
A STOCHASTIC LINE SEARCH METHOD WITH EXPECTED
COMPLEXITY ANALYSIS

COURTNEY PAQUETTE∗ AND KATYA SCHEINBERG†

Abstract. For deterministic optimization, line search methods augment algorithms by provid-
ing stability and improved efficiency. Here we adapt a classical backtracking Armijo line search to
the stochastic optimization setting. While traditional line search relies on exact computations of
the gradient and values of the objective function, our method assumes that these values are avail-
able up to some dynamically adjusted accuracy which holds with some sufficiently large, but fixed,
probability. We bound the expected number of iterations to reach a desired first-order accuracy in
the nonconvex, convex and strongly convex cases and show that this bound matches the complexity
bound of deterministic gradient descent up to constants.

1. Introduction. We consider the stochastic optimization problem

min
x∈Rn

f(x), (1.1)

where f : Rn → R is a C1-smooth function with L-Lipschitz continuous gradients. We
assume the function f(x) is not computable, but instead the objective function is ap-
proximated by stochastic estimates f̃(x; ξ). Here ξ is a random variable obeying some
probability distribution, P . The most common case addressed in recent literature is
the expected loss formulation

min
x∈Rn

{
f(x) = Eξ∼P [f̃(x; ξ)]

}
. (1.2)

In this paper we do not specifically require that f̃(x; ξ) be an unbiased estimate of
f(x), instead we require f(x) to be approximated sufficiently accurately, for example,
by sampling ξ and averaging these estimates. We will also require that ∇f(x) be
approximated sufficiently accurately. As we discuss later in the paper, this approxi-
mation can be obtained by sampling ξ and averaging the estimates ∇f̃(x; ξ), if they
are available, or by generalized finite difference approximations using f̃(x; ξ), when
estimates ∇f̃(x; ξ) are not available.

The most widely used method to solve (1.2) is the stochastic gradient descent
(SGD) [18]. Due to its low iteration cost, SGD is often preferred to the standard
gradient descent (GD) method for empirical risk minimization. Despite the prevalent
use of SGD, it has known challenges and inefficiencies. Firstly, the step direction may
not be a descent direction, and secondly, the method is sensitive to the choice of the
step size (learning rate) which usually needs to be tuned by hand. Various authors
have attempted to address this last issue, see [9, 11, 13, 14]. Motivated by these facts,
we turn to the deterministic optimization approach for adaptively selecting step sizes
- GD with Armijo backtracking line search.

Related work. In general, GD with backtracking requires exact gradient and func-
tion evaluations which is impossible for the general problem (1.1). On the other hand,

∗Department of Industrial and Systems Engineering, Lehigh University, Harold S. Mohler Labo-
ratory, 200 West Packer Avenue, Bethlehem, PA 18015-1582, USA. cop318@lehigh.edu. The work
of this author was partially supported by NSF TRIPODS Grant 17-40796 and DMS 18-03289.
†School of Operations Research and Information Engineering, Cornell University, Rhodes Hall,

Ithaca, NY 14850 katyas@cornell.edu. The work of this author was partially supported by NSF
Grants CCF 16-18717 and TRIPODS 17-40796, and DARPA Lagrange award HR-001117S0039.

1

the iteration complexity for GD is superior to SGD making it an attractive alterna-
tive. Several works have attempted to transfer ideas from deterministic GD to the
stochastic setting by using dynamic gradient sampling, see e.g. [5, 10, 12], however,
these works address only the convex setting. Moreover to obtain convergence rates
matching those of GD in expectation, a constant step size must be determined in
advance based on the Lipschitz constant, and hence possibly underestimated, while
to decrease the variance of gradient estimates the sample size needs to be increased
at a pre-described rate, possibly overestimated. Recently in [4], an adaptive sample
size selection strategy was proposed where the sample size is selected based on the
reduction of the gradient (and not pre-described). For convergence rates to be de-
rived, however, an assumption had to be made that these sample sizes can be selected
based on the size of the true gradient, which is, of course, unknown. In [19, 17],
second-order methods that average the sampled gradients and Hessians, a procedure
known as subsampling, are proposed; however, the sample sizes are simply assumed
to be sufficiently large so that essentially, the methods behave as deterministic inex-
act methods with some probability. In fact, the convergence rate analysis in [19] is
carried out under the assumption that gradient and Hessian estimates are accurate
at every iteration up until one has reached an ε-accurate solution. Thus the proba-
bility of reaching this accuracy decays exponentially with the complexity bound. In
contrast, our analysis provides a bound on the expected number of iterations to reach
an ε-accurate solution and we show the gradient of the iterates converge a.s. to zero.

In [4] and [10], two practical backtracking line search methods were proposed
that use their respective heuristic sample sizes to select approximate gradients and
function estimates. In both cases, the backtracking is based on the Armijo line search
condition applied to function estimates that are computed on the same batch as the
gradient estimates. A different type of line search method based on a probabilistic
Wolfe condition is proposed in [15]; however it aims at improving step size selection
for SGD and provides no theoretical guarantees. In summary, while several practical
line search methods or sampling procedures have been proposed, there has not been
a practical stochastic line search method with convergence rate guarantees.

The complexity bounds we derive in this work are different from the complexity
guarantees for a majority of other stochastic methods. For instance, in the convex set-
ting, SGD complexity is often derived as the number of iterations until the expected
function gap is small. In the nonconvex case the bound is on the expected sum of the
norm squared of the gradients over all iterates generated by the algorithm. We, in-
stead, bound, in terms of ε, the expected number of iterations to achieve an ε-accurate
solution. Thus we will denote this complexity bound as the expected complexity of the
line search algorithm, while typical analysis bounds the expected convergence rates.

Our analysis relies on a general framework proposed in [3] that uses results from
martingale theory to derive a bound on the stopping time of a stochastic process.
Using that framework a stochastic trust region method was analyzed in [3] and an
expected complexity bound was derived. The analysis from trust region methods do
not readily extend to line search methods. In [6] expected complexity of line search
method is obtained for the case when the gradient (and Hessian) information may
be stochastic, but the function values are computed exactly. This work is thus an
extension of the line search analysis in [6]. As we will see the analysis of the fully
stochastic case is significantly more complex.

Our contribution. In this work we propose the first stochastic backtracking line
search method which has rigorous convergence guarantees and requires only knowable

2

quantities for implementation. While traditional line search methods rely on exact
computations of the gradient and function values, our method assumes that these
values are available up to some dynamically adjusted accuracy which holds with some
sufficiently large, but fixed, probability. Moreover the step sizes are chosen adaptively.
We show that the expected number of iterations to reach an approximate-stationary
point matches the worst-case efficiency of typical first-order methods O(ε−2), while
for convex and strongly convex objectives, it achieves rates of deterministic gradient
descent in function values, O(ε−1) and O(log(ε−1)) respectively. Our analysis does
not require unbiased estimators of either f(x) or ∇f(x).

Background. There are many types of (deterministic) line search methods, see [16,
Chapter 3], but all share a common philosophy. First, at each iteration, the methods
compute a search direction dk by e.g. the gradient or (quasi) Newton directions. Next,
they determine how far to move in this direction through the univariate function,
φ(α) = f(xk + αdk). Typical line searches try out a sequences of potential values for
the stepsize, accepting α once some verifiable criteria becomes satisfied. One popular
line search criterion specifies an acceptable step length which gives sufficient decrease
in the objective function f :

(Armijo condition [1]) f(xk + αdk) ≤ f(xk)− θα ‖∇f(xk)‖2 , (1.3)

where the constant θ ∈ (0, 1) is chosen by the user and dk = −∇f(xk). Larger step
sizes imply larger gains towards optimality and lead to fewer overall iterations. When
step sizes get too small no progress is made and the algorithm stagnates. A popular
way to systematically search the domain of α while simultaneously preventing small
step sizes is backtracking. Backtracking starts with an overestimate of α and decreases
it until (1.3) becomes true. Our exposition is on a stochastic version of backtracking
using the stochastic gradient estimate as a search direction and stochastic function
estimates in (1.3).

1.1. Notation. The notation we follow is standard. Throughout, we consider
an Euclidean space, denoted by Rn, with an inner product and an induced norm
‖·‖. All stochastic quantities defined hereafter live on a probability space, denoted by
(Pr,Ω,F), with the probability measure Pr and σ-algebra F containing subsets of Ω.
A random variable (vector) is a measurable map from Ω to R (Rn) respectively. As is
standard in probability theory, we never explicitly define the space Ω, but implicitly
specify it through the random variables. In the remainder of the paper, all random
quantities will be denoted by capitalized letters and their respective realizations by
corresponding lower case letters. For instance, a realization of the random variable
X : Ω → R is given by X(ω) =: x for some fixed ω ∈ Ω. Given a subset A of Ω, we
call the set A an event and denote the indicator of the event A by

1A(ω) =

{
1, if ω ∈ A
0, otherwise

.

For any random variable X : Ω → R and any constant c ∈ R, we use the following
notation for an event generated from a random variable

{X ≤ c} := {ω : X(ω) ≤ c}.

2. Stochastic backtracking line search method. We present here our main
algorithm for GD with backtracking line search. We impose a standard assumption
on the objective function.

3

Algorithm 1: Line search method

Initialization: Choose constants γ > 1, θ ∈ (0, 1), and αmax > 0. Pick initial
point x0, α0 = γj0αmax for some j0 ≤ 0, and δ0 > 0.

Repeat for k = 0, 1, . . .
1. Compute a gradient estimate Based on xk compute a gradient

estimate gk satisfying Assumption 2.2. Set the step sk = −αkgk
2. Compute function estimates Based on δk, gk and xk obtain esti-

mates of f0
k and fsk of f(xk) and f(xk + sk), respectively, satisfying

Assumption 2.2.
3. Check sufficient decrease

Check if
fsk ≤ f0

k − αkθ ‖gk‖
2
. (2.2)

4. Successful step
If (2.2) set xk+1 = xk + sk and αk+1 = min{αmax, γαk}.
• Reliable step: If αk ‖gk‖

2 ≥ δ2
k, then increase δ2

k+1 = γδ2
k.

• Unreliable step: If αk ‖gk‖
2
< δ2

k, then decrease δ2
k+1 = γ−1δ2

k.
5. Unsuccessful step

Otherwise, set xk+1 = xk, αk+1 = γ−1αk, and δ2
k+1 = γ−1δ2

k.

Assumption 2.1. The gradient of f is L-Lipschitz continuous for all x ∈ Rn
and that there exists a lower bound fmin, i.e.,

fmin ≤ f(x), for all x ∈ Rn.

For the convergence analysis to hold, we will impose additional assumptions on
how certain steps in Algorithm 1 are performed. For the moment, we present the
algorithm as a general framework, without particularizing the details of each step,
and we introduce the assumptions and examples of how each step can be satisfied
later in this section.

2.1. Outline of the method. At each iteration, our scheme computes a random
direction gk via e.g. a minibatch stochastic gradient estimate or sampling the function
f(x) itself and using finite differences. Then, we compute stochastic function estimates
at the current iterate and at the prospective new iterate, resp. f0

k and fsk . Given these
stochastic estimates, we check the Armijo condition [1]

(Stochastic) Armijo fsk ≤ f0
k − θαk ‖gk‖

2
. (2.1)

If (2.1) holds, the next iterate becomes xk+1 = xk−αkgk and the stepsize αk increases;
otherwise xk+1 = xk and αk decreases, as is typical in (deterministic) backtracking
line searches.

Algorithm 1 describes our method.1 Unlike classical backtracking line search, the
gradient estimate is recomputed every time, even if the iterate is not changed. This
is necessary since each particular gk may not be a descent direction. Also there is
an additional control, δk, which serves as a guess of the increase in the true function
at the point xk and controls the accuracy of the function estimates. We discuss this
further next.

1We state the algorithm using the lower case notation to represent a realization of the algorithm

4

Challenges with randomized line search. Due to the stochasticity in the gradient
and/or function values, two major challenges result:

• a series of erroneous unsuccessful steps cause αk to become arbitrarily small;
• steps may satisfy (2.1) but, in fact, f(xk − αkgk) > f(xk) leading to the

objective value at the next iteration larger than the current iterate.

Convergence proofs for line searches in the deterministic setting rely on the fact that
neither of the above problems arise. To handle the first difficulty, our approach con-
trols the probability that the random gradients and function values are representative
of their true counterparts. When this probability is large and the step size αk is suf-
ficiently small, the method tends to make successful steps. Intuitively, the step sizes
αk behave like a random walk with an upward drift; thus they tend to stay away from
0.

Yet, even when the probability of good gradients/function estimates is near 1, it
is not guaranteed that f(xk+1) < f(xk) holds, even in expectation, at each iteration
due to the second issue. When such an increase in the objective function occurs, it can
be arbitrarily large, in fact, the objective function can increase by at most α2

k ‖gk‖
2
.

To control this increase in the objective, we introduce the quantity δ2
k, which, on the

one hand, is meant to predict the largest possible increase in the objective function
and, on the other hand, changes conservatively from one iteration to the next. When
the predicted increase is small relative to the decrease in the function estimates given
through the sufficient decrease condition (2.2), namely δ2

k ≤ αk ‖gk‖
2
, then the step,

−αkgk, will likely decrease the objective function. We call such a step reliable and
increase the parameter δ2

k for the next iteration. Otherwise, our predicted increase is
larger than the decrease in the function estimates so the step, −αkgk, may increase
the objective function. In this case, we call the step unreliable and decrease the
parameter δ2

k.

Unlike the typical stochastic convergence rate analysis, which bounds expected
improvement in either E(‖∇f(x)‖) or E(f(x) − fmin) after a given number of itera-
tion, our analysis bounds the expected complexity, which is the total expected number
of steps that the algorithm takes before either ‖∇f(x)‖ ≤ ε or f(x) − fmin ≤ ε is
reached. Like in this paper, in the works [19, 17], it is assumed that at each iter-
ation the stochastic gradient and/or the stochastic Hessian approximate their true
values with sufficiently high accuracy and this holds with some probability p. How-
ever in [19, 17] unlike our work, the accuracy of the stochastic gradient and/or the
stochastic Hessian is not chosen dynamically but instead depends on the final desired
optimization accuracy ε. They choose, at each iteration, the approximate stochastic
gradient and/or Hessian to be essentially the true gradient and/or Hessian with a
small error and their choices of the stochastic gradient/Hessian hold with probability
p that depends on the optimization accuracy ε. As such, the analysis of their methods
reduces to the deterministic setting and yields expected complexity bounds that hold
with high probability. First, they provide no complexity analysis when the stochastic
gradient/Hessian fails to be essentially the true gradient/Hessian. Secondly, the prob-
ability p relies heavily on ε. In contrast, we derive our expected complexity bounds
using stochastic gradient estimates that, at each iteration, dynamically change and
the stochastic estimates hold for a fixed probability, independent of the optimization
accuracy. Our results rely on a stochastic process framework introduced and analyzed
in [3] for a stochastic trust region method.

2.2. Random gradient and function estimates.

5

Overview. At each iteration, we compute a stochastic gradient and stochastic
function values. With probability pg, the stochastic gradient gk is ”close” to the true
gradient, which means that the error between gk and the true gradient at the current
iterate is bounded using the current step length.This procedure naturally adapts the
required accuracy of gradient estimates as the algorithm progresses. As the steps
get shorter (i.e. either the gradient gets smaller or the step size parameter does),
we require the accuracy to increase, but the probability pg of encountering a good
gradient gk at any iteration is the same.

A similar procedure applies to function estimates, f0
k and fsk . The error between

the function estimates and the true function values at the points xk and xk + sk
(sk = −αkgk) are tied to the size of the step, αk ‖gk‖. At each iteration, there is
a probability pf of obtaining good function estimates. By choosing the probabilities
of good gradient and estimates, we show Algorithm 1 converges. To formalize this
procedure, we introduce the following.

Notation and definitions. Algorithm 1 generates a random process given by the
sequence {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k}. In what follows we will denote all random

quantities by capital letters and their realization by small letters. For instance, the
random gradient estimate is denoted by Gk and its realization by gk = Gk(ω). Sim-
ilarly, let the quantities xk = Xk(ω) (iterates), αk = Ak(ω) (stepsize), control size
∆k(ω) = δk, and sk = Sk(ω) (step) denote the respective realizations of the random
quantities. Similarly, we let {F 0

k , F
s
k} denote estimates of f(Xk) and f(Xk + Sk),

with their realizations denoted by f0
k = F 0

k (ω) and fsk = F sk (ω). Our goal is to show
that under some assumptions on Gk and {F 0

k , F
s
k} the resulting stochastic process

converges with probability one and at an appropriate rate. In particular, we assume
that the estimates Gk and F 0

k and F sk are sufficiently accurate with sufficiently high
probability, conditioned on the past.

To formalize the conditioning on the past, let FG·Fk−1 denote the σ-algebra generated
by the random variables G0, G1, . . . , Gk−1 and F 0

0 , F
s
0 , F

0
1 , F

s
1 , . . . , F

0
k−1, F

s
k−1 and let

FG·Fk−1/2 denote the σ-algebra generated by the random variables G0, G1, . . . , Gk and

F 0
0 , F

s
0 , F

0
1 , F

s
1 , . . . , F

0
k−1, F

s
k−1. For completeness, we set FG·F−1 = σ(x0). As a result,

we have that FG·Fk for k ≥ −1 is a filtration. By construction of the random variables
Xk and Ak in Algorithm 1, we see E[Xk|FG·Fk−1] = Xk and E[Ak|FG·Fk−1] = Ak for all
k ≥ 0.

We measure accuracy of the gradient estimates Gk and function estimates F 0
k and

F sk using the following definitions.
Definition 2.1. We say that a sequence of random directions {Gk} is (pg)-

probabilistically κg-sufficiently accurate for Algorithm 1 for the corresponding se-
quence {Ak, Xk}, if there exists a constant κg > 0, such that the event

Ik = {‖Gk −∇f(Xk)‖ ≤ κgAk‖Gk‖}

satisfies the conditions

Pr(Ik|FG·Fk−1) = E[1Ik |FG·Fk−1] ≥ pg
In addition to sufficiently accurate gradients, we require estimates on the function

values f(xk) and f(xk + sk) to also be sufficiently accurate.
Definition 2.2. A sequence of random estimates {F 0

k , F
s
k} is said to be pf -

probabilistically εf -accurate with respect to the corresponding sequence {Xk,Ak, Sk}
if the event

Jk = {|F 0
k − f(xk)| ≤ εfA2

k ‖Gk‖
2

and |F sk − f(xk + sk)| ≤ εfA2
k ‖Gk‖

2}.
6

satisfies the condition

Pr(Jk|FG·Fk−1/2) = E[1Jk |FG·Fk−1/2] ≥ pf .

We note here that the filtration FG·Fk−1/2 determines the random quantities Ak and
Gk; hence the accuracy of the estimates is measured with respect to fixed quantities.
Next, we state the key assumption on the nature of the stochastic information in
Algorithm 1.

Assumption 2.2. The following hold for the quantities in the algorithm:

(i) The random gradients Gk generated by Algorithm 1 is pg-probabilistically κg-
sufficiently accurate for some sufficiently large pg ∈ (0, 1].

(ii) The estimates {F 0
k , F

s
k} generated by Algorithm 1 is pf -probabilistically εf -

accurate estimates for some εf ≤ θ
4αmax

and sufficiently large pf ∈ (0, 1].

(iii) The sequence of estimates {F 0
k , F

s
k} generated by Algorithm 1 satisfies a κf -

variance condition for all k ≥ 0.2

E[|F sk − f(Xk + Sk)|2|FG·Fk−1/2] ≤ max{κ2
fA2

k ‖∇f(Xk)‖4 , θ2∆4
k}

and E[|F 0
k − f(Xk)|2|FG·Fk−1/2] ≤ max{κ2

fA2
k ‖∇f(Xk)‖4 , θ2∆4

k}.
(2.3)

A simple calculation shows that under Assumption 2.2 the following hold

E[1Ik∩Jk |FG·Fk−1] ≥ pgpf , E[1Ick∩Jk |F
G·F
k−1] ≤ 1− pg, and E[1Jck |F

G·F
k−1] ≤ 1− pf .

Remark 2.1. We are interested in deriving convergence results for the case when
κg may be large. For the rest of the exposition, without loss of generality κg ≥ 2. It
clear if κg happens to be smaller, somewhat better bounds than the ones we derive
here will result since the gradients give tighter approximations of the true gradient.
Equation (2.3) includes the maximum of two terms - one of the terms ‖∇f(Xk)‖ is
unknown. When one posesses external knowledge of ‖∇f(Xk)‖, one could use this
value. This is particularly useful when ‖∇f(Xk)‖ is big since it allows large variance
in the function estimates, for example assumption that ‖∇f(Xk)‖ ≥ ε implies that
this variance does not have to be driven to zero, before the algorithm reaches a desired
accuracy. Since a useful lower bound on ‖∇f(Xk)‖ may be unknown, we include the
parameter ∆k as a way to adaptively control the variance. As such κf should be
small, in fact, can be set equal to 0. The analysis can be performed for any other
values of the above constants - the choices here are for simplicity and convenience.

Assumption 2.2 on the accuracy of the gradient and function estimates is key in
our complexity analysis. We derive specific bounds on pg and pf under which our
results hold. We note here that if pf = 1 then Assumption 2.2(iii) is not needed
and condition pg > 1/2 is sufficient for the convergence results. This case can be
considered as an extension of results in [6]. Before concluding this section, we state
a result showing the relationship between the variance assumption on the function
values and the probability of inaccurate estimates.

Lemma 2.3. Let Assumption 2.2 hold. Suppose the random process generated
by Algorithm 1 is {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k} and {F 0

k , F
s
k} are pf -probabilistically

2We implicitly assume |F s
k − f(Xk + Sk)|2 and |F 0

k − f(Xk)|2 are integrable for all k; thus it is
straightforward to deduce |F s

k − f(Xk + Sk)| and |F 0
k − f(Xk)| are integrable for all k.

7

accurate estimates. Then for every k ≥ 0 we have

E[1Jck |F
s
k − f(Xk + Sk)| |FG·Fk−1/2] ≤ (1− pf)

1/2
max{κfAk ‖∇f(Xk)‖2 , θ∆2

k}

and E[1Jck |F
0
k − f(Xk)| |FG·Fk−1/2] ≤ (1− pf)

1/2
max{κfAk ‖∇f(Xk)‖2 , θ∆2

k}.

Proof. We show the result for F 0
k −f(Xk) and note the proof for F sk −f(Xk+Sk)

is the same. Using Holder’s inequality for conditional expectations, we deduce

E

[
1Jc
k
|F 0
k−f(Xk)|

max{κfAk‖∇f(Xk)‖2,θ∆2
k}

∣∣FG·Fk−1/2

]
≤
(
E[1Jck |F

G·F
k−1/2]

)1/2 (
E
[

|F 0
k−f(Xk)|2

max{κ2
fA

2
k‖∇f(Xk)‖4,θ2∆4

k}

∣∣FG·Fk−1/2

])1/2

.

The result follows after noting by (2.3)(
E
[

|F 0
k−f(Xk)|2

max{κ2
fA

2
k‖∇f(Xk)‖4,θ2∆4

k}

∣∣FG·Fk−1/2

])1/2

≤ 1.

2.3. Computing Gk, F
0
k , and F sk to satisfy Assumption 2.2.. In this sec-

tion, we discuss one approach for computing stochastic gradients and stochastic func-
tion estimates that satisfy Assumption 2.2 when minimizing an expected loss function

min
x

{
f(x) = Eξ∼P [f̃(x; ξ)]

}
.

Recall that f(x) and∇f(x) can be approximately computed using random realizations
f̃(x, ξ) and ∇f̃(x; ξ). One approach for computing gk (resp. f0

k and fsk) such that
it satisfies Assumption 2.2 is as follows – sample ξ from the probability distribution
P a total of |Sgk | (resp. |Sfk |) times and then average the estimates ∇f̃(xk, ξi) (resp.

f̃(xk, ξ) and f̃(xk − αkgk, ξ)). By choosing specific values for the number of samples,

|Sgk | and |Sfk |, the averaged random realizations satisfy Assumption 2.2. For many
machine learning problems, one thinks of ξ as a data point. We describe this procedure
below.

We impose, only for this section, an assumption on the boundedness of the vari-
ances of the random function and gradient realizations

E(‖∇f̃(x, ξ)−∇f(x)‖2) ≤ Vg and E(|f̃(x, ξ)− f(x)|2) ≤ Vf .

At each iteration k, sample ξ from the probability distribution P a total of Sgk number
of times. Then compute ∇f(xk, ξi), for every i ∈ Sgk and set the stochastic gradient

estimate as the average gk := 1
|Sgk |

∑
i∈Sgk
∇f̃(xk, ξi). Using results (see e.g. in [19,

20]), we choose the number of samples from the probability distribution such that

|Sgk | ≥ Õ(
Vg

κ2
gα

2
k‖gk‖2

) (2.4)

(where Õ hides the log factor of 1/(1 − pg)). This choice ensures that Assumption
2.2(i) is satisfied for the stochastic gradient. While gk is not known when |Sgk | is
chosen, one can design a simple loop by guessing the value of ‖gk‖ and increasing the

8

number of samples until (2.4) is satisfied, this procedure is discussed in [6]. Next,
with the stochastic gradient gk chosen, we use a similar procedure to generate f0

k and

f0
k by sampling ξ a total of Sfk number of times. To satisfy Assumption 2.2(ii), it

suffices to compute f0
k = 1

|Sfk |

∑
i∈Sfk

f̃(xk, ξi) with

|Sfk | ≥ Õ(
Vf

κ2
fα

2
k‖gk‖4

)

(where Õ hides the log factor of 1/(1 − pf)). We obtain fsk analogously. Finally if

the number of samples satisfies |Sfk | ≥
Vf
θ2δ4k

then Assumption 2.2(iii) holds for the

function estimates. Chebyshev inequality, a standard probability inequality, directly
proves this result. To summarize, Assumption 2.2 holds provided we choose the
number of samples larger than

|Sgk | ≥ Õ
(

Vg
κ2
gα

2
k‖gk‖2

)
and |Sfk | ≥ max

{
Õ
(

Vf
κ2
fα

2
k‖gk‖4

)
,
Vf
θ2δ4k

}
.

We observe:
• Unlike [5, 10], the number of samples for gradient and function estimation

does not increase at any pre-defined rate, but is closely related to the progress
of the algorithm. In particular if αk‖gk‖ and δk increase then the sample sizes
can decrease.

• Also, unlike [19] where the number of samples is simply chosen large enough a
priori for all k so that the right hand side in Assumption 2.2(i) is bounded by
a predefined accuracy O(ε), our algorithm can be applied without an apriori
choice of ε, but with a choice of a total computational budget, for instance.

• Finally, unlike [4] where theoretical results require that |Sgk | and |Sfk | depend
on ‖∇f(xk)‖, which is unknown, our bounds on the sample sizes can be com-
puted using knowable values, such as bounds on the variances and quantities
determined by prior iterates in the algorithm.

We also point out κg can be arbitrarily big and pg, as we will show later, depends
only on the backtracking factor γ and is not close to 1; hence the number of samples
to satisfy Assumption 2.2(i) is moderate. On the other hand, pf will have to depend
on κg; hence a looser control of the gradient estimates results in tighter control, i.e.
larger sample sets, for function estimates.

Our last comment is that Gk does not have to be an unbiased estimate of ∇f(Xk)
and does not need to be computed via gradient samples. Instead it can be computed
via stochastic finite differences, as is discussed for example in [7].

3. Renewal-Reward Process. In this section, we define a general random
process introduced in [3] and its stopping time T that serve as a general framework
for analyzing the behaviors of a stochastic trust region method in [3] and our stochastic
line search method. We will then show that our stochastic line search method satisfies
the properties of this random process, with the stopping time defined by the time of
reaching desired accuracy. We will show how this framework applies to the nonconvex,
convex and strongly convex cases, which will allow us to derive the bound on the
expected complexity for our method in each of these cases.

Here we state the relevant definitions, assumptions, and theorems and refer the
reader to the proofs in [3].

Definition 3.1. Given a discrete time stochastic process {Xk}, a random vari-
able T is a stopping time for {Xk} if the event {T = k} ∈ σ(X0, . . . , Xk).

9

Let {Φk,Ak} be a random process such that Φk ∈ [0,∞) and Ak ∈ [0,∞) for
all k ≥ 0. We, also, introduce a biased random walk process, {Wk}∞k=1, defined on
the same probability space as {Φk,Ak}. We denote Fk the σ-algebra generated by
{Φ0,A0,W0, . . . ,Φk,Ak,Wk}, where W0 = 1. In addition, Wk obeys the following
dynamics for some constant 1

2 < p < 1

Pr(Wk+1 = 1|Fk) = p and Pr(Wk+1 = −1|Fk) = (1− p) (3.1)

We define Tε to be a family of stopping times parameterized by ε. In [3] a bound
on E(Tε) is derived under the following assumption on the process {Φk,Ak}.

Assumption 3.1. The following hold for the process {Φk,Ak,Wk}.
(i) The random variable, A0, is a constant. Fix a constant αmax > 0. There exists

a constant λ ∈ (0,∞) such that αmax = A0e
λjmax for some jmax ∈ Z and the

random variables satisfy Ak ≤ αmax for all k ≥ 0.
(ii) There exists a constant Ā = A0e

λj̄ for some j̄ ∈ Z with j̄ ≤ 0, such that, the
following holds for all k ≥ 0,

1{Tε>k}Ak+1 ≥ 1{Tε>k}min
{
AkeλWk+1 , Ā

}
where Wk+1 satisfies (3.1) with p > 1

2 .
(iii) There exists a nondecreasing function h : [0,∞)→ (0,∞) and a constant Θ > 0

such that

1{Tε>k}E [Φk+1|Fk] ≤ 1{Tε>k}(Φk −Θh(Ak)).

Assumption 3.1 (iii) states that conditioned on the event Tε > k and the past, the
random variable Φk decreases by Θh(Ak) at each iteration. Whereas Assumption 3.1
(ii) says that once Ak falls below the fixed constant Ā, the sequence has a tendency
to increase. Assumptions 3.1 (i) and (ii) together also ensure that Ā belongs to the
sequence of values taken by the sequence Ak. As we will see this is a simple technical
assumption that can be satisfied w.l.o.g.

Remark 3.1. Computational complexity (in deterministic methods) measures
the number of iterations until an event such as ‖∇f(x)‖ is small or f(xk) − f∗ is
small, or equivalently, the rate at which the gradient/function values decreases as a
function of the iteration counter k. For randomized or stochastic methods, previous
works tended to focus on the second definition, i.e. showing the expected size of the
gradient or function values decreases like 1/k. Instead, here we bound the expected
number of iterations until the size of the gradient or function values are small, which
is the same as bounding the stopping times Tε = inf{k ≥ 0 : ‖∇f(Xk)‖ < ε} and
Tε = inf{k ≥ 0 : f(Xk)− f∗ ≤ ε}, for a fixed ε > 0.

Remark 3.2. In the context of deterministic line search when the stepsize αk
falls below the constant 1/L, where L is the Lipschitz constant of ∇f(x), the iterate
xk+sk always satisfies the sufficient decrease condition, namely f(xk+sk) ≤ f(xk)−
θαk ‖∇f(xk)‖2. Thus αk never falls much below 1/L. To match the dynamics behind
deterministic line search, we expect Φk+1 − Φk ≈ f(Xk+1) − f(Xk) with Θh(Ak) ≈
Ak ‖∇f(Xk)‖2 and the constant Ā ≈ 1/L. However, in the stochastic setting there
is a positive probability of Ak being arbitrarily small. Theorem 3.2, below, is derived
by observing that on average Ak ≥ Ā occurs frequently due to the upward drift in
the random walk process. Consequently, E[Φk+1−Φk] can be bounded by a negative
fixed value (dependent on ε) frequently; thus we can derive a bound on E[Tε].

10

The following theorem (Theorem 2.2 in [3]) bounds E[Tε] in terms of h(Ā) and
Φ0.

Theorem 3.2. Under Assumption 3.1,

E[Tε] ≤
p

2p− 1
· Φ0

Θh(Ā)
+ 1.

4. Convergence of Stochastic Line Search.

4.1. Useful results. Before delving into the main analysis, we state some aux-
iliary lemmas similar to those derived in [6, 2, 7].

Lemma 4.1 (Accurate gradients ⇒ lower bound on ‖gk‖). Suppose gk is κg-
sufficiently accurate. Then

‖∇f(xk)‖
(κgαmax + 1)

≤ ‖gk‖ .

Proof. Because gk is κg-sufficiently accurate together with the triangle inequality
implies

‖∇f(xk)‖ ≤ (κgαk + 1) ‖gk‖ ≤ (κgαmax + 1) ‖gk‖ .

Lemma 4.2 (Accurate gradient and function estimates and small step size ⇒
successful step). Suppose gk is κg-sufficiently accurate and {f0

k , f
s
k} are εf -accurate

estimates. If

αk ≤
1− θ

κg + L
2 + 2εf

then the k-th step is successful. In particular, this means fsk ≤ f0
k − θαk ‖gk‖

2
.

Proof. The L-smoothness of f and the κg-sufficiently accurate gradient immedi-
ately yield

f(xk + sk) ≤ f(xk)− αk(∇f(xk)− gk)T gk − αk ‖gk‖
2

+
Lα2

k

2 ‖gk‖
2

≤ f(xk) + κgα
2
k ‖gk‖

2 − αk ‖gk‖
2

+
Lα2

k

2 ‖gk‖
2
.

Since the estimates are εf -accurate, we obtain

fsk − εfα2
k ‖gk‖

2 ≤ f(xk + sk)− fsk + fsk

≤ f(xk)− f0
k + f0

k + κgα
2
k ‖gk‖

2 − αk ‖gk‖
2

+
Lα2

k

2 ‖gk‖
2

≤ f0
k + εfα

2
k ‖gk‖

2
+ κgα

2
k ‖gk‖

2 − αk ‖gk‖
2

+
Lα2

k

2 ‖gk‖
2
.

The result follows by noting fsk ≤ f0
k − αk ‖gk‖

2 (
1− αk

(
κg + L

2 + 2εf
))

.
Lemma 4.3 (Accurate function estimates and successful step⇒ decrease in func-

tion). Suppose εf < θ
4αmax

and {fsk , f0
k} are εf -accurate estimates. If the step is

successful, then the improvement in function value is

f(xk+1) ≤ f(xk)− θαk
2
‖gk‖2 . (4.1)

11

If, in addition, the step is reliable, then the improvement in function value is

f(xk+1) ≤ f(xk)− θαk
4
‖gk‖2 −

θ

4
δ2
k. (4.2)

Proof. The step is successful and the estimates are εf -accurate so we conclude

f(xk + sk) ≤ f(xk + sk)− fsk + f0
k − f(xk) + f(xk)− αkθ ‖gk‖

2

≤ f(xk) + 2εfα
2
k ‖gk‖

2 − αkθ ‖gk‖
2

≤ f(xk)− αk ‖gk‖
2

(θ − 2εfαmax) ,

where the last inequality follows because αk ≤ αmax. The condition εf < θ
4αmax

immediately implies (4.1). By noticing
θαk

2 ‖gk‖
2 ≥ θαk

4 ‖gk‖
2

+
θδ2k
4 holds for reliable

steps, we deduce (4.2).
Lemma 4.4 (Bound on gradient change on successful iterations). Suppose the

k-th step is successful. Then

‖∇f(xk+1)‖2 ≤ 2(L2α2
k ‖gk‖

2
+ ‖∇f(xk)‖2).

In particular, the inequality holds

1
L2

(
αk+1 ‖∇f(xk+1)‖2 − αk ‖∇f(xk)‖2

)
≤ 2γαk(α2

max ‖gk‖
2

+ 1
L2 ‖∇f(xk)‖2).

Proof. An immediate consequence of the L-smoothness of f is ‖∇f(xk+1)‖ ≤
Lαk ‖gk‖+ ‖∇f(xk)‖. The result follows from squaring both sides and applying the
bound, (a + b)2 ≤ 2(a2 + b2). To obtain the second inequality, we note that in the
case the iteration is successful, αk+1 = γαk.

Lemma 4.5 (Accurate gradients and function estimates and successful step ⇒
decrease in function). Suppose gk is κg-sufficiently accurate and {f0

k , f
s
k} are εf -

accurate estimates where εf ≤ θ
4αmax

. If the step is successful, then

f(xk+1)− f(xk) ≤ −θαk
4
‖gk‖2 −

θαk
4(κgαmax + 1)2

‖∇f(xk)‖2 . (4.3)

In addition, if the step is reliable, then

f(xk+1)− f(xk) ≤ −θαk
8
‖gk‖2 −

θ

8
δ2
k −

θαk
4(κgαmax + 1)2

‖∇f(xk)‖2 . (4.4)

Proof. Lemma 4.1 implies

− θ
2αk ‖gk‖

2 ≤ − θ4αk ‖gk‖
2 − θ

4(κgαmax+1)2αk ‖∇f(xk)‖2 . (4.5)

We combine this result with Lemma 4.3 to conclude the first result. For the second
result, since the step is reliable, equation (4.5) improves to

− θ2αk ‖gk‖
2 ≤ − θ8αk ‖gk‖

2 − θ
8δ

2
k − θ

4(κgαmax+1)2αk ‖∇f(xk)‖2 ,

and again the result follows from Lemma 4.3.

12

4.2. Definition and analysis of {Φk,Ak,Wk} process for Algorithm 1. We
base our proof of convergence on properties of the random function

Φk = ν(f(Xk)− fmin) + (1− ν)
1

L2
Ak ‖∇f(Xk)‖2 + (1− ν)θ∆2

k. (4.6)

for some (deterministic) ν ∈ (0, 1) and fmin ≤ f(x) for all x. The goal is to show that
{Φk,Ak} satisfies Assumption 3.1, in particular, that Φk is expected to decrease on
each iteration. Due to inaccuracy in function estimates and gradients, the algorithm
may take a step that increases the objective and thus Φk. We will show that such
increases are bounded by a value proportional to ‖∇f(x)‖2. On the other hand, as we
will show, on successful steps with accurate function estimates, the objective decreases
proportionally to ‖∇f(x)‖2, while on unsuccessful steps, Φk always decreases because
both Ak and ∆k are decreased. The function Φ is chosen to balance the potential
increases and decreases in the objective with changes inflicted by unsuccessful steps.

Theorem 4.6. Let Assumptions 2.1 and 2.2 hold. Suppose the random process
generated by Algorithm 1 is {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k}. Then there exist probabil-

ities pg, pf > 1/2 and a constant ν ∈ (0, 1) such that the expected decrease in Φk
is

E[Φk+1 − Φk|FG·Fk−1] ≤ −pgpf (1− ν)(1− γ−1)

4

(
Ak
L2
‖∇f(Xk)‖2 + θ∆2

k

)
. (4.7)

In particular, the constant ν and probabilities pg, pf > 1/2 satisfy

ν

1− ν
≥ max

{
32γα2

max

θ
, 16(γ − 1),

16γ(κgαmax + 1)2

θ

}
, (4.8)

pg ≥
2γ

1/2(1− γ−1) + 2γ
, (4.9)

and
pgpf√
1− pf

≥ max

{
8L2νκf + 16γ(1− ν)

(1− ν)(1− γ−1)
,

8ν

(1− ν)(1− γ−1)

}
. (4.10)

Proof. [Proof of Theorem 4.6] Our proof considers three separate cases: good
gradients/good estimates, bad gradients/good estimates, and lastly bad estimates.
Each of these cases will be broken down into whether a successful/unsuccessful step
is reliable/unreliable. To simplify notation, we introduce three sets

Succ := {at iteration k the step is successful, namely sufficient decrease occurs},

R := {iteration k the step is reliable, i.e. Ak ‖Gk‖
2 ≥ ∆2

k},

and U := {iteration k the step is unreliable, i.e. Ak ‖Gk‖
2
< ∆2

k},

First, we decompose the difference in Φk into three disjoint sets

E[Φk+1 − Φk|FG·Fk−1] = E[(1Ik∩Jk + 1Ick∩Jk + 1Jck)(Φk+1 − Φk)|FG·Fk−1].

For each case we will derive a bound on the expected decrease (increase) in Φk. These
bounds are derived in the proof below and are summarized in Table 4.1.

Case 1 (Accurate gradients and estimates, 1Ik∩Jk = 1). We will show that
the Φk decreases no matter what type of step occurs and that the smallest decrease

13

Upper bound on E[Φk+1 − Φk]

Accurate
gradients
Accurate
functions

w/ prob. pgpf

Bad gradients
Accurate
functions
w/ prob.

(1− pg)pf

Bad
functions
w/ prob.
1− pf

Success
−AkL2 ‖∇f(Xk)‖2 −

∆2
k

decrease

Ak
L2 ‖∇f(Xk)‖2

increase

Ak
L2 ‖∇f(Xk)‖2 + ∆2

k

increase

Unsuccess

−AkL2 ‖∇f(Xk)‖2 −
∆2
k

decrease

−AkL2 ‖∇f(Xk)‖2 −
∆2
k

decrease

−AkL2 ‖∇f(Xk)‖2 −
∆2
k

decrease

Overall
worst
case

improv.

decrease increase increase

Table 4.1
We summarize the proof of Theorem 4.6 by displaying the expected upper bound on Φk+1 −Φk

up to constants. The proof considers cases: accurate grad./functions estimates, bad grad./accurate
functions estimates, and bad function estimates. Each of these is further broken into whether the
step was successful/unsuccessful.

happens on the unsuccessful step. Thus this case dominates the other two and overall
we will conclude that

E[1Ik∩Jk(Φk+1 − Φk)|FG·Fk−1]

≤ −pgpf (1− ν)(1− γ−1)

(
Ak
L2
‖∇f(Xk)‖2 + θ∆2

k

)
.

(4.11)

(i). Successful and reliable step (1Succ1R = 1). The step is successful and both the
gradient and function estimates are accurate so a decrease in the true objective
occurs, specifically, (4.4) from Lemma 4.5 applies:

1Ik∩Jk1Succ1Rν(f(Xk+1)− f(Xk))

≤ −ν1Ik∩Jk1Succ1R

(
θAk

8 ‖Gk‖
2

+ θ
8∆2

k +
θAk

4(κgαmax+1)2 ‖∇f(Xk)‖2
)
.

(4.12)

As the step is successful, the difference in Ak ‖∇f(Xk)‖2 may increase, but its
change is bounded due to Lemma 4.4:

1Ik∩Jk1Succ1R(1− ν)
1

L2

(
Ak+1 ‖∇f(Xk+1)‖2 −Ak ‖∇f(Xk)‖2

)
≤ 1Ik∩Jk1Succ1R(1− ν)2γAk

(
α2

max ‖Gk‖
2

+ 1
L2 ‖∇f(Xk)‖2

)
.

(4.13)

Lastly because we have a reliable step, ∆2
k+1 = γ∆2

k. Consequently, we deduce
that

1Ik∩Jk1Succ1R(1− ν)θ(∆2
k+1 −∆2

k) = 1Ik∩Jk1Succ1R(1− ν)θ(γ − 1)∆2
k. (4.14)

14

Without loss of generality, suppose L2 ≥ 1. We choose ν sufficiently large so
that the term on the right hand side of (4.12) dominates the sum of the right
hand sides of (4.13), and (4.14), specifically,

−νθAk
8
‖Gk‖2 + (1− ν)2γAkα2

max ‖Gk‖
2 ≤ −νθAk

16
‖Gk‖2 ,

− νθAk
4L2(κgαmax + 1)2

‖∇f(Xk)‖2 +(1− ν)
2γAk
L2

‖∇f(Xk)‖2

≤ − νθAk
8L2(κgαmax + 1)2

‖∇f(Xk)‖2 ,

and − νθ

8
∆2
k + (1− ν)(γ − 1)θ∆2

k ≤ −
νθ

16
∆2
k,

(4.15)

which is satisfied if (4.8) holds. We combine equations (4.12), (4.13), and (4.14)
to conclude

1Ik∩Jk1Succ1R(Φk+1 − Φk)

≤ −1Ik∩Jk1Succ1R

(
νθAk

8L2(κgαmax + 1)2
‖∇f(Xk)‖2 +

νθ

16
∆2
k

)
.

(4.16)

(ii). Successful and unreliable step (1Succ1U = 1). Because the step is successful
and our gradient/estimates are accurate, we again apply Lemma 4.5 to bound
f(Xk+1) − f(Xk) but this time using (4.3) which holds for unreliable steps.

The possible increase from the change in the ‖∇f(Xk)‖2 term is the same as
(4.13) where we replace 1R with 1U since Lemma 4.4 still applies. Lastly with
an unreliable step, the change in ∆2

k is

1Ik∩Jk1Succ1U(1− ν)θ(∆2
k+1 −∆2

k)

≤ −1Ik∩Jk1Succ1U(1− ν)(1− γ−1)θ∆2
k.

(4.17)

Therefore by choosing ν such that (4.15) holds, we have that

1Ik∩Jk1Succ1U(Φk+1 − Φk)

≤ −1Ik∩Jk1Succ1U

(
νθAk‖∇f(Xk)‖2
8L2(κgαmax+1)2 + (1− ν)(1− γ−1)θ∆2

k

)
.

(4.18)

(iii). Unsuccessful step (1Succc = 1). Because the step is unsuccessful, the change in
the function values is 0 and the constants Ak and ∆2

k decrease. Consequently,
we deduce that

1Ik∩Jk1Succc(Φk+1 − Φk)

≤ −1Ik∩Jk1Succc(1− ν)(1− γ−1)
(
Ak
L2 ‖∇f(Xk)‖2 + θ∆2

k

)
.

(4.19)

We chose ν sufficiently large to ensure that the third case (iii), unsuccessful step (4.19),
provides the worst case decrease when compared to (4.16) and (4.18). Specifically the
constant ν in (4.8) was chosen so that

−νθAk
8L2(κgαmax + 1)2

‖∇f(Xk)‖2 ≤ −(1− ν)(1− γ−1)
Ak
L2
‖∇f(Xk)‖2

and
−νθ
16

∆2
k ≤ −(1− ν)(1− γ−1)θ∆2

k.

(4.20)

15

As such, we bounded the change in Φk in the case of accurate gradients and
estimates by

1Ik∩Jk(Φk+1 − Φk) ≤ −1Ik∩Jk(1− ν)(1− γ−1)

(
Ak
L2
‖∇f(Xk)‖2 + θ∆2

k

)
. (4.21)

We take conditional expectations with respect to FG·Fk−1 and using Assumption 2.2,
equation (4.11) holds.

Case 2 (Bad gradients and accurate estimates, 1Ick∩Jk = 1) Unlike the
previous case, the difference in the Φk may increase, since the step along an inaccurate
probabilistic gradients may not provide enough decrease to cancel the increase from
the ‖∇f(Xk)‖2. Precisely, the successful and unreliable case dominates the worst case
increase in the difference of the Φk:

E[1Ick∩Jk(Φk+1 − Φk)|FG·Fk−1] ≤ (1− pg)(1− ν)
2γAk
L2

‖∇f(Xk)‖2 . (4.22)

As before, we consider three separate cases.
(i) Successful and reliable step (1Succ1R = 1). A successful, reliable step with ac-

curate function estimates but bad gradients has functional improvement (see
Lemma 4.3, equation (4.2)):

1Ick∩Jk1Succ1Rν(f(Xk+1)− f(Xk)) ≤ −1Ick∩Jk1Succ1Rν
(
Akθ‖Gk‖

2

4 + θ
4∆2

k

)
.

In contrast to (4.12), we lose the ‖∇f(Xk)‖2 term. A reliable, successful step
increases both constantsAk+1 and ∆2

k+1, leading to (4.13) and (4.14) with 1Ik∩Jk
replaced by 1Ick∩Jk . Hence by choosing ν to satisfy (4.8), the dominant term in
the difference in the Φk is

1Ick∩Jk1Succ1R(Φk+1 − Φk)

≤ 1Ick∩Jk1Succ1R

(
−νθAk16 ‖Gk‖

2 − νθ
16 ∆2

k + 2γ(1−ν)
L2 Ak ‖∇f(Xk)‖2

)
.

(4.23)

(ii) Successful and unreliable step (1Succ1U = 1). Lemma 4.3 holds, but this time
equation (4.1) for unreliable steps applies. Moreover, (4.13) and (4.17) that
bound the change in the last two terms of Φk also apply. Again by choosing ν
to satisfy (4.8), we deduce

1Ick∩Jk1Succ1U(Φk+1 − Φk) (4.24)

≤ 1Ick∩Jk1Succ1U

(
−νθAk‖Gk‖

2

16 − (1− ν)(1− γ−1)θ∆2
k +

2γ(1−ν)Ak‖∇f(Xk)‖2
L2

)
.

(iii) Unsuccessful (1Succc = 1). As in the previous case, equation (4.19) holds.
The right hand sides of (4.23), (4.24), and (4.19) are trivially upper bounded by the

positive term Ak ‖∇f(Xk)‖2. Hence, we conclude that

1Ick∩Jk(Φk+1 − Φk) ≤ 1Ick∩Jk
2γ(1− ν)

L2
Ak ‖∇f(Xk)‖2 . (4.25)

Inequality (4.22) follows by taking expectations with respect to FG·Fk−1 and noting that

E[1Ick∩Jk |F
M ·F
k−1] ≤ 1− pg as in Assumption 2.2.

Case 3 (Bad estimates, 1Jck = 1). Inaccurate estimates can cause the algo-
rithm to accept a step which can lead to an increase in f , A, and ∆ and hence in the

16

difference of the Φk. We control this increase in the difference of the Φk by bounding
the variance in the function estimates, as in (2.3), which is the key reason for As-
sumption 2.2(iii). By choosing the probability of Jck to be sufficiently small, we can
ensure that, in expectation, the difference in the Φk is sufficiently reduced. Precisely,
we will show

E[1Jck(Φk+1 − Φk)|FG·Fk−1] ≤ 2ν(
√

1− pf) max{κfAk ‖∇f(Xk)‖2 , θ∆2
k}

+ (1− pf)
(1− ν)2γ

L2
Ak ‖∇f(Xk)‖2 .

(4.26)

A successful step leads to the following bound

1Jck1Succν (f(Xk+1)− f(Xk))

≤ 1Jck1Succν
(
(F sk − F 0

k) + |f(Xk+1)− F sk |+ |F 0
k − f(Xk)|

)
≤ 1Jck1Succν

(
−θAk ‖Gk‖

2
+ |f(Xk+1)− F sk |+ |F 0

k − f(Xk)|
)
,

(4.27)

where the last inequality is due to the sufficient decrease condition. As before, we
consider three separate cases.

(i). Successful and reliable step (1Succ1R = 1). With a reliable step we have

−Ak ‖Gk‖
2 ≤ −∆2

k, thus (4.27) implies

1Jck1Succ1Rν(f(Xk+1)− f(Xk))

≤ 1Jck1Succ1Rν
(
− 1

2θAk ‖Gk‖
2 − θ

2∆2
k + |f(Xk+1)− F sk |+ |F 0

k − f(Xk)|
)
.

We note that Φk+1−Φk is upper bounded by the sum of the right hand side of
the above inequality and the right hand sides of (4.13) and (4.14). As before,

by choosing ν as in (4.8) we ensure −νθ2 Ak ‖Gk‖
2

+(1−ν)2γAkα2
max ‖Gk‖

2 ≤ 0

and −νθ2 ∆2
k + (1− ν)(γ − 1)θ∆2

k ≤ 0. It follows that

1Jck1Succ1R(Φk+1 − Φk)

≤ 1Jck

(
ν|f(Xk+1)− F sk |+ ν|F 0

k − f(Xk)|+ (1− ν)
2γAk‖∇f(Xk)‖2

L2

)
.

(4.28)

(ii). Successful and unreliable step (1Succ1U = 1). Since on unreliable steps, ∆2
k+1 is

decreased, then the increase in the difference of the Φk is always smaller than
the worst-case increase we just derived for the successful and reliable step. Thus
(4.28) holds with 1R replaced by 1U.

(iii). Unsuccessful (1Succc = 1) As we decrease both ∆ and A, and Xk+1 = Xk, we
conclude that (4.19) hold.

The equation (4.28) dominates (4.19); thus in all three cases (4.28) holds. We
take expectations of (4.28) and apply Lemma 2.3 to conclude that

E[1Jck(Φk+1 − Φk)|FG·Fk−1] ≤ 2ν(1− pf)1/2 max{κfAk ‖∇f(Xk)‖2 , θ∆2
k}

+ (1− pf)(1− ν) 2γ
L2Ak ‖∇f(Xk)‖2 .

(4.29)

Now we combine the expectations (4.11), (4.22), and (4.26) to obtain

E[Φk+1 − Φk|FG·Fk−1] = E[(1Ik∩Jk + 1Ick∩Jk + 1Jck)(Φk+1 − Φk)|FG·Fk−1]

≤ −pgpf (1− ν)(1− γ−1)
(
Ak‖∇f(Xk)‖2

L2 + θ∆2
k

)
+ pf (1− pg) 2γ(1−ν)Ak‖∇f(Xk)‖2

L2

+ 2ν(1− pf)1/2
(
κfAk ‖∇f(Xk)‖2 + θ∆2

k

)
+ (1− pf)1/2 · 4γ(1−ν)Ak

L2 ‖∇f(Xk)‖2

17

where the inequality follows from 1− pf ≤ (1− pf)1/2 and 1− pg = pf (1− pg) + (1−
pf)(1 − pg) ≤ pf (1 − pg) + (1 − pf)1/2. Let us choose pg ∈ (0, 1] as in (4.9) which
implies (

−pgpf (1−ν)(1−γ−1)Ak
L2 + pf (1− pg) 2γ(1−ν)Ak

L2

)
‖∇f(Xk)‖2

≤ −pgpf (1−ν)(1−γ−1)Ak
2L2 ‖∇f(Xk)‖2 .

We have now reduced the number of terms in the conditional expectation

E[Φk+1 − Φk|FG·Fk−1] ≤ −pgpf 1
2 (1− ν)(1− γ−1)

(
Ak
L2 ‖∇f(Xk)‖2 + θ∆2

k

)
+ 2ν(1− pf)1/2

(
κfAk ‖∇f(Xk)‖2 + θ∆2

k

)
+ (1− pf)1/2 · 4γ(1−ν)Ak

L2 ‖∇f(Xk)‖2 .

We choose pf ∈ (0, 1] large enough, so that
pgpf√
1−pf

satisfies (4.10) which implies(
− pgpf (1−ν)(1−γ−1)

2L2 + (1− pf)1/2
(

2νκf + 4γ(1−ν)
L2

))
Ak ‖∇f(Xk)‖2

≤ −pgpf (1−ν)(1−γ−1)Ak
4L2 ‖∇f(Xk)‖2

and
−pgpf

2 (1− ν)(1− γ−1)θ∆2
k + 2ν(1− pf)1/2θ∆2

k ≤
−pgpf

4 (1− ν)(1− γ−1)θ∆2
k.

The proof is complete.
Remark 4.1. To simplify the expression for the constants we will assume that

θ = 1/2 and γ = 2 which are typical values for these constants. We also assume
that without loss of generality κg ≥ 2 and ν ≥ 1/2. The analysis can be performed
for any other values of the above constants - the choices here are for simplicity and
illustration. The conditions on pg and pf under the above choice of constants will be
shown below.

Theorem 4.7. Let Assumptions 2.1 and 2.2 hold and chose constants as in
Remark 4.1. Suppose {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k} is the random process generated

by Algorithm 1. Then there exists probabilities pg, pf and a constant ν ≥ 1/2 such
that the expected decrease in Φk is

E[Φk+1 − Φk|FG·Fk−1] ≤ − 1

2048(κgαmax + 1)2

(
Ak
L2
‖∇f(Xk)‖2 +

1

2
∆2
k

)
. (4.30)

In particular, the constant ν and probabilities pg, pf must satisfy

ν

1− ν
= 64(κgαmax + 1)2, (4.31)

pg ≥
16

17
and pf >

1

2
, (4.32)

and
pgpf√
1− pf

≥ max
{

1024κfL
2(κgαmax + 1)2 + 64, 1024(κgαmax + 1)2

}
. (4.33)

Proof. We plug in the values for γ and θ and use the fact that κg ≥ 2 to obtain the
expression for ν/(1−ν) and pg. In order to deduce the expression for pgpf/(1−pf)1/2,
we assume that ν/(1−ν) = 64(κgαmax +1)2. Lastly, we suppose ν > 1/2, pgpf ≥ 1/2,
and ν

64(κgαmax+1)2 = (1− ν). Therefore, we have

−pgpf (1− ν)(1− γ−1)

4
≤ −(1− ν)

16
≤ −ν

1024(κgαmax + 1)2
≤ 1

2048(κgαmax + 1)2
.

The result is shown.

18

4.3. Convergence rates for the nonconvex case. Our primary goal in this
paper is to bound the expected number of steps that the algorithm takes until
‖∇f(Xk)‖ ≤ ε. Define the stopping time

Tε = inf{k ≥ 0 : ‖∇f(Xk)‖ < ε}.

We show in this section, under the simplified assumptions on the constant from The-
orem 4.7

E[Tε] ≤ O(1) · pgpf
2pgpf − 1

· L
3(κgαmax + 1)2Φ0

ε2
+ 1.

Here O(1) hides universal constants and dependencies on θ, γ, αmax. We derive this
result from Theorem 3.2; therefore, the remainder of this section is devoted to showing
Assumption 3.1 holds. Given Theorem 4.6, it is immediate the random variable Φk
defined, as in equation (4.6), satisfies Assumption 3.1 (iii) by multiplying both side by
the indicator, 1{Tε>k}. In particular, we define the function h(Ak) = Akε2 to obtain
from Theorem 4.7

E[1{Tε>k}(Φk+1 − Φk)|FG·Fk−1] ≤ −Θh(Ak)1{Tε>k},

where Θ = 1
2048L2(κgαmax+1)2 . It remain to show Assumption 3.1 (ii) holds.

Lemma 4.8. Let pg and pf be such that pgpf ≥ 1/2 then Assumption 3.1 (ii) is
satisfied for Wk = 2(1Ik∩Jk − 1/2), λ = log(γ), p = pgpf , and

Ā =
1− θ

κg + L
2 + 2εf

.

Proof. We can shrink Ā, without loss of generality, so that Ā = A0e
λj̄ for some

j̄ ∈ Z and j̄ ≤ 0. It remains to show that

1{Tε>k}Ak+1 ≥ 1{Tε>k}min
{
Ā,min{αmax, γAk}IkJk + γ−1Ak(1− 1Ik∩Jk)

}
.

Suppose Ak > Ā. Then Ak ≥ γĀ and hence Ak+1 ≥ Ā. Now, assume that Ak ≤ Ā.
If we have 1Ik = 1 and 1Jk = 1, it follows from Lemma 4.2 that the kth step is
successful, i.e. xk+1 = xk + sk and αk+1 = max{αmax, γαk}. If IkJk = 0, then
αk+1 ≥ γ−1αk.

Finally substituting the expressions for h, Ā, and Φk into the bound on E[Tε]
from Theorem 3.2 we obtain the following complexity result.

Theorem 4.9. Under the assumptions in Theorem 4.7, suppose the probabilities
pg, pf satisfy

pg ≥
16

17
, pf >

1

2
, and

pgpf√
1− pf

≥ max
{

1024κfL
2(κgαmax + 1)2 + 64, 1024(κgαmax + 1)2

}
.

with ν
1−ν = 64(κgαmax +1)2. Then the expected number of iterations that Algorithm 1

takes until ‖∇f(Xk)‖2 ≤ ε occurs is bounded as follows

E[Tε] ≤
pgpf

2pgpf − 1
· L

2(κg + L/2 + 2εf)(κgαmax + 1)2

Cε2
Φ0 + 1,

19

where C = 1/4096 and Φ0 = ν(f(X0)−fmin)+(1−ν)(1/L2A0 ‖∇f(X0)‖2 +1/2∆2
0).

As a simple corollary to the complexity results we have the liminf-type a.s. con-
vergence result.

Theorem 4.10. Let the assumptions of Theorem 4.6 (or Theorem 4.7) hold.
Then the sequence of random iterates generated by Algorithm 1, Xk, almost surely
satisfy

lim inf
k→∞

‖∇f(Xk)‖ = 0.

4.4. Convex case. We now analyze line search (Algorithm 1) under the setting
that the objective function is convex.

Assumption 4.1. Suppose, in addition to Assumption 2.1, the function f in
(1.1) is convex. We also assume there exists a constant D > 0 such that

‖x− x∗‖ ≤ D for all x ∈ U ,

where x∗ is some global minimizer of f and the set U contains all iteration realizations.
Moreover, we assume there exists a Lf > 0 such that ‖∇f(x)‖ ≤ Lf for all x ∈ U .

Remark 4.2. In deterministic optimization, it is common to assume that the
function f has bounded level sets and that all the iterates remain within the bounded
set defined by f(x) ≤ f(x0). For the stochastic case, it is not guaranteed that all
the iterates remain in the bounded level set because it is possible to take steps that
increase the function value. Clearly iterates remain in a (large enough) bounded set
with high probability. Alternatively, if it is known that the optimal solution lies within
some bounded set, Algorithm 1 can be simply modified to project iterates onto that
set. This modified version for the convex case can be analyzed in an almost identical
way as is done in Theorem 4.6. However, for simplicity of the presentation, for the
convex case, we simply impose Assumption 4.1.

In the convex setting, the goal is to bound the expected number of iterations Tε
of Algorithm 1 until one reaches a nearly optimal value,

f(xk)− f∗ < ε.

In the convex and deterministic setting, the complexity bound is derived by showing
that 1/(f(xk)− f∗) has a constant increase until an ε-accurate functional decrease is
reached. For the randomized line search we follow the same idea, replacing f(xk)−f∗
in Φk (modified by substituting fmin in (4.6) by f∗) and defining the function

Ψk =
1

ε
− 1

Φk + ε
, (4.34)

where the constant ε > 0 is the same level of optimality as Tε. To simplify the
argument, we impose an upper bound on ∆k.

Assumption 4.2. Suppose there exists a constant δmax such that the random
variable ∆k ≤ δmax.

First, with a simple modification to Algorithm 1, we can impose this assumption.
Second, the dynamics of the algorithm suggest ∆k eventually decreases until it is
smaller than any ε > 0.

We show the random process {Ψk,Ak} satisfies Assumption 3.1 for all k ≥ 0. The
dynamics of the random variables Ak behave the same as in the nonconvex setting;
hence Assumption 3.1 (i) and (ii) follow from Lemma 4.8. We ensure boundedness

20

of the random process {Ψk} by incorporating the optimality level directly into the
definition of Ψ; hence the dependency on ε for complexity bounds is built directly
into the function Ψ. The main component of this section is proving Assumption 3.1
(iii) holds for this Ψk, i.e. an expected improvement occurs.

Theorem 4.11. Let Assumptions 2.1, 2.2, 4.1, and 4.2 hold. Suppose the random
process generated by Algorithm 1 is {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k}. Then there exists

probabilities pg and pf and a constant ν ∈ (0, 1) such that

1{Tε>k} ·E[Ψk+1 −Ψk|FG·Fk−1] ≤ −pgpf (1−ν)(1−γ−1)

8((ν+1)DL+
(1−ν)αmaxLf

L +(1−ν)
√
θδmax)2

· Ak1{Tε>k},

where Ψk is defined in (4.34). In particular, the probabilities pg and pf and constant
ν in (4.8), (4.9), and (4.10) from Theorem 4.6 suffice.

Proof. First, by convexity, we have that

1{Tε>k} · (Φk + ε)

≤ 1{Tε>k} ·
(
(ν + 1)(f(Xk)− f∗) + (1− ν)

Ak‖∇f(Xk)‖2
L2 + (1− ν)θ∆2

k

)
≤ 1{Tε>k} ·

(
(ν + 1)〈∇f(Xk), Xk − x∗〉+ (1− ν)αmax

‖∇f(Xk)‖2
L2 + (1− ν)θδmax∆k

)
≤ 1{Tε>k} ·

(
(ν + 1)DL+

(1−ν)αmaxLf
L + (1− ν)

√
θδmax

)(
‖∇f(Xk)‖

L +
√
θ∆k

)
,

where we used ‖∇f(Xk)‖ < Lf . Without loss of generality, we assume αmax ≤ 1; one
may prove the same result with any stepsize, but for the sake simplicity we will defer
to the standard case when αmax ≤ 1. By squaring both sides, we conclude

1{Tε>k} · Ak(Φk + ε)2

C̃
:=

1{Tε>k} · Ak(Φk + ε)2

2((ν + 1)DL+
(1−ν)αmaxLf

L + (1− ν)
√
θδmax)2

≤ 1{Tε>k} ·

(
Ak
‖∇f(Xk)‖2

L2
+ θ∆2

k

)
,

(4.35)

where we used the inequality (a+b)2 ≤ 2(a2+b2). From the above inequality combined
with (4.7) we have

E[1{Tε>k} · (Φk+1 − Φk)|FG·Fk−1] ≤ −pgpf (1− ν)(1− γ−1)

4C̃
· 1{Tε>k} · Ak(Φk + ε)2.

We can then use Jensen’s inequality applied to the function x 7→ 1
x to derive the

following bound

1{Tε>k} ·E
[

1

Φk + ε
− 1

Φk+1 + ε

∣∣FG·Fk−1

]
≤ 1{Tε>k} ·

(
1

Φk + ε
− 1

E[Φk+1 + ε|FG·Fk−1]

)

= 1{Tε>k} ·

(
E[Φk+1 − Φk|FG·Fk−1]

(Φk + ε)E[Φk+1 + ε|FG·Fk−1]

)

≤ −pgpf (1− ν)(1− γ−1)Ak
4C̃

· (Φk + ε)2

(Φk + ε)E[Φk+1 + ε|FG·Fk−1]
· 1{Tε>k}

≤ −pgpf (1− ν)(1− γ−1)Ak
4C̃

· 1{Tε>k}

21

where the last inequality follows from E[Φk+1 + ε|FG·Fk−1] ≤ Φk + ε.
The expected improvement in Ψk allows us to use Theorem 3.2 with h(A) = A,

Ā = 1−θ
κg+L/2+2εf

, Θ =
pgpf (1−ν)(1−γ−1)

4C̃
where C̃ is defined in (4.35), and p = pgpf .

This directly gives us the complexity bound.
Theorem 4.12. Let the assumptions of Theorem 4.11 hold with constant ν and

probabilities pf and pg as in Theorem 4.6. Suppose we choose the constants as in
Remark 4.1. Then the expected number of iterations that Algorithm 1 takes until
f(Xk)− f∗ < ε is bounded as follows

E[Tε] ≤ O(1) · pgpf
2pgpf−1 ·

(κgαmax+1)2(κg+L+εf)

(
(ν+1)DL+(1−ν)

(
αmaxLf

L +
√
θδmax

))2

ε+Φ0
.

The bound in Theorem 4.12 can be further simplified as follows

E[Tε] ≤ O(1) · pgpf
2pgpf − 1

(
L3κ3

g(D
2 + L2

f + δ2
max)

ε

)
.

4.5. Strongly convex case. Lastly, we analyze the stochastic line search (Algo-
rithm 1) under the setting that the objective function is strongly convex. As such, we
assume the following is now true of the objective function while dropping Assumption
4.1 and the bound on ∆k.

Assumption 4.3. Suppose that, in addition to Assumption 2.1, the function f
is µ-strongly convex, namely for all x, y ∈ Rn the following inequality holds

f(x) ≥ f(y) +∇f(y)T (x− y) +
µ

2
‖x− y‖2 .

Our goal, like the convex setting, is to bound the expected number of iterations Tε
until f(x) − f∗ < ε. We show that this bound is of the order of log(1/ε), as in the
deterministic case. Our proof follows the same technique used in the deterministic
setting which relies on showing that log(f(xk)− f∗) decreases by a constant at each
iteration. Here, instead of tracking the decrease in log(f(xk) − f∗), we define the
function

Ψk = log(Φk + ε) + log

(
1

ε

)
, (4.36)

where the constant ε > 0 is the same level of optimality as Tε and Φk is defined
in (4.6). We show the random process {Ψk,Ak} satisfies Assumption 3.1. Again,
the dynamics of Ak do not change and Ψ ≥ 0 since we incorporated the optimality
condition directly into the definition of Ψ. Hence Assumption 3.1 (i) and (ii) hold.
The next result shows the expected decrease of Ψk (Assumption 3.1 (iii)).

Theorem 4.13. Let Assumptions 2.1, 2.2, and 4.3 hold. Suppose the random
process generated by Algorithm 1 is {Gk, Xk,Ak,∆k, Sk, F

0
k , F

s
k}. The expected im-

provement is

1{Tε>k} ·E[Ψk+1 −Ψk|FG·Fk−1] ≤ − pgpf (1− ν)(1− γ−1)

4(L
2(ν+1)

4µ + (1− ν)αmax + (1− ν))
Ak · 1{Tε>k},

where Ψk is defined in (4.36) and the probabilities pg and pf and constant ν are defined
in Theorem 4.6.

22

Proof. By strong convexity, for all x, we have f(x) − f∗ ≤ 1
2µ ‖∇f(x)‖2; hence

we obtain

1{Tε>k} · (Φk + ε) ≤ 1{Tε>k} ·
(

(ν + 1)(f(Xk)− f∗) + (1− ν)
(
Ak‖∇f(Xk)‖2

L2 + θ∆2
k

))
≤ 1{Tε>k} ·

((
(ν+1)L2

2µ + (1− ν)αmax

)
‖∇f(Xk)‖2

L2 + (1− ν)θ∆2
k

)
≤ 1{Tε>k} ·

((
(ν+1)L2

2µ + (1− ν)(1 + αmax)
)(
‖∇f(Xk)‖2

L2 + θ∆2
k

))
.

For simplicity of notation, we define

C̃ := (ν+1)L2

2µ + (1− ν)(1 + αmax). (4.37)

Also for simplicity and without loss of generality, we assume αmax ≤ 1; hence, we
conclude

1{Tε>k} · Ak(Φk + ε) ≤ 1{Tε>k} · C̃
(
Ak‖∇f(Xk)‖2

L2 + θ∆2
k

)
.

We have an expected decrease in Φk (4.7) from Theorem 4.6. This together with the
equality 1{Tε>k}(Φk+1 − Φk) = Φ(k+1)∧Tε − Φk∧Tε gives the following bound3

E[Φ(k+1)∧Tε − Φk∧Tε |FG·Fk−1] ≤ −pgpf (1−ν)(1−γ−1)
4

(
Ak‖∇f(Xk)‖2

L2 + θ∆2
k

)
· 1{Tε>k}

≤ −pgpf (1−ν)(1−γ−1)Ak
4C̃

· (Φk + ε) · 1{Tε>k}

⇒ E[Φ(k+1)∧Tε+ε|F
G·F
k−1] ≤

(
1− pgpf (1−ν)(1−γ−1)Ak

4C̃
· 1{Tε>k}

)
(Φk∧Tε+ε). (4.38)

Consequently, using Jensen’s inequality applied to the function x 7→ − log(x) with
x > 0, we have the following

E[log(Φ(k+1)∧Tε + ε)− log(Φk∧Tε + ε)|FG·Fk−1]

≤ log
(
E[Φ(k+1)∧Tε + ε|FG·Fk−1]

)
− log(Φk∧Tε + ε)

= log

(
E[Φ(k+1)∧Tε + ε|FG·Fk−1]

Φk∧Tε + ε

)

≤ log

(
1− pgpf (1− ν)(1− γ−1)Ak

4C̃
· 1{Tε>k}

)
,

where the last inequality follows by (4.38). Because log(1 − x) ≤ −x for x < 1, we
deduce our result.

Using the above theorem allows us to use Theorem 3.2 with h(A) = A, Ā =
1−θ

κg+L/2+2εf
, Θ =

pgpf (1−ν)(1−γ−1)

4C̃
where C̃ is defined in (4.37), and p = pgpf . After

simplifying some constants, we have the following complexity bound.
Theorem 4.14. Let the assumptions of Theorem 4.13 hold with constant ν and

probabilities pf and pg as in Theorem 4.6. Suppose we choose the constants as in
Remark 4.1. Then the expected number of iterations that Algorithm 1 takes until
f(Xk)− f∗ < ε is bounded as follows

E[Tε] ≤ O(1) · pgpf
2pgpf − 1

(
(κgαmax)2(κg + L+ εf)

(
L2

2µ
+ αmax

))
log

(
Φ0 + ε

ε

)
+ 1

3We use the notation a ∧ b = min{a, b}.

23

Simplifying the bound further gives us

E[Tε] ≤ O(1) · pgpf
2pgpf − 1

(
L3(κgαmax)3

µ

)
log

(
Φ0

ε

)
.

4.6. General descent, nonconvex case. In this subsection, we extend the
analysis of our line search method to the general setting where steps are taken along
some direction dk, and not the negative stochastic gradient estimate −gk. For example
dk may be computed by applying a subsampled Newton method [17], or it may be a
quasi-Newton direction derived using gradient estimates from the past iteration. We
will not assume here any specifics about how dk is derived, but we will simply assume
that dk and gk make a sufficiently obtuse angle. Algorithm 1 is then modified as
follows

• a step is reliable when −αkgTk dk ≥ δ2
k instead of αk ‖gk‖2 ≥ δ2

k;
• the stepsize sk = αkdk (instead of −αkgk).
• The sufficient decrease (2.2) is replaced with

f(xk + αkdk) ≤ f(xk) + αkθd
T
k gk. (4.39)

• dk satisfies the following standard conditions.
Assumption 4.4. Given a gradient estimate gk we assume the following hold for

the descent direction dk
(i) There exists a constant β > 0, such that dk is a descent direction, namely

dTk gk
‖dk‖ ‖gk‖

≤ −β, for all k.

(ii) There exist constants κ1, κ2 > 0 such that

κ1 ‖gk‖ ≤ ‖dk‖ ≤ κ2 ‖gk‖ , for all k.

We note that to satisfy the above assumption one can always modify the step
direction dk by adding a appropriate multiple of gk to it. For example, such self-
correcting technique has been successfully used together with stochastic L-BFGS
method in [8].

We now provide simple variants of the lemmas derived in Section 4.1.
Lemma 4.15 (Bound on gradient change, variant of Lemma 4.4). Suppose the

k-th step is successful and the descent direction dk satisfies Assumption 4.4. Then

‖∇f(xk+1)‖2 ≤ 2(L2α2
kκ

2
2 ‖gk‖

2
+ ‖∇f(xk)‖2).

In particular, the inequality holds

1
L2

(
αk+1 ‖∇f(xk+1)‖2 − αk ‖∇f(xk)‖2

)
≤ 2γαk

(
α2

maxκ
2
2 ‖gk‖

2
+ 1

L2 ‖∇f(xk)‖2
)
.

Proof. An immediate consequence of L-smoothness of f is ‖∇f(xk+1)‖ ≤ Lαk ‖dk‖+
‖∇f(xk)‖. The result follows from Assumption 4.4 (ii) then squaring both sides and
applying the bound, (a + b)2 ≤ 2(a2 + b2). To obtain the second inequality, we note
that in the case xk + sk is successful, αk+1 = γαk.

24

The analysis for the steepest descent relies on successful iterations occurring when-
ever the stepsize is sufficiently small. We provide a similar result for the general
descent case.

Lemma 4.16 (Accurate gradients and function estimates and small step size ⇒
successful step, variant of Lemma 4.2). Suppose gk is κg-sufficiently accurate, the
descent direction dk satisfies Assumption 4.4, and {f0

k , f
s
k} are εf -accurate estimates.

If

αk ≤
β(1− θ)

κg + Lκ2

2 +
2εf
κ1

,

then the k-th step is successful. In particular, this means fsk ≤ f0
k + θαkg

T
k dk.

Proof. The L-smoothness of f and the κg-sufficiently accurate gradient immedi-
ately yield

f(xk + sk) ≤ f(xk) + αk(∇f(xk)− gk)T dk + αkg
T
k dk +

Lα2
k

2 ‖dk‖
2

≤ f(xk) + κgα
2
k ‖dk‖ ‖gk‖+ αkg

T
k dk +

Lα2
k

2 ‖dk‖
2
.

Since the estimates are εf -accurate, we obtain

fsk − εfα2
k ‖gk‖

2 ≤ f(xk + sk)− fsk + fsk

≤ f(xk)− f0
k + f0

k + κgα
2
k ‖dk‖ ‖gk‖+ αkg

T
k dk +

Lα2
k

2 ‖dk‖
2

≤ f0
k + εfα

2
k ‖gk‖

2
+ κgα

2
k ‖dk‖ ‖gk‖+ αkg

T
k dk +

Lα2
k

2 ‖dk‖
2
.

The above inequality with Assumption 4.4 implies

fsk − f0
k ≤ α2

k

(
2εf
κ1

+ κg +
Lκ2

2

)
‖gk‖ ‖dk‖+ αkg

T
k dk

≤ −α
2
k

β

(
2εf
κ1

+ κg +
Lκ2

2

)
gTk dk + αkg

T
k dk.

The result follows by noting fsk ≤ f0
k + αkg

T
k dk

(
1− αk

β

(
κg + Lκ2

2 +
2εf
κ1

))
.

As in the steepest descent case, we use the same function Φk as defined in (4.6).
Using the sufficient decrease condition (4.39) and Assumption 4.4 on dk, a successful
step yields a decrease of

f(xk + αkdk) ≤ −θαkκ1β ‖gk‖2 .

Hence, we can derive, as in the steepest descent scenario, an expected decrease in Φk.

Theorem 4.17. Let Assumptions 2.1, 2.2, and 4.4 hold. Suppose the random
process generated by Algorithm 1 is {Gk, Dk, Xk,Ak,∆k, Sk, F

0
k , F

s
k}. Then there exist

probabilities pg, pf > 1/2 and a constant ν ∈ (0, 1) such that the expected decrease in
Φk is

E[Φk+1 − Φk|FG·Fk−1] ≤ −pgpf (1− ν)(1− γ−1)

4

(
Ak
L2
‖∇f(Xk)‖2 + θ∆2

k

)
. (4.40)

25

In particular, the constant ν and probabilities pg, pf > 1/2 satisfy

ν

1− ν
≥ max

{
32γα2

maxκ
2
2

θκ1β
, 16(γ − 1),

16γ(κgαmax + 1)2

θκ1β

}
, (4.41)

pg ≥
2γ

1/2(1− γ−1) + 2γ
(4.42)

and
pgpf√
1− pf

≥ max

{
8L2νκf + 16γ(1− ν)

(1− ν)(1− γ−1)
,

8ν

(1− ν)(1− γ−1)

}
. (4.43)

Proof. Using Assumption 4.4 on the descent direction dk when a step is successful,
we see

1Succ(f(Xk +AkDk)− f(Xk)) ≤ −1SuccθAkκ1β ‖Gk‖2 .

Hence, we may replace θ in the proof of Theorem 4.6 with θκ1β. The only other
change to the proof and the resulting constants lies in the replacement of Lemma 4.4
by Lemma 4.15. This implies a change in the choice of ν in equation (4.15). In
particular, we choose ν to now satisfy

−νθκ1βAk
8

‖Gk‖2 + (1− ν)2γAkα2
maxκ

2
2 ‖Gk‖

2 ≤ −νθκ1βAk
16

‖Gk‖2 ,

−νθκ1βAk‖∇f(Xk)‖2
4L2(κgαmax+1)2 +

2(1−ν)γAk‖∇f(Xk)‖2
L2 ≤ −νθκ1βAk‖∇f(Xk)‖2

8L2(κgαmax+1)2 ,

and − νθ

8
∆2
k + (1− ν)(γ − 1)θ∆2

k ≤ −
νθ

16
∆2
k.

(4.44)

The dynamics of Ak mimic those in the gradient descent case and thus Lemma 4.8
holds by replacing Ā with

Ā =
β(1− θ)

κg + Lκ2

2 +
2εf
κ1

.

The proof of Lemma 4.8 relied on Lemma 4.2 which we replace in the general descent
case with Lemma 4.16. We derive a complexity bound using Theorem 3.2 for the
general descent setting.

Theorem 4.18. Under the assumptions in Theorem 4.17, and constants chosen
in Remark 4.1, suppose the probabilities pg, pf > 1/2 satisfy

pg ≥
16

17
and

pgpf√
1− pf

≥ max
{

1024κfL
2(max{κg,2κ2}αmax+1)2

κ1β
+ 64,

1024(max{κg,2κ2}αmax+1)2

κ1β

}
with ν

1−ν =
64(max{κg,2κ2}αmax+1)2

κ1β
. Then the expected number of iterations that Algo-

rithm 1 takes until ‖∇f(Xk)‖2 ≤ ε occurs is bounded as follows

E[Tε] ≤ O(1) · pgpf
2pgpf − 1

·
L3κ3

gκ
3
2Φ0

κ2
1β

2
· 1

ε2
+ 1,

where Φ0 = ν(f(X0)− fmin) + (1− ν)(1/L2A0 ‖∇f(X0)‖2 + 1/2∆2
0).

26

5. Conclusions. We have used a general framework based on the analysis of
stochastic processes proposed in [3] with the purpose of analyzing expected complex-
ity of stochastic optimization methods. In [3] the framework is used to analyze a
stochastic trust region method, while in this paper we were able to use the same
framework to develop and analyze a stochastic backtracking line search method. Our
method is the first implementable stochastic line search method that has theoretical
convergence rate guarantees. In particular, the accuracy of gradient and function
estimates is chosen dynamically and the requirements of this accuracy are all stated
in terms of knowable quantities. We establish complexity results for convex, strongly
convex and general nonconvex, smooth stochastic functions.

REFERENCES

[1] Larry Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific J. Math., 16(1):1–3, 1966.

[2] A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Convergence of trust-region methods based
on probabilistic models. SIAM Journal on Optimization, 24(3):1238–1264, 2014. Copyright
- 2014, Society for Industrial and Applied Mathematics; Last updated - 2014-09-09.

[3] J. Blanchet, C. Cartis, M. Menickelly, and K. Scheinberg. Convergence Rate Analysis of a
Stochastic Trust Region Method for Nonconvex Optimization. arXiv:1609.07428, 2017.

[4] Raghu Bollapragada, Richard Byrd, and Jorge Nocedal. Adaptive sampling strategies for
stochastic optimization. arXiv:1710.11258, 2017.

[5] R. Byrd, G. M. Chin, J. Nocedal, and Y. Wu. Sample size selection in optimization methods
for machine learning. Mathematical Programing, 134:127–155, 2012.

[6] C. Cartis and K. Scheinberg. Global convergence rate analysis of unconstrained optimization
methods based on probabilistic models. Mathematical Programming, Apr 2017.

[7] R. Chen, M. Menickelly, and K. Scheinberg. Stochastic optimization using a trust-region method
and random models. Mathematical Programming, Apr 2017.

[8] Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In Pro-
ceedings of The 33rd International Conference on Machine Learning, pages 632–641, 2016.

[9] J. C. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research (JMLR), 12:2121–2159,
2011.

[10] M Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM
Journal on Scientific Computing, 34(3):1380–1405, 2012.

[11] Abraham P. George and Warren B. Powell. Adaptive stepsizes for recursive estimation with
applications in approximate dynamic programming. Machine Learning, 65(1):167–198, Oct
2006.

[12] Fatemeh S Hashemi, Soumyadip Ghosh, and Raghu Pasupathy. On adaptive sampling rules
for stochastic recursions. Simulation Conference (WSC), IEEE, page 39593970, 2014.

[13] Philipp Hennig. Fast probabilistic optimization from noisy gradients. In Proceedings of the
30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pages 62–70. PMLR, 17–19 Jun 2013.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

[15] Maren Mahsereci and Philipp Hennig. Probabilistic line searches for stochastic optimization.
Journal of Machine Learning Research, 18(119):1–59, 2017.

[16] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.
[17] Michael W. Mahoney Peng Xu, Farbod Roosta-Khorasani. Newton-type methods for non-

convex optimization under inexact hessian information. arXiv, 2017. arXiv:1708.07164.
[18] Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of

Mathematical Statistics, 22(3):400–407, 1951.
[19] Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I. Jordan. Stochastic

cubic regularization for fast nonconvex optimization. arXiv:1711.02838, 2017.
[20] Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach.

Learn., 8(1-2):1–230, May 2015.

27

