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ABSTRACT

In March 2014, a catastrophic landslide in Washington State destroyed a community and killed 43
people. An analysis of the available information using a new approach to manage risk when dealing
with rare, high consequence hazards indicates that if the risk for another landslide is accepted, then
the expected time between occurrences of massive landslides at this location is about 2000-3000
years, the mean occurrence rate tends to increase with time since the last occurrence, and the
alternative of avoiding the risk is preferred if the present worth cost to avoid it (i.e. prevent
development) for 100 years is less than about 1/6 the cost of another massive landslide.

1. Introduction

In March of 2014, a catastrophic landslide occurred
near Oso, Washington (Iverson & George, 2016; Keaton
et al.,, 2014; Stark, Baghdady, Hungr, & Aaron, 2017;
Wartman et al., 2016). A 600-m wide section of the
200-m high slope above the valley of the North Fork
of the Stillaguamish River collapsed, sending a rapid
flow of soil debris nearly 1 km across the floor of the
valley (Figures 1 and 2). The debris flow destroyed a
community of 49 homes, killed 43 people, cut off the
only highway providing access up and down the valley,
temporarily dammed the river and flooded the valley
upstream.

At the time, a slope failure of this magnitude was
unexpected and there were no restrictions on land
development in the valley below the slope (Keaton
et al., 2014). Over the past century, the lower portion
of the slope that failed in 2014 had failed multiple
times. However, this slope was only 1/3 the height
with a failing mass and debris flow runout distance
about 1/10 that of the 2014 failure (Figure 2). These
previous smaller failures neither caused loss of life nor
impacted the residential homes in the community
below the slope.

Assessing and managing the risk from rare but high
consequence hazards is challenging because there is
limited historical information. The objective of this
paper is to analyze the Oso landslide case history
using a new approach intended to facilitate risk man-
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agement when dealing with rare, high consequence
hazards. The approach enhances a Bayesian method-
ology, which is commonly used for assessing landslide
hazards (e.g. Einstein & Sousa, 2007; Liu et al., 2015;
Medina-Cetina & Nadim, 2008; Nadim & Liu, 2013;
Rodriguez-Ochoa, Nadim, Cepeda, Hicks, & Liu,
2015), by establishing a non-informative starting
point for the methodology based on risk-management
decisions.

2, Risk-management decision

The primary decision in managing risk from natural
hazards like the Oso landslide is to either accept the
risk or avoid the risk (Figure 3). There are three features
of this decision:

o The consequence associated with a slope failure that
destroys the residential community. To distinguish
this magnitude of a failure from smaller slope failures,
it will be denoted as a “characteristic landslide.” The
consequence of a characteristic landslide, which
could be expressed in dollars or more generally as a
utility value, will be denoted Cy. For context, the econ-
omic consequence of the March 2014 landslide near
Oso is on the order of hundreds of million dollars.
Of course, the human cost is incalculable to those
affected.

e The probability of a characteristic landslide occurring,
denoted Py, during a planning period. Typical
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Figure 1. Aerial photographs of Oso slope before and after the

planning periods for land development decisions are
between 30 and 100 years; a planning period of 100
years will be used in this analysis.

The consequence of avoiding the risk due to a
characteristic landslide throughout the planning
period, denoted C,yo;4. Practically, this consequence
is the present worth cost of not allowing develop-
ment in the valley below the slope for the duration
of the planning period, which could include relo-
cating existing residences and the lost opportunity
due to preventing land development in a desirable
area.

300

Glacial Recessional Outwash Sand\

March 22, 2014

March 2014 failure.

Following decision theory, the preferred alternative
will have the maximum expected utility (or the lowest
absolute magnitude of cost):

E(utility A) = —Pf X Cf (1)

E(utility B) = —Cyyoid ()

Based on this approach, the alternative of avoiding the
risk will be preferred when Cyoiq < Prx Cr or
Cavoid/Cr < Py where the cost of avoidance for the plan-
ning period is normalised by the cost of a failure due to a
characteristic landslide. These costs represent the value
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Figure 2. Profiles of the slope after a smaller landslide in 2006 and the large landslide in 2014 (Gilbert, Montgomery, et al., 2016).
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Loss due to [Cost of not
landslide  [developing
Characteristic Landslide Ps C; 0
A: No Action
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No Characteristic Landslide 0 0
B: Mitigation (Not Allow Development) Vulnerability goes to zero 0 C.ivia

Figure 3. Decision tree for Oso landslide risk management.

system of the stakeholders who are making the decision
(e.g. the government) and/or are impacted by the
decision (e.g. the residents).

3. Occurrence model for characteristic
landslides

The probability of a characteristic (i.e. large and conse-
quential) landslide occurring during the 100-year plan-
ning period, Py, depends on the rate of occurrence for
characteristic landslides. A Poisson process is commonly
used to model the occurrence of natural hazards, like land-
slides. However, a Poisson model is not necessarily realis-
tic for landslides because the rate of occurrence may not be
constant with time (e.g. Zhang & Tang, 2009). The rate of
occurrence for another characteristic landslide at Oso is
possibly smaller immediately after a characteristic land-
slide has occurred because the slope geometry is more
stable since the landslide buttresses itself as it decelerates
and because soil pore water pressures may decrease in
the remaining slope after the weight of the failed mass
has been removed. A more general occurrence model is
a Weibull renewal model (Cornell & Winterstein, 1988),
in which the probability of failure during an interval of
time since the last failure, t, is given by:

1 £\ vr
Pf =P[T<t]=1 — exp —<VT. t> ! 3)
MrT

where T is a random variable representing the time of
recurrence for characteristic landslides, w; is the mean
or expected time between characteristic landslides, and
yr is the coeflicient of variation for the time between
characteristic landslides where 0 <wvr <1. When
vy = 1, this renewal model is a Poisson process and the
mean rate of occurrence is a constant with time; when
yr < 1, the mean rate of occurrence increases with time
since the last occurrence (Figure 4).

4. Information about occurrence of
characteristic landslides

Since the 2014 landslide, analyses of Lidar data (Hau-
gerud, 2014) and radiocarbon dating of landslide deb-
ris (Keaton et al, 2014) indicate at least two
characteristic landslides occurred at the location of
the 2014 landslide within the 15,000 years since the
last glaciation. Also, historical information indicates
there had not been a characteristic landslide in this
location for at least 200 years before the 2014 landslide.
Depending on perspective, there are various descrip-
tions of information:

(1). For a stakeholder who knows nothing about land-
slide activity, they have no information about the
possible occurrence of characteristic landslides. In
this case the likelihood of having observed this

Mean Occurrence Rate (per year)

2000

2500 3000 3500

Time since Last Occurrence (years)

Figure 4. Weibull renewal model.
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information as a function of the renewal model par-
ameters, pp and vr, (Figure 5(a)) is given by:

P(No Information|uy, vr) = 1.0 (4)

(2). For a stakeholder who is unaware that any character-
istic landslides have occurred at this location in the
past 15,000 years (a typical person prior to March
2014), the likelihood for this information (Figure 5
(b)) is given by:

P(No Occurrences in 15,000 years|wr, vr)

1
—exp - (vT!(:L5T000)>vT 5)

(3). For a stakeholder prior to 2014 who is aware of the
Lidar studies indicating there have been at least two
characteristic landslides at this location in the past
15,000 years, the likelihood for this information
(Figure 5(c)) is given by:

P(> 2 Occurrences in 15, 000 years|wy, vr)
1 1
= 1
. (VT!(15,000)>VT - (2—1(15,000))”
T

=1-

(6)

(4). For a stakeholder today who is aware of all available
information, the likelihood for this information
(Figure 5(d)) is given by (see Mostofi, 2018 for deri-
vation):

P(> 3 Occurrences in 15, 000 years and
> 200 Years between Last Two|wy, vr)
15,000
_ j -

200

1
i <vT!(15,000 — t1)> vr
MT

1

7(V—T’(15,000 — tl))”
X e MK

1 1

xexp <VT!t1>VT ( l)(vT!t1>VT IVT!dt
- - — Ul
Kt vr Kt M

7)

The challenge of limited information in this case is illus-
trated by the very flat likelihood functions in Figure 6. It
is not possible to identify a single combination of pp
and vy as most likely based on any of these likelihood

functions. In addition, these functions indicate the likeli-
hood of observing the available information as a function
of the parameters gy and vr; however, the probability of
different combinations of u and vy given available infor-
mation is needed for decision making going forward.

5. Bayes’ Theorem and the Theory of Decision
Entropy

For the purposes of making the risk-management
decision (Figure 3), the probability of failure in the
100-year planning period is obtained as a function of
the renewal model parameters:

1
| exp _(VT! (100 years)> vr

P, =
/ M

all pwp,vr
P(uy, vr|Information)dw dvr
(8)

where P(ur, vr|Information) is the joint probability for
different combinations of u; and vr given the available
information (posterior probability). This joint prob-
ability is obtained from Bayes” Theorem as follows:

P(ur, vr|Information) =

P(Information|uy, vr)P(uy, vr|Decision)

[ P(Information|wy, vr)P(ur, vr|Decision)dudvr

all pp,vr
)

where P(Information|u, vr) is the likelihood function
(Figure 5) and P(ur, vr|Decision) is the joint probability
for different combinations of u; and vr in the original
sample space of the decision (i.e. the set of all possibilities
prior to incorporating information).

The Theory of Decision Entropy (Gilbert, Habibi, &
Min, 2012, 2016) is being developed as a basis to estab-
lish non-informative prior probabilities in the context
of making a decision, P(u, vr|Decision). This theory
is derived from three principles:

(1). If no information is available about the probabilities
of wr and vr, then a selected alternative is equally
probable to be or not to be the preferred alternative.

(2). If no information is available about the probabilities
of wy and vr, then the possible differences in prefer-
ence between a selected alternative and the preferred
alternative are equally probable.

(3). If no information is available about the probabilities
of uy and vr, then the possibilities of learning with
new information about the selected alternative
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Figure 5. Likelihood of observing different sets of information. (a) No information. (b) No occurrences in 15,0000 years. (c) At least 2
occurrences in 15,000 years. (d) At least 3 occurrences in 15,000 years with at least 200 years before most recent occurrence.

compared to the preferred alternative are equally
probable.

The theory is implemented mathematically using the
Theory of Information Entropy (Shannon, 1948). The
prior probability for a selected decision alternative is
obtained by maximising the entropy of the information
potential:

Au(prp, vy, Aj Selected)
= u(py, vr, Aj Selected)

— max[u(wr, vr, A; Selected) for all i] (10)

where Au(wr, vr, Aj Selected) is the information poten-
tial if either alternative A or alternative B is selected and
u(my, vr, Aj Selected) is the utility if A is selected
(Equation 1 where Py is obtained from Equation 3 as a
function of w; and vr) or if B is selected (Equation 2).
The information potential is less than or equal to zero:
it equals 0 if A; is the preferred alternative and it is less
than zero if A; is not the preferred alternative. Account-
ing for uncertainty in w; and vy, the preferred

alternative will have the maximum expected value of
the information potential.

The resulting prior probability distributions (e.g.
Figure 6) depend both on the decision alternative
(either accept or avoid risk) and on the consequences,
Cavoid/Cs. They are constructed for each decision
alternative such that (i) there are equal probabilities
that the information potential is zero and less than
zero and (ii) there are equal probabilities for the poss-
ible values of information potential less than zero'.
Once the prior probability distribution is established,
then Bayes’ Theorem (Equation 9) is used to update
the probability for w; and vy given the available infor-
mation (e.g. Figure 7).

6. Results

Results of the decision analysis are summarised in Table
1. Given the available information today (following the
2014 failure), the alternative of accepting the risk is pre-
ferred if the present worth cost to avoid it (i.e. prevent
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development) for 100 years is greater than 1/5.6 the cost
of another massive slope failure. If the cost to avoid the
risk is at this threshold of 1/5.6, then the value of perfect
information about the occurrence frequency of massive
landslides in the next 100 years is about 1/20™ the cost
of a failure (Table 1). If a decision maker prior to the
2014 slope failure ignorantly assumed there had been
no previous massive landslides, then the alternative of
accepting the risk is preferred if the present worth cost
to avoid it is less than 15% of the threshold for accepting
the risk today (Table 1).

With the proposed approach, the assessment of the
parameters for the renewal model describing the
chance for future landslides (up and vy) depends
both on the available information about previous land-
slide occurrences at this location as well as how these
parameters affect the risk-management decision (i.e.
whether or not one chooses to accept the risk and
the consequences of accepting and avoiding the risk,
Cavoid/Cr). Given the available information today and
choosing to accept the risk for the next 100 years,
the decision-based mean recurrence time for massive
landslides at this location is 2000-3000 years, and the
coefficient of variation in the recurrence time is 0.6
to 0.7, indicating that the mean occurrence rate tends
to increase with time since the last occurrence (Figure
8). However, there is still significant uncertainty in
both parameters (Figure 8).

Table 1. Results of decision analysis.

7. Summary

The 2014 landslide near Oso Washington that killed 43
people is an example of a natural hazard that is relatively
rare but results in high consequences. A new method-
ology based on the Theory of Decision Entropy provides
a means to assess the probability for a recurrence of this
event for the purposes of making risk-management
decisions. Given the information available today and
choosing the accept the risk of another landslide in the
next 100 years, the mean time between occurrences of
massive landslides at this location is about 2000-3000
years, and the mean occurrence rate tends to increase
as the expected time between occurrences is approached.
The alternative of avoiding the risk is preferred if the pre-
sent worth cost to avoid it (i.e. prevent development) for
100 years is less than about 1/6 the cost of another mas-
sive landslide.

8. What do | remember about professor Wu

Robert Gilbert: I remember walking the streets of Paris
with TH in the early 1990s. While at a conference
together, I mentioned I was a big fan of Ernest Hemi-
ngway and F. Scott Fitzgerald and wanted to visit some
of their haunts. He suggested we skip an afternoon of
the conference and go on an adventure! As we toured
Paris, I learned why he was such a great professor: he

Ignorance: No Pre-2014: > 2 Post 2014: > 3 Occurrences in 15,000
No Occurrences in 15,000 Occurrences in 15,000 Years with > 200 Years before Last
Information Years Years One
Threshold Cost of Avoidance beyond which 1/6.2 1/39 1/5.5 1/5.6
Accepting Risk Preferred (Cost of a Failure)
Value of Perfect Information about Renewal 0.044 0.016 0.049 0.052

Model if Cost of Avoidance is at Threshold
(Cost of Failure)
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was curious and insightful, he asked questions and lis-
tened, and he enjoyed life. I do not remember much
from the conference, but I will always remember fondly
that afternoon with TH.

Note

1. For combinations of w; and vy that produce the same
information potential, each combination is assumed to
be equally probable as an approximation to the third
principle of the Theory of Decision Entropy.
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