cannot be localized to a single tight-
binding lattice site.

(ii) Wannier functions in Wigner-Dyson symmetry class
AII cannot be fully spin-polarized (analogously, Wannier
functions in class AI cannot be fully pseudospinpolarized).

(iii) Wannier functions cannot form a representation of
certain symmetries in the stabilizer of their Wyckoff position.

(i)–(iii) are readily observable in numerical constructions
of Wannier functions for topological insulators, as will be
exemplified by topological insulators old and new.

Our topological formulation may be applied to determine
if a given energy band is band representable. Our proposed
method involves diagonalizing a projected symmetry operator
that is a k-dependent Hermitian matrix; if the eigenbands of
the projected symmetry operator are eigenvalue nondegener-
ate and have trivial first Chern class, then the given energy
band is guaranteed to be band representable, in accordance
with our crystallographic splitting theorem. The advantage of
our method is that it can be carried out without having to deal
with Wannier functions at all.

For demonstration, we prove in Sec. III that the filled
band—of rotation-invariant topological crystalline insulators
[36,55] (TCIs) in Wigner-Dyson symmetry class AI—is
a fragile obstructed representation (FOR). By fragile ob-
structed, we mean that the filled band has an obstruction
to symmetric Wannier functions, but this obstruction is re-
movable by addition of a BR to the filled-band subspace.
Once removed, the filled-band subspace is symmetrically
deformable to a tight-binding (or “atomic”) limit, which is
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incompatible with boundary states that robustly cover the bulk
energy gap; this statement is separately proven as the sym-
metric tight-binding limit theorem and the boundary stability
criterion in Sec. IX. This means that if a FOR is accom-
panied by boundary states that robustly cover the bulk gap
in finite-rank, tight-binding models (as exemplified by the
above rotation-invariant TCIs), then these boundary states can
be destabilized if the Hilbert space is expanded to include
all symmetry-allowed representations—we refer to this as a
representation-dependent stability of boundary states. It is
worth remarking that the filled band of this TCI is identical
to a BR with regard to its k-space symmetry representations,
which cautions against generally inferring fragile obstruc-
tions or band representability from k-space representations
alone [56].

While the above rotation-invariant TCIs have thus far not
been realized in solid-state materials, we prove in Sec. VIII
that their photonic analogs exist in a three-spatial-dimensional
tetragonal photonic crystal designed by Tetsuki Ochiai [57]
and in an existing hexagonal photonic crystal built by Yihao
Yang et al. [58]. While previous theoretical works [58,59]
have identified the hexagonal photonic crystal as an analog
of the nonfragile Z2 topological insulator in Wigner-Dyson
class AII, our group-theoretic analysis identifies it prop-
erly as an analog of the fragile Z TCI [36] in class AI.
The hexagonal photonic crystal is then a materialization
of fragile topology with removable boundary states. These
three-spatial-dimensional tetragonal and hexagonal crystals
complement two recently designed, two-spatial-dimensional
photonic crystals [49,60] which have been claimed to be
fragile based on different crystallographic symmetries that we
specify below.

While we have advertised that band representability can
be proven without constructing Wannier functions, some-
times these functions are intrinsically desirable for other
practical reasons, e.g., to analyze the formation of chemi-
cal bonds [41] to investigate the electronic polarization of
disordered/distorted insulators [41] or to construct a lower-
rank, tight-binding model which possibly includes many-body
interactions. Thus motivated, we present in Sec. VII a numer-
ical algorithm to construct symmetric Wannier functions—for
any BR that satisfies the crystallographic splitting theorem.

The advantage of our method is that it is ansatz-free, that is,
it does not require the user to guess a set of trial Wannier
functions, unlike many existing methods [40–45,61].

As a final application of the topological formulation of
BRs, we prove in Sec. V an equivalence between the obstruc-
tion of symmetric Wannier functions and nontrivial k-space
holonomy; the latter is a geometric property of Bloch func-
tions that is encoded in the Zak phase. This equivalence
holds for point groups which are generated by time reversal
and/or spatial inversion. As cases in point, a fragile obstruc-
tion against spatial-inversion-symmetric Wannier functions
was explored theoretically in Refs. [20,21,31,62–64] and may
even have a photonic analog [49,60]; a stable obstruction
against time-reversal-symmetric Wannier functions charac-
terizes bands with Z2 Kane-Mele topological order [10,43];
a fragile obstruction against spacetime-inversion-symmetric
Wannier functions [31,47,65] is possibly realized by the
nearly flat bands of twisted bilayer graphene [66,67]. While
these examples having been studied extensively from the dual
perspectives of k-space holonomy and symmetric Wannier ob-
structions, the equivalence of both perspectives is established
here.

We have chosen to discuss the fragility of TCIs [cf. Sec. III]
before the formal statement of the crystallographic splitting
theorem [cf. Sec. IV]. This order of consumption is recom-
mended for physically motivated readers who are versed in the
theory of topological band insulators. However, a mathemati-
cally oriented reader who is less interested in our idiosyncratic
application may skip to the splitting theorem in Sec. IV, which
is written to be self-contained. Almost every other section
should be consumed after having read Sec. IV. One possible
exception is our case study of fragile topological photonic
crystals in Sec. VIII, which is the recommended starting point
for members in the photonics community.

This completes the summary of our results. For the reader’s
convenience, we have drawn in Fig. 1 a concept map for the
various sections of this paper. The main results are recapitu-
lated in the final Discussion section of Sec. X, where we also
provide an outlook. Included in Appendix A is a review of
basic notions in band theory, space groups, and bundle theory;
this review may also be used as a glossary of specialized
terms, which the reader may refer to when needed.

FIG. 1. Concept map of the sections in this paper, with Secs. III–IX indicated.

115117-3



A. ALEXANDRADINATA et al. PHYSICAL REVIEW B 102, 115117 (2020)

III. CASE STUDY: FRAGILE TOPOLOGICAL
CRYSTALLINE INSULATORS IN CLASS AI

In Sec. III A, we will first give a pedagogical introduction
to three-dimensional, rotation-invariant TCIs in Wigner-
Dyson symmetry class AI, focusing on aspects that identify
them as obstructed representations. One particular aspect—
having boundary states with a representation-dependent
stability—will be a recurrent theme in the subsequent
Secs. VIII and IX.

Underlying the proof of fragility for this TCI is the crystal-
lographic splitting theorem, which we will introduce casually
in Sec. III B with a simple example. After these preliminaries,
the proof begins properly in Sec. III C.

A. Topological crystalline insulators as obstructed
representations of space groups

As theoretically proposed by Liang Fu in Ref. [55], the
first-known TCI has space group G4 = T3 �C4v × ZT

2 , which
is also the symmetry of the tetragonal photonic crystal. In
general, Td denotes a translational group of a d-dimensional
crystal, Cnv (n = 2, 3, 4, 6) denotes a point group generated
by an n-fold rotation and a mirror plane that contains the
rotational axis, and ZT

2 is the order-two group generated by
time reversal T ; T 2 equaling the identity means we are in
Wigner-Dyson class AI. The semidirect product � structure
of G4 reflects that G4 is a symmorphic space group, as briefly
reviewed in Appendix A 2.

We will focus on known qualities of the TCI that identify
its filled band as an obstructed representation of G4. By ob-
structed representation, we mean that the projector (denoted
POR) to the filled band is invariant under all elements of G4,
but the filled band is not a BR of G4.

A tight-binding model for the G4-symmetric TCI was first
proposed by Liang Fu on a tetragonal lattice [55]. The tight-
binding vector space consists of Wannier functions defined
over two sublattices indexed by α = 1, 2. On each sublattice,
the Wannier functions transform as a rank-two BR of G4. By
Zak’s standard definition, a BR is an induced representation
of a space group, as briefly reviewed in Appendix A 3 a. Here
we will describe what induction (in our case study) entails:

(a) Begin with a pair of Wannier functions {W+,α,0,W−,α,0}
centered at the C4v-invariant Wyckoff position �a, with
W±,α,0 having the symmetry of a p± := (px ± ipy) orbital;
these orbitals transform in the irreducible two-dimensional
“vector” representation E of C4v , the site stabilizer of �a; the
site stabilizer of a Wyckoff position is the group consisting
of all elements of a space group (here, G4) that preserve the
Wyckoff position. Here and henceforth, it should be under-
stood that any Wannier function is exponentially localized,
i.e., decaying at least as fast as an exponential function.

(b) We then generate an infinite set of Wannier func-
tions {W+,α,R,W−,α,R}R∈BL by Bravais-lattice translations.
Throughout this paper, we use R to denote a vector in the
Bravais lattice.

With regard to its symmetry properties, a BR (G,�,D) is
fully specified by a space group G, Wyckoff position �, and
a representation D of the corresponding site stabilizer. Our
illustrative BRs are denoted as (G4,�a,E ; α), with α = 1, 2

an additional sublattice index. The rank of a BR is the number
of independent Wannier functions in one unit cell—two for
each of (G4,�a,E ; α).

Suppose we began with a tight-binding Hamiltonian hav-
ing zero matrix elements between tight-binding Wannier
functions centered on distinct lattice sites. We introduce an
on-site potential that distinguishes between (G4,�a,E ; 1)
and (G4,�a,E ; 2), so they are separated by an energy gap
throughout the Brillouin zone.

By cleverly tuning the hopping parameters (cf. Eq. (1) in
Ref. [55]), Fu induced a momentary touching between low-
and high-energy bands, after which the energy gap (at all k)
is reestablished. A representative Hamiltonian in this phase is
given by

H (k) =
(

H1 H12

H12† H1

)
,

Hα (k) = 2tαn

(
cos kx 0

0 cos ky

)

+ 2tαnn

(
cos kx cos ky sin kx sin ky
sin kx sin ky cos kx cos ky

)
,

H12(k) = [t ′n + 2t ′nn(cos kx + cos ky) + t ′ze
ikz ]I, (1)

with Hα the Hamiltonian restricted to sublattice α∈{1, 2},
H12 a matrix of intersublattice hoppings, and parameters
t1
n=−t2

n=1, t1
nn=−t2

nn=0.5, t ′n=2.5, t ′nn=0.5, t ′z=2. The basis
chosen in Eqs. (1) is such that 2t1

n cos kx represents the nearest-
neighbor hopping of a px orbital in sublattice 1.

Let POR be the projector to the resultant low-energy band.
In terms of the symmetry representations of the little group
of wave vectors [5], POR is identical to both (G4,�a,E ; α)
[68]. Nevertheless, there are indications that POR is not band
representable: (i) if the tight-binding Hamiltonian is diagonal-
ized with Dirichlet (open boundary) conditions that model a
T2 �C4v × ZT

2 -symmetric surface, eigensolutions exist which
are localized to the surface and whose eigenenergies robustly
cover the bulk gap, e.g., see Fig. 10 in Ref. [55]. (ii) POR also
manifests nontrivial holonomy [69], which is incompatible
[70] with a BR.

One aspect of the boundary states distinguishes the TCI
phase from the well-known Z2 Kane-Mele topological insu-
lator. While the TCI boundary states cannot be removed from
the bulk gap by continuous deformations of the given tight-
binding Hamiltonian (that maintain both symmetry and the
bulk gap), the TCI boundary states can be removed from the
bulk gap if the given tight-binding Hilbert space is enlarged—
by inclusion of a boundary-localized band transforming as a
unit-rank BR of T2 �C4v × ZT

2 (the symmetry in the presence
of the boundary) [55]. There are four such unit-rank BRs,
corresponding to the four one-dimensional, real representa-
tions of C4v × ZT

2 . In contrast, the TCI boundary states would
be robust against the addition of BRs corresponding to the
two-dimensional vector representation of C4v × ZT

2 .
We see that an obstructed representation can be accom-

panied by boundary states which robustly cover the bulk
gap of a finite-rank tight-binding model with a restricted set
of symmetry representations, however, such boundary states
can be destabilized by expanding the Hilbert space to in-
clude all symmetry-allowed representations. This notion of a
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representation-dependent stability for boundary states is rem-
iniscent of (but not equivalent to) the defining property [62]
of a fragile obstructed representation (FORFOR. Namely, a
FOR of G4 is an obstructed representation of G4 with the
property that a BR of G4 exists, such that the direct sum of
this BR with FOR is a higher-rank BR. Schematically, FOR ⊕
BR=BR’. We emphasize that all objects in this equality are
representations of G4 = T3 �C4v × ZT

2 , the space group of a
three-dimensional crystal without boundaries; moreover, the
projector to each of {FOR,BR,BR’}, if restricted to a wave
vector k, is an analytic function (of k) throughout the Bril-
louin zone [71]. In contrast, the TCI boundary states have
the reduced symmetry T2 �C4v × ZT

2 , and if we insist on
distinguishing filled and unfilled boundary states, then the
filled states cannot continuously be defined in the boundary
Brillouin zone [72].

Proving that POR is a FOR will occupySecs. III C–III F.
The proof might have been simple, if hypothetically the un-
filled band (of Liang Fu’s tight-binding model) transforms as
a BR of G4—this would imply FOR ⊕ BR=BR’, with BR’
corresponding to the tight-binding vector space. In fact, the
unfilled band is also an obstructed representation [36] which
motivates a more general methodology to proving fragility.

Before we begin the proof, we remark that both a non-
trivial k-space holonomy and a representation-dependent
stability of boundary states also characterize the T3 �C3v ×
ZT

2 -symmetric TCI, which was theoretically proposed in
Refs. [36,69]. T3 �C3v × ZT

2 is also the symmetry of the
hexagonal photonic crystal discussed in Sec. VIII.

B. Casual introduction to the crystallographic splitting theorem

Underlying our proof is a mathematically equivalent re-
formulation of BRs that comprise Wannier functions with
integer-valued spin: Being a rank-N BR is equivalent to being
splittable into N independent sets of exponentially localized
Wannier functions (denoted {P1, . . . ,PN }), such that (a) each
set is derived by Bravais-lattice translations of a single Wan-
nier function and (b) any symmetry in the space group acts to
permute {P1, . . . ,PN }. We shall refer to a splitting satisfying
(a) as a Wannier splitting, satisfying (b) as a symmetric split-
ting, and satisfying both (a) and (b) as a symmetric Wannier
splitting.

This equivalence is formalized as the crystallographic split-
ting theorem in Sec. IV, and proven in Appendix C; also
discussed therein is the partial generalization to Wannier func-
tions with half-integer-valued spin. While not essential to our
proof, we now offer a simple example of a symmetric Wannier
splitting to develop intuition.

Example: Symmetric Wannier splitting of BR(G4,�a, E )

Let Pa,E be the rank-two projector of BR (G4,�a,E );
presently, we omit the sublattice index. As shown in Sec. III A,
Pa,E = ∑

j=±
∑

R |WjR〉〈WjR| is spanned by a set of Wannier
functions transforming (on each site) in the px ± ipy represen-
tation of C4v .

Consider the Wannier splitting Pa,E = P+ + P−, with P± =∑
R |W±,R〉〈W±,R| corresponding to px ± ipy orbitals on each

site [73]. By construction, each unit-rank projector consists
of Wannier functions related by Bravais-lattice translations,

hence any translation ∈ T3 trivially permutes {P+,P−}. What
remains is to determine the permutation actions for the gen-
erators of the point group C4v × ZT

2 . In the px ± ipy basis,
the two-dimensional matrix representation of fourfold rotation
(C4) is diagonal, while that of time reversal (T ) and reflection
(rx : (x, y, z) → (−x, y, z)) are off-diagonal. It follows that all
point-group symmetries act as permutations:

[Ĉ4,P±] = 0, T̂ P+T̂−1 = P−, r̂xP+r̂−1
x = P−, (2)

meaning that Pa,E = P+ + P− is a symmetric Wannier
splitting.

The permutation relations in Eq. (2) are deducible from a
general observation: For any Wannier splitting of a rank-N
representation of space group G, if there exists N representa-
tive Wannier functions which are permuted by g ∈ G [up to a
U (1) phase], then g would similarly permute the N unit-rank
projectors corresponding to that Wannier splitting [74].

C. An outline for the proof of fragility

Taking the crystallographic splitting theorem as a given [cf.
Sec. IV], we now begin the proof of fragility, which is split
into three subsections:

(i) In Sec. III D, we will introduce a systematic method to
obtain a symmetric Wannier splitting. This method involves
the diagonalization of a projected symmetry operator and will
be used in the remainder of the proof.

(ii) POR being an obstructed representation of G4 [cf.
Sec. III A] means an obstruction to a symmetric Wannier
splitting must exist, which we illustrate in Sec. III E.

(iii) Finally, in Sec. III F, we prove that a symmetric
Wannier splitting exists for the sum of POR with a unit-rank
BR—this would prove that POR is a FOR of G4.

D. Symmetric Wannier splitting via projected
symmetry operators

In proving the fragility of POR, we hypothesize the exis-
tence of a BR such that POR ⊕ PBR is a band representation
BR’. A priori, we would neither know what the Wyckoff
position of BR’ is nor know the representation of the site
stabilizer—without this information, one would not know how
POR ⊕ PBR decomposes into a symmetric Wannier splitting.
What is desirable is a systematic method to deduce the sym-
metric Wannier splitting for BRs in any space group. On
this front, we have made partial progress that is reported in
Appendix D; one of the techniques discussed therein will be
applied to the present paper.

To summarize the technique, we propose to diagonalize a
symmetry operator that is projected to a hypothesized BR.
(Our approach may be viewed as a space-group generaliza-
tion of the projected spin operator proposed by Prodan in
Ref. [75].) The symmetry in our case study is the fourfold
rotation C4. If a Hermitian matrix representation C̃4 of this
symmetry is chosen, then the projected symmetry operator is
a k-dependent Hermitian operator distinct from the original
tight-binding Hamiltonian. The projected symmetry operator
can be chosen so its eigenbands (assumed nondegenerate in
eigenvalue) are permuted by all elements of the space group.
Thus, if each eigenband is determined to have trivial first
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Chern class, there must exist a basis of exponentially localized
Wannier functions for each eigenband, and the corresponding
Wannier splitting is symmetric by construction.

E. Obstruction to symmetric Wannier splitting for the filled
band of the TCI

While not strictly necessary for the proof of fragility, it
is instructive to diagonalize the projected C̃4 operator for the
obstructed representation POR, for which a symmetric Wannier
splitting does not exist. How this obstruction manifests (as a
nodal-line degeneracy in the projected symmetry spectrum)
will help us identify which BR should be summed with POR,
such that their sum becomes band representable.

In more detail, the Hermitian representation of C4 is given
by C̃4 = (−iπ/2) ln Ĉ4, with Ĉ4 the unitary matrix representa-
tion of C4 in the tight-binding basis of Wannier functions. C̃4

has two eigenvalues ±1 which distinguish the px ± ipy basis
vectors; each eigenvalue is doubly degenerate due to the pres-
ence of two sublattices. The projected symmetry operator is
C̃4k := p(k)C̃4p(k), with p(k) = ∑2

i=1 |uik〉〈uik| the rank-two
projector to the low-energy band of Fu’s tight-binding Hamil-
tonian h(k) = ∑4

n=1 εnk|unk〉〈unk| (cf. Eq. (2) of Ref. [55]).
Like h(k), C̃4k is periodic under reciprocal-lattice translations
and has a fourfold symmetry:

Ĉ4C̃4kĈ
−1
4 = C̃4,C4◦k, C4 ◦ k = (−ky, kx, kz ). (3)

However, time reversal and spatial reflection act unconven-
tionally as antisymmetries,

r̂xC̃4k r̂
−1
x = −C̃4,rx◦k, T̂ C̃4kT̂

−1 = −C̃4,−k, (4)

because both spacetime transformations nontrivially permute
the px ± ipy basis vectors. The action of T̂ is analogous to
that of particle-hole conjugation in a Bogoliubov-de Gennes
Hamiltonian.

It is vanishingly improbable for the spectrum of C̃4k to
be degenerate—except on a set of k with measure zero. If
the spectrum were nondegenerate throughout the Brillouin
zone, then the two eigenbands would be permuted trivially
by C4 [cf. Eqs. (3)] and permuted nontrivially by T and rx
[cf. Eqs. (4)]. Furthermore, if each nondegenerate eigenband
were to have trivial first Chern class (that is, the first Chern
number vanishes in any 2D cut of the 3D Brillouin zone),
then each eigenband has a basis of exponentially localized
Wannier functions [76,77]—the eigenbands would then give
a symmetric Wannier splitting, in contradiction with POR pro-
jecting to an obstructed representation. This means one of our
assumptions must break down: Either (i) the wave function
is nonanalytic at a zero-measure set of k where the spectrum
(of C̃4k) is degenerate or (ii) if the spectrum were everywhere
nondegenerate, the first Chern class must be nontrivial. Alter-
natively stated, for an obstructed representation, the projected
symmetry operator must be the Hamiltonian of either a topo-
logical semimetal or a Chern insulator.

For this TCI, the obstruction (to a symmetric Wannier
splitting) manifests as a nodal-line spectral degeneracy con-
fined to the kz = π slice of the Brillouin torus, as illustrated
in Fig. 2(a). To explain the robustness of this nodal line,
the group of any wave vector in this slice contains C2T
symmetry—the composition of twofold rotation and time

FIG. 2. Removing the symmetric Wannier obstruction for the
obstructed representation POR of T3 �C4v × ZT

2 . Focusing on the
kz = π slice of the Brillouin zone, we illustrate the spectra of the
projected rotation operator of POR [(a),(c)] and POR + PBR [(b),(d)],
with PBR a unit-rank BR. (a), (b) plot the band dispersions over
a rotation-reduced quarter of the kz = π slice. (c) shows that the
spectral gap (scaled by a factor of half) vanishes over a circular
nodal line, while (d) shows the nonvanishing spectral gap between
the lowest (P−) and middle (P0) band. The Wannier functions con-
structed for P+,P0, and P− are shown in (e)–(g), respectively. The
size of the red dots represents the probability of a representative
Wannier function on each tight-binding lattice site (indicated by
black dots). For a representative Wannier function in P−, (h) is the
plot of its probability distribution (blue curve) along a real-space
line; this line is parametrized by x and begins from the Wannier
center (x = 0). The tail of this curve is fitted to the exponential
function −2.45562 exp(−0.0175546x)/x2.1928, which is plotted as a
black curve.

reversal. Acting as an antitunitary antisymmetry, C2T con-
strains C̃4k to be skew symmetric under transpose; there
being only one Pauli matrix that is skew symmetric, the
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codimension of a twofold eigenvalue degeneracy (for C̃4k) is
unity. This means that the nodal-line degeneracy is at least
stable (within the kz = π slice) against symmetric perturba-
tions of C̃4k. In fact, the nodal-line degeneracy is even stable
against any continuous deformation of POR that preserves
symmetry and analyticity (in k). This is because the nodal line
is not contractible—it encircles a C4-invariant k line, where
the spectrum is necessarily gapped due to Bloch states having
distinct C4 eigenvalues.

F. Breaking the obstruction by adding a band representation

The codimension argument for the stability of the nodal-
line degeneracy relied not just on C2T symmetry, but also on
POR having rank two. The codimension is generally greater
for a threefold eigenvalue degeneracy than it is for a twofold
degeneracy.

This suggests the following scenario that is illustrated in
Fig. 2: We introduce an additional zero-eigenvalue band with-
out interband hybridization, so as to enhance the degeneracy
of the nodal line [cf. Fig. 2(a)]; this triple degeneracy is
then unstable upon hybridization of bands [cf. Fig. 2(b)].
A zero-eigenvalue band of the projected rotation operator is
simply a unit-rank BR induced from a trivial representation of
C4v × ZT

2 , e.g., an s orbital on a fourfold invariant Wyckoff
position.

To outline the procedure: (i) we expand the tight-binding
vector space to include this unit-rank, s-like BR. Initially the
s band is introduced below the bulk energy gap (of the tight-
binding Hamiltonian), with zero s-p hybridization. (ii) This
hybridization is then introduced by way of additional tight-
binding matrix elements (detailed in Appendix E), taking care
that G4 symmetry is preserved and the bulk energy gap never
closes. (iii) We then rediagonalize the projected rotation op-
erator C̃4k, with C̃4 = (−iπ/2) ln Ĉ4 now having an additional
zero eigenvalue and p(k) now a rank-three projector. C̃4k still
satisfies the symmetry constraints of Eqs. (3) and (4), with an
appropriate generalization of T̂ and r̂x.

The resultant spectrum shows three bands which we nu-
merically verify to be nondegenerate (throughout the Brillouin
zone) and to have trivial first Chern class [78]. The projectors
to the top (P+) and bottom bands (P−) are still permuted
as in Eq. (2), while the projector P0 to the zero-eigenvalue
band is invariant under all symmetries. In combination, all
symmetries in G4 act as a permutation on {P+,P0,P−}. Thus
POR ⊕ PBR = P+ ⊕ P0 ⊕ P− is a symmetric Wannier splitting,
and must be a BR of G4 according to the crystallographic
splitting theorem in Sec. IV B.

To recapitulate, we have proven that the filled band of the
Fu TCI, while transforming as a rank-two obstructed repre-
sentation of T3 �C4v × ZT

2 , becomes a rank-three BR upon
addition of a unit-rank BR—this means that the Fu TCI phase
is fragile obstructed. In an essentially identical fashion, we
have proven that the TCI with T3 �C3v × ZT

2 symmetry is
also fragile obstructed; the details are given in Appendix E 2.
Our rigorous proofs of fragility are consistent with the topo-
logical classification by Zhida et al. [79] which has predicted
that all obstructed representations in class AI are fragile, based
on an argument of adiabatic continuity to a topological crystal.

We remark that the projected symmetry operator provides
an alternative method to numerically construct symmetric
Wannier function without need for trial Wannier functions.
Given a symmetric Wannier splitting for a BR (e.g., P+ ⊕
P0 ⊕ P−), half the work is already done. What remains is to
numerically construct a basis of Wannier functions for each of
{P+,P0,P−}, such that each Wannier function transforms in a
definite representation of C4v × ZT

2 on each lattice site. This
is accomplished by a numerical algorithm that is described in
Sec. VII, and we present the final result for our case study in
Figs. 10(e)–2(h).

IV. TOPOLOGICAL FORMULATION
OF BAND REPRESENTATIONS

Our topological formulation applies to a class of
BRs that are monomial. The notion of monomial band
representations—which will be introduced in Sec. IV A—
naturally generalizes the standard notion of monomial
representations in finite-order groups to representations of
infinite-order space groups. As we will prove in Sec. IV C,
all BRs of space groups in two spatial dimensions (d = 2) are
monomial; the only exceptions in d = 3 exist for double cubic
point groups.

A. From monomial representations of point groups to monomial
band representations of space groups

Let us briefly review some basic notions in the representa-
tion theory of finite groups. We shall primarily be concerned
with point groups whose elements are discrete isometries of
two- or three-dimensional space; also of interest are magnetic
point groups, whose elements are either spatial isometries, or
combinations of spatial isometries with time reversal.

A complex, linear representation of a finite group H maps
every h ∈ H to a finite-dimensional, invertible matrix U (h),
which may be taken to be unitary without any loss of gen-
erality [5]. A monomial representation of a finite group H
is defined to be a representation of H induced from a one-
dimensional representation of a subgroup of H . (We review
the notion of induction in Appendix B; a subgroup H ′ of H
is denoted as H ′ < H .) A direct sum of monomial represen-
tations will also be referred to as a monomial representation.
Equivalently, a representation of H is monomial if and only if
there exists a basis (for the representation space) where every
element of H is mapped to a complex permutation matrix
(a permutation matrix whose nonzero matrix elements are
generalized to unimodular complex numbers). The proof of
this equivalence is provided in Appendix B.

If all irreducible representations (irreps) of H are mono-
mial, then H is referred to as a monomial group. As we will see
in Sec. IV C, the great majority of point groups are monomial.

Example of monomial representation of the point group
C4v × ZT

2 . Let E be a two-dimensional representation spanned
by px ± ipy orbitals. The generators of C4v × ZT

2 are repre-
sented as

C4 →
(+i 0

0 −i

)
; ry,T →

(
0 1
1 0

)
. (5)
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C4 is mapped to a complex generalization of the trivial per-
mutation matrix, while ry and T are mapped to the same
transposition matrix.

A monomial band representation of a space group G is a
BR(G,�,D) for which D is a monomial representation of the
site stabilizer G� .

Example of monomial band representation. Consider
BR(G=T3 �C4v × ZT

2 ,�a,E ), which make up the tight-
binding basis in a model considered in Sec. III A. As described
in the previous example, E is a two-dimensional monomial
representation of the site stabilizer G�a = C4v × ZT

2 , and
therefore the corresponding BR is monomial.

B. The crystallographic splitting theorem

We propose an equivalent formulation of a monomial BR
that emphasizes the topological perspective.

Crystallographic splitting theorem. Let P be a rank-N rep-
resentation of G. P is a monomial BR of G if and only if there
exists a splitting P = ⊕N

j=1Pj satisfying
(A) each Pj is analytic (throughout the Brillouin torus) and

has trivial first Chern class, and
(B) G acts as a permutation on {Pj}Nj=1, i.e., for all g ∈ G,

g : Pj → Pσg( j) with σg a permutation on {1, . . . ,N}.
Having trivial first Chern class means being topologi-

cally trivial as a complex vector bundle, as reviewed in
Appendix A 1. Being analytic throughout the Brillouin torus
means that the restriction of Pj to k is an analytic function
of k (for all k in the Brillouin zone), and is periodic in
reciprocal-lattice translations. All g in the translational sub-
group of G always acts as the trivial permutation on the indices
{1, . . . ,N}. This theorem is proven in Appendix C.

C. Which band representations are monomial?

The applicability of the crystallographic splitting theorem
depends on the generality of monomial BRs, which we sum-
marize in Fig. 3 and explain in the following three remarks:

(i) All unit-rank BRs are monomial BRs. The reason is
that a one-dimensional representation (of a site stabilizer) is
automatically a monomial representation. Thus, if P has unit
rank, then the splitting theorem simplifies to: P is a BR of
G if and only if P is analytic with trivial first Chern class.
Condition (B) is trivially satisfied. This unit-rank statement
was previously proved by two of us in Ref. [80].

(ii) All BRs of crystallographic space groups (and grey
magnetic space groups) are monomial. By crystallographic
space group (denoted G), we mean a group of spatial isome-
tries for (d � 3)-dimensional crystals. A grey magnetic space
group, denoted GT , is a direct product of any crystallographic
space group G with ZT

2 , the order-two group generated by
time reversal T in Wigner-Dyson class AI. By a BR of G or
GT , we restrict ourselves to linear (i.e., integer-spin) represen-
tations of the corresponding site stabilizer. That all BRs of G
(and GT ) are monomial follows from a result that we prove
in Appendix F: the 32 crystallographic point groups (P), as
well as the 32 grey magnetic point groups (P × ZT

2 ), are
monomial groups. Indeed for any G or GT , any site stabilizer
must be one of the 32 (magnetic) point groups, which are all

FIG. 3. Flow chart for the categorization of rank-N bands with
analytic projector and space-group symmetry, in spatial dimension
d = 1, 2, and 3. Included in this chart are the crystallographic space
groups, the grey magnetic space groups, as well as their double
covers (which apply to particles with half-integer spin). The trans-
lational subgroup of double space group G̃ is denoted as Td . For
d = 3, the point group (G̃/Td ) of G̃ is subdivided as cubic versus
noncubic; for d � 2, all point groups are noncubic. Rank-N bands
with nontrivial first Chern class fall under the category of stable
obstructed representations; for rank N = 1, having trivial first Chern
class is equivalent to being a BR [80].

monomial groups; thus for any BR(G or GT ,�,D), D must
be a monomial representation.

(iii) In spatial dimension d = 2, all BRs of double space
groups G̃, as well as type-1 magnetic double space groups G̃T

(class AII), are monomial BRs. (The double groups G̃ and G̃T

are the double covers of G and GT , respectively, as reviewed
in Sec. A 2. We shall only concern ourselves with the half-
integer-spin representations of the double groups.) In d = 3,
there exists BRs (of G̃ or G̃T ) which are not monomial BRs,
owing to the existence of nonmonomial irreducible represen-
tations of the cubic double point groups (comprising the three
tetrahedral groups and the two octahedral groups); we prove
in Appendix F that all other double point groups (numbering
32 − 5 = 27) are monomial groups. Note the noncubic double
point groups of three-dimensional crystals include all double
point groups of two-dimensional crystals. Further discussion
of the nonmonomial BRs is postponed to Sec. X.

Example of nonmonomial band representation of the dou-
ble space group G = P23. The point group of this space
group is the double cover T̃ of the tetrahedral group, which
is isomorphic to the alternating group of four elements—a
standard example of a nonmonomial group. A BR of G = P23
that is induced from the two-dimensional representation Ē of
the site stabilizer G̃1a ≈ T̃ is nonmonomial, as we show in
Appendix F 6 [81].

D. Applications of the crystallographic splitting theorem

(a) The splitting theorem may be applied to prove that
a given band P is a (monomial) BR. One approach would
be to first decompose P = ⊕N

j=1Pj into unit-rank projectors
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satisfying the symmetry condition (B), namely, that for all
g ∈ G, g : Pj → Pσg( j) with σg a permutation on {1, . . . ,N}.
We define this as a symmetric splitting of P with respect to G.
Having a symmetric splitting, we would then verify (A), e.g.,
by numerical computation of the winding number of the Zak
phase. We have illustrated this approach for fragile obstructed
insulators in Sec. III; a systematic methodology for symmetric
splitting will be described in Appendix D 1.

(a’) In complementarity with (a), an alternative approach
(to proving P is a monomial BR) is to first decompose P =
⊕N

j=1Pj into unit-rank projectors satisfying condition (A),
namely, that each Pj is analytic (throughout the Brillouin
torus) and has trivial first Chern class. Such a splitting will
be referred to as a Wannier splitting of P with respect to
G, because condition (A) guarantees [82] that each Pj has a
basis of exponentially localized Wannier functions. Given this
Wannier splitting, we would then verify (B). While this alter-
native approach is possible in principle, we do not know if it
is practical. Given the above definitions, P = ⊕N

j=1Pj [which
satisfies both (A) and (B)] shall also be called a symmetric
Wannier splitting of P with respect to G.

(b) The crystallographic splitting theorem implies that any
representation of a space group that is not a monomial BR
cannot simultaneously satisfy conditions (A) and (B). In par-
ticular, (A) and B) cannot simultaneously hold for obstructed
representations – defined as representations of a space group
which are not band representable.

(b) (i) Suppose (A) holds, giving a set of Wannier functions
that span P, then [not (B)] manifests as an obstruction to sym-
metry conditions of the Wannier functions, as we elaborate in
Sec. VI.

(b) (ii) If instead (B) holds, with P = ⊕N
j=1Pj a symmetric

splitting, then [not (A)] manifests as an obstruction to an
exponentially localized Wannier basis for Pj . This obstruc-
tion may manifest as a nonanalyticity of Pj , as exemplified
by the nodal-line semimetal in the case study of Sec. III F.
Alternatively, Pj may be analytic but has nontrivial first Chern
class—this has nontrivial implications for the Zak phase of Pj

that is elaborated in Sec. V.

V. ZAK PHASE OF MONOMIAL BAND
REPRESENTATIONS AND OBSTRUCTED

REPRESENTATIONS

The crystalline generalization of Berry’s phase [83] is
known as the Zak phase [24]—it encodes the holonomy of
Bloch functions around loops in the Brillouin torus. A rank-
N band, which consists of N-independent Bloch functions
at each k, may then be characterized by N Zak phases for
each cycle. The Zak phase has increasingly been used as a
diagnostic of obstructed representations—bands which are not
band representable.

A priori, there is no direct relation between k-space holon-
omy (a geometric property of Bloch functions) and band
representability (a symmetry condition on exponentially lo-
calized Wannier functions). For a band whose projector is
analytic throughout the Brillouin zone, it is known that the
nonexistence of exponentially localized Wannier functions is
a necessary and sufficient condition for the nontriviality of
the first Chern class [76,77]; this nontriviality also manifests

as a nontrivial Zak phase [20]. The goal of this section is
to prove an analogous relation for obstructed representations
with a trivial first Chern class; our proof will rely on the
crystallographic splitting theorem of Sec. IV B.

Generally, if the Zak phase is nontrivial (in a manner that
will be made precise), it is guaranteed that the band is not
band representable; this point of view has been advocated
by topological quantum chemistry [10,31,63]. However, the
converse statement, namely, that an obstructed representation
must have a nontrivial Zak phase, has not been proven. This
will be proven in Sec. V B for certain space groups to be
specified. Before this result is presented, we review basic
properties of the Zak phase in Sec. V A, and also clarify the
distinction between trivial versus nontrivial Zak phases.

A. Preliminaries on the Zak phase

Let C denote a loop (in the Brillouin torus) with base
point k, end point k + G, and G a reciprocal vector. Two
k loops which are continuously deformable into each other
are said to be equivalent under homotopy. A homotopy class
[C] of k loops is specified by the reciprocal lattice vector G
that connects the base and end points—for any representative
of [C].

Given a rank-N P that is analytic throughout the Brillouin
torus, it is always possible [84] to choose a basis for the
Bloch functions {ψnk}n=1...N that is (i) analytic for all k in
the Brillouin zone, and (ii) periodic under translation by the
reciprocal vector G specifying [C].

Defining un,k(r) = e−ik·rψnk(r) as the cell-periodic compo-
nent of the Bloch function, the non-Abelian Berry connection
is given by

[A(k)] j′ j = 〈uj′k|i∇ku jk〉cell, (6)

where in 〈·|·〉cell, we integrate (or sum) over the coordinates
in one unit cell. The Wilson loop of the Berry gauge field is
given by path-ordered integration of A over C:

W (C) = Pexp

[
i
∮
C

A(k) · dk
]
. (7)

The spectrum of the Wilson loop is given by

specW (C) = {ei2πx j (C)}Nj=1, (8)

with 2πx j defined as the Zak phase. In general, x j depends on
C and not just on [C].

Given P of rank N , and a homotopy class of loops (spec-
ified by G), we say that the Zak phase of (P, G) is trivial if
x j (C) is independent of the representative choice for [C], for
all j = 1 . . .N .

Example of trivial Zak phase. For a category of BRs that
has been termed strong BRs [21], their projected position op-
erators {PxP,PyP,PzP} mutually commute in the symmetric
tight-binding limit, which would imply that the Zak phase of
(P, G) is trivial in this limit, for G = 2πex, 2πey, and 2πez;
ea here denotes the unit vector in the a direction. Strong BRs
include all BRs having only a single Wannier function on each
Wannier center.

If P can be continuously deformed (while preserving
analyticity and symmetry) such that x j is representative-
independent, we say that the Zak phase of (P, G) is
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FIG. 4. Representative examples of the Zak phase for the family
of k loops {C(ky )}ky , and with the space-group symmetry G1,2,3,4,
as defined in the main text. The first row has G1 symmetry, the
second row has G2, while in the last row the leftmost panel is G3

symmetric, while the right three panels are G4 symmetric. In each
panel, the vertical axis is 2πx j (Zak phase) and horizontal axis is ky.
The nontrivial point-group symmetry in Gj constrains g‖ ◦ x j (ky ) =
x j′ (sgǧyyky ), which is indicated by double-headed arrows. For panels
describing rank-two bands, j, j′ ∈ {1, 2}, and we distinguish j = j′

vs j �= j ′. We also indicate the Zak permutation order Z ∈ {1, 2};
each panel without an indicated Z has the same value (for Z) as the
panel to its left.

trivializable; in particular, a trivial Zak phase is trivializable.
A nontrivial Zak phase is not trivializable.

For simplicity of presentation, we henceforth assume a
rectangular real-space lattice and set all lattice periods to
unity. (All results in Sec. V also hold for nonorthogonal lat-
tices, if one replaces (kx, ky) with (k · R1, k · R2), R j being a
primitive Bravais-lattice vector.) To diagnose a nontrivial Zak
phase for P of rank N , we introduce the notion of winding
numbers for the Zak phase. Let [C] be specified by G =
2πex; a set of representatives for [C] is given by {C(ky)}ky ;
for the straight k-loop C(ky), kx is varied while fixing ky.
From Eq. (8), we obtain N Zak phases parametrized by ky:
{2πx j (ky)}Nj=1. Since P(k) := ∑N

n=1 |ψnk〉〈ψnk| is analytic and
periodic over the Brillouin torus, each ei2πx j (ky ) is a smooth
function in ky, and when ky is advanced by 2π there is gener-
ally a permutation �G in the Zak-phase index: ei2πx j (ky+2π ) =
ei2πx�G ( j) (ky ). Let us define the smallest positive integer ZG such
that �

ZG
G = identity as the Zak permutation order; examples of

which are illustrated in Fig. 4. Generally, the phase 2πx j may
wind as ky is advanced by ZG periods; focusing on ZG = 1, we
define the Zak winding number Wj,G through

x j (ky + 2π ) − x j (ky) = Wj,2πex ∈ Z. (9)

If N = 2, we say that the Zak phase has a relative winding
if W1,G = −W2,G �= 0. If in addition, W1,G = −W2,G is not
reducible to zero by an analytic, G-symmetric deformation of
P, then we say that the relative winding is robust. If W1,G is
odd, the Zak phase has an odd relative winding.

Since every BR of G has a symmetric tight-binding (or
atomic) limit (as proven in Sec. IX B), then P being a BR
implies that Wj must either be zero, or reducible to zero by

an analytic, G-symmetric deformation of P. This follows from
the following lemma that we prove in Appendix H:

Lemma for Zak phases of tightly-bound band representa-
tions. In the tight-binding limit of any BR, x j (ky) becomes
independent of ky, for all j.

Conversely, if Wj,G is neither zero nor reducible to zero,
then the Zak phase is not trivializable and P cannot be a BR
of G. This fact is used throughout this paper for proving that
certain P are obstructed representations.

Finally, we review the spectral equivalence between the
Wilson loop and the projected position operator:

(PxP − x j (ky) − R)|hj,ky,R〉 = 0, j = 1 . . .N, R ∈ Z.

(10)

The eigenfunctions of PxP are hybrid functions that are ex-
tended in y as a Bloch wave (with crystal wave number ky),
and exponentially localized in x as a Wannier function (with
unit cell coordinate R) [85]. Modulo lattice translations in x
(with unit lattice period), the eigenvalues of PxP are in one-
to-one correspondence [20] with the Zak phases; cf. Eq. (8).
If x j (ky) is nondegenerate, one can uniquely define a unit-rank
projector

Px
j :=

∑
R∈Z

∫
dky
2π

|h j,ky,R〉〈h j,ky,R|, (11)

which gives a splitting of P = ⊕N
j=1P

x
j . Even if a degeneracy

x j (ky) = x j′ (ky) exists at isolated ky, the assumed condition
Z2πex = 1 means that we can still uniquely define Px

j by im-
posing that |h j,ky,R〉〈h j,ky,R| is smooth in ky. We will refer to Px

j
as the projector to a band of the projected position operator
PxP, and x j (ky) as the corresponding dispersion (assumed
smooth in ky).

Analogous to the above discussion, we may also consider
a family of k loops represented by {C ′(kx )}kx , and the corre-
sponding Zak phases {2πy j (kx )}Nj=1. If the Zak permutation
order Z2πey = 1, then the winding numbers Wj,2πey are well-
defined by Eq. (9) with x ↔ y, and a splitting P = ⊕N

j=1P
y
j is

given by Eqs. (10) and (11) also with x ↔ y.

B. Relating the winding of the Zak phase to the crystallographic
splitting theorem

Here we will show how the crystallographic splitting the-
orem constrains the winding numbers of the Zak phases, as
defined in –Eqs. (6)-(9); in turn, the Zak-phase winding is
related to a winding in the dispersion of the projected position
operator [cf.Eqs. (10) and (11).

To recapitulate, the splitting theorem states a necessary and
sufficient condition for a monomial BR, namely, that there
must exist a symmetric Wannier splitting. (We remind the
reader that all BRs of two-spatial-dimensional space groups
are monomial; cf. Sec. IV C.) We will find that a symmetric
(but not necessarily Wannier) splitting is given by the bands
of the projected position operator, for certain space groups that
are identified by the following lemma.

Symmetric splitting lemma. Let G be a space group such
that all g ∈ G satisfy two conditions:
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(i) The action of g on r decomposes as g ◦ (x, y) = (g‖ ◦
x, g⊥ ◦ y), such that both g‖ and g⊥ are one-dimensional
isometries.

(ii) g does not enforce a degeneracy x j (ky) = x j′ (ky) for
j �= j′, except possibly at isolated ky.

Then P = ⊕N
j=1P

x
j , with Px

j defined through Eqs. (9)–(11)
is a symmetric splitting with respect to G. Moreover, each Px

j
is analytic in k over the Brillouin torus.

The above lemma also holds with x ↔ y.
To clarify condition (i), any symmetry of a two-spatial-

dimensional space group acts on spacetime as g ◦ r = ǧr + tg
and t → sgt , with ǧ a two-by-two orthogonal matrix acting
on a two-component vector (x, y), and sg = −1 if g reverses
time; for a general review of space groups, we refer the reader
to Appendix A 2. If ǧ is a diagonal matrix with on-diagonal
elements (ǧxx, ǧyy) being either of ±1, then g‖ ◦ x = ǧxxx +
tg,x and g⊥ ◦ y = ǧyyy + tg,y indeed act as one-dimensional
isometries. The corresponding action on k would also de-
compose into one-dimensional isometries: kx → sgǧxxkx and
ky → sgǧyyky. We list a few representative examples of space
groups satisfying conditions(i) and (ii):

Example 1. G1 = T2 � Zi
2, with Zi

2 an order two-group
generated by the spatial inversion i [which maps (x, ky) →
(−x,−ky )], and T2 the translational subgroup of a two-
dimensional crystal.

Example 2. G2 = T2 � ZT
4 , with ZT

4 an order-four group
generated by T symmetry [(x, ky) → (x,−ky)]. T squares to
a 2π rotation which is distinct from the identity element; this
corresponds to Wigner-Dyson class AII.

Example 3. G3 = T2 � ZT
2 , with ZT

2 generated by T sym-
metry; this corresponds to Wigner-Dyson class AI.

Example 4. G4 = T2 � ZC2T
2 , with ZC2T

2 generated by
the composition of twofold rotation C2 with time reversal
[(x, ky) → (−x, ky)].

Proof of symmetric splitting lemma. Condition (ii) allows
for Px

j to be uniquely defined, as shown in Sec. V A. Con-
ditions (i) and (ii) imply that P = ⊕N

j=1P
x
j is a symmetric

splitting; this follows from an elementary argument, which is
simple to write for rank N = 2: for any g ∈ G, we have as-
sumed that x �→ g‖ ◦ x and ky �→ sgǧyyky are isometries. This
implies that P(g‖ ◦ x)P|ky is unitarily equivalent to PxP|sgǧyyky ,
thus its eigenvalues satisfy g‖ ◦ x j (ky) ≡ x j′ (sgǧyyky) (modulo
integer) with j, j′ ∈ {1, 2}. If j = j′, then g trivially permutes
{Px

1 ,Px
2 } (the bands of PxP); if j �= j′, then the permutation

is nontrivial. Both cases are illustrated in Fig. 4 for the space
groups G1,2,3,4. It follows that any g ∈ G acts as a permutation,
hence P = ⊕N=2

j=1 P
x
j is a symmetric splitting. (The generaliza-

tion of the above argument for rank N > 2 is straightforward,
and illustrated for a few examples in Fig. 4.) The analyticity
of Px

j , is proven in Appendix D 2.
Zak winding theorem. Assume P is a rank-N representation

of the space group G, with G satisfying conditions (i) and
(ii) in the symmetric splitting lemma, and ZG = 1 for either
G = 2πex or 2πey. Then P is a BR of G if and only if all
Zak winding numbers Wj,G = 0, or are reducible to zero by
an analytic, G-symmetric deformation of P.

Proof. If each Wj,G = 0, then each P j
x has a trivial Chern

class. The symmetric splitting lemma implies that P = ⊕N
j=1P

x
j

is a symmetric Wannier splitting; consequently, all conditions

in the splitting theorem are met for P to be a monomial BR.
To prove the converse statement, we apply the symmetric
tight-binding limit theorem (cf. Sec. IX B) and the Lemma
for Zak phases of tightly-bound BRs (cf. Sec. V A); together
they imply that all Zak winding numbers (for BRs) are zero or
reducible to zero.

A useful corollary of the Zak winding theorem states:
Relative winding corollary. Let P with trivial first Chern

class be a rank-two representation of space group G, with
G satisfying conditions (i) and (ii) in the symmetric splitting
lemma and ZG = 1 for either G = 2πex or 2πey. Then P is an
obstructed representation of G if and only if there is a robust
relative winding for the Zak phase of (P, G).

Indeed, if P is obstructed with ZG = 1, then {W1,G,W2,G}
cannot both vanish according to the Zak winding theorem.
Since P has trivial first Chern class, W1,G = −W2,G �= 0, im-
plying a relative winding of the Zak phase.

The Zak winding theorem does not say that an obstructed
representation of G [satisfying (i) and (ii) and with ZG = 1]
always exists. If it does exist, the theorem does not say what
winding numbers Wj,G are allowable or robust—these num-
bers can only be determined by further symmetry analysis of
the Wilson loop matrix [20,39,86,87] as will be exemplified
by several applications in the subsequent Sec. V C.

C. Applications of the Zak winding theorem

We briefly outline the remainder of this Sec. V:
(i) In Sec. V C 1, we will apply the Zak winding theorem

to prove that no obstructed representations (fragile or stable)
exist for G3 = T2 × ZT

2 (Wigner-Dyson class AI).
(ii) For class AII, we will prove in Sec. V C 2 that having

Z2 Kane-Mele topological order is equivalent to being an
obstructed representation of G2 = T2 × ZT

4 .
(iii) The obstructed representations of G1 = T2 � Zi

2 and
G4 = T2 � ZC2T

2 are discussed subsequently in Secs. V C 3
and V C 4, with emphasis on the possible Zak winding num-
bers. In Sec. V C 3, we will also exemplify how the Zak
winding theorem may be used as an alternative method to
prove band representability or to prove fragility for an ob-
structed representation.

(iv) We end this section by discussing the limitations of
the Zak winding theorem in Sec. V D with an outlook toward
possible generalizations.

1. Wigner-Dyson class AI

The Zak winding theorem can be used to prove that there
exists no obstructed representations of certain space groups.
Indeed, for a subset of space groups satisfying conditions (i)
and (ii) in the symmetric splitting lemma, it is guaranteed that
ZG is reducible to unity by an analytic, symmetric deforma-
tion, and Wj,G is also reducible to zero.

In general, ZG > 1 being robust requires at least one
symmetry-protected degeneracy for the Zak phase, as illus-
trated in Fig. 4(d). If the first Chern class is trivial, Wj,G �= 0
being robust also requires symmetry-protected degeneracies,
because the net winding number must vanish. Whether such
degeneracies exist can be determined by a symmetry analysis
of the Wilson loop matrix [20,21,39,86,87].
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Applying this analysis to G3 = ZT
2 × T2, we find that there

is no symmetry-enforced degeneracy of the Zak phase, hence
the Zak permutation order is always reducible to unity. More-
over, G3 ensures that the first Chern class is trivial, hence if
any Wj,G is nonzero, there must be other nontrivial windings
such that the net sum vanishes. If two winding numbers have
opposite sign, their corresponding Zak-phase functions must
necessarily be degenerate at isolated wave vectors. But we
have just claimed that such degeneracies are never protected
by G3 alone, hence all Wj,G are eventually reducible to zero.
We are led to the following no-go theorem:

No-go theorem for Wigner-Dyson class AI. In spatial di-
mension d = 2, there exists no obstructed representation of
G3 = ZT

2 × T2.
While it is known that there is no stable obstructed repre-

sentation of G3 from K-theoretic approaches [54], our no-go
theorem goes further to say there is no FOR of G3. Our
no-go theorem is consistent with the absence of nonsta-
ble topological insulators in class AI that has been derived
from the equivariant homotopy properties of Real vector
bundles [88].

2. Wigner-Dyson class AII

One special feature in Wigner-Dyson class AII is that
the Zak permutation order ZG (G = 2πex, 2πey) is always
reducible to unity for any BR of G2 = T2 × ZT

4 , but not nec-
essarily for any obstructed representation of G2.

This follows from a symmetry analysis of the Wilson-loop
matrix [20,26] which shows that all Zak phases are pair-wise
degenerate at time-reversal-invariant wave vectors (ky = 0, π

for G = 2πex, and kx = 0, π for G = 2πey); there are no
G2-protected degeneracies at generic kx and ky. This implies
that x j (ky) can always be reduced to two classes of graphs
illustrated in Figs. 4(e)–4(h). One class of graphs corresponds
to a splitting into a direct sum of rank-two projectors with unit
Zak permutation order; the trivial Zak winding then implies
that P is a BR of G2, according to the Zak winding theorem.
The second class of graphs has a robust zigzag connectivity
that has been described as a “switching of Kramers part-
ners” [55]—such a nontrivial Zak phase implies that P is an
obstructed representation of G2, according to the symmetric
tight-binding limit theorem [cf. Sec. IX B] and the Lemma for
Zak phases of tightly bound BRs [cf. Sec. V A]. Combining
these results leads to the following theorem:

Zak winding theorem forWigner-Dyson class AII. P is a BR
of G2 = T2 × ZT

4 if and only if all Zak winding numbers are
reducible to zero by an analytic, G2-symmetric deformation
of P.

It has been established that the two classes of Wilson-
loop graphs are in one-to-one correspondence with the Z2

Kane-Mele topological invariant [26,89]. Combining this cor-
respondence with the above Zak winding theorem, we derive
that having Z2 Kane-Mele topological order is equivalent to
being an obstructed representation of G2.

3. With spatial inversion symmetry

For the space group G1 = T2 � Zi
2, it is possible for

the Zak phase to be symmetry-fixed to an integer multi-
ple of π at inversion-invariant wave vectors (ky = 0, π for

FIG. 5. For three BRs of space group G1, we illustrate their
real-space distribution of Wannier centers (left column), and their
corresponding Zak phases 2πx j (ky ) and 2πy j (kx ) (middle and right
columns). All Zak phases equaling 0 or π are rigidly fixed to those
values by spatial inversion symmetry, implying, e.g., that panel
(b) cannot be continuously deformed to (h). Red and blue dots in
the first column indicate Wannier centers for linearly independent
Wannier functions with even parity. All Wannier centers lie on
inversion-invariant Wyckoff positions on a rectangular lattice.

G = 2πex, and kx = 0, π for G = 2πey); the multiplicity of
the symmetry-fixed eigenvalue depends on the symmetry rep-
resentation of P at i-invariant wave vectors in the Brillouin
torus [20,21]. There are no G1-protected degeneracies of the
Zak phase at generic kx and ky. Figures 5(a)–5(f) illustrate the
Zak phases of two BRs of G2, one with Zak permutation order
Z2πex = Z2πey = 1 and the other with Z2πex = 2,Z2πey = 1.

Obstructed representations of G1 exist for any even rank
[20,60,63,64,90] and are characterized by the Zak windings
illustrated in Figs. 4(a)–4(d) for rank N = 2 and 4, respec-
tively.

Focusing on the case N = 2 with an odd relative winding
(cf. relative winding corollary), we now show the correspond-
ing rank-two P is fragile obstructed. Fragility is proven by
adding a rank-two BR to P and recomputing the Zak phase
for the resultant rank-four subspace. The required rank-two
BR is given by the Wannier representation and Zak phases in
Figs. 5(g)–5(i). Applying a theorem for symmetry-protected
Zak phases [20,21], which takes as input the i-symmetry
eigenvalues in Table I, we derive that the four Zak-phase
functions are reducible to a graph with unit permutation order

TABLE I. For the obstructed representation of G1, we give the i

eigenvalues (of Bloch functions at i-invariant k-points 	,X,Y,M) in
the upper row. The symmetry obstruction can be removed by adding
a BR with i eigenvalues that are given in the lower row.

i(	) i(X ) = i(Y ) i(M )

−1, −1 1, 1 1, 1
1, 1 −1, 1 −1, −1
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and trivial winding, as illustrated in Fig. 4(a). This means
that the rank-four band is a BR of G1, according to the Zak
winding theorem.

4. With spacetime inversion symmetry

For a rank-two obstructed representation of the space group
G4 = T2 � ZC2T

2 (and also its double cover G̃4), it is possible
that the Zak winding number robustly takes on any integer
value; the case of W1,2πex = −W2,2πex = 2 is illustrated in
Fig. 4(l). This robust winding follows from irremovable de-
generacies (of the Zak phase) that are movable along the kx
(or ky) axis [31,47,87]. The integer winding number has also
been related to the Euler class of rank-two bundles with C2T
symmetry [65].

D. Generalizations and limitations of the Zak winding theorem

As stated, the Zak winding theorem applies directly to
space groups which satisfy conditions (i) and(ii) in the sym-
metric splitting lemma. What of space groups (denoted G′)
not satisfying conditions (i) and (ii) but containing a space
subgroup G < G′ that does? Our theorem may then be used,
in combination with a Zak-phase calculation, to determine
whether a representation P′ of G′ subduces to a BR of G.
However, it would not be possible to deduce if P′ is a BR
of G′ from a Zak-phase calculation, contrary to the illogical
procedures in Refs. [47,49]. This is because the splitting given
by the projected position operator is symmetric under G but
not under G′.

In all cases of robust Zak winding [20,21,26,47,48,63,65]
that we know of (some of which have been discussed in the
previous Sec. V C), space group G of the obstructed represen-
tation either satisfies (i) and (ii) or contains a space subgroup
that satisfies (i) and (ii) and is also bigger than the translational
subgroup T2 < G. This suggests that robust Zak windings
can always be rationalized by the existence of a symmetric
splitting by the projected position operator.

Our Zak winding theorem is agnostic of obstructed repre-
sentations (P′′) of G′′, if the only space subgroup of G′′ that
satisfies (i) and (ii) is the translational subgroup T2 < G′′.
We are not aware of any robust winding of the Zak phase
of (P′′, G), for any G′′. In spite of this, it is possible that
Zak windings for other families of k loops may diagnose the
obstruction in P′′. As a case in point, a family of contractible,
hexagonal k loops can be used to diagnose an obstructed
representation of G′′ = T2 × ZC3

3 = P3 [91], which was pre-
viously studied in Ref. [31] with an additional reflection
symmetry.

VI. WANNIER FUNCTIONS OF OBSTRUCTED
REPRESENTATIONS

The topological triviality of an analytic band projector P is
equivalent to the existence of a Wannier basis, i.e., an infinite
set of exponentially-localized Wannier functions which span
P. (In spatial dimension d = 2 or 3, having trivial first Chern
class is a necessary and sufficient condition for topological
triviality in the category of complex vector bundles. This
condition is assumed henceforth in this section.) P being a
representation of a space group G means that the complete set

of Wannier functions is invariant under any element of G. (In
this section, we will not use the previously developed notation
which distinguishes the different categories of space groups:
crystallographic versus magnetic, integer- versus half-integer
spin. Unless otherwise specified, space group G includes all
said categories.)

By definition, an obstructed representation of G is not a
BR of G, that is to say, it is not induced from a finite set
of Wannier functions centered on a Wyckoff position � and
transforming in a representation of the site stabilizer G� . Our
goal is to unpack the physical implications of this definition
by utilizing the new perspective afforded by the crystallo-
graphic splitting theorem. Though there is no obstruction to
the existence of Wannier functions that are G invariant as a
complete set spanning P, there is a subtler obstruction to G
permuting translation-invariant subsets of Wannier functions,
as encapsulated by the following theorem.

Symmetric Wannier obstruction theorem. Let P be a rank-
N , obstructed representation of a space group G. Suppose
P = ⊕N

j=1Pj is a Wannier splitting. Then the following cannot
hold true, namely, for all g ∈ G, g : Pj → Pσg( j) with σg a
permutation on {1, . . . ,N}.

The symmetric Wannier obstruction theorem follows di-
rectly from the splitting theorem of Sec. IV B.

Application to Wigner-Dyson class AII: Suppose P = P1 ⊕
P2 were a rank-two BR of T2 × ZT

4 . Owing to our split-
ting theorem, time reversal T must permute {P1,P2}. This
permutation must be nontrivial owing to the Kramers de-
generacy at time-reversal-invariant wavevectors. If instead
P = ∑2

j=1

∑
R |WjR〉〈WjR| were an obstructed representation

of T2 × ZT
4 , then one must relax the nontrivial permutation

condition and allow for TP1T−1P1 �= 0. This relation, in com-
bination with the Kramers orthogonality of T̂ |W10〉 and |W10〉
[92] implies that time reversal has a nonlocal action on the
unit-cell coordinate R of Wannier functions: 〈W1R�=0|T̂W10〉 �=
0; in contrast, time reversal has a local action on the continu-
ous spatial coordinate.

For a rank-N obstructed representation of G, our symmetric
Wannier obstruction theorem establishes that the entirety of G
cannot permute {Pj}Nj=1. However, it would be possible that a
proper subgroup H < G permutes {Pj}Nj=1, if P subduces to a
BR of H . (Alternatively said, if P becomes band representable
when the group G is relaxed to H , then H may permute
{Pj}Nj=1.) Such H would determine the symmetry properties of
Wannier functions for an obstructed representation. Depend-
ing on G, the choice of H may not be unique and becomes a
matter of preference.

Example of symmetry-distinct Wannier bases for the same
obstructed representation. The nonuniqueness of H applies
to our case study of rotation-invariant TCIs in class AI
[cf. Sec. III]. The obstructed representation (POR) of T3 �

C4v × ZT
2 subduces either to a BR of T3 �C4 or to a BR

of T3 × ZT
2 . The two possible subductions correspond to

two symmetry-distinct Wannier bases for the same obstructed
representation of T3 �C4v × ZT

2 , as we illustrate in Fig. 6.
Figures 6(a) and 6(b) show our numerical simulation for the
former type of Wannier splitting POR = P+ ⊕ P−, where P± =∑

R |W±,R〉〈W±,R| projects to Wannier functions transforming
in the vector representation of C4: Ĉ4W±,0 = ±iW±,0. While
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FIG. 6. (a), (b) Illustrate the fourfold symmetric Wannier func-
tion W−,R=0 constructed for the P− band of the projected symmetry
operator. To illustrate the lack of pseudospin polarization [cf.
Sec. VI B], the overlap of W−,0 with the p− = px − ipy orbital [re-
spectively, p+ = px + ipy] on each lattice site is indicated by the
radii of red dots in (a) [respectively, (b)]. To illustrate the nonlocal
action of time reversal (T ) symmetry on the unit-cell coordinate, the
overlap between TW−,0 and W−,R (R being the unit-cell coordinate)
is indicated by the radii by blue dots in panel (c). Alternatively, real-
valued Wannier functions ({Wx,R}R and {Wy,R}R) can be constructed
for the same obstructed representation; the probability distributions
of Wy,0 and Wx,0 are illustrated with red dots in (d) and (e), respec-
tively. By inspection, the two distributions are neither individually
four-fold invariant, nor mutually related by a fourfold rotation.

the fourfold rotation acts as the trivial permutation: [Ĉ4,P±] =
0, time reversal does not act as a nontrivial permutation; note,
if both symmetries were to act as permutations, the splitting
theorem would be violated. One implication is that T has
a nonlocal action on the unit-cell coordinate [cf. Fig. 6(c)],
which rules out Wannier functions that are localized to a
single lattice site; the theme of localization is explored more
generally in Sec. VI A. In comparison, Figs. 6(d) and 6(e)
illustrate the real-valued Wannier functions (Wx,0 and Wy,0)
of a symmetry-distinct Wannier splitting for POR = Px ⊕ Py,
where time reversal acts as a trivial permutation ([T̂ ,Px,y] =
0) but fourfold symmetry fails to act as any permutation.

Additionally, we describe how the symmetric Wannier
obstruction theorem is applied to constrain three properties
of Wannier functions—namely, their real-space localization
[cf. Sec. VI A], their spin (or pseudospin) polarization [cf.
Sec. VI B], and their symmetry representations of the site
stabilizers [cf. Sec. VI C]. We hope these constraints serve
to guide the numerical construction of Wannier functions for
topological insulators in any space group, as pioneered for the
Kane-Mele topological insulator by Soluyanov and Vanderbilt
[43–45].

A. Localization obstruction

The tension of localizing Wannier functions in topologi-
cally nontrivial bundles is a recurrent theme in topological
band theory [93–98]. It is well known that the exponential
localization of Wannier functions is in one-to-one correspon-

dence with topological triviality as a complex vector bundle
[76,77,99].

For tight-binding Wannier functions which are defined in a
tight-binding lattice model, one may consider a stricter form
of localization, namely, that the functions vanish everywhere
except on a finite number of points. Such Wannier functions
will be said to have compact support. In recent works on
the tenfold classification of topological insulators and super-
conductors [98,100], it was found that the only nontrivial
bands that can be spanned by compactly supported Wannier
functions are those with a nontrivial winding that occurs in
the same symmetry class in one spatial dimension. Their result
was derived assuming discrete translational symmetry, but not
assuming any other crystallographic spatial symmetry.

Our symmetric Wannier obstruction theorem allows us to
formulate an analogous obstruction—to localization—that ap-
plies to bands with crystallographic symmetry. We consider
an even stricter form of localization for tight-binding Wannier
functions, namely, one-site localized Wannier functions that
have support only on a single tight-binding lattice site (cf.
Sec. IX).

Localization obstruction lemma. Suppose an obstructed
representation of a space group has a basis of exponentially
localized Wannier functions. Then it is not possible for all
Wannier functions to be one-site localized.

Postponing a general proof of the lemma to Appendix I, we
offer here an elementary version of the proof—for a specific
space group—to develop intuition.

Example: Z2 Kane-Mele topological insulator. Let P be
an obstructed representation of T2 × ZT

4 . Suppose on the con-
trary that P = ∑2

j=1

∑
R |WjR〉〈WjR| has a Wannier basis in

which all Wannier functions are one-site localized. Since the
representation T̂ of time reversal squares to minus identity,
T̂W1R must be orthogonal toW1R. Since all Wannier functions
are one-site localized, and time reversal is a spatially local
operation, T̂W1R must have zero overlap with any Wannier
function W1R′ �=R—hence T̂W1R must equal W2R up to a phase.
This being true for all R implies that T nontrivial permutes P1

and P2, hence P = P1 ⊕ P2 is a symmetric Wannier splitting—
in contradiction with P being an obstructed representation.

A few remarks are in order.
(i) The impossibility of one-size localization (for all Wan-

nier functions of obstructed representations) allows for the
possibility of spectrally robust boundary/domain-wall states
[cf. Sec. IX], as exemplified by the Kane-Mele topological
insulator.

(ii) One may relax the one-site localization condition to
a less stringent condition that all Wannier functions have
compact support, with no two Wannier functions (centered
on different positions) having intersecting support. In fact the
localization obstruction lemma also holds with this general-
ized localization condition, as can be proven by following
essentially the same steps in the proof of Appendix I.

B. Spin and pseudospin frustration

1. Wigner-Dyson class AII

Let ZT
4 be the order-four group generated by time reversal

(Wigner-Dyson class AII), and Td the translational subgroup
of a d-dimensional crystal (d = 2, 3).
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Spin frustration corollary. Let P be a rank-two, obstructed
representation of Td × ZT

4 . Then for any Wannier basis of P, it
is not possible that a Wannier function is fully spin polarized
(along any spin quantization axis).

Proof of spin frustration corollary. Let P = ∑
j=1,2 Pj =∑

j=1,2

∑
R |WjR〉〈WjR| satisfy all premises stated in the

corollary. Suppose W10 were fully spin polarized, then by
translational symmetry any Wannier function W1R in P1 is
likewise fully spin polarized. Since time reversal T inverts
spin (whichever the quantization axis), TP1T−1 must be or-
thogonal to P1. Since P is a representation of Td × ZT

4 (which
includes T symmetry), TP1T−1 must belong in P. Given
that P is rank two, we may identify P2 = TP1T−1, hence T
symmetry acts as a nontrivial permutation on {P1,P2}. Our
splitting theorem then states that P must be a BR of Td × ZT

4 ,
which contradicts the premise in the corollary.

One implication of the spin frustration corollary may be
deduced from an elementary argument if one assumes that
Td=2 × ZT

4 -symmetric P has additionally a U (1) symmetry
for the conservation of the spin component Sz. We present this
argument to develop intuition, as well as to establish a relation
with the spin Chern number, as formulated for an infinite
sample without boundaries [75]. As proven in Sec. V C, an ob-
structed representation of T2 × ZT

4 must have Z2 Kane-Mele
topological order. With the addition of Sz symmetry, the Kane-
Mele phase can be split into two unit-rank bands with opposite
Sz and opposite Chern numbers (which are necessarily odd);
the latter are known as spin Chern numbers [75]. Due to the
topological nontriviality of each unit-rank band in the Sz basis,
a Wannier basis can only be constructed from linearly com-
bining Bloch functions with different Sz. We emphasize that
our spin frustration corollary makes a stronger statement in
three regards: (i) if only one spin component (e.g., Sz) is con-
served, the Wannier function cannot be polarized along any
spin quantization axis, and not just Sz. This spin frustration (ii)
holds even if not one spin component is conserved, and (iii)
applies also to the three-spatial-dimensional Z2 topological
insulators.

We offer a physical interpretation for spin frustration. It is
often said that the Z2 Kane-Mele obstructed representation
requires spin-orbit coupling. (Indeed, if such coupling were
absent, spin SU (2) and time-reversal symmetries enforce that
the spin Chern number vanishes, which implies the trivial
phase in the Z2 classification.) In solids, spin-orbit coupling
is predominantly described in the k-space perspective [101]
with reference to how the spin of a Bloch state is locked
to its momentum [102]. In complementarity, we may view
spin frustration as a manifestation of the topology-enforced
spin-orbit coupling—in the real-space, Wannier perspective.

There is a second interpretation of the spin frustration
corollary that emphasizes a relation with the mirror Chern
insulator [103]. We consider the mirror operation r that maps
the spatial coordinate (x, y, z) → (x, y,−z) and rotates spin
by a π angle about z. If restricted to the z = 0 plane, r =
e−iπSz/h̄ = −iSz becomes a spatially local operation in x and y.
This means that the spin frustration corollary can, in spatial di-
mension d = 2, be viewed as the impossibility for a Wannier
function to transform in a definite representation of r. Such an
obstruction is already known in case r is a symmetry of P, i.e.,
if P is the filled band of a mirror Chern insulator [80]. The

implication of our corollary is that this obstruction persists
even where r is not a symmetry.

2. Wigner-Dyson class AI

We present an analog of the spin frustration corollary
that applies to integer-spin representations of time reversal
(Wigner-Dyson class AI), as well as to grey magnetic space
groups with a nontrivial crystallographic point group. We
remind the reader that a grey magnetic space group is ex-
pressible as G × ZT

2 , with G a crystallographic space group
(without time-reveral symmetry) and ZT

2 an order-two group
generated by time reversal.

To formulate an analog of spin polarization in class AI,
we utilize Wigner’s seminal classification [5,104,105] of
crystallographic point-group representations as real, complex
and quaternionic; this classification is briefly reviewed in
Appendix F 5. A one-dimensional representation is real or
complex; if real, it is T invariant; if complex, it is not T
invariant, and must be paired up with its complex-conjugate
representation in the presence of T symmetry, i.e., the pair
forms a two-dimensional (pseudospin) representation.

Example of pseudospin. As we have encountered in
Sec. III A, the two-dimensional irreducible representation of
the point group C4 × ZT

2 is the direct sum of two complex
representations, which transform like px ± ipy orbitals.

Let us formulate a notion of pseudospin polarization for
Wannier functions in a tight-binding model. The tight-binding
vector space is generally spanned by one-site localized Wan-
nier functions transforming as a BR of G × ZT

2 ; for simplicity,
we consider all basis Wannier functions (in one unit cell) to be
one-site localized on a single position �, with associated site
stabilizer G� ; by applying the translational subgroup Td < G
on � (the Wyckoff position), we generate the tight-binding
lattice. Let D be a one-dimensional complex representation of
the site stabilizer G� of a crystallographic space group G. We
say that a tight-binding Wannier function W is polarized with
respect to (G,�,D), if for all sites {g ◦ �|g ∈ Td} related to
� by Bravais-lattice translations, the restriction ofW to g ◦ �

transforms in a representation of Gg◦� that is isomorphic to D;
note Gg◦�

∼= G� are isomorphic as groups.
Pseudospin frustration corollary. Let PH project to a tight-

binding vector space, which transforms as a BR of G × ZT
2

with the Wyckoff position �. Let P ⊂ PH be a rank-two ob-
structed representation of G × ZT

2 , with the Wannier splitting
P = P1 ⊕ P2. Then it is not possible that P1 = ∑

R |W1R〉〈W1R|
represents G with W10 that is polarized with respect to
(G,�,D), for any D that is a one-dimensional complex rep-
resentation of G� .

Proof of corollary. If W10 were polarized with respect to
(G,�,D), then any Wannier function W1R (in P1) is like-
wise polarized, owing to the translational symmetry of P1.
Since time reversal maps each D representation to its com-
plex conjugate D̄, each Wannier function in TP1T−1 must
be polarized with respect to (G,�, D̄). Therefore, TP1T−1

must be orthogonal to P1, further implying that T acts as a
nontrivial permutation on {P1,P2}. Given that both P1 and P
represent G, so must P2, hence any g ∈ G acts as the trivial
permutation on {P1,P2}. In combination, all g ∈ G × ZT

2 acts
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as a permutation on {P1,P2}, which implies P is a BR of
G × ZT

2 – in contradiction with our premise.
Application to fragile obstructed crystalline insulator. Let

POR be an obstructed representation of T3 �C4 × ZT
2 . A

tight-binding model with a C4-invariant Wykcoff position
� was proposed by Fu [55] and is reviewed in Sec. III A.
Applying the pseudospin frustration corollary, we find there
does not exist a Wannier splitting POR = P+ ⊕ P− with P± =∑

R |W±R〉〈W±R| representing T3 �C4, and Wj0 being polar-
ized with respect to (T3 �C4,�,D), where D is the complex
representation (e.g., px + ipy) of the site stabilizer C4. For
illustration, we decomposed the Wannier function of P−
into px − ipy and px + ipy orbitals, in Figs. 6(a) and 6(b),
respectively.

C. Symmetry frustration

Certain symmetry representations of site stabilizers
are impossible for the Wannier functions of obstructed
representations—we refer to this as a symmetry frustration for
Wannier functions.

Example 1: Inversion-symmetric fragile obstructed insu-
lator. As a case in point, consider the space group G1 =
T2 � Zi

2, with Zi
2 being the order-two group generated by

spatial inversion i symmetry, and T2 the translational subgroup
of a 2D lattice. A rank-two obstructed representation (P′

OR)
of G1 was proven in Sec. V C to have odd relative winding
of the Zak phase. The symmetry frustration manifests in the
following way: for any Wannier basis of P′

OR, it is not possible
for any single Wannier function to represent a site stabilizer
that is isomorphic to Zi

2. This result is an application of the
following corollary.

Symmetry frustration corollary. Let P be a rank-N , ob-
structed representation of a space group G. Assume P has a
tight-binding Wannier basis where the N linearly-independent
Wannier functions in one unit cell are centered at {r j}Nj=1, with
each site stabilizer Gr j being isomorphic to the point group
of G. Then the following cannot hold for any order-(N − 1)
subset of {1 . . .N}, namely, that the Wannier function centered
at r j transforms in a one-dimensional representation of Gr j .

Proof of corollary. Given P = ∑N
j=1

∑
R |WjR〉〈WjR| and J

that is an order-(N − 1) subset of {1 . . .N}, suppose on the
contrary that for j ∈ J , Wj0 that is centered at r j transforms
in a one-dimensional representation of Gr j . Since Gr j is iso-
morphic to the point group of G, the extension of Gr j by
the translational subgroup Td < G simply gives G = Td � Gr j

[106]. It follows that for j ∈ J , Pj = ∑
R |WjR〉〈WjR| is invari-

ant under all elements of G [107]. Since by assumption this
invariance holds also for P, it must be that G acts as the trivial
permutation on {P1, . . . ,PN }, implying P = ⊕N

j=1Pj is BR of
G, and contradicting our premise.

Example 2: Rotation-symmetric fragile obstructed insu-
lators. In d = 2, twofold rotation C2 and spatial inversion
i act identically on integer-spin representations, hence the
conclusions in Example 1 carry forward with i replaced
by C2. (However, the conclusions of Example 1 are more
generally applicable to half-integer-spin representations.) A
rank-two, obstructed representation of P̃3 = T2 � C̃3 exists,
with the symmetry-frustration property that its Wannier func-
tions cannot represent a site stabilizer isomorphic to C̃3. This
obstructed representation has been realized by tight-binding

models with symmetry that is higher than P̃3, namely, P̃6mm
[62], P̃31′ [47], and P̃3m1 [31]. However, the additional sym-
metries are superfluous to the C3 symmetry obstruction for
Wannier functions, as proven through a holonomy argument
in Sec. V D. It can further be shown that the obstructed repre-
sentation of P̃3 is fragile, by the numerical procedure used in
Ref. [62].

VII. ANSATZ-FREE APPROACH TO SYMMETRIC
WANNIER FUNCTIONS

Given P that is a monomial BR of a space group G, we
would like to construct a locally symmetric Wannier basis
for P, without having to postulate trial Wannier functions.
(What it means for a Wannier basis to be locally symmetric
is reviewed in Appendix 3 b.)

We first obtain a symmetric Wannier splitting P = ⊕N
i=1Pj ,

which is guaranteed to exist by the crystallographic splitting
theorem. Depending on G, such a splitting may be obtained
from bands of the projected symmetry or position operator,
as described in Secs. III D and V B and Appendix D. The
symmetries of each Pj form a group that we denote as Gj :=
{g ∈ G|[ĝ,Pj] = 0}.

The next step is to find a Bloch function ψ jk that spans
Pj at each k, with the property that ψ jk is periodic over and
analytic throughout the Brillouin torus. Such a Bloch function
is guaranteed to exist because each Pj (of a Wannier splitting)
is analytic and has trivial first Chern class. Such a Bloch
function can be obtained by the parallel-transport procedure
described in Ref. [44], where it is described as a smooth
gauge.

The last step is to perform a U (1) phase transformation
ψ jk → ψ jkeiϕ j (k) := ψ̃ jk, with eiϕ j (k) that is periodic and an-
alytic in k, such that ψ̃ jk becomes canonically symmetric.
By this, we mean that every element g = (tg|ǧ) in the site
stabilizer Gj,� j := {g ∈ Gj |g ◦ � j = � j} acts on the Bloch
function as [108]

ĝψ̃ jk = ρg, j ψ̃ jsgǧk, (12)

where sg = −1 if g inverts time and otherwise sg = +1. �

can be determined, modulo Bravais-lattice translations, by
computing the Brillouin-zone average of the Berry connection
in accordance with the geometric theory of polarization [109].
ρg, j is aU (1) phase factor determined by the action of g on the
Wannier function obtained by Fourier transform of ψ̃ jk,

W̃jR :=
∫

BZ
dk

e−ik·R
√|BZ| ψ̃ jk, ĝW̃j0 = ρg, jW̃j0, (13)

with |BZ| the volume of the Brillouin zone. The advantage
of canonically symmetric Bloch functions is that the Wannier
functions {W̃jR}R∈BL form a locally symmetric Wannier basis
for a BR of Gj [17,80] thus {W̃jR} j∈{1...N},R∈BL gives the de-
sired locally symmetric Wannier basis for P, a monomial BR
of G.

The existence of a canonically symmetric Bloch function
[cf. Eq. (12)] has been rigorously proven in Ref. [80] for any
unit-rank band with analytic projector, trivial first Chern class,
and the symmetry of a symmorphic space group. (A symmor-
phic space group is a semidirect product of its translational
subgroup and its point group, as reviewed in Appenidx A 2.)
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We are not aware that any nonsymmorphic space group allows
for unit-rank bands [15,110–112], so we assume henceforth
that Gj is symmorphic; it is not necessary, however, to assume
G is symmorphic. While Eq. (12) exists in principle, we now
present an algorithm that inputs an analytic, periodic Bloch
function ψ jk, and outputs a Bloch function ψ̃ jk that is analytic,
periodic and canonically symmetric.

Symmetrization algorithm. For any g ∈ Gj,� j , we define

ψ̃ jk = 1

|Gj,� j |
∑

g∈Gj,� j

ρ−1
g, j ĝψ jsgǧ−1k, (14)

with |H | denoting the order of a finite group H . One may
verify that Eq. (14) indeed satisfies Eq. (12) for all g ∈ Gj,� j .

Applying the symmetrization algorithm to the three bands
of the projected rotation operator (cf. Sec. III F), we obtain
a locally symmetric Wannier basis for the rank-three BR of
T3 �C4v × ZT

2 , which is illustrated in Fig. 2.

VIII. FRAGILE TOPOLOGICAL PHOTONIC CRYSTALS

Time-reversal-invariant topological photonic and phononic
crystals (with a full energy gap) have recently emerged that
emulates the spin-orbit-coupled Kane-Mele Z2 topological
insulator [49,59,113–116]. By exploiting an analogy between
the electronic spin and a photonic pseudospins, much progress
has been made in the design and construction of fully gapped
topological photonic crystals. The practical success of this
analogy has obscured the correct topological classification
of these photonic crystals, which relies on a precise group-
theoretic treatment of photonic band structure.

Photons transform in the integer-spin representation of
crystallographic spacetime symmetries. Therefore, time-
reversal-invariant photonic crystals lie in Wigner-Dyson
symmetry class AI and not AII. This distinction is crucial: In
class AII, there exists electronic topological insulators whose
filled bands transform as obstructed representations (of space
group G), regardless of the addition of any BR (of G) to
the filled-band subspace. More generally stated, these are
obstructed representations which are not fragile obstructed;
they will be referred to as stable obstructed. (A stable ob-
structed representation is nontrivial in the stably-equivalent
classification of G-equivariant K-theory [9,54,117,118]). A
paradigmatic example is the Kane-Mele Z2 topological insu-
lator. In contrast, all known topological insulators in class AI
are fragile obstructed. Moreover, it has been argued that every
topological insulator is adiabatically deformable to a topo-
logical crystal [79], which would imply that all topological
insulators in class AI are fragile obstructed.

The distinction between fragile versus stable is not just
academic. If a FOR is accompanied by in-gap boundary states,
the possibility of FOR ⊕ BR=BR’ makes the in-gap bound-
ary states less robust than might naively be expected—from
tight-binding or k · p methods. (We shall be concerned with
the possibility of spectrally robust boundary states, that are
irremovable from the energy gap by any continuous deforma-
tion that preserves both gap and symmetry [119]). In practice,
this means that a great majority of topological insulators and
gapped photonic crystals (in class AI) do not have spectrally

robust boundary states—a perspective that we explore gener-
ally in Sec. IX and more specifically in Sec. IX C.

While Sec. IX contains general arguments for the non-
robustness of boundary states, more specific arguments
have been given for FORs of space group T3 �Cnv × ZT

2
(n = 3, 4), whose accompanying boundary states manifest
a representation-dependent stability (cf. Sec. III A). In the
present section, we prove that (a) a tetragonal photonic crystal
designed by Ochiai realizes the FOR of T3 �C4v × ZT

2 (cf.
Sec. VIII A), and (b) a hexagonal photonic crystal built by
Yihao et al. realizes the FOR of T3 �C3v × ZT

2 (cf.
Sec. VIII B). Finally, in Sec. VIII C, we prove the spectral
nonrobustness of the observed domain-wall states [58] of the
hexagonal photonic crystal.

A. Topological classification of tetragonal photonic crystal

The 3D tetragonal photonic crystal designed by Tetsuyuki
Ochiai is composed of an array of circular pillars with high
refractive index. A geometrical anisotropy of the pillar breaks
spatial inversion symmetry (i) and reduces the space group to
T3 �C4v × ZT

2 [57]. A secondary effect of the anisotropy is to
introduce an energy gap between the lowest rank-three band
and an energetically isolated rank-two band (Qphc) illustrated
in the middle of Fig. 7(a).

If the photonic crystal is terminated by a T2 �C4v ×
ZT

2 -symmetric surface with the boundary condition of a per-
fect electric conductor (zero surface-parallel electric field),
Ochiai found evanescent eigensolutions to Maxwell’s equa-
tions which are localized to the surface. For the specific
termination chosen by Ochiai, the eigenenergies of these sur-
face states cover the bulk energy gap below Qphc, and their
energy-momentum dispersion is qualitatively equivalent to
Liang Fu’s prediction for the rotation-invariant TCI, as was
reviewed in Sec. III A.

However, the stability of these surface states are represen-
tation dependent, which raises some doubt as to the analogy
with the TCI. For a conclusive proof it is desirable to have a
bulk diagnostic that is insensitive to the choice of surface ter-
mination. One approach is to calculate the Z2 bulk topological

FIG. 7. (a) Bulk band structure of the tetragonal photonic crystal,
in which a is the lattice constant, λ0 is the vacuum wavelength,
and a/λ0 is the dimensionless normalized frequency. The middle
rank-two band, indicated by blue dots, is denoted Qphc. The inset in
panel (a) illustrates the high-refractive-index pillar in one real-space
unit cell of the photonic crystal. (b) The bulk Brillouin zone of the
tetragonal photonic crystal. The bent k loops C(kz ), for kz = 0 and π ,
are illustrated as blue lines. (c) Zak phases (
) of Qphc for the family
of bent k loops.
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invariant originally formulated by Fu [55] and equivalently
reformulated (by one of the present authors) in terms of Zak
phases [69]; the latter formulation is simpler for numerical
computation. For a general review of Zak phases, we refer the
reader to Sec. V A.

Summary of Zak-phase diagnostic ofZ2 invariant. Suppose
P is a rank-two energy band that is energetically isolated,
and carries the same symmetry representations (in k space)
as a BR of T3 �C4v × ZT

2 , induced from the two-dimensional
irreducible representation of C4v × ZT

2 . To diagnose if P is
nontrivial in the Z2 classification, we would numerically diag-
onalize the Wilson loop of the non-Abelian Berry gauge field
[cf. Eq. (7)] for a family of bent k-loops [C(kz )] illustrated in
Fig. 7(b). For each loop C(kz ), kz is fixed and (kx, ky) varied
along a path with an orthogonal kink at eachC4-invariant wave
vector. Since P has rank two, the Wilson loop matrix has two
eigenvalues {ei
1(kz ), ei
2 (kz )}, with 
 j the Zak phase. Due to
the fourfold symmetry, 
1(kz ) ≡ −
2(kz ) (mod 2π ) and it
suffices to consider just 
1. At kz = 0 (and also kz = π ), the
symmetries of time reversal and fourfold rotation result in the
Zak phase being fixed either to 
1 = 0 or π . Then 
1(0) ≡

1(π ) versus 
1(0) �≡ 
1(kz ) correspond, respectively, to the
trivial verus nontrivial Z2 class.

The above diagnostic cannot be applied to the rank-three
subspace below the gap [69] but can be applied to the rank-
two subspace Qphc just above the gap. We plot how the Zak
phase of Qphc disperses with respect to kz in Fig. 7(c), thus
confirming its nontriviality in the Z2 classification.

We remark that the same obstructed representation of T3 �

C4v × ZT
2 can in principle be realized by a 3D tetragonal

lattice of dielectric cavities embedded in an artificial metallic
plasma [120]. Based on a tight-binding Hamiltonian descrip-
tion of weakly coupled plasmons (associated to the surfaces
of dielectric cavities), Yannopapas proposed to realize Liang
Fu’s tight-binding model of the TCI; however, this remains a
hypothesis in the absence of a concrete design. If ever such
a design is conceived, it would be interesting to explore the
implications of fragility in a setting that differs from Ochiai’s.

B. Topological classification of hexagonal photonic crystal

The photonic crystal by Yang et al. consists of metallic
split-ring resonators arranged in a 3D hexagonal array with
symmetry of T3 �C3v × ZT

2 ≡ P31m and has been claimed
to be the first experimental realization of a topological band
gap in three spatial dimensions [58].

The design principle for this hexagonal photonic crystal
(and related crystals [114,115]) has been to emulate the spin-
orbit-coupled Z2 Kane-Mele topological insulator. That is,
by fine-tuning the crystalline structure, Yinghao et al. have
designed a photonic band touching at the K point, which is
described by the following k · p Hamiltonian:

H = v‖τ0⊗(kxσx+kyσy) + mτx⊗σz + vzkzτy⊗σz. (15)

This Hamiltonian is identical (as a k-dependent matrix) with
that of the critical point of the spin-orbit-coupled Kane-Mele
model. (Above, σi=0,x,y,z and τi=0,x,y,z are distinct sets of Pauli
matrices. For concreteness, we have shown the form of the
Hamiltonian, but postpone its technical description.)

Despite being identical as matrices, the bases of the
two k · p Hamiltonians differ—the photonic basis forms an
integer-spin representation of crystallographic point-group
symmetries, while the electronic basis forms a half-integer-
spin representation. The difference in bases will not matter
to the existence of Jackiw-Rebbi soliton eigen-solutions [121]
of Eq. (15), which are localized to a mass domain wall—
this is how Yinghao et al. (and related works) justify their
experimentally observed domain-wall states that disperse as a
Dirac cone. However, the difference in bases will matter to the
robustness of these domain-wall states—unlike time-reversal-
invariant topological insulators, the domain-wall states of the
time-reversal-invariant hexagonal photonic crystal is not spec-
trally robust, as we prove in Sec. VIII C.

There is yet another motivation for a proper group-
theoretic analysis of the Hamiltonian in Eq. (15). Ultimately,
photonic bands cannot realize the Kane-Mele Z2 topological
invariant; the appropriate topological invariant for threefold-
invariant photonic crystals in Wigner-Dyson class AI has been
identified (by one of the present authors) as the halved-mirror
chirality χ [69] so named because it is an integer topological

FIG. 8. (a) Bulk band structure of the hexagonal photonic crystal,
with the split-ring resonator illustrated in the inset. Our simulated
crystal is deformed from the experimental system of Yihao Yang
et al., so the crystal is closer to the critical point of the topolog-
ical phase transition. This deformation preserves both symmetry
and the relevant bulk gap. Bottom of (b) panel: Bulk Brillouin
zone of hexagonal photonic crystal; the halved mirror plane is
colored blue. Top: 001 surface Brillouin zone. (c), (d) illustrate
the spectrum of Maxwell’s equation with perfect-electric-conductor
boundary condition imposed on the 001 surface, for two different
surface terminations; surface-localized states are colored red.
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invariant defined over a halved mirror-invariant plane (illus-
trated by the blue rectangle in Fig. 8). We will prove below
that the Hamiltonian in Eq. (15), when interpreted with the
correct photonic basis, describes a topological phase transition
where χ changes by unity. χ = 1 indicates a FOR, as we have
proven in Appendix E 2.

Accompanying this change from χ = 0 to χ = 1 is the
development of in-gap, surface-localized states that are il-
lustrated in Fig. 8(c); for this figure, we have terminated
the crystal with a T2 �C3v × ZT

2 -symmetric 001 surface,
on which is imposed the perfect-electric-conductor bound-
ary condition. The nontrivial connectivity of surface states
(colored red) over the high-symmetry line 	̄K̄K̄ ′	̄ was ini-
tially predicted by one of us in Ref. [69]. However, in
principle, these surface states are removable from the bulk
gap while preserving both gap and symmetry, owing to hy-
bridization with conventional surface states (transforming as
a unit-rank BR of T2 �C3v × ZT

2 ). Figure 8(d) illustrates how
such conventional gapped surface states may emerge from
the continuum of high-energy bands above the bulk gap, ow-
ing to a slightly different surface termination that maintains
T2 �C3v × ZT

2 symmetry. This is another manifestation of
the representation-dependent stability of surface states [cf.
Sec. III A].

Proof that Eq. (15) (with m = 0) is a critical point for χ

The Hamiltonian in Eq. (15) is a small-k expansion around
the K point of the hexagonal Brillouin zone; the little group of
K is the point group C3v , which is generated by the three-fold

rotation C3 (about z) and a reflection ry that inverts y → −y.
These symmetries are represented as

Ĉ3 = τ0 ⊗ ei2πσz/3, r̂y = τz ⊗ σx. (16)

Two of four basis vectors transform under C3v as x ± iy, cor-
responding to circularly-polarized transverse electric modes
Ex ± iEy; the other two basis vectors transform as ∓iz(x ±
iy), corresponding to circularly polarized transverse magnetic
modes Hx ± iHy. σz = ±1 distinguishes the two circular po-
larizations, which are inverted under reflection [cf. Eq. (16)].

While not crucial to our proof, it is worth clarifying
the physical origin of these transverse modes. The design
principle of the hexagonal photonic crystal relies on first
constructing a D3h-symmetric crystal, and then reducing the
symmetry to C3v with a structural bi-anisotropy [122] that
breaks rz : z → −z reflection symmetry [58]; rz is mapped
to τz ⊗ σ0 in the representation space of Eq. (15), and the
bianisotropy is reflected by the mass term in Eq. (15). The
transverse electric and magnetic modes transform, respec-
tively, in the E ′ and E ′′ representations of D3h [123] but in
the same E representation of C3v; therefore, the bianisotropy
allows to couple electric and magnetic modes.

Focusing on the ry-invariant plane (ky = 0), we perform a
unitary transformation U (specified below) such that U †r̂yU
is diagonal with on-diagonal elements: 1, 1,−1,−1. The first
two (respectively, last two) basis vectors will be said to
belong in the (η = +1)-eigenspace [respectively, (η = −1)
eigenspace] of reflection. The Hamiltonian then becomes
block diagonal with respect to η:

U †HU =

⎛
⎜⎝

m v‖kx + ivzkz 0 0
v‖kx − ivzkz −m 0 0

0 0 m v‖kx − ivzkz
0 0 v‖kx + ivzkz −m

⎞
⎟⎠, U = 1

2

⎛
⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎞
⎟⎠. (17)

On inspection, Eq. (17) is a massive Dirac Hamiltonian with
opposite chiralities in the different mirror eigenspaces. When
the Dirac mass m changes sign, the integrated Berry curva-
ture (

∫
ky=0 Fη ) in the η subspace changes by η ∈ {+1,−1}

[124]. It follows that χ = ∫
HMP(Fη=+1 − Fη=−1), being an

integral (over the halved mirror plane) of the differential
Berry curvature [69] changes by unity. This completes the
proof.

C. Instability of domain-wall states of tetragonal and hexagonal
photonic crystals

Here we investigate the robustness of domain-wall states
of fragile topological photonic crystals. A simple example
of a two-dimensional domain wall separates two three-
dimensional crystals, which differ only in that one crystal
is geometrically reflected relative to the other. A domain-
wall configuration of the tetragonal [respectively, hexagonal]
photonic crystal is illustrated in Fig. 9(a) here (respectively,
Fig. 2(a) of [58]). A domain-wall configuration generally
has the symmetry of a crystallographic layer group, and we
will find that certain layer groups allow for the existence of

Dirac-type domain-wall states. However, we will prove that
such domain-wall states are removable from the bulk energy
gap by a continuous deformation that preserves both gap and
the layer-group symmetry. Though not spectrally robust, we
will explain that these domain-wall states have a weaker type
of robustness that is analogous to topological Dirac-Weyl
(semi)metals [36,125–130].

In fact, Dirac-type domain-wall states have been ex-
perimentally observed for the hexagonal case [58] and
numerically simulated for the tetragonal case in Fig. 9(c)
for a specific domain-wall thickness. To explain the exis-
tence of Dirac points, the crucial observation is that both
domain-wall configurations (of the tetragonal and hexagonal
photonic crystals) have in common a screw symmetry, which
is the composition of a twofold rotation axis (lying parallel
to the domain wall), and a half Bravais-lattice translation
along this axis. (We see that the layer group can be non-
symmorphic, even though the three-spatial-dimensional space
group of either crystal is symmorphic.) Each Dirac point is
then a crossing between two distinct screw representations,
of the type first theoretically predicted by one of us for
gapless photonic crystals [130]. As illustrated schematically
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FIG. 9. (a) Screw-symmetric domain-wall configuration for the
tetragonal photonic crystal. The bulk lattice period a and domain-
wall thickness d are indicated in the bottom panel. (b) Two-
dimensional BZ of the domain-wall configuration. (c)–(e) illustrate
band structure calculations for d/a = 1.0, d/a = 0.6, and d/a =
0.4, respectively. States localized to the domain wall are colored red.
The k positions of the Dirac points (for d/a = 1.0) are indicated by
red dots in (b). Note that the two fold degeneracy of domain-wall
states along the high-symmetry k-line Ȳ R̄ is due to a combination of
screw and time-reversal symmetry. A pair of screw-symmetric Dirac
points is schematically illustrated in (f); after mutual annihilation, the
band structure is illustrated in (g).

in Fig. 9(f), a pair of Dirac points with opposite chirality
originate from a band inversion between two rank-two bands,
with solid and dashed lines corresponding to the two screw
representations.

If the screw symmetry of the domain-wall configuration
is broken, then the two screw representations are allowed to
hybridize, and the Dirac-point degeneracy would generically
lift.

One may, however, ask if the Dirac points are robust in
the presence of screw symmetry. Here, a nuanced notion
of robustness is advantageous. On one hand, the Dirac-type
domain-wall states are not spectrally robust. Indeed, since
the Dirac points result from a band inversion of domain-wall

states rather than bulk states, it is possible to reverse the inver-
sion while preserving both the bulk gap and screw symmetry.
Through this reversal, a pair of Dirac points with opposite chi-
rality [89] would eventually meet (at a time-reversal-invariant
k point) and mutually annihilate. The result is that the domain-
wall states no longer cover the bulk gap—this proves the
spectral nonrobustness of domain-wall states for both tetrag-
onal and hexagonal photonic crystals. This reversal of the
band inversion is numerically simulated for the tetragonal
crystal—by screw-symmetrically decreasing the domain-wall
thickness, as illustrated in Figs. 9(d)–9(e). Schematically, the
Dirac points in Fig. 9(f) meet and annihilate at 	̄, leading to
Fig. 9(g).

On the flip side, one may say that the screw-protected
Dirac crossings persist so long as two crossings of opposite
chirality do not meet and annihilate; such persistence may
be rationalized by a nontrivial Berry-Zak phase of π , for
any screw-symmetric k-loop that encircles an odd number
of Dirac points [130]. This weaker notion of robustness is
closely analogous to a class of nonsymmorphic topological
semimetals without spin-orbit-coupling, as was proposed in
Ref. [130].

We will describe three more examples of domain-
wall states in the literature of photonic crystals. In all
cases mentioned here, the role of crystallographic symme-
try, as well as the spectral nonrobustness, has not been
appreciated.

(i) A different realization of screw-symmetric domain-wall
states can be found for the all-dielectric metamaterial crystal
of Ref. [59]; see, in particular, their Fig. 3.

(ii) Not just screw symmetry can protect Dirac-type
domain-wall states. For example, the domain-wall configu-
ration in Fig. 7 of Ref. [131] has a twofold rotational axis
parallel to the domain wall, and their simulated Dirac point is
a crossing between distinct representations of rotation.

(iii) Our last example is the domain-wall configuration
in Fig. S6 of Ref. [59], which has a twofold rotational axis
perpendicular to the domain wall; their simulated Dirac points
exist because of the composition of rotation and time reversal,
which reduces the codimension of an eigenvalue degeneracy
to two, according to the well-known Wigner-von Neumann
non-crossing rule [132]. This case is closely analogous to the
Dirac points of graphene.

IX. BAND REPRESENTATIONS ARE INCOMPATIBLE
WITH ROBUST BOUNDARY AND DOMAIN-WALL STATES

Throughout this paper, we have employed the crystallo-
graphic splitting theorem in various guises to determine if
a given band is a BR or an obstructed representation. Here
we argue for one utility of such a determination, namely, that
BRs are incompatible with spectrally robust in-gap states—
localized either to a boundary interface between crystal and
vacuum, or to a domain-wall interface between two crystals
which are relatively inverted. After elaborating on the dis-
tinction between a boundary and domain wall in Sec. IX A,
we will formalize the above-mentioned incompatibility by
proving a necessary condition for spectrally robust boundary
and domain-wall states in Sec. IX B (the precise meaning of
spectrally robust will also be given there). Finally, we will
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apply these results to the in-gap states of fragile topological
insulators and photonic crystals in Sec. IX C.

In proving the absence of spectrally robust in-gap states
for BRs, we will apply that every BR has a symmetric de-
formation to an tight-binding (or atomic) limit. In fact, the
converse is also true: If a tight-binding limit exists for a band,
then it must be band representable. The equivalence between
the existence of a symmetric tight-binding limit and band
representability is formalized in a theorem in Sec. IX B.

A. Distinguishing boundary from domain wall

Here we precisely define a boundary versus a domain wall,
and give a casual introduction to the tight-binding method;
this preliminary discussion is to prepare us for a subse-
quent proof of the boundary/domain-wall stability criterion
in Sec. IX B.

Suppose we are given a d-spatial-dimensional crystalline
insulator (or a photonic crystal) with space group G, and
an energy gap separating the low-energy subspace and the
complementary, high-energy subspace. Any continuum de-
scription of crystals formally involves an infinite number of
bands; however, one is typically interested in physics within
a finite energy window, and it is common practice to truncate
the continuum Hilbert space and model the truncated subspace
by a finite-rank tight-binding lattice model. In this manner, we
obtain a tight-binding Hamiltonian with an energy gap sepa-
rating a low- and high-energy subspace, with corresponding
finite-rank projectors that are assumed to be analytic through-
out the Brillouin zone.

Let us enclose the crystal by a (d−1)-spatial-dimensional
hypersurface and ask if there are evanescent eigenstates that
are exponentially-localized to the hypersurface, with energies
lying within the energy gap (defined by the translation-
invariant crystal). The answer depends on what lies on both
sides of the hypersurface; two scenarios are commonly en-
countered:

Definition of boundary. For any crystal with an energy gap,
it is convenient to define a crystalline vacuum that satisfies
two properties: its symmetry group contains the space group
(of the crystal) as a subgroup, and energy eigenstates below a
threshold energy Ev are forbidden; the minimal bound for Ev

is given by the maximal energy of the gap (of the translation-
invariant crystal). We define a boundary as a hypersurface
that separates the “bulk” crystal from its vacuum. Moving
away from the hypersurface and into the crystalline bulk,
we assume that the Hamiltonian (or classical mode equation)
asymptotically approaches a form that is locally identical to
a translation-invariant crystal; concretely, we insist that the
deviation (from the translation-invariant form) decays at least
as fast as an exponential function. Moving away from the
hypersurface into the crystalline vacuum, we also assume
that the Hamiltonian exponentially approaches a form locally
identical to a translation-invariant vacuum.

In practice, Ev is determined by the specific physical real-
ization of the crystalline vacuum. For example, a metal acts as
a vacuum for photons owing to the screening ability of metal-
lic electrons, and Ev is then given by the plasma frequency of
the metal. In cases where the energy window of interest lies far
below Ev , one may reasonably take Ev to infinity and impose

idealized boundary conditions, such as the Dirichlet (open)
boundary condition sometimes used to model finite-size,
solid-state crystals, or the perfect-electric-conductor boundary
condition [57,133] often used for photonic crystals. We will
not need to assume that the boundary is smooth—evanescent
eigenstates which are localized to (d−2)-spatial-dimensional
boundary kinks (or hinges) have been explored in higher-order
topological insulators [134–137] and form a subclass of what
we call boundary states.

Definition of domain wall. A domain wall is a hypersurface
separating two crystals with the same space group and the
same bulk energy gap; the two crystals differ only in that
bulk states (in the relevant energy window) are inverted with
respect to the center of the bulk energy gap. Such a spatially
inhomogeneous band inversion can be engineered in photonic
crystals [57,58]. Our notion of a domain wall is conceptually
similar but not identical to a massive domain wall of the Dirac
equation [121] whose chiral zero modes are anomalous [138].

B. Necessary criteria for spectrally robust boundary
and domain-wall states

The sense in which robust boundary states are incompatible
with BRs is stated in the following criterion.

Boundary stability criterion. Given a crystal with space
group G and a bulk energy gap, a necessary condition for
spectrally robust, in-gap boundary states is that the low-energy
subspace is an obstructed representation of G.

By spectrally robust, we mean that the eigenenergies of
the boundary states form a band that covers the bulk en-
ergy gap, and this covering is insensitive to continuous and
(Gint,G)-symmetric deformations that preserve the energy
gap. Here, Gint < G is the symmetry of the interface; if the in-
terface has discrete translational symmetry in two independent
directions, Gint is generally a layer group. By a (Gint,G)-
symmetric deformation, we mean that the deformation is
everywhere Gint-symmetric; moving away from the interface,
the G-asymmetric component of the deformation is assumed
to decay exponentially. While specifying Gint is necessary
to uniquely define spectral robustness, actually the boundary
stability criterion holds regardless of the choice for Gint. The
following criterion for domain walls also holds regardless of
the symmetry of the domain-wall interface.

Domain-wall stability criterion. Given a crystal with space
group G and a bulk energy gap, a necessary condition for
spectrally robust, in-gap domain-wall states is that either the
low-energy subspace or the high-energy subspace is an ob-
structed representation of G.

The proof of the above criteria is based on two physically
intuitive claims: (i) every BR has a symmetric tight-binding
limit and (ii) the boundary (or domain wall) of a crystal does
not have to intersect any tight-binding lattice site.

Statement (i) is widely believed folklore, and our contri-
bution is a restatement of (i) that is amenable to a rigorous,
bundle-theoretic derivation. We define a tightly bound BR of
G as a BR of G with the property that each Wannier function
only has support on a single lattice site. (In the tight-binding
formalism, each Wannier function is defined over a real-space
lattice with a finite-dimensional complex vector space on each

115117-21



A. ALEXANDRADINATA et al. PHYSICAL REVIEW B 102, 115117 (2020)

lattice site.) Each Wannier function in a tightly-bound BR is
said to be one-site localized.

Symmetric tight-binding limit theorem. For a G-symmetric
band, being a BR of G is equivalent to the existence of a G-
symmetric homotopy to a G-symmetric band spanned by one-
site localized Wannier functions.

To qualify this statement, for P a BR of G, the just-stated
G-symmetric homotopy always exists for a tight-binding
model that contains P as the complete, low-energy subspace,
and also contains a high-energy subspace with sufficiently
large rank—this will shortly be clarified in Sec. IX B 1.

The forward arrow of the above theorem is proven
by showing that a BR(G,�,D) and a tightly bound
BR(G,�,D) are isomorphic as G-vector bundles (cf.
Appendix G], and then applying the universal G-bundle the-
orem [139] to prove existence of the G-symmetric homotopy
[140]. Such a homotopy will be referred to as a deformation to
the symmetric tight-binding limit, and is exemplified numeri-
cally by the adiabatic deformation in Ref. [62]. The backward
arrow is proven in Sec. VI A, where we also discuss its impli-
cations for the Wannier functions of topological insulators.

The remaining argument will separately treat boundaries
and domain walls.

1. Proof of boundary stability criterion

We will argue for the contrapositive restatement of the
boundary stability criterion. Our strategy is to exclude bound-
ary states for a model tight-binding Hamiltonian Hb (to
be specified below) whose low-energy subspace is band-
representable. This would imply the absence of spectrally
robust boundary states for any Hamiltonian that is continu-
ously deformable to Hb, while preserving the bulk energy gap
and (Gint,G) symmetry, for any Gint < G.

Our model Hamiltonian is

Hb = PBbP + Q + 2Q′, (18)

where P (respectively, Q) is the analytic, finite-rank projec-
tor to the low-energy (respectively, high-energy) band of the
crystal [141]. While P and Q lie within the energy window
of interest, a formal proof will additionally require Q′ which
projects to energy bands lying above Q on the energy axis;
such bands always exist because we are approximating a
continuum description of crystals. Q′ has the following prop-
erties: (a) Q′ has finite rank and is orthogonal to both P and
Q; I = P + Q + Q′, (b) Q′ is analytic over the Brillouin torus,
and (c) Q′ transforms as a BR of G. While P,Q, and Q′ have
the symmetry of the space group G, G is not a symmetry of Hb

owing to the leftmost term involving Bb—a spatial-bipartition
operator that equals −1 within the crystalline bulk and +1
without. Since matrix elements of P have exponential decay in
real space, Hb exponentially approaches the form 2Q′ + Q −
P within the crystalline bulk; this form models a crystalline
Hamiltonian with spectrally flattened bulk bands, and with the
relevant bulk energy gap in the interval (−1,+1); outside of
the bulk region, Hb exponentially approaches Q′ + I , which
models a crystalline vacuum with threshold energy Ev = +1.

If P is a BR, then by the symmetric tight-binding limit
theorem, P is continuously deformable to a tightly bound

BR by a G-symmetric homotopy. The corresponding one-
site-localized Wannier functions are all eigenstates of Hb,
assuming that the Gint-symmetric boundary hypersurface does
not intersect any tight-binding lattice site. (No matter Gint, it
is always possible to symmetrically deform the hypersurface
to satisfy this zero-intersection condition.) Since any state in
the orthogonal subspace Q (respectively, Q′) is an eigenstate
of Hb with eigenvalue +1 (respectively, eigenvalue +2), the
spectrum of Hb is just {−1,+1,+2}, with no eigenenergies in
the bulk energy gap.

We now address a subtlety in the above argument that
formally justifies the presence of Q′ in Hb. Supposing Q′ = 0,
it is possible that the G-symmetric homotopy (between P and
a tightly bound BR) does not exist.

Given a G-symmetric tight-binding lattice model with a
band subspace P that forms a BR of G, we say that P has a
symmetric tight-binding obstruction if it cannot be deformed
to a symmetric tight-binding limit.

A symmetric tight-binding obstruction is an artifact of
the tight-binding formalism and reflects that a subset of the
Wannier centers of P are rigidly displaced from any tight-
binding lattice site (a lattice site is the positional center of
a localized, tight-binding basis vector). Such an obstruction
has some conceptual similarities with the “obstructed atomic
limit” formulated by Refs. [10,60]; one important distinction
is that the tight-binding obstruction does not apply to con-
tinuum crystals. In the proof of the symmetric tight-binding
limit theorem, the universal G-bundle theorem guarantees the
existence of the G-symmetric homotopy if P is a subspace
of a tight-binding vector space with sufficiently large rank,
as explained in Appendix G 3. A continuum description of
crystals might be viewed heuristically as a tight-binding lat-
tice model with an infinitely fine real-space mesh—in this
case the symmetric tight-binding obstruction should not exist.
In the tight-binding formalism, one removes the obstruction
by enlarging the tight-binding lattice model to include the
higher-energy bands in Qc—this justifies the presence of Q′
in Hb.

We know of two mechanisms for a symmetric tight-binding
obstruction for fixed-rank, tight-binding Hamiltonians:

(i) Both the tight-binding lattice sites and the Wannier
centers of P are rigidly fixed to distinct positions, owing to
nontranslational symmetries of the tight-binding model. This
type of obstruction is exemplified by the nontrivially polarized
filled band of the Su-Schrieffer-Heeger model [80] and also by
a BR in a modified Kane-Mele honeycomb model [62].

(ii) The second mechanism exists even if the point group
of space group G is trivial, implying that the Wannier centers
of P lie at generic Wyckoff positions. Naively, these Wan-
nier centers would always be continuously tunable to lie on
the tight-binding lattice sites. However, there exists finite-
rank tight-binding Hamiltonians without any nontranslational
symmetry, but having a low-energy BR that is topologically
obstructed from a tight-binding limit—such is the case for the
Hopf insulator [142] as clarified in Ref. [143].

2. Proof of domain-wall stability criterion

Let us argue for the contrapositive restatement of the
domain-wall stability criterion. Our strategy is to exclude
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domain-wall states for a model Hamiltonian Hdw (speci-
fied below) whose low- and high-energy subspaces are both
band-representable; this would rule out spectrally robust
domain-wall states for any Hamiltonian that is deformable to
Hdw while preserving both bulk gap and (Gint,G) symmetry.

Our model Hamiltonian for a domain wall is

Hdw = (Q − P)Bdw(Q − P) + 2Q′, (19)

with Bdw a real-space bipartition operator that equals +1 on
one side of the domain wall, and −1 on the other side. Moving
away from the domain wall, Hdw asymptotically approaches
2Q′ + (Q − P) on one side of the wall and 2Q′ − (Q − P) on
the other side; the difference is that P and Q are inverted with
respect to the center of the bulk gap.

If both P and Q are BRs, then they are both deformable
to tightly bound BRs. Once again, the presence of Q′ nullifies
any possible symmetric tight-binding obstruction for P and
Q. Since (Q − P) and Q′ act in orthogonal subspaces, the
spectrum of Hdw is obtained by independently diagonalizing
the two terms on the right-hand side of Eq. (19). Any one-site
localized Wannier function of P is an eigenstate of (Q −
P)Bdw(Q − P) with eigenvalue +1 on side of the domain wall,
and eigenvalue −1 on the other side. The same can be said for
the one-site localized Wannier functions of Q, except that the
eigenvalues ±1 are inverted. We thus obtain that the spectrum
of Hdw is {−1,+1,+2}, with no eigenvalues in the relevant
energy gap (−1,+1), and hence no domain-wall states. This
completes the proof.

The above two proofs can easily be generalized to in-
clude energy bands (P′) lying lower than P on the energy
axis, and transforming as a BR of G. (In the domain wall
case, we will not assume P′ is inverted across the domain
wall.) Generalizing Hb,dw → Hb,dw − 2P′, the above steps in
excluding boundary/domain-wall states would essentially be
unchanged.

As a final remark, we have assumed throughout this pa-
per that a band has only the symmetry of a crystallographic
space group; it is possible that other types of symmetries
(e.g., particle-hole symmetry) may protect spectrally robust
boundary states, even in the case of BRs.

C. Application to fragile topological insulators
and photonic crystals

Boundary states whose eigenenergies cover the bulk gap
are a well-known feature of many stable obstructed represen-
tations [33,35,37–39,89,144–154]. Less well known is that
such boundary states also manifest in tight-binding models
of some FORs [55,69,155]. There is, however, a danger in
naively extrapolating the predictions of an idealized tight-
binding model to a real material. As mentioned in Sec. IX B,
a tight-binding model always involves truncating the infinite-
rank Hilbert space of a continuum crystal. Thus even if
the low-energy band of a tight-binding model is fragile ob-
structed with accompanying boundary states, it is possible
that the complete, continuum low-energy subspace is actually
band representable—this would imply that boundary states
are not spectrally robust, according to the boundary stability
criterion.

In the just-described hypothetical scenario, we may say
that a BR in the continuum low-energy subspace “breaks” the
fragile obstruction of the tight-binding model in the sense that
BR ⊕ FOR = BR’. Not just any BR can break a given fragile
obstruction; to determine the appropriate BR, one can use the
projected symmetry method (cf. Sec. III) or the projected posi-
tion method (cf. Sec. V C 3). Now if FOR has boundary states
covering the bulk gap, while BR’ is deformable to a symmetric
tight-binding limit without boundary states, the combined im-
plication is that the hybridization of FOR with BR allows for
the removal of all in-gap boundary states. This removal may
be envisioned in the following thought experiment: Suppose
BR ⊕ FOR were placed on a finite sample with boundaries,
but with zero hybridization between BR and FOR. In addition
to the boundary states (of FOR) which cover the bulk gap, it
is also possible to have conventional boundary states (of BR)
which do not cover the gap. Once the two types of boundary
states hybridize, they must be adiabatically removable from
the bulk gap; this has been described in Sec. III A (our case
study of Fu’s TCI) as a representation-dependent stability
of boundary states. To recapitulate, we have argued that if
boundary states (of a FOR) covers the energy gap, they must
have a representation-dependent stability.

In practice, we believe that our boundary stability criterion
rules out spectrally robust boundary states for a great majority
of electronic insulators and photonic crystals. To support our
claim, a recent study of 26 938 stoichiometric electronic ma-
terials claimed that none of them has a low-energy occupied
subspace that is fragile obstructed [156]; this was rationalized
in Ref. [157] as there being “usually enough occupied elemen-
tary band representations” to break any FOR below the Fermi
level. However, we caution that their claim is based on iden-
tifying band/obstructed representations from their symmetry
representations in k-space—such an identification method is
not generally exhaustive (cf. Sec. III A).

A fragile obstruction of a finite-rank, high-energy band
is even more likely to be breakable. This is because the
continuum high-energy subspace formally has infinite rank,
while there are only a finite number of elementary BRs which
all have finite rank [18,19]—the existence of a BR that can
break any given fragile obstruction is overwhelmingly prob-
able. Such considerations become relevant when evaluating
the spectral robustness of domain-wall states (cf. domain-wall
stability criterion).

On the other hand, the continuum low-energy subspace has
finite rank, and this rank can be of order one if the bulk gap lies
close to the bottom of the energy spectrum. The closer to the
bottom, the likelier to find unbreakable fragile obstructions.
In this regard, photonic crystals have an advantage over elec-
tronic crystals; the latter have a fixed Fermi level, but photonic
crystals can be experimentally probed at any frequency.

Application to electronic insulators and gapped photonic
crystals in class AI. Let us assume that the topological classi-
fication by the method of topological crystals is complete [79]
with the implication that any G-symmetric band in class AI is
either a BR or a FOR of G. Given a crystal with an energy
gap, the high-energy band is overwhelmingly likely to be
band representable, hence spectrally robust in-gap states are
only possible if the low-energy subspace is fragile obstructed.
Presently, this possibility remains an unproven principle, and
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is not realizable by any FOR that we know. [The reader may
wonder if the rotation-invariant TCIs described in Sec. III sat-
isfy the bill. Unfortunately, its unconventional boundary states
can be destabilized by conventional boundary states emerging
from above the energy gap, as illustrated in Fig. 8(d).]

X. DISCUSSION AND OUTLOOK

In vector bundle theory, the splitting principle has been
used to reduce difficult questions on multirank bundles to
simpler questions on sums of unit-rank bundles [158,159];
this reductionist approach is known to simplify the deriva-
tion of relations between Chern classes [53]. One may ask if
an analogous splitting principle exists in band theory, where
crystallographic space-group symmetry must be incorporated
into the band/bundle.

In this paper. we have reduced the difficult question—of
whether a given rank-N band is a BR—to simpler questions
on a splitting into N unit-rank bands. For a majority of space
groups (specified below), the necessary and sufficient condi-
tion for band representability is the existence of a splitting
satisfying (A) that each unit-rank band has an analytic projec-
tor and a trivial first Chern class, and (B) the set of unit-rank
bands are permuted by all crystallographic symmetries.

This statement is formalized by the crystallographic split-
ting theorem of Sec. IV B. As shorthand, a splitting that
satisfies condition (A) [respectively, (B)] is said to be a Wan-
nier splitting [respectively, a symmetric splitting]; if both
conditions are satisfied, it is a symmetric Wannier splitting.

To apply this theorem to prove band representability, it
is desirable to have a systematic method to symmetrically
split a band, and then to verify if condition (A) is satisfied;
once (A) is verified, the corresponding symmetric Wannier
functions can be constructed via an algorithm detailed in
Sec. VII. We have proposed two methods for symmetric
splitting: the first involves diagonalizing a projected position
operator, applies to a limited set of space groups (specified
in the symmetric splitting lemma of Sec. V B), but has the
advantage that all unit-rank bands automatically have analytic
projectors (proven in Appendix D 2). The second method in-
volves diagonalizing a projected symmetry operator, applies
to a wider set of space groups (specified in Appendix D 1),
but does not guarantee that each unit-rank band has an ana-
lytic projector (cf. Sec. III E). Of the two methods, only the
projected symmetry method can be used for space groups
with a three- (or fourfold) rotational symmetry, and this is
how we proved in Sec. III that the hexagonal (or tetragonal)
topological insulator in Wigner-Dyson class AI is fragile; the
implications of fragility for the analogous photonic crystals
are discussed in Sec. VIII. A general methodology that would
apply to any space group is still lacking, and in our opinion
would be a significant advance.

It should be clarified that P being band representable im-
plies the existence of a symmetric Wannier splitting but does
not imply that all Wannier splittings of P are symmetric or
that all symmetric splittings of P are Wannier. To exemplify
a symmetric, non-Wannier splitting, some elementary BRs
[18,160–162] are each splittable into unit-rank bands which
are trivially permuted by the space group and have analytic

projectors, and it is guaranteed that at least two of the unit-
rank bands must have nontrivial first Chern class [80].

One implication of our splitting theorem is that obstructed
representations—defined as non-BRs—cannot have a splitting
that is simultaneously Wannier and symmetric. This has var-
ied implications for topological insulators whose filled bands
are obstructed representations: if (A) is satisfied, then [not
(B)] can be interpreted as a symmetry obstruction for ex-
ponentially localized Wannier functions (cf. Sec. VI). If (B)
is satisfied, then [not (A)] can be interpreted as the absence
of exponential localization, or as a holonomy obstruction for
Bloch functions. The holonomy interpretation is encapsulated
by the Zak winding theorem in Sec. V B, provides a rigorous
justification for the concept of “individual Chern numbers”
[20,44,75,163], and may be useful as a design principle for
model Hamiltonians of topological insulators. In future work,
it will be interesting to generalize the Zak winding theorem
to three spatial dimensions, where notions such as the “nested
Wilson loop” [135] might come into play.

Our splitting theorem provides an equivalent description
of BRs for nearly all crystallographic space groups and
grey magnetic space groups. The only exceptional BRs have
been referred to as nonmonomial, and they occur for three-
spatial-dimensional double space groups having cubic point
groups. These exceptions reflect that some half-integer-spin
representations of cubic point groups are fundamentally two-
dimensional, that is to say, they cannot be induced from a
one-dimensional representation of a subgroup of the cubic
point group (cf. Sec. IV C). It is interesting to speculate on
a generalization of our splitting theorem that equivalently de-
scribes nonmonomial BRs—perhaps the splitting of a rank-N
band must allow for sums of rank-two bands as well.

Condition (A) in our theorem involves the triviality of
the first Chern class, which guarantees that each unit-rank
band is topologically trivial as a complex vector bundle.
Topological notions in real vector bundle theory have been
fruitfully applied [48,65,80,88,164] to bands with spacetime
inversion symmetry [165]. Being topologically nontrivial as
a unit-rank, real vector bundle is equivalent to a nontrivial
first Stiefel-Whitney class; this by itself does not imply an
obstruction to symmetric Wannier functions [166], however, it
does imply that the Wannier center cannot lie on a prespecified
spatial origin [80,164]. It may be that a real analog of our
splitting theorem exists for BRs whose Wyckoff positions are
fixed to the origin.
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APPENDIX A: REVIEW OF BANDS, BUNDLES,
AND SPACE GROUPS

1. Bands, vector bundles, and topological triviality

A rank-N band is given by N orthogonal Bloch functions at
each wave vector k in the Brillouin torus. The Bloch functions
span an N-dimensional vector space at each k and the union
of all such vector spaces (over the base space of the Brillouin
torus) defines a rank-N vector bundle. We typically use P(k)
to denote the rank-N projector to the vector space at k and P =∑

k P(k) as the projector to the full band;
∑

k is our shorthand
for a direct integral splitting [167] over the Brillouin torus and
P(k) is periodic in reciprocal-lattice translations.

To minimize notation, we sometimes use P to denote the
band itself, and not just the projector to the band. As a case
in point, suppose P is an energy band (of a tight-binding or
Schrödinger-type Hamiltonian) that is energetically isolated,
that is, having an energy gap separating P from higher- and
lower-energy bands, at each k. If the tight-binding Hamil-
tonian has matrix elements that decay exponentially in real
space, then P(k) is an analytic function of k throughout the
Brillouin zone [93]. As shorthand, we will just say that P is
analytic throughout the Brillouin zone. This analyticity condi-
tion also holds given a physically reasonable condition on the
Schrödinger-type Hamiltonian (p2/2m +V (r)), namely, that
the potential term V is square integrable over the unit cell
[168].

Given a rank-N band/bundle, if there exist N Bloch func-
tions which span the N-dimensional vector space at each k
and are both continuous and periodic over the Brillouin torus,
then the band is said to be topologically trivial as a complex
vector bundle. The distinct notion of topological triviality for
real vector bundles is only mentioned briefly in Sec. X. Every-
where else, topologically trivial should always be understood
as in the category of complex vector bundles.

In spatial dimension d � 3 (which is assumed throughout),
a band is topologically trivial if and only if it has trivial first
Chern class [76,77]; for d = 3, this means that the first Chern
number vanishes over any two-dimensional submanifold of
the Brillouin three-torus; for d = 1 the first Chern class is
always trivial.

In this paper, all bands are assumed topologically triv-
ial, unless otherwise specified. Applying the Oka-Grauert

theorem [169,170] topological triviality implies that the N
Bloch functions can also be chosen analytic in k, which
further implies that their Fourier transforms—known as Wan-
nier functions—are exponentially localized in real space [76].
Therefore, a topologically trivial rank-N band is equivalent to
N orthogonal Wannier functions in each unit cell, with other
Wannier functions related by discrete Bravais lattice trans-
lations. The specification of such Wannier functions which
equivalently span a band shall be called a Wannier basis.

2. Space groups, point groups, and Wigner-Dyson
symmetry classes

Let g denote an isometry in d spatial dimensions, possi-
bly combined with the reversal of time. g = (tg|ǧ) may be
decomposed into point-preserving and translational compo-
nents, with ǧ a d × d orthogonal matrix and tg ∈ Rd . g has
the following action on spacetime: r → g ◦ r = ǧr + tg and
t → sgt ; ǧr should be understood as a matrix multiplying a
d-component vector (x, y, . . .), and sg = −1 for g that reverses
time.

Not including time reversal, all spatial isometries that
preserve a crystal form a crystallographic space group G;
there are 230 such groups in spatial dimension d = 3, and 17
such groups in d = 2; the latter are also known as wallpaper
groups. Td denotes the translational subgroup of G, where
the subscript d equals the number of linearly independent
translation vectors. The crystallographic point group of G is
defined as the quotient group P = G/Td . There are 32 crystal-
lographic point groups in d = 3, which are further categorized
into six crystal families. For example, the cubic crystal fam-
ily consists of the three tetrahedral and two octahedral point
groups, which are therefore also referred to as the five cubic
point groups.

A grey magnetic space group, denoted GT , is a direct
product of any crystallographic space group G with ZT

2 , the
order-two group generated by time reversal T . (In general,
Zg

n will denote a cyclic group of order n and generated by g,
i.e., gn = e with e the identity element.) T 2 = e corresponds
to Wigner-Dyson symmetry class AI. The point group of GT

will be referred to as a grey magnetic point group.
Throughout this paper, we are concerned only with linear

representations of groups and not their projective representa-
tions. In particular, linear representations of a crystallographic
point group transform with integer spin. We shall also only
concern ourselves with the half-integer-spin, linear represen-
tations of double crystallographic group G̃ and the double grey
magnetic space group G̃T ; these groups are, respectively, the
double covers of G and GT . In a double cover, we introduce
an additional element ẽ that squares to the identity and physi-
cally corresponds to a 2π rotation. For double grey magnetic
groups, T 2 = ẽ corresponds to Wigner-Dyson class AII; in
particular, the double cover of ZT

2 is ZT
4 .

Except in Sec. VI A, all of our results (including the
splitting theorem of Sec. IV) hold for both symmorphic and
nonsymmorphic space groups. A symmorphic space group
is a semidirect product of a point group with a translational
subgroup, which shall be denoted Td � P; a nonsymmorphic
space group is a space group that is not symmorphic.
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Example of symmorphic space group T3 �C4v × ZT
2 , a

grey magnetic space group, is the symmetry of the tetragonal
photonic crystal in Sec. VIII A. The crystallographic point
group C4v is generated by a fourfold rotation C4 and a mir-
ror reflection rx with mirror plane containing the rotational
axis. It is convenient to adopt Cartesian coordinates with C4 :
(x, y, z) → (−y, x, z) and rx : (x, y, z) → (−x, y, z). T3 �C4v

can only be the crystallographic space group P4mm (No. 99).
Implicit in the semidirect notation is an action of P on

Td , and inequivalent actions may result in inequivalent space
groups, as we next illustrate.

Example T3 �C3v × ZT
2 is the symmetry of the hexagonal

photonic crystal in Sec. VIII B.C3v is generated by a threefold
rotationC3 and a mirror plane rd containing the rotational axis.
There are two symmorphic crystallographic space groups
(P31m and P3m1) with the point group C3v , and we will
use T3 �C3v as a synonym for P31m. P31m is distinguished
by having rd relate two of three rotation-invariant Wyckoff
positions, the third position being reflection invariant.

If space group is used in a sentence without any of the
above qualifiers, it is safe to assume that the sentence applies
to all categories of space groups. As a case in point, to any
space group G we may associate a Wyckoff position � ∈ Rd

and a site stabilizer G� = {g ∈ G|g ◦ � = �}. The site sta-
bilizer consists of all elements in G that preserve the Wyckoff
position.

3. Representations of space groups

A spacetime isometry g ∈ G may be represented by
an operator ĝ, which acts on functions of real space as
ĝ f (r)= f (g-1◦r)

sp
, where ā1:=a and ā−1:=ā (the complex

conjugate).
The symmetry representation of g on Bloch functions

{|ψ j,k〉}Nj=1 is defined by a unitary N × N “sewing” matrix
Ug(k):

ĝ|ψ j,k〉 = Ug(k) j′ j
∣∣ψ j′,−sgǧk

〉
. (A1)

Ug(k) can be explicitly expressed in terms of the normal-
ized cell-periodic component of Bloch functions, u j,k(r) =
e−ik·rψ j,k(r), as

Ug(k) j′ j = 〈
u j′,sgǧk

∣∣ĝ(k)|u j,k〉cell, (A2)

with ĝ(k) := e−isgǧk·tg ĝ and 〈.|.〉cell denoting an integral over r
in one unit cell (possibly with a summation over spin).

We say that a band (with projector P) transforms as a
representation of the space group G, if [ĝ,P] = 0 for all g ∈ G.
In short, P is referred to as a representation of G.

Let P0 and P1 be two representations of G with equal rank
and being both analytic throughout the Brillouin zone. P0 and
P1 are said to be equivalent if there exists a continuous inter-
polation {Pt }t∈[0,1] that preserves analyticity (throughout the
Brillouin zone) and the symmetry condition [ĝ,Pt ] = 0, for
all g ∈ G and all t ∈ [0, 1]. In bundle language, this means that
P0 and P1 are isomorphic as G-vector bundles, as elaborated
in Appendix G.

Space-group representations fall into two categories: BRs
(cf. Appendixes A 3 a and A 3 b) and obstructed representa-
tions (cf. Appendix A 3 c).

a. Zak’s definition of band representations

In the standard definition by Zak, a band representation
of a space group G, denoted BR(G,�,D), is a representa-
tion of G that is induced from a representation (D) of a site
stabilizer G� .

We briefly review this induction process: Begin with a set
of exponentially localized Wannier functions centered on the
Wyckoff position �, and transform in a representation D of
the site stabilizer G� . By application of G on these Wannier
functions, we generate an infinite set of Wannier functions
which form a representation of G. Such Wannier functions
that are obtained by induction will be said to form a locally
symmetric Wannier basis for the BR; we elaborate on this
point of view next.

b. Equivalent formulation of band representations
by the locally-symmetric Wannier basis

In various proofs throughout this paper, it is useful to have
an equivalent definition of BRs that emphasizes the symmetry
properties of Wannier functions: P is a BR of G if and only if
P is a (finite) direct sum of (infinite-dimensional) subspaces,
each of which is spanned by a locally-symmetric Wannier
basis. This equivalent definition of BRs has been proven in
Appendix A of Ref. [80].

A locally-symmetric Wannier basis {|wα
n,R〉}n,α,R∈Td with

Wyckoff position �1 is an orthonormal basis of an infinite-
dimensional representation of G, which satisfies the following
properties for all n = 1, ...,M, α = 1, ...,A, (R|e) ∈ Td :

(1) |wα
n,R〉 = (̂R|e)|wα

n,0〉,
(2) |wα

n,0〉 is exponentially localized,
(3) {|wα

10〉}Aα=1 spans an A-dimensional representation
of G�1 ,

(4) {|wα
n,0〉}α and ĝn{|wα

1,0〉}α span the same A-dimensional
representation of G�n = gnG�1g

−1
n ,

where G/(T � G�1 ) = {[g1 = (0|e)], [g2], ..., [gM ]} is a
coset decomposition of G.

It is worth clarifying that property 4 was not stated explic-
itly in Definition 4 in Appendix A of Ref. [80], however, the
property was implicitly assumed.

c. Fragile versus stable obstructed representations

An obstructed representation of a space group G is a
representation of G that is not a BR of G (in Zak’s definition).
The filled, low-energy band of a G-symmetric topological
insulator is an obstructed representation of G.

If G has a trivial point group, then an obstructed represen-
tation of G is equivalent to [76] the topological nontriviality of
the corresponding complex vector bundle. This is not gener-
ally true if the point group of G is nontrivial, e.g., for G =
T2 × ZT

4 (Wigner-Dyson class AII), all its representations
necessarily constitute a topologically trivial complex vector
bundle, owing to the time-reversal symmetry. In particular,
the filled band of the Z2 Kane-Mele topological insulator is
both topologically trivial (as a complex vector bundle) and an
obstructed representation (of G); a proof of the latter statement
is given in Sec. V.

Obstructed representations of a space group G may be fur-
ther subdivided into fragile obstructed and stable obstructed.
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A FOR of G is an obstructed representation of G, with the
property that a BR of G exists, such that the direct sum of this
BR with the FOR is a higher-rank BR. A stable obstructed
representation of G is an obstructed representation of G that
is not fragile obstructed.

APPENDIX B: MONOMIAL REPRESENTATIONS
OF FINITE GROUPS

In the main text, we have amply used the notion of mono-
mial representations of point groups. Monomial representa-
tions can equivalently be viewed as induced representations
(from one-dimensional representations of subgroups) (cf.
Appendix B 1) or as complex permutation representations
(cf. Appendix B 2). Both views are elaborated pedagogi-
cally in this Appendix, and their equivalence established in
Appendix B 3. Lastly, we prove a useful lemma for monomial
direct-product groups in Appendix B 4.

Throughout this Appendix, we let H denote a finite group;
a representation (U,V ) of H on an n-dimensional repre-
sentation space V is given by a map h → U (h), with U (h)
generally an n-dimensional unitary matrix. If H is a point
group (consisting of discrete spatial isometries that preserve a
point in space), then h1h2 → U (h1)U (h2). If H is a magnetic
point group,

h1h2 → U (h1)U (h2)
s(h1 )

, (B1)

where ās(h) equals the complex conjugate of a if h involves
time reversal, and otherwise ās(h) = a. Equation (B1) is the
multiplication rule for corepresentations [105,171].

1. Induced representations

Let H be a finite group with subgroup A, and (�,V )
be a representation of A, with V an n-dimensional repre-
sentation space. For every a ∈ A and basis vector vα ∈ V ,
a acts on vα as a ◦ vα = ∑n

β=1 �(a)αβvβ, with �(a) an n-
dimensional matrix. We define D as the index of A in H ,
and {h1 = e, h2 . . . , hD} as a full set of representatives of the
left cosets H/A, such that H can be decomposed as H =
∪D
i=1hiA. For any g ∈ H and representative hi, ghi ∈ H , and

therefore by the coset decomposition there exists hσg(i) [with
σg(i) ∈ {1, . . . ,D}] and ai ∈ A such that ghi = hσg(i)ai. It will
be useful to show that σg is a permutation of {1, . . . ,D}.

Proof of permutation. Let us first prove that σg is injective.
Suppose it were not, i.e., σg(i) = σg(i′) for i �= i′. It would
follow that hia−1

i = hi′a
−1
i′ . Since ai, ai′ ∈ A, hia−1

i ∈ hiA and
hi′a

−1
i′ ∈ hi′A must belong in distinct cosets of H/A, which

contradicts the just-stated equality. An injective map from
{1, . . . ,D} to itself must also be surjective, hence σg is a
permutation.

Let indHA (�,V ) denote the induced representation of
(�,V ). The representation space of indH

A (�,V ) is W =
⊕D

i=1hiV , with basis vectors {hivα|i = 1 . . .D, α = 1 . . . n};
g ∈ H is defined to act on the basis vector as

g ◦ hivα =
n∑

β=1

[�(ai )]αβhσg(i)vβ. (B2)

2. Complex permutation representations

A complex permutation representation is a representation
of H where every element of h ∈ H is mapped to a complex
permutation matrix U (h), which satisfies the multiplication
rule of Eq. (B1).

In what follows, we maintain a basis {v1, . . . , vn} for the
representation space V such that each h ∈ H is represented
by a complex permutation matrix. It is useful to introduce the
notion of a transitive complex permutation representation. By
transitive, we mean that for every pair of basis vectors (vi, v j),
there exists h ∈ H such that [U (h)]i j is nonzero.

Claim. A complex permutation representation is either
transitive, or it is a direct sum of transitive complex permu-
tation representations.

Proof. For every complex permutation representation U :
h �→ U (h) of H , there exists a (real) permutation represen-
tation U ′ of H obtained by replacing every nonzero matrix
element in U (h) by 1. Then H has the following permutation
group action, denoted ◦, on the set of basis indices N :=
{1, . . . , n}: h ◦ i = j for the unique j for which [U ′(h)]i j = 1
– in this case, we say that i is in the orbit of j. (The orbit of
j is the equivalence class of j.) The set of equivalence classes
(or orbits) forms a partitioning of N . This partitioning then
implies a splitting of V , where each summand is spanned by
all basis vectors with indices in one orbit. By construction, the
restriction of {U (h)}h∈H to one summand is transitive. �

3. Complex permutation representations
as induced representations

A transitive complex permutation representation of H
is equivalently a representation of H induced from a one-
dimensional representation of a subgroup of H . The proof
of the forward direction (transitive complex permutation rep-
resentation ⇒ induced representation) may be found in
the proof of Theorem 2.6 in Ref. [172]. Here we provide an
elementary proof of the backward direction, which we did not
find in the standard literature.

Proof of equivalence. Consider indH
A (�,V ) with V a

one-dimensional vector space. For every h ∈ H , �(h) is a
unimodular phase factor. As a particular case of Eq. (B2),
the action of g on a basis vector is g ◦ hiV = �(ai )hσg(i)V,

with σg a permutation on {1 . . .D}. The representation of g in
the basis of {h1V, h2V, . . . , hDV } must therefore be a complex
permutation matrix; since this is true of all g, indHA (�,V )
must be a complex permutation representation. Moreover, this
complex permutation representation is transitive, since for any
pair of basis vectors hiV and h jV , there exists hih

−1
j ∈ H

which relates the two vectors (modulo a phase) and therefore
[U (hih−1

j )]i j �= 0. �
From this equivalence, it follows that (i) a complex permu-

tation representation of H (being a direct sum of transitive
complex permutation representations) is equivalently (ii) a
direct sum of representations of H (each induced from a 1D
representation of a subgroup of H). (i) and (ii) may be taken
as equivalent definitions of a monomial representation of H .

4. Direct-product groups that are monomial

As a reminder, a monomial group is a group for which all ir-
reducible representations (irreps) are monomial. For example,
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Abelian finite groups are monomial because all their irreps
are 1D.

Lemma for monomial direct-product groups. For H a group
and A an Abelian group, H is monomial if and only if H × A
is monomial.

Proof of lemma. It is well-known that all irreducible rep-
resentations of a direct product (of two groups) are obtained
by the tensor product of irreps of the individual groups [5].
In our application, A being Abelian implies it has only one-
dimensional irreps which we label by η: any a ∈ A is mapped
to complex phase factor η(a) ∈ U (1). We label an irrep of H
by D, which maps h ∈ H to a unitary matrix D(h). Any irrep
of H × A can then be labeled by (D, η) and maps (h, a) ∈
H × A to the unitary η(a)D(h).

Let us first prove the forward direction of the lemma: H
monomial ⇒ H × A monomial. By assumption, for any irrep
D of H , there exists a basis for D such that D(h) is a complex
permutation matrix for all h ∈ H . The tensor product of such
a basis with η gives a basis for (D, η) where η(a)D(h) is a
complex permutation matrix for all (h, a) ∈ H × A. This is
because any complex permutation matrix that is multiplied by
a complex number [here, η(a)] remains a complex permuta-
tion matrix. Since the above holds for all irreps of H × A, we
deduce that H × A is monomial.

Lastly, we will prove the backward direction, which is
contrapositively restated as H not monomial ⇒ H × A not
monomial. By assumption, there exists at least one irrep D (of
H) having no basis in which D(h) is a complex permutation
matrix for all h ∈ H . This implies, for a being the identity el-
ement e ∈ A, that no basis exists for (D, η) where η(e)D(h) =
D(h) is a complex permutation matrix for all {(h, e)|h ∈ H}.
Consequently, no basis exists for which η(a)D(h) is a complex
permutation matrix for all (h, a) ∈ H × A; hence (D, η) is a
nonmonomial irrep of H × A, which completes the proof. �

APPENDIX C: PROOF OF CRYSTALLOGRAPHIC
SPLITTING THEOREM

This Appendix contains the proof of the crystallographic
splitting theorem for monomial BRs, as stated in Sec. IV B.
Below, steps 1–3 outline the proof of the forward arrow (exis-
tence of splitting satisfying (A-B) ⇒ P is a monomial BR
of G), and 4 the backward arrow.

(1) In Sec. C 1, we prove the existence of a splitting P =
⊕iP(i) (the sum over i is finite), with each P(i) a single orbit
under G. By this, we mean that (a) P(i) is a direct sum of a
subset of {Pj}Nj=1, (b) P(i) forms a representation of G, and
(c) the action of G on members of P(i) is transitive: for any
Pj,Pj′ in the direct sum of P(i), there exists g ∈ G such that
gPjg−1 = Pj′ .

(2) Since each unit-rank Pj is analytic with trivial first
Chern class, it has a Wannier representation with a corre-
sponding Wannier center (defined up to lattice translations).
By Wannier center, we mean the expected position of a Wan-
nier function in a Wannier basis for Pj . It is possible that
the Wannier centers for different Pj (contained in the same
orbit) are identical. We will show in Sec. C 2 that for each
orbit, the number of distinct Wannier centers (A) divides the
rank of P(i). This means that there are (in each unit cell) the

same number (M) of Wannier functions with the same Wan-
nier center (denoted as �α , with α = 1, . . . ,A); we introduce
μ = 1, . . . ,M as an additional label to distinguish Wannier
functions centered at the same position. It follows from this
discussion that we can always decompose

P(i) = ⊕A
α=1 ⊕M

μ=1 P
(i)
α,μ, (C1)

such that P(i)
α,μ has unit rank and projects to Wannier functions

indexed by (α,μ). P(i)
α,μ then gives us a convenient relabelling

of Pj .
(3) In Sec. C 3, we construct a rank-N Wannier basis by

induction from a single Wannier function arbitrarily chosen
from P(i)

α,μ; the choice of P(i)
α,μ among {P(i)

α,μ}α,μ is also arbitrary.
It will be proven that this Wannier basis spans P(i), and is
induced from a mononimal representation of a site stabilizer
under G. Having thus proven that P(i) is a monomial BR (of
G) completes the proof of the forward direction.

(4) In the proof of the backward arrow, we then assume that
P is a representation of G induced from a monomial represen-
tation D of a site stabilizer G�1 . We then choose a basis for
the representation space of D such that each g ∈ G�1 is repre-
sented as a complex permutation matrix. We will demonstrate
that this basis gives a splitting of P into single-rank projectors
which are permuted by any element of G, thus proving the
backward direction.

1. Partitioning of band into space-group orbits

We would like to decompose the band projected by P into
subbands which are individually invariant under G. For this
purpose, it is useful to define H as the group of all symmetries
(contained in G) that has a trivial action on each of Pj :

H = {g ∈ G|∀ j ∈ {1 . . .N}, σg( j) = j} < G. (C2)

Let us prove that H , as defined in Eq. (C2), is a normal
subgroup of G.

Proof of normality. By definition of H ,

∀h ∈ H, ∀ j = 1, . . . ,N, [h,Pj] = 0. (C3)

Since h commutes with the right-hand side of

gPjg
−1 = Pσg( j), (C4)

it follows that

[h, gPjg
−1] = 0 ⇒ [g−1hg,Pj] = 0. (C5)

Since the above is true for all j = 1, . . . ,N , g−1hgmust act as
the trivial permutation, and therefore belongs in H . This holds
for all g ∈ G and h ∈ H ; therefore, gH = Hg as desired. �

Since H is a normal subgroup, the quotient G/H is a
group whose order |G/H | is defined as the index of H . Let
each equivalence class in G/H be represented by an element
f j ∈ G, such that

G/H = {[ f1 = e], [ f2], . . . [ f|G/H |]}; (C6)

e above is the identify element in G, so [e] consists of all
elements in H . Because H acts as the trivial permutation,
σ f = σ[ f ] depends only on the equivalence class of G/H . It
is useful to view σ f as defining a group action for G/H on
{Pj} j , with [e] acting trivially, and the compatibility condition
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given by

Pσ f2 f1 ( j) = f̂2 f̂1Pj ( f̂2 f̂1)−1

= f̂2
(
f̂1Pj f̂

−1
1

)
f̂ −1
2 = Pσ f2 σ f1 ( j). (C7)

The orbit of Pj is defined as the subset of {Pj}Nj=1 to which
Pj can be moved by elements in G/H :

G/H · Pj := {Pσ[ f ] ( j)|[ f ] ∈ G/H}. (C8)

The set of orbits of {Pj}Nj=1 under G/H (a group) form a
partition of P = ⊕iP(i) (a grouping of {Pj}Nj=1 into nonempty
subsets P(i), such that each element of {Pj}Nj=1 is included in
one and only one subset). Every orbit is an invariant subset on
which G/H acts transitively, i.e., for every pair Pj′ ,Pj in the
orbit, there exists [ f ] ∈ G/H such that σ f ( j′) = j).

Let us focus on one orbit in the partition P = ⊕i=1P(i) with
rank N (i). Since the following proof would be valid for any
orbit, we may simplify notation by dropping the orbit index
(i): without loss of generality, we relabel P = ⊕N

j=1Pj as the
projector for a single orbit under G.

2. Lemma on the group action on Wannier centers

Since each of Pj is analytic with trivial first Chern class,
it must be localizable, i.e., it has a Wannier representation—
with a corresponding Wannier center that is uniquely deter-
mined modulo lattice translations. Since Pj is invariant under
H [cf. Eq. (C2)], Pj must be a BR of H (according to the
unit-rank splitting theorem) and its associated Wannier center
is invariant (modulo lattice translations) under H . It is possible
that the Wannier centers of distinct Pj are equivalent (modulo
lattice translations); this defines a surjection Pj �→ �S( j), with
j = 1, . . . ,N , S( j) = 1, . . . ,A, and A � N .

Lemma 1. There exists a group action of G/H on the set of
single-rank projectors and the set of Wannier centers (defined
modulo lattice translations), i.e., for any [g] ∈ G/H ,

g : (�α,Pj ) �→ (
�g·α,Pσg( j)

)
, (C9)

with g · α a permutation on α ∈ {1 . . .A}, defined through

�g·α ≡ g ◦ �α. (C10)

The group action of Eq. (C9) is transitive and satisfies

g · (S( j)) = S(σg( j)), for j = 1, . . . ,N. (C11)

From this, we will show that A divides N .
Proof of Lemma 1. Since Pj is localizable, so would be

gPjg−1 for any g ∈ G. This is because any crystallographic
symmetry acts as an isometry in real space: r → g ◦ r, and
therefore cannot change the exponential decay of Wannier
functions. Consequently, if Pj has a Wannier center �α=S( j),
gPjg−1 would have the Wannier center g ◦ �α . We write this
as in Eq. (C9). Since G has an action on {Pj} j , and {Pj} j
a surjection to {�}α , it must be that g ◦ �α ≡ �α′ for the
unique α′ ∈ {1, . . . ,A}, satisfying α′ = S(σg( j)). We define
the permutation g· through Eq. (C10), so that Eq. (C11) fol-
lows immediately.

Now we would show that g· defines a group action of G/H
on {�α}α . Indeed, the identity element [e] ∈ G/H includes all
h ∈ H , and h ◦ �α ≡ �α because H trivially permutes {Pj} j

[cf. Eq. (C2)]. The compatibility axiom is also satisfied:

� (g1g2 )·α ≡ (g1g2) ◦ �α = g1 ◦ (g2 ◦ �α ) ≡ �g1·(g2·α).

(C12)

Let us show that g· is transitive as a group action, i.e., for
any �α and �α′ , there exists [g] ∈ G/H such that α′ = g · α.
This g is determined (possibly nonuniquely) by the transitive
group action of G/H on {Pj} j . To clarify, if S( j) = α and
S( j′) = α′, then we determine g through σg( j) = j′.

Finally, we apply the transitivity property to prove that
A divides N . Indeed, suppose S maps M elements (denoted
{ j1, j2, . . . , jM}) to a single element α. By the transitivity
property, for any element α′ distinct from α, there exists a
nontrivial element [p] ∈ G/H such that p · α = α′. By the
condition of Eq. (C11),

S : {σp( j1), . . . , σp( jM )} �→ α′. (C13)

Crucially, {σp( j1), . . . , σp( jM )} must not intersect
{ j1, . . . , jM}, because the two sets map to distinct elements
under S. If we repeat the logic for all other distinct elements of
{�α}Aα=1, we conclude that for any element α′′ (distinct from
α and α′), there corresponds M elements in {1, . . . ,N} which
do not intersect with { j1, . . . , jM} or {σp( j1), . . . , σp( jM )}. It
follows that if {�α}Aα=1 has A distinct elements, then N = MA
as desired. This completes the proof of the lemma. �

a. Implications of Lemma 1

Here we collect some useful implications of the lemma and
introduce the definitions of certain stabilizer groups, as will be
applied in Sec. C 3.

The lemma implies that we are able to decompose P
(of a single orbit) into a sum of single-rank projectors Pα,μ

[cf. Eq. (C1)], with Pα,μ a relabelling of Pj ; we remind the
reader that the orbit index i has been dropped for notational
simplicity.

Due to the transitivity of the group action [cf. Eqs (C9) and
(C10)], for any pair Pα,μ, Pα′,μ′ , there must exist [p] ∈ G/H
such that

pPα,μp
−1 = Pα′,μ′ , p ◦ �α = �α′ (C14)

holds. In particular, for α = α′ = 1,

gμP1,1g
−1
μ = P1,μ, gμ ◦ �1 = �1, (C15)

defines gμ; if more than one element of G satisfies Eq. (C15),
then we may arbitrarily denote one representative as gμ, and
we may as well take g1 to be the identify operation. The
second equality in Eq. (C15) identifies gμ as an element in
the site stabilizer:

G�1 := {g ∈ G | g ◦ �1 = �1}. (C16)

Similarly, restricting Eq. (C14) to μ = μ′ = 1,

pαP1,1p
−1
α = Pα,1, pα ◦ �1 = �α (C17)

defines pα , with p1 the identity operation. Due to the assumed
transformation of the Wannier center pα ◦ �1 = �α , it must
be that

pαP1,μp
−1
α = Pα,pα ·μ, (C18)

with pα · μ a permutation on the μ index; pα · 1 = 1 accord-
ing to Eq. (C17).
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It will be useful to define Gα,μ as the stabilizer of Pα,μ

under G,

Gα,μ := {g ∈ G | [g,Pα,μ] = 0}, (C19)

and the site stabilizer of � under Gα,μ as

Gα,μ,� := {g ∈ Gα,μ | g ◦ � = �}. (C20)

It follows from Eq. (C18) that the stabilizers G1,μ and Gα,pα ·μ
are conjugate:

Gα,pα ·μ = pαG1,μp
−1
α . (C21)

Combining the above equation with pα ◦ �1 = �α , we derive
a conjugacy condition on the site stabilizers:

Gα,pα ·μ,�α
= pαG1,μ,�1 p

−1
α . (C22)

3. Inducing Wannier basis for single-orbit band

Beginning from P1,1 that represents G1,1 [the stabilizer of
P1,1 under G; cf. Eq. (C19)], we will deduce the existence
of a one-dimensional Wannier representation of the site sta-
bilizer G1,1,�1 [cf. Eq. (C20) above and Eq. (C24) below].
This one-dimensional representation will be induced to an
M-dimensional monomial representation of G�1 [cf. Lemma
2 below], which is then induced to an infinite-dimensional
representation of G – we will identify the latter as P for a
single orbit under G. This would complete the proof of the
forward arrow.

Since P1,1 is a unit-rank representation of G1,1, with as-
sumed analytic projector and trivial first Chern class, P1,1 must
be a BR of G1,1, according to our unit-rank splitting theorem.
There must therefore exist a locally symmetric Wannier basis
{W1,1,R}R∈T for P1,1, a BR of G1,1. We remind the reader
(cf. Appendix A 3 b) that being locally symmetric means that
W1,1,R has a Wannier center at �1 + R and forms a one-
dimensional representation of the site stabilizer G1,1,�1+R [cf.
Eq. (C20)] for all R. In particular,

∀g ∈ G1,1,�1 , g|W1,1,0〉 = ρ(g)|W1,1,0〉, (C23)

with ρ(g) a unimodular phase factor.
A set of M Wannier functions (lying in P) may be defined

by

|W1,μ,0〉 := gμ|W1,1,0〉, μ = 1, . . . ,M, (C24)

with gμ defined through Eq. (C15).
Lemma 2. With |W1,μ,0〉 given by Eq. (C24), (a)

{W1,μ,0}μ=1...M forms an orthonormal basis for a monomial
representation of G�1 , and (b) each W1,μ,0 is a 1D representa-
tion of the site stabilizer G1,μ,�1 , as defined in Eq. (C20).

Lemma 2 is proven below; let us first finish the proof of the
forward direction of the crystallographic splitting principle.

By application of lattice translations in T and the symme-
try transformation pα [defined in Eq. (C17)], we generate a set
of Wannier functions from W1,μ,0:

|Wα,pα ·μ,R〉 := (R|e)pα|W1,μ,0〉 ∈ Pα,pα ·μ. (C25)

That |Wα,pα ·μ,0〉 belongs in Pα,pα ·μ follows from Eq. (C18); that
|Wα,pα ·μ,R �=0〉 also belongs in Pα,pα ·μ follows from T (< G) be-
ing a subgroup of Gα,pα ·μ [the stabilizer defined in Eq. (C19)].

Since the band spanned by {Wα,pα ·μ,R}(R|e)∈T is of unit
rank, and so is Pα,pα ·μ by assumption, we may identify

Pα,pα ·μ = ∑
R |Wα,pα ·μ,R〉〈Wα,pα ·μ,R|. In combination, we have

thus found a Wannier basis {Wα,μ,R}α,μ,(R|e)∈T for the entirety
of P (corresponding to a single orbit).

We now conclude that P spans a monomial BR of G,
induced from a finite-dimensional monomial representation of
G�1 spanned by {W1,μ,0}μ [the representation in terms of com-
plex permutation matrices is explicitly given in Eq. (C34)].
This is because the induction procedure (to derive a mono-
mial BR) consists of defining new Wannier functions through
Eq. (C25), where {pα}α are representatives of the following
coset decomposition:

G/(T � G�1 ) = {[pα]|α = 1, . . . ,A}. (C26)

We briefly review how Eq. (C26) arises: T � G�1 is the
subgroup of G that trivially maps �1 (modulo lattice trans-
lations). Since the orbit of �1 under G comprises A Wannier
centers (modulo lattice translations), G/(T � G�1 ) must have
A elements, each represented by pα that maps �1 �→ �α .

This finishes the proof of the forward direction of the
crystallographic splitting principle. �

Proof of Lemma 2
Proof of statement (a) in Lemma 2. The orthonormal-

ity condition 〈W1,ν,0|W1,ν ′,0〉 = δνν ′ follows from P1νP1ν ′ =
P1νδνν ′ . Recall that G�1 has a transitive action on {P1,μ|μ =
1, . . . ,M}, which is therefore an orbit (of any of its elements)
under G�1 :

Orb[P1,1] = {P1,μ|μ = 1, . . . ,M}. (C27)

Since G1,1 is the stabilizer of P1,1 under G, it follows that
G1,1,�1 is the stabilizer of P1,1 under G�1 :

Stab[P1,1] = G1,1,�1 . (C28)

By the orbit-stabilizer theorem:

|G�1 |
|Stab[P1,1]| = |Orb[P1,1]| = M. (C29)

There must therefore be M elements in the coset

G�1/G1,1,�1 = {[gμ]|μ = 1, . . . ,M}. (C30)

To prove that each element can be represented by gμ ∈ G�1

defined in Eq. (C15), it suffices to show that gμ and gμ′ lie
in different equivalence classes if μ �= μ′. (Supposing the
contrary, there would exist g1,1 ∈ G1,1,�1 such that

gμ = gμ′g1,1 ⇒ P1,μ = gμP1,1g
−1
μ = P1,μ′ , (C31)

which contradicts our assumption that P1μP1μ′ = 0.) It follows
from Eq. (C30) that the following coset decomposition holds:

G�1 = ∪M
μ=1gμG1,1,�1 . (C32)

Now we derive the desired representation: consider that for
any g ∈ G�1

g|W1,μ,0〉 = ggμ|W1,1,0〉. (C33)

Since gμ ∈ G�1 , the closure property of groups ensures ggμ ∈
G�1 . We may therefore apply the coset decomposition of
Eq. (C32) to express ggμ = gμ′g1,1, for some μ′ = 1, . . . ,M
and some g1,1 ∈ G1,1,�1 . Consequently,

g|W1,μ,0〉 = gμ′g1,1|W1,0,0〉 = ρ(g1,1)
s(gμ′ )|W1,μ′,0〉, (C34)
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where as(g) = a (the complex conjugate of a) if g is antiu-
nitary, and otherwise as(g) = a. Eq. (C34) defines a unitary
representation of G�1 where each g ∈ G�1 is mapped to a
complex permutation matrix, with nonzero matrix elements
given by the unimodular phase factor: ρs. We thus conclude
that {W1,μ,0}μ=1...M spans a complex permutation represen-
tation of G�1 or, equivalently, a monomial representation of
G�1 ; this equivalence has been proven in Appendix B 2.

Proof of statement (b) in Lemma 2. It follows from
Eq. (C15) thatW1,μ,0 lies in the vector space projected by P1,μ.
By definition of the stabilizer G1,μ [cf. Eq. (C19)], P1,μ is
a representation of G1,μ. This implies that for any g1,μ,�1 ∈
G1,μ,�1 < G1,μ [cf. Eq. (C20)], g1,μ,�1 |W1,μ,0〉 remains in
P1,μ. and is therefore orthogonal to W1,μ′ �=μ,0. Further apply-
ing that g1,μ,�1 ∈ G1,μ,�1 < G�1 , and that {W1,μ,0}μ forms a
complex permutation representation of G�1 [cf. Eq. (C34)],
we deduce that

g1,μ,�1 |W1,μ,0〉 = ρ(g1,μ,�1 )|W1,μ,0〉, (C35)

with ρ a unimodular phase factor. Since this is true for any
g1,μ,�1 ∈ G1,μ,�1 , we arrive at the desired claim. �

Proof of backward arrow of crystallographic splitting
principle. Suppose we have a BR of G induced from a com-
plex permutation representation D of the site stabilizer G�1 ,
with the Wyckoff position �1 having multiplicity A. Let
{W1μ}μ=1...M be basis vectors of the representation space of
D, such that

∀ h ∈ G�1 , h|W1μ〉 = ρ(h; μ)|W1,h·μ〉, (C36)

with ρ a unimodular phase factor, and h· a permutation on the
μ index.

Given the coset decomposition in Eq. (C26), we define a
set of A Wannier functions by

|Wα,μ〉 := pα|W1μ〉, α = 1 . . .A, (C37)

and the unit-rank projection to their Bravais-lattice translates
as

Pαμ :=
∑

(R|e)∈T
(R|e)|Wα,μ〉〈Wα,μ|(R|e)−1. (C38)

Since each Wannier function is assumed to be exponentially
localized, each projector Pαμ must be analytic with trivial first
Chern class [76,77] and gives a splitting for

P = ⊕A
α=1 ⊕M

μ=1 Pα,μ. (C39)

Let us prove that {Pα,μ}α,μ is permuted by each element of G,
which would complete the proof of the backward arrow. �

Proof of permutation. The action of g on Pα,μ is

gP1μg
−1 =

∑
(R|e)∈T

g(R|e)|Wα,μ〉〈Wα,μ|(R|e)−1g−1. (C40)

Utilizing the coset decomposition in Eq. (C26), any g ∈ G can
be expressed as g = (R′|e)pα′h′, for one h′ ∈ G�1 , one α′ ∈
{1 . . .A}, and one (R′|e) ∈ T . It follows that

g(R|e)|Wαμ〉 = (pα′h′ ◦ R + R′|e)pα′h′pα|W1μ〉. (C41)

Since pα′h′pα ∈ G, it also has the coset decomposition:

pα′h′pα = (R′′|e)pα′′h′′. (C42)

Substituting the above equation into Eq. (C41), we derive
g(R|e)|Wαμ〉 = (pα′h′ ◦ R + R′ + R′′|e)ρ(h′′; μ)|Wα′′,h′′ ·μ〉.

(C43)

Substituting the above equation into Eq. (C40), and applying
that pα′h′ ◦ R + R′ + R′′ is a Bravais-lattice vector, we derive
the desired claim:

gPαμg
−1 = Pα′′∈{1...A},h′′ ·μ∈{1...M}. (C44)

�

APPENDIX D: METHODS OF SYMMETRIC SPLITTING

Let P project to a rank-N representation of a space group G; in
this section, we shall not distinguish between between space
groups, magnetic space groups, and double space groups.

We define a symmetric splitting with respect to G as a
splitting P = ⊕N

j=1Pj into single-rank projectors satisfying
the symmetry condition (B) of the splitting theorem, namely,
that for all g ∈ G, g : Pj → Pσg( j) with σg a permutation on
{1, . . . ,N}.

Given a symmetric splitting, the splitting theorem states
that if Pj (k) is analytic in k (over the Brillouin torus) and has
trivial first Chern class, then P is a monomial BR of G. Beside
offering a method to prove band representability, a symmetric
splitting automatically gives a set of Wannier functions which
are permuted by the space group.

For a given P, there is no unique symmetric splitting,
but we will describe two methods which involve diagonaliz-
ing various operators: (i) the projected symmetry operator in
Sec. D 1 and (ii) the projected position operator in Sec. D 2.

1. The projected symmetry method

We have exemplified the projected symmetry method for
fragile obstructed insulators in Sec. III. Here we describe our
method in greater generality: Suppose we are given a tight-
binding Hamiltonian h(k) defined with respect to a Löwdin-
orthonormalized [173,174] basis of Wannier functions. h(k) is
assumed to have the symmetry of a space group G,

g ∈ G, ĝh(k)ĝ−1 = h(g ◦ k), (D1)

with ĝ the matrix representation of g in the Wannier basis. We
define the Wannier-center operator r̂ as a diagonal matrix with
each diagonal element equal to the central position of each
Wannier function, such that

h(k + G) = e−iG·r̂h(k)eiG·r̂ (D2)

for any reciprocal vector G. Finally, we assume that the
real-space matrix elements of the tight-binding Hamiltonian
decay exponentially; this guarantees that h(k) is analytic in
k throughout the Brillouin torus [93]. Moreover, if a rank-N
energy band of h(k) is spectrally isolated (i.e., separated by
all other energy bands by a nonzero spectral gap at each
k), it is guaranteed that the rank-N projector p(k) is also
analytic in k throughout [77,98]. Our goal is to symmetrically
decompose p(k).

We would like to identify a Hermitian operator s̃ (in the
tight-binding basis of Wannier functions), such that the eigen-
bands of the s̃k := p(k)s̃p(k) give a symmetric splitting with
respect to G. s̃k is the projected symmetry operator; by con-
struction it is Hermitian and analytic throughout the Brillouin
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torus. It is necessary that s̃k has the same translational property
[cf. Eq. (D2)] as h(k), so we impose [s̃, eiG·r̂] = 0 for every
reciprocal vector G. We further impose that for any g ∈ G,
ĝ commutes or anticommutes with s̃; in the former case ĝ
trivially permutes the eigenspaces of s̃, and

ĝs̃kĝ = s̃g◦k; (D3)

in the latter case,

ĝs̃kĝ = −s̃g◦k, (D4)

and ĝ interchanges the eigenspaces of s̃ that have nonzero
eigenvalues.

In some models, s̃ is simply obtained by deforming the
eigenvalues of one of the unitary symmetry operators ĝ. An
example of this kind, with g the fourfold rotation, was pro-
vided in our case study of fragile obstructed insulators in
Wigner-Dyson class AI (cf. Sec. III). Generally, s̃ need not
correspond to a symmetry of h(k), as we exemplify below.

We define the eigenvalue problem

[s̃k − λ j (k)]|u j (k)〉 = 0, with λ1(k) � λ2(k) � . . .

(D5)

for all k. Generically, the band dispersion λ j should be non-
degenerate except on a zero-measure set of k, e.g., at a
conical (Dirac-Weyl) band touching. If each band is spec-
trally isolated, then we have obtained a symmetric splitting
P = ⊕N

i=1Pj with respect to G, with each Pj (k) being analytic
throughout the Brillouin torus; note Pj (k) is the projector to
the Bloch state eik·(r̂+R)|u j (k)〉. Furthermore, if each Pj has
trivial first Chern class, then P must be a monomial BR,
according to our splitting theorem.

On the other hand, if P = ⊕ jPj is not a monomial BR,
then either (a) there exists Pj (k) that is nonanalytic at a
set of k where λ j is degenerate or (b) each Pj is analytic
throughout the Brillouin torus, and at least one of {Pj} must
have a nontrivial Chern class. Colloquially speaking, s̃k is
the Hamiltonian of either a topological semimetal or a Chern
insulator. Note if each λ j is nondegenerate for all k, then case
(b) is implied; however, the converse statement—namely, that
(b) implies nondegeneracy—is not generally valid.

Except for certain double space groups with cubic point
groups (cf. Sec. IV), not being a monomial BR means that P
is an obstructed representation.

Example: Z2 topological insulator in Wigner-Dyson class
AII. Let P project to the filled, rank-two band of the Kane-
Mele Z2 topological insulator [32,33] with space group. T2 ×
ZT

4 . Following Prodan [75], one may pick s̃ = �n · S, with S
the spin operator and �n an arbitrary directional vector. Since
time reversal inverts S, the bands of s̃(k) would be nontrivially
permuted by T . Thus s̃ = �n · S gives a symmetric splitting
with respect to T2 × ZT

4 , despite not generally being a sym-
metry of the Hamiltonian. If s̃k were spectrally gapped at each
k, then P being an obstructed representation guarantees that
the two bands of s̃k have opposite and nonzero first Chern
numbers—this is nothing more than the spin Chern number
formulated for infinite samples by Prodan [75]. Our projected
symmetry method may be viewed as the generalization of
Prodan’s projected spin method to include crystallographic
space-group symmetry within class AII, and also to go beyond
symmetry class AII. An example of the latter—a symmetric

splitting in class AI—has been given in Sec. III C. To ex-
emplify the former, we consider the Kane-Mele honeycomb
model, whose symmetry is the double-group extension of
p6mm × ZT

2 , which we will denote by G̃6. While s̃ = �n · S no
longer gives a symmetric splitting of G̃6 for arbitrary �n, �n = �z
(the out-of-plane direction) would give the desired splitting.
The reason is that Sz commutes with all rotations in G̃6, and
anticommutes with all reflections.

2. Symmetric splitting by the projected position operator

We have proven in Sec. V B that the splitting P = ⊕N
j=1P

x
j

into bands of the projected position operator [cf. Eqs. (10)
and (11)] is symmetric with respect to certain two-space-
dimensional space groups [satisfying conditions (i) and (2)
in Lemma 1 of Sec. V B]. In this Appendix section, we will
prove a statement in Lemma 1 that is needed to derive the
Zak winding theorem (cf. Sec. V B), namely, that each Px

j is
analytic throughout the Brillouin zone.

By analyticity throughout the Brillouin zone, we mean that
the restriction of Px

j to k,

Px
j :=

∫
d2k

(2π )2
Px
j (k), Px

j (k) := ∣∣ψx
jk

〉〈
ψx

jk

∣∣, (D6)

is both analytic in k (for all k in the Brillouin zone), and pe-
riodic in reciprocal lattice translations k → k + G. The Bloch
function ψx

jk is obtained by 1D Fourier transform of the eigen-
functions of the projected position operator [cf. Eq. (10)]:

ψx
jk =

∑
R∈Z

eikxRh j,ky,R. (D7)

a. Proof of analyticity

Given that P has trivial first Chern class, a basis for the
Bloch functions {ψnk}Nn=1 exist that is analytic in k throughout
the Brillouin torus, and is periodic under translation by any
reciprocal vector: ψnk = ψnk+G; a review of this well-known
fact may be found in Appendix A 1.

Since both {ψnk}Nn=1 and {ψx
jk}Nj=1 [cf. Eq. (D7)] span the

same rank-N band P, there exists aU (N ) transformation Q(k)
that relates the two sets of Bloch functions:

ψx
jk = e−ikxx j (ky )

N∑
n=1

[Q(k)]n jψnk. (D8)

As shown in Appendix D of Ref. [20], the columns of Q(k) are
given by the eigenvectors of the Wilson loop W (k), which is
defined as a path-ordered exponential of the Berry connection
[cf. Eq. (6) with unk = e−ik·rψnk]:

W (k) = Pexp

[
i
∫ kx+2π

kx

Ax(s, ky)ds

]
. (D9)

The above integral is over a k loop with base point (kx, ky )
and end point (kx, ky + 2π ). [W (k) slightly differs in defi-
nition from W (C) in Eq. (7).] Q in Eq. (D8) is the unitary
transformation that diagonalizes the Wilson loop,

W (k) = Q(k)D(ky)Q(k)−1, (D10)

with D a diagonal matrix equal to

D(ky) = diag[ei2πx1(ky ), . . . , ei2πxN (ky )]. (D11)
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2πx j is referred to as a Zak phase [cf. Eq. (8)] and depends
only on ky; this dependence is because for a given k loop, the
spectrum of W is independent of the base point [20].

While we have flippantly claimed the columns of Q(k)
are the eigenvectors of W (k), beware that an eigenvector, if
nondegenerate in eigenvalue, is only defined up to a phase.
(If x j = x j′ is degenerate at isolated ky, then the the two
eigenvectors associated to x j and x′

j can still be defined up to
a phase by continuity in ky.) This phase ambiguity is reduced
by the following procedure: Since there is no topological
obstruction to analyticity of an eigenvector over the base space
S1, each column of Q(0, ky) can be made analytic and periodic
in ky. Moreover, from Eqs. (D9) and (D10), one deduces that
Q(kx, ky) and Q(0, ky) can always be related by a Wilson line
[20]:

Q(kx, ky) = Pexp

[
i
∫ kx

0
Ax(s, ky)ds

]
Q(0, ky). (D12)

These conditions on Q are henceforth adopted.
Analytic properties of the Q matrix. The analyticity of ψnk

implies that the Berry connection Ax(k) is also analytic in
k. Since Q(0, ky) is analytic in ky and Eq. (D12) holds as
well, we deduce that Q(k) is analytic in k. The periodicity
of ψnk = ψnk+G implies Ax(k) = Ax(k + G). The periodicity
of Ax, combined with the periodicity of Q(0, ky) in ky, implies
that Q(k) in Eq. (D12) is periodic in ky. However, Q is gener-
ically aperiodic in kx, i.e., Q(kx + 2π, ky) = W (k)Q(k).

Analytic properties of the Zak phase. The analyticity and
periodicity of A(k) imply that W (k) is likewise analytic and
periodic. This implies that the spectrum {ei2πx j (ky )}Nj=1 of W (k)
is analytic and periodic. If we further assume the Zak per-
mutation order Z2πex = 1, then each eigenvalue ei2πx j (ky ) can
be made analytic and periodic, too. Beware, however, that
2πx j can wind with respect to ky; the associated Zak winding
number Wj,2πex has been defined in Eq. (9).

Given the above-stated analytic properties of Q, x j , and
ψnk, we are then able to deduce the analytic properties of ψx

jk,
as defined in Eq. (D8). Namely, ψx

jk is analytic in k throughout
the Brillouin zone, periodic in kx [20] but aperiodic in ky if the
Zak winding number Wj,2πex [cf. Eq. (9)] is nonzero:

ψx
j,kx+2π,ky= ψx

j,kx,ky , ψx
j,kx,ky+2π= e−ikxWj,2πex ψx

j,kx,ky . (D13)

An alternative (and numerically motivated) construction of
such a basis is described in Ref. [44], where it is referred to
as a‘cylindrical gauge. While ψx

jk is possibly aperiodic under
ky → ky + 2π , one deduces from Eq. (D13) that the projector
Px
j (k) = |ψx

jk〉〈ψx
jk| is always periodic. Combining this with

the analyticity of ψx
jk, we derive that Px

j (k) is both periodic
and analytic throughout the Brillouin zone. �

FIG. 10. Zak phase (divided by π ) of the lowest band of the
projected symmetry operator in three independent planes (kz = π ,
ky = 0 and kx = 0 from left to right) in the Brillouin zone.

APPENDIX E: PROVING THE FRAGILITY
OF ROTATION-INVARIANT TOPOLOGICAL

CRYSTALLINE INSULATORS

1. Fragility of tetragonal TCI

Fu’s tight-binding Hilbert space [55] for the T3 �C4v ×
ZT

2 -symmetric TCI is spanned by two pairs of px, py orbitals
in each unit cell. The reduced real-space coordinates of the
two pairs of orbitals are (0, 0, 0), in an orthogonal basis of
Bravais lattice vectors. To remove the symmetry obstruction
of the filled rank-two band, a unit-rank BR [induced by an
s orbital at (0.5, 0.5, 0.0)] is introduced to the model. The
original parameters in Ref. [55] are adopted. Additionally, the
on-site energy of the s orbital is set to −4.0, in units where
the nearest-neighbor hopping between p orbitals (in the x − y
plane) equals 1; this ensures that the s-type BR lies below
the energy gap. The hopping between the s orbital and the
two px orbitals in the home unit cell is continuously increased
to 0.375, with all other hoppings determined by translational
symmetry and C4v . During this interpolation, the bulk gap
never closes.

Before the introduction of the s-like BR, the spectrum of
the projected symmetry operator is gapless along a nodal line,
as illustrated in Fig. 2(a). Upon the introduction of the s-like
BR, the projected symmetry operator consists of three bands
whose dispersion are nondegenerate throughout the Brillouin
zone [cf. Fig. 2(b)]. Each unit-rank band has trivial first Chern
class, as verified by computing the winding of the Zak phase
in three independent k-directions. For illustration, the Zak
phase of the lowest band (of the three) is presented in Fig. 10.

2. Fragility of hexagonal TCI

In Ref. [36], a T3 �C3v × ZT
2 -symmetric topological in-

sulator was proposed on a triangular Bravais lattice with
primitive vectors: a1 = (1, 0, 0), a2 = (−1/2,

√
3/2, 0) and

a3 = (0, 0, 1), and with the following tight-binding model
Hamiltonian:

H (k) =
[

5

2
− cos(k1 + 2π/3) − cos(k2 + 2π/3) − cos(k1 + k2 − 2π/3) − cos(k3)

]
	30

+ {0.3[eiπ/3 cos(k1) + e−iπ/3 cos(k2) − cos(k1 + k2)]	1+ + h.c.} + sin(k3)	20. (E1)

Here, k j = k · a j for j = 1, 2, 3, 	i j = σi ⊗ τ j (with σi and τ j

being two sets of Pauli matrices), and 	1+ = σ1 ⊗ (τ1 + iτ2).
The tight-binding basis for the above Hamiltonian is given by
two sets of px ± ipy orbitals, both located at (0, 0, 0).
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TABLE II. Hoppings between the s orbital and other orbitals in
the format of 〈0m|H |Rs〉, where R is a three-element vector denoting
the unit cells of the s orbital and m ∈ {1, 2} is an index for the p
orbital. p(2)

± , for example, denotes the px ± ipy for the second set of
p orbitals.

R m Hopping

[1,0,0] p(2)
+ i/6

p(2)
− i/6

[1, 1, 1] p(1)
+ −0.116667 − 0.202073i

p(1)
− 0.233333

[1, −1, 1] p(2)
− 0.4

[1, 2, 0] p(1)
+ −i/6

The low-energy band of the above model is an obstructed
representation of T3 �C3v × ZT

2 , as deducible from the non-
trivial Zak phase described in Ref. [69]. Associated to this
obstruction is an integer-valued topological invariant χ—the
halved-mirror chirality—which equals 1 in this model. The
obstruction also manifests in the projected C3-rotation oper-
ator as a nodal line in the spectrum, as illustrated in the left
panel of Fig. 11(a).

To break the symmetry obstruction on Wannier functions,
we add to the low-energy subspace a unit-rank BR induced
by an s orbital at the Wyckoff position (0, 0, 0), with the
tight-binding hoppings tabulated in Table II. The projected
C3 operator now consists of three unit-rank bands whose dis-
persions are nondegenerate throughout the Brillouin zone [cf.
right panel of Fig. 11(a)]; each band has trivial first Chern
class [cf. Fig. 11(b)].

APPENDIX F: PROOF THAT CERTAIN POINT GROUPS
ARE MONOMIAL

Here we show that the following point groups are mono-
mial:

(1) 32 crystallographic point groups [5]
(2) 27 noncubic double point groups,
(3) OR Grey magnetic point group generalizations of (1)

and (2) (which correspond to the Wigner-Dyson symmetry
classes AI and AII, respectively).

Noncubic point groups are crystallographic point groups
that are neither tetrahedral nor octahedral, i.e., they are not any
of T , Th, Td , O, and Oh. Grey crystallographic point groups
are of the form P × ZT

2 where P is a point group in (1), and
ZT

2 is a cyclic group of order two generated by time-reversal
symmetry; grey double point groups are the double covers of
P × ZT

2 .
Bacry et al. [175] claimed that all 32 crystallographic point

groups, i.e., the point groups in (1), are monomial, but did not
provide a reference or proof. We have not seen the claim (or
proof) of monomiality for point groups in (2) or (3) anywhere
in the literature.

The rest of Appendix F is organized as follows.
(i) We begin in Appendix F 1 by reviewing Huppert’s theo-

rem [176], which gives sufficient conditions for a finite group

to be monomial; we will prove two corollaries of Huppert’s
theorem that are useful for point groups.

(ii) Basic properties of the crystallographic point groups
are reviewed in Sec. F 2. Each class of point groups labeled
(1)–(3) will further be divided into subclasses:

(A) Proper rotation groups
(B) Improper rotation groups with inversion
(C) Improper rotation groups without inversion
Proper rotation groups consist purely of rotations, while

improper rotation groups include at least one reflection or
inversion element.

(iii) This subclassification was used by Altmann [177] to
show that every crystallographic point group in (1) can be
written as a triple semidirect product of a normal, Abelian
subgroup and two cyclic subgroups (any one of which might
be trivial). Altmann’s result, together with the two previously
mentioned corollaries and Wigner’s theorem [104], allow us
to prove the monomiality of (1)–(3) in Appendixes F 3, F 4,
and F 5, respectively.

(iv) Finally, in Appendix F 6, we show that the five double
cubic point groups are not monomial, and exemplify a non-
monomial representation for the double tetrahedral group.

1. Huppert’s theorem for monomial groups, and two corollaries

To prepare the reader for Huppert’s theorem, we briefly
review the standard definitions of solvability, supersolvability
and Sylow subgroups.

A finite group G is solvable if there exists a series of normal
groups, i.e.,

C1 = G0�G1�G2 . . .�Gk = G (F1)

FIG. 11. (a) Left panel: Half the spectral gap between the two
bands of the projectedC3-rotation operator. Right panel: The spectral
gap between the lowest band and middle band of the projected C3-
rotation operator. (b) Zak phase (divided by π ) for the lowest band
of the projected C3 operator, for three independent k planes (kx = 0,
ky = 0, and kz = 0 from left to right) in the Brillouin zone.
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for a k � 1, such that Gj+1/Gj is Abelian for all j =
1, . . . , k − 1. Here, Gj�Gj+1 means that Gj is normal in
Gj+1.

G′ is supersolvable if there exists a series of normal groups,
i.e.,

C1 = G′
0�G′

1�G′
2 . . .�G′

n = G′ (F2)

for n � 1, such that G′
j�G′ and G′

j+1/G
′
j is cyclic. Supersolv-

ability is a stronger condition than solvability.
A p group is a group for which every element has order

equal to an integer power of a prime p. A maximal subgroup
of a group G′′ is a subgroup that is not contained in any larger
subgroup (that is not G′′ itself). Lastly, a Sylow subgroup of
G′′ is a maximal p group.

Huppert’s theorem. Let H ′ be a finite group with normal,
solvable subgroup N ′, and with supersolvable quotient group
H ′/N ′. If all subgroups of N ′ that are Sylow are also Abelian,
then H ′ is monomial.

Corollary 1. If a finite group H has a decomposition
H = N �C(1) �C(2) � . . . �C(n) for a n � 1, whereC( j) are
cyclic subgroups, N is an Abelian normal subgroup of H , and
� is associative, then H is monomial.

� being associative means that

A � B �C � D = A � (B �C � D)

= (A � B) � (C � D) = (A � B �C) � D,

(F3)

which implies A, A � B, and A � B �C are all normal sub-
groups of A � B �C � D.

Proof of Corollary 1. Any Abelian group N is also solvable,
because there exists a normal series C1�N with N/C1 = N
that is Abelian. Furthermore, H/N = C(1) �C(2) � . . . �C(n)

has the normal series given in Eq. (F2), with the identi-
fications G′

j = C(1) � . . . �C( j) and G′ = G′
n = H/N . The

associativity of � implies that G′
j�H/N for any j = 1, . . . , n.

Furthermore, Gj+1/Gj = C( j+1) is cyclic. Finally, since N is
Abelian, all its subgroups are Abelian; therefore, if N has
Sylow subgroups, such subgroups must also be Abelian. In
combination of the above facts, we find that H and N satisfy
all conditions of H ′ and N ′ in Huppert’s theorem, respectively;
hence H is monomial. �

Corollary 2. If a finite group H has an Abelian, normal
subgroup N , such that H/N is a cyclic subgroup of H , then H
is monomial.

Proof of Corollary 2. Since N is Abelian, N is solvable
(see beginning of Proof of Corollary 1). Furthermore, H/N
is supersolvable, i.e., it has a normal series C1�H/N such
that (H/N )/C1 = H/N is cyclic. Because H/N is Abelian,
all its Sylow subgroups are also Abelian; therefore, Huppert’s
theorem applies. �

2. Review of proper versus improper point groups

Here, we elaborate on the subclassification of point groups
given in point (ii) of the outline of Appendix F.

A review of crystallographic point groups [class (1)] is
given here, with emphasis on its subclassification into proper
rotation groups [A], improper rotation groups with inversion
symmetry [B], and improper rotation groups without inversion
symmetry [C]. Class and subclass labels will be combined

TABLE III. Improper point groups without inversion (P¬i; first
column) can be constructed from proper rotation groups (P; second
column) and an index-2 subgroup (H < P; third column).

P¬i P H

Cs C2 e
S4 C4 C2

C3h C6 C3

C2v D2 C2

C3v D3 C3

C4v , D2d D4 C4, D2

C6v , D3h D6 C6, D3

Td O T

as (1)A, (1)B, (1)C. The subclassification cubic double crys-
tallographic point groups will be described subsequently in
Appendix F 4, after we clarify the meaning of a double group.

There are 11 crystallographic point groups which consist
only of rotations [class (1)A]: the trivial point group C1, the
cyclic groups {Cn}n=2,3,4,6, the dihedral groups {Dn}n=2,3,4,6,
the tetrahedral group T , and the octahedral group O.

Class (1)B consists of improper rotation groups with inver-
sion which can be constructed by direct products of the above
11 proper rotation groups P with Zi

2 – the order-two group
generated by inversion i; we denote these by Pi = P × Zi

2.
The direct-product structure reflects that inversion squares to
identity and commutes with every point-group operation. The
11 point groups constructed in this way are S2, C2h, C3i, C4h,
C6h, D2h, D3d , D4h, D6h, Th, and Oh. Here, and throughout this
work, we employ the standard notation for point groups that
is reviewed in Ref. [5].

The remaining crystallographic point groups in class (1)C
are improper rotation groups without inversion, and will be
denoted by P¬i. Such groups may be constructed from eight
out of the 11 proper rotation groups [(1)A] which have at
least one index-2 subgroup. The three (1)A groups without
index-two subgroups are the trivial group C1, C3 and T . D4

and D6 each has two index-two subgroups, as given in the
third column of Table III. All other (1)A groups have ex-
actly one index-two subgroup [cf. Table III]. Denoting a (1)A
group by P and its index-two subgroup by H , a (1)C group
is constructed as P¬i = H + iP\H , where P\H denotes all
elements of P that are not in H . Two 1(C) groups can be
constructed from P = D4 (and also D6), which has two index-
two subgroups. Altogether there are ten (1)C groups which we
tabulate in Table III.

We will eventually use that P¬i is isomorphic to P . The
proof is as follows. First note that H is both a subgroup of
P and P¬i. We define a map ϕ : P → P¬i that is the identity
map on H < P , and maps an element p ∈ P\H bijectively
onto ip ∈ P¬i. Since i squares to the identity and commutes
with all point-preserving spatial isometries (including all
elements in H and P), the bijection ϕ preserves the multi-
plication rule, and hence constitutes a group isomorphism.

3. Crystallographic point groups are monomial

To show that crystallographic point groups [class
(1)] are monomial, we will apply Altmann’s semidirect-
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product decomposition [178] of the crystallographic point
groups.

Review of the semidirect product. N �C is a group that is
constructed from two groups N and C for which C acts on
N by conjugation, i.e., n → cnc−1, for all n ∈ N and c ∈ C.
As a set, N �C = N ×C; as a group, elements in N �C are
multiplied as (n, c) · (n′, c′) = (n cn′c−1, cc′). The subgroup
N ×C1 – henceforth referred to as N – is a normal subgroup
of N �C; the subgroup C1 ×C – simply denoted by C – is
generally just a subgroup of N �C.

Altmann showed that all crystallographic point groups
can be expressed as P = N �C, where N is a maximal
normal subgroup of P and C a cyclic subgroup. Both N
and C are subgroups of the group O(3) of isometries in
3D real space, so the action of C on N is uniquely defined
within O(3) <.

For 28 of the 32 crystallographic point groups that are
not {Th,Td ,Oh,O}, N can further be shown to be Abelian.
Let us give an example for each subclass of (1): in class
(1)A, P = Dn, N = Cn, C = C′

2 (C′
2 is generated by a twofold

rotation with rotational axis perpendicular to the rotational
axis defined forCn); in class (1)B, P = C4h, N = C4,C = Zi

2;
in class (1)C, P = C4v , N = C4, C = C′

s (C′
s is generated by

a mirror plane which is parallel to the rotational axis of N ,
and thus acts trivially on N). To recapitulate, each of these 28
crystallographic point groups is an extension of an Abelian
group (C) by an Abelian group (N); such groups are called
metabelian, and it is known that all metabelian groups are
monomial [179].

For the four remaining crystallographic point groups—Th,
Td , Oh, and O—all maximal normal subgroups N are non-
Abelian [180] See p. 222 of Ref. [177]. But since every
such N is also a crystallographic point group, it has itself a
decomposition N = N ′ �C′ with C′ cyclic and N ′ a maximal
normal subgroup of N . Altmann [177] showed that every crys-
tallographic point group P = N �C for which N = N ′ �C′
is non-Abelian, has a decomposition with N ′ Abelian and �

associative [cf. Eq. (F3)]. The latter also implies that N ′ is a
normal subgroup of P .

Example of triple semidirect product: O = T �C′′
2 = D2 �

(C′
3 �C′′

2 ) [177]. In review, the octahedral group O consists
of the orientation-preserving symmetries of a cube. Let the
x, y, and z axes go through the center of the three faces of
the cube; these three axes also define the axes of the twofold
rotational symmetries, which generate the subgroup D2. A
cube also has a threefold rotational axis going through the
corner (1,1,1) of the cube; this threefold rotational symmetry
generates the group C′

3. (Incidentally, D2 �C′
3 = T are the

orientation-preserving symmetries of a tetrahedron.) Finally,
the cube has another twofold rotational symmetry with axis
going through the center of the vertex (1,1,0). This twofold
rotational symmetry generates C′′

2 . Altogether, the mirror,
threefold, and twofold rotational symmetries generate the
group O.

To recapitulate, for all crystallographic point groups P ,
there exists an Abelian normal subgroup N ′ of P such that
P = N ′ � (C′ �C) where C,C′ are cyclic subgroups of P;
C or C′ may be the trivial subgroup [181] See p. 228 of
Ref. [177]. Therefore, Corollary 1 of Appendix F 1 implies
that P is monomial.

4. Noncubic double point groups are monomial

In this Appendix section, we will apply Corollary 2 of
Appendix F 1 to prove that all 27 noncubic double point
groups [class (2)] are monomial. Given also that the five cubic
double point groups are nonmonomial (as proven in Appendix
F 6), we conclude that a double crystallographic point group
is monomial if and only if it is noncubic.

After giving a brief review of double crystallographic point
groups in Appendix F 4 a, we tackle the proof of monomiality
for class (2)A, (2)B, and (2)C separately, in Appendixes F 4 b,
F 4 c, and F 4 d.

a. Review of double point groups

It is well known from the study of angular momentum that
the double cover of SO(3) is SU (2). SU (2) may be viewed as
the unsplit central extension of SO(3) by Z2. The Z2 group is
generated by ẽ, which commutes with every element in SU (2),
and has the physical interpretation of a 2π rotation. SU (2)
being a double cover means there exists a 2-1 surjection φ :
SU (2) → SO(3).

Analogously, for each of the 11 proper rotation point
groups (denoted P) that are subgroups of SO(3), the double
cover P̃ = φ−1(P ) is a subgroup of SU (2). The identity e ∈
P lifts (via φ−1) to two elements in P̃ – e and ẽ �= e – which
both commute with all elements in P̃ , and satisfy ẽ2 = e.
For any g ∈ P , there exist two corresponding elements, g and
g̃ = gẽ, in P̃ . The multiplication rule of any two elements in P̃
is determined by the multiplication rule of the same elements
in SU (2).

More generally, the double covers of the crystallographic
point groups (P,Pi,P¬i) are referred to as the double crystal-
lographic point groups, and denoted by (P̃, P̃i, P̃¬i). We shall
only concern ourselves with half-integer-spin representations
of the double crystallographic point groups, in which ẽ is
represented by −1 times the identity matrix.

b. Proof for proper double point groups

Of the 11 proper double crystallographic point groups, only
two of them (T̃ and Õ) are cubic. The remaining nine groups
form class (2)A, and are proven here to be monomial.

The double covers ofCn for n = 1, 2, 3, 4, 6 are still cyclic
but with twice as many elements, i.e., C̃n

∼= Z2n. This reflects
that a 2π rotation is not the identity element but a 4π rotation
is (cf. Appendix F 4 a). Abelian groups such as Z2n are mono-
mial because all their irreps are 1D (and 1D irreps are trivially
induced from 1D irreps of the group itself).

The only remaining double proper crystallographic point
groups are the double covers (D̃n) of Dn = Cn �C′

2, where
n = 2, 3, 4, 6 and the C′

2 axis is perpendicular to the Cn

axis. The generators of C′
2 and Cn are denoted c′

2 and cn,
respectively. As an element of D̃n, cn generates a subgroup
isomorphic to Z2n. This subgroup is normal in D̃n because
c′

2cnc
′−1
2 = c−1

n (recall here that c′
2 inverts the Cn axis) and the

quotient group D̃n/Z2n = {[e], [c′
2]} is cyclic and isomorphic

to Z2; note that c′2
2 = ẽ ∈ Z2n lies in [e]. Therefore, Z2n is

an Abelian and normal subgroup of D̃n with cyclic quotient
group Z2. Corollary 2 then implies that D̃n is monomial.
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c. Proof for improper double point groups with inversion

The nine groups (denoted P̃i) in class (2)B are obtained
by including inversion symmetry (i) for each of the nine
groups (denoted P̃ in class (2)A. i squares to the identity
and commutes with all double point-group operations [8,182];
we have the direct-product form P̃i = P̃ × Zi

2. We have al-
ready proven in Appendix F 4 b that all P in class (2)A
are monomial; then, according to the Lemma for monomial
direct-product groups in Appendix B 4, P̃i = P̃ × Zi

2 must
also be monomial.

d. Proof for improper double point groups without inversion

Of the ten improper double crystallographic point groups
without inversion, only one of them (T̃d ) is cubic, and the rest
have the denotation P̃¬i and form class (2)C.

To prove the monomiality of P̃¬i, we first prove its isomor-
phism with P̃ in class (2)A (cf. Appendix F 4 b). P̃¬i

∼= P̃ will
be derived from the isomorphism P¬i

∼= P , for P a proper,
noncubic crystallographic point group having an index-two
subgroup H . To clarify, of the nine noncubic proper crys-
tallographic point groups, two of them [C1 and C3] have no
index-two subgroups, for two of them [D4 and D6] each has
two index-two subgroups, while the rest each has one index-
two subgroup. This means that the nine groups in class (2)C
will be shown to be isomorphic to seven groups in class (2)A.

We remind the reader of the set decompositions P = H +
P\H and P¬i = H + iP\H , as reviewed in Appendix F 2.
Under the 2-1 surjection φ : SU (2) → SO(3), the preimage
of H is a subgroup of both P̃ and P̃¬i. On the other hand,
φ−1(P\H ) is a subset of P , while iφ−1(P\H ) is a subset of
P̃¬i. There is therefore a bijection of group elements between
P̃ and P̃¬i, where in the direction P̃¬i → P̃ one merely
drops the i label. Moreover, this bijection preserves the mul-
tiplication rule, because i commutes with every point-group
operation [8,182].

Now we combine the just-stated isomorphism with a result
established in Appendix F 4 b, namely, that all noncubic
double proper rotation groups [P̃ in class (2)A] are monomial.
Since each noncubic double improper rotation group without
inversion [P̃¬i in class (2)A] is isomorphic to one of P̃ in
class (2)A, we deduce that P̃¬i must also be monomial. This
follows because if two groups A ∼= B are isomorphic, then
A is monomial if and only if B is monomial. Indeed, every
representation of A gives a representation of B via the group
isomorphism, and vice versa. So if all representations of A
are induced from 1D irreps of subgroups of A, so must all
representations of B be induced from 1D irreps of subgroups
of B, and vice versa.

5. Grey magnetic point groups and grey magnetic double point
groups are monomial

Here we prove that all 32 grey magnetic point groups
(denoted PT ), and all 27 grey magnetic noncubic double point
groups (P̃T ) are monomial.

Our proof relies on Wigner’s seminal result [104], namely,
that all irreps of PT = P × ZT

2 are induced from irreps of the
crystallographic point group P . Similarly, all half-integer-spin
irreps of P̃T (the double-group extension of P × ZT

2 ) are

induced from irreps of the double point group P̃ . [In fact,
Wigner goes further to show that a representation D of P is
either (a) compatible with time-reversal T symmetry, or (b)
incompatible with T symmetry, but D ⊕ D∗ [D∗ being the
complex conjugate of D] is compatible. Which case holds
depends on whether D is an integer-spin or half-integer-spin
representation, and whether D is real, complex, or quater-
nionic. Such considerations, however, lie outside the scope of
our proof.]

Since any irrep (denoted DT ) of PT is induced from an ir-
rep (D) of P , the question of whether DT is monomial reduces
to the question of whether D is monomial. In other words,
if D is induced from a one-dimensional representation of a
subgroup H < P , then it follows that DT is also induced from
the same one-dimensional representation of H < P < PT .
Such a one-dimensional representation always exists for any
representation D of P , because of our previously-established
result that all 32 crystallographic point groups are monomial;
cf. Appendix F 3. Thus we conclude that all 32 grey magnetic
point groups are also monomial.

By similar reasoning, one concludes that all 27 grey mag-
netic noncubic double point groups are monomial, based on
our result that all 27 double noncubic point groups are mono-
mial; cf. Appendix F 4.

6. Double cubic point groups are nonmonomial

We will show that the double-group extensions of the
cubic crystallographic point groups T,Td ,Th,O,Oh are
nonmonomial.

T̃ and Õ are standard examples of nonmonomial groups
[183].

Example of nonmonomial irrep of double cubic point group
T̃ . Let us consider the nonmonomial [184] 2D irrep Ē of dou-
ble group T̃ . In a representation basis with spin quantization
axis that is parallel to theC2 axis, the three generators of T̃ are
represented as

C2 = e−π iσz/2, C′
2 = e−π iσx/2, C′

3 = e−π i(σx+σy+σz )/(3
√

3).

C2 and C′
2 are complex permutation matrices but C′

3 is not;
an analogous statement holds in an eigenbasis of C′

2. In
a basis where C′

3 = e−π iσz/3 is diagonal, we find instead

that C2 = e−π i(−σx+σy−σz )/(2
√

3) is not a complex permutation
matrix.

Of the three remaining double cubic point groups, two have
the direct-product form: T̃h = T̃ × Zi

2 and Õh = Õ × Zi
2.

(The direct-product structure was explained in Appendix F 4.)
Since Õ and T̃ are nonmonomial, it follows that Õh and
T̃h must also be nonmonomial, according to the Lemma for
monomial direct-product groups in Appendix B 4.

Finally, to show that T̃d is nonmonomial, we will use that
double-group extensions of isomorphic crystallographic point
groups are also isomorphic and monomiality (as well as non-
monomiality) is preserved by group isomorphisms—both of
these claims have been proven in Appendix F 4 d. Thus, Td ∼=
O implies their double-group extensions are also isomorphic:
T̃d ∼= Õ; moreover, since Õ is known to be nonmonomial, so
must T̃d be nonmonomial.
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APPENDIX G: TIGHTLY BOUND BRS AND THE
EXISTENCE OF THE SYMMETRIC

TIGHT-BINDING LIMIT

We have used inSecs. V and IX that every BR has a sym-
metric tight-binding limit to a tightly bound BR. We remind
the reader that a tightly bound BR is a BR for which all
Wannier functions are one-site localized. The goal of this
Appendix is to describe tightly bound BRs in the language
of G-vector bundles (in Appendix G 2), so as to rigorously
prove the existence of a symmetric tight-binding limit for
any BR (in Appendix G 3). In Appendix G 1, we provide
definitions for G-vector bundles and discuss their applications
in tight-binding lattice models.

1. G-vector bundles and tight-binding lattice models

We have heuristically introduced (complex) vector bundles
in Appendix A 1 from the perspective of band theory. Here,
we review some basic bundle notions from the mathematical
perspective, and describe their application to tight-binding
lattice models.

A complex vector bundle is a continuous surjection p :
E → B from a (topological) space E , called total space, to
a (topological) space B, called base space. Furthermore, it
has a local trivialization: For every b ∈ B there exists a neigh-
bourhood Ub ⊂ B and a continuous bijection hb : p−1(Ub) →
Ub × CN with continuous inverse such that hb|p−1(b) is a linear
isomorphism of vector spaces. Eb = p−1(b) is called the fiber
over b, and N the rank of the vector bundle.

The total space E can also be viewed as a disjoint union
of all fibers, i.e., E ≡ �b∈BEb. The local trivialization implies
that every fiber of a complex rank-N vector bundle is isomor-
phic to CN .

The notion of isomorphism for vector spaces is well
known, e.g., any complex N-dimensional vector space is iso-
morphic to CN . There is an analogous notion of isomorphism
for vector bundles:

For two vector bundles E , E ′ over the same base space
B, a vector bundle isomorphism is a continuous bijection
f : E → E ′ with continuous inverse such that f |Eb

is a linear
isomorphism from the fiber Eb to the fiber E ′

b for all b ∈ B.
For example, a vector bundle that has nontrivial first Chern

class is not isomorphic a product bundle; the latter has total
space BZ ×V , with BZ the Brillouin zone and V an N-
dimensional complex vector space.

Let us apply these bundle notions to tight-binding lat-
tice models. A tight-binding lattice model corresponds to a
finite-dimensional vector space (in each unit cell indexed by
Bravais-lattice vector R) spanned by Ntot tight-binding basis
functions �φα,R, indexed by α = 1, . . . ,Ntot. The Fourier trans-
forms of tight-binding basis functions span the fibers of a
vector bundle with total space ETB over B = BZ (the Brillouin
zone). Since tight-binding basis functions are, by definition,
one-site localized, their Fourier transforms are k independent;
hence, the fibers are k-independent Ntot-dimensional complex
vector spaces, denoted VTB and ETB=BZ ×VTB.

Any rank-N vector bundles E over the BZ—with 1 � N �
Ntot—can be embedded in this tight-binding product bundle
ETB with Ntot large, as exemplified by a rank-N energy band

of a tight-binding Hamiltonian. Then each fiber Ek is spanned
by N vectors which we denote as �Vn(k) = (Vn(k)α )Ntot

α=1 with
n = 1, . . . ,N . It is assumed that { �Vn(k)}Nn=1 are periodic over
the Brillouin torus; these vectors span the fiber Ek at each k. If
the vector bundle is topologically trivial (in spatial dimension
d � 3, topological triviality is equivalent to having trivial
first Chern class), then each �Vn(k) can be chosen to be a
periodic and analytic function of k. The Fourier transform of
each such �Vn(k) defines a set of Wannier functions related
by Bravais-lattice translations. Especially, if E is spanned
by one-site localized Wannier functions, then �Vn(k) can be
chosen k independent, and E is a product bundle.

Space-group symmetries g ∈ G provide additional struc-
ture to vector bundles. Especially, the total space E and the
base space B are G spaces.

For a topological group G and a topological space X ,
called a G space, a continuous action of G on X is given
by a continuous map ◦ : G × X → X such that e ◦ x = x and
(gh) ◦ x = g ◦ (h ◦ x) for all x ∈ X and all g, h ∈ G.

In band theory, G acts on the BZ by g : k → ǧk (modulo
reciprocal lattice vectors) and acts fiberwise on E by a unitary
matrix Ug(k) that is sometimes called the sewing matrix:

ĝ : �Vn(k) ∈ Ek �→
N∑

n′=1

[Ug(k)]n′n �Vn′ (ǧk) ∈ Eǧk. (G1)

(A space group G is a topological group using the discrete
topology.) In fact, E is a G bundle, defined as follows.

Definition G.1. For G spaces E and B, a G-vector bundle
is a vector bundle for which p : E → B is a G-map, and the
fiberwise action g : Eb → Egb is a linear isomorphism for all
b ∈ B.

For p to be a G-map means that gp(e) = p(ge) for all e ∈ E
and g ∈ G.

Two G-vector bundles E , E ′ over the same base space
B are G-isomorphic if there exists a complex vector bundle
isomorphism f : E → E ′ that is also a G map.

Note the notational difference between an isomorphism (as
a complex vector bundle) and a G isomorphism.

2. BRs and tightly bound BRs as G-vector bundles

We now discuss how BRs and tightly bound BRs can be
expressed as G-vector bundles.

For simplicity, let us consider a rank-N BR(G,�,D).
Then there always exists a basis { �Vn(k)}Nn=1 of each fiber
Ek that is analytic in k ∈ BZ (e.g., Ref. [80], Sec. I. B).
Their continuity and linear independence at each k ∈ BZ
implies that there exists an isomorphism (as complex vec-
tor bundles) from E to the rank-N product bundle (cf.
Ref. [53], p. 8).

For a BR(G,�,D), the action of G on E is referred to as
a (G,�,D) action, which we define by Eq. (G1) with Ug(k)
having the following canonical form (cf. Ref. [17]):

[Ug(k)]n′n = e−isgǧk·�g,n′ ,n [Ug(0)]n′n. (G2)

Here, n′ is uniquely defined by the Wannier center �n′ and
by a Bravais lattice vector �g,n′,n such that g ◦ �n = �n′ +
�g,n′,n. Furthermore, Ug(0) is determined by D(ǧ−1

n′ ǧǧn), as
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explained in detail in Ref. [80], Appendix A. To recapitulate,
a BR(G,�,D) forms a G-VB E with a (G,�,D) action. (Im-
plicit in this definition is that E is vector bundle isomorphic to
the product bundle.)

A tightly bound BR(G,�,D) is a BR(G,�,D) with the
additional property that (i) it is subbundle of a tight-binding
lattice model (given by ETB over BZ) and (ii) it is a G-product
bundle with (G,�,D) action. (ii) implies there exists a k-
independent basis for the k-independent fibers; the Fourier
transform of this basis gives one-site localized Wannier
functions.

3. Existence of symmetric tight-binding limit

A BR and a tightly bound BR with the same (G,�,D)
action are G isomorphic.

Proof. Here we prove the more general claim that any two
G-vector bundles E and E ′ of the same rank and with the same
(G,�,D)-action are G-isomorphic. In particular, this holds
for E a rank-N BR with (G,�,D) action and for E ′ a rank-N
tightly bound BR with the same (G,�,D) action.

Let E and E ′ be two G-vector bundles of the same rank
and with the same (G,�,D) action. Their fibers at k ∈
BZ are spanned by { �Vn(k)}Nn=1 and { �V′

n(k)}Nn=1, respectively.
By definition, E and E ′ are isomorphic as complex vec-
tor bundles, which means there exists a linear isomorphism
I from the fibers of E and to those of E ′ (cf. Ref. [53],
p. 8):

I (k, �Vn(k)) = (k, �V′
n(k)). (G3)

To show that I is also a G isomorphism, it suffices to prove
that I is a G map:

ĝI (k, �Vn(k)) = ĝ (k, �V′
n) =

(
ǧk,

N∑
n′=1

[Ug(k)]n′n �V′
n′ (k)

)

=
N∑

n′=1

[Ug(k)]n′n(ǧk, �V′
n′ (k))

=
N∑

n′=1

[Ug(k)]n′nI (ǧk, �Vn′ (ǧk)))

= I
(
ǧk,

N∑
n′=1

[Ug(k)]n′n �Vn′ (ǧk))

)

= I (ĝ(k, �Vn(k))). (G4)

For the equality in the second row, we used the linearity of the
fibers of E ′, whereas for the first equality in the fourth row we
used the linearity of I and the linearity of the fibers of E . �

Let us discuss a physical interpretation of the above G
isomorphism, in the case that E and E ′ are subbundles of a
larger rank-Ntot G-vector bundle ETB, with E corresponding to
a nontightly bound BR, E ′ to a tightly bound BR, and ETB the
vector bundle of a tight-binding lattice model (as introduced
in Appendix G 1). The universal G-vector bundle theorem
[139] states that the proven G isomorphism between E and E ′
corresponds bijectively to a G homotopy, i.e., a continuous,
symmetric deformation from E to E ′.

For a fixed tight-binding lattice model ETB and a subbundle
E that transforms as a nontightly bound BR(G,�,D), the G-
vector bundle E ′ of a tightly bound BR(G,�,D) may not be a
subbundle of ETB. In this case, the BR would have a symmetric
tight-binding obstruction, as defined in Sec. IX. To construct
a G-symmetric homotopy between E and E ′, it is sufficient to
enlarge the tight-binding lattice model as ETB → ETB ⊕ E ′, as
exemplified numerically in Ref. [62].

APPENDIX H: LEMMA FOR ZAK PHASES OF TIGHTLY
BOUND BAND REPRESENTATIONS

We will prove a lemma stated in Sec. V A, namely, that
for the rank-N projector P to a tightly bound BR, the Zak
phase 2πx j (ky) for a set of loops C(ky) (given by varying kx
at fixed ky) is independent of ky, for all j = 1 . . .N . (As in
Sec. V A, we will simplify notation by assuming a rectangular
real-space lattice with lattice periods set to one.)

It is sufficient to prove the lemma for the tightly bound
BR(G,�1,D), with the understanding that a general tightly
bound BR is a direct sum of tightly bound BRs with Wyckoff
positions that are possibly symmetry inequivalent.

The Wannier centers of the tightly bound BR(G,�1,D)
are given by {�n + R}n=1...M,R∈BL, with M the number of
distinct Wannier centers in one unit cell, and BL shorthand
for the Bravais lattice. The projector to this tightly bound BR
can be decomposed as a sum of projectors to a finite number
A of Wannier functions on each site: P = ∑M

n=1

∑
R∈BL PnR.

We assume that the real-space support of Wannier functions
on different sites do not intersect. (This is certainly true of
tight-binding Wannier functions which are one-site localized.)
Then the projected position operator simplifies to a sum of
commuting operators:

Px̂P =
∑
nR

PnRx̂PnR. (H1)

The eigenproblem for each commuting operator should then
be independently solved,(

PnRx̂PnR − x̄α
nR

)∣∣W α
nR

〉 = 0, (H2)

giving the complete spectrum of the projected position opera-
tor:

specPx̂P = {
x̄α
nR

}
α=1...A,n=1...M,R∈BL. (H3)

Observe that x̄α
nR := x̄α

nRx
is independent of Ry, owing to the

y-translational symmetry of PxP and the spatial localization
of the Wannier functions. Indeed, supposing |W α

nR〉 is an eigen-

state of PnR with eigenvalue x̄α
nR [cf. Eq. (H2)], (̂ey|e)|W α

nR〉
must be an eigenstate of PnR+ey with the same eigenvalue.

It follows that any linear combination of {W α
nR} with the

same {n,Rx, α} label remains an eigenstate of Px̂P,
(
Px̂P − x̄α

nRx

)∑
Ry

f (Ry)
∣∣W α

nR

〉 = 0, (H4)

with f an arbitrary function. In particular, if we choose f
to be the plane-wave phase factor eikyRy , then the sum can
be identified as the hybrid function |h j,ky,Rx 〉 in Eq. (10)
with j := (α, n), and x̄α

nRx
can be identified as the eigenvalue
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(x j (ky) + Rx ) in Eq. (10). We thus derive the desired result
that x j (ky) is independent of ky for all j. �

APPENDIX I: PROOF OF LOCALIZATION
OBSTRUCTION LEMMA

In this Appendix, we prove the localization obstruction
lemma of Sec. VI A.

Let P be a representation of a space-group G with trans-
lational subgroup Td . If the Wannier functions spanning P
are all one-site localized, then the set of all Wannier func-
tions {W α

1,0}Aα=1 lying on a Wyckoff position �1 must form
a representation of the site stabilizer G�1 . Indeed, since any
g ∈ G�1 acts in real space as an isometry, ĝW α

1,0 must also be
one-site localized to �1, and therefore has zero overlap with
any Wannier function that is not one of {W α

1,0}Aα=1. On the other
hand, ĝW α

1,0 must belong in P which represents G. Thus for

any g ∈ G� , 〈W α
1,0|ĝW β

1,0〉 is a A-dimensional unitary matrix in
the indices α and β.

To finish the proof, if �1 is the Wannier center of precisely
A linearly independent Wannier functions {|W α

1,0〉}Aα=1 in P,
then for any representatives of the coset: G/(Td � G�1 ) =
{[g1 = e], [g2], ..., [gM ]} (with M = |G/(Td � G�1 )|), the
real-space position �n = gn ◦ �1 must likewise be the Wan-
nier center for the A linearly-independent Wannier functions:

{ĝn|W α
1,0〉}Aα=1 in P. This is because P is assumed to be in-

variant under all elements of G. Using once again that g
acts as a real-space isometry, and that all Wannier functions
are one-site localized, it follows that any Wannier func-
tion in P with Wannier center �n belongs to the span of
{ĝn|W α

1,0〉}Aα=1, which forms an A-dimensional representation
of G�n = gnG�1g

−1
n . Finally, for any (R|e) ∈ Td , {W α

n,R :=
(̂R|e)W α

n,0}α must also form an A-dimensional representation
of the site stabilizer of �n + R. With this, all conditions are
satisfied for {W α

n,R}α,n,R to be a locally-symmetric Wannier
basis [cf. Appendix A 3 b] for a BR of G with Wyckoff
position �1. (A stronger statement can be made if there exists
a basis of Wannier functions where 〈W α

1,0|ĝW β

1,0〉 is a complex
permutation matrix (for any g in the site stabilizer), namely,
that {W α

n,R}α,n,R would span a monomial BR of G. However,
our proof more generally applies to nonmonomial BRs as
well.)

If {W α
n,R}α,n,R spans P then the proof is complete, oth-

erwise there must exist other Wannier functions that lie at
G-inequivalent Wyckoff positions. By iterating the above
argument for the remaining Wannier functions, one would
generally conclude that P is a direct sum of BRs of G, possibly
with Wyckoff positions that are not related by G symmetry.
Finally, P being a BR contradicts our initial assumption that
P is an obstructed representation. �
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