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Lateral inhibition is a fundamental feature of circuits that process sensory information. In the mammalian olfactory system,
inhibitory interneurons called short axon cells (SACs) comprise the first network mediating lateral inhibition between glo-
meruli, the functional units of early olfactory coding and processing. The connectivity of this network and its impact on odor
representations is not well understood. To explore this question, we constructed a computational model of the interglomeru-
lar inhibitory network using detailed characterizations of SAC morphologies taken from mouse olfactory bulb (OB). We then
examined how this network transformed glomerular patterns of odorant-evoked sensory input (taken from previously-pub-
lished datasets) as a function of the selectivity of interglomerular inhibition. We examined three connectivity schemes: selec-
tive (each glomerulus connects to few others with heterogeneous strength), nonselective (glomeruli connect to most others
with heterogenous strength), or global (glomeruli connect to all others with equal strength). We found that both selective
and nonselective interglomerular networks could mediate heterogeneous patterns of inhibition across glomeruli when driven
by realistic sensory input patterns, but that global inhibitory networks were unable to produce input-output transformations
that matched experimental data and were poor mediators of intensity-dependent gain control. We further found that net-
works whose interglomerular connectivities were tuned by sensory input profile decorrelated odor representations more
effectively. These results suggest that, despite their multiglomerular innervation patterns, SACs are capable of mediating
odorant-specific patterns of inhibition between glomeruli that could, theoretically, be tuned by experience or evolution to
optimize discrimination of particular odorants.
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Significance Statement

Lateral inhibition is a key feature of circuitry in many sensory systems including vision, audition, and olfaction. We investi-
gate how lateral inhibitory networks mediated by short axon cells (SACs) in the mouse olfactory bulb (OB) might shape odor
representations as a function of their interglomerular connectivity. Using a computational model of interglomerular connec-
tivity derived from experimental data, we find that SAC networks, despite their broad innervation patterns, can mediate het-
erogeneous patterns of inhibition across glomeruli, and that the canonical model of global inhibition does not generate
experimentally observed responses to stimuli. In addition, inhibitory connections tuned by input statistics yield enhanced
decorrelation of similar input patterns. These results elucidate how the organization of inhibition between neural elements
may affect computations.

Introduction
Lateral inhibition is a fundamental feature of circuits that process
sensory information (Isaacson and Scanziani, 2011). Computations
mediated by lateral inhibitory circuits are diverse and can vary
depending on the connectivity between neural circuit elements
(Hartline et al., 1956; Yoshimura and Callaway, 2005; Poo and
Isaacson, 2009; Kim et al., 2018; Znamenskiy et al., 2018). Lateral in-
hibition also plays a key role in the initial processing of olfactory in-
formation. In mammals, the first stage of this processing occurs
among glomeruli of the olfactory bulb (OB), where olfactory sen-
sory neurons (OSNs) expressing the same odorant receptor con-
verge onto mitral/tufted (M/T) cells, the principal OB projection
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neuron, as well as several classes of inhibitory interneurons
(Mombaerts et al., 1996; Wachowiak and Shipley, 2006).
Inhibition between glomeruli is a canonical feature of the OB
network, with two major circuits mediating interglomerular
inhibitory interactions. One circuit involves reciprocal den-
drodendritic interactions between M/T and granule cells
(Wachowiak and Shipley, 2006). Another circuit involves a
class of inhibitory interneuron, short axon cells (SACs), that
branches extensively in the glomerular layer and regulates
excitability of M/T cells in response to sensory input (Aungst
et al., 2003; Whitesell et al., 2013; Banerjee et al., 2015; Liu et
al., 2016). SACs thus constitute the first stage of lateral inhi-
bition in the olfactory system.

Several recent studies have suggested that the SAC network
mediates a form of global center-surround lateral inhibition that
results in gain control that scales with the intensity of sensory
input, due to the extensive branching of SACs, which can extend
for up to 1 mm across the glomerular layer (Aungst et al., 2003;
Cleland and Sethupathy, 2006; Banerjee et al., 2015). However,
other studies have found that inhibition between glomeruli is
more selective, with suppression of M/T cell outputs occurring
in an odorant-specific and glomerulus-specific manner (Yokoi et
al., 1995; Fantana et al., 2008; Economo et al., 2016). Similar
examples of selective interglomerular inhibition have been
explored in the olfactory system of nonmammalian species,
where it is thought to enhance the discriminability of similar
odorants (Linster et al., 2005; Wiechert et al., 2010; Mohamed et
al., 2019). How, or whether, selective interglomerular inhibition
arises from a widespread SAC network in the mammalian OB
remains unclear.

SACs in fact constitute a morphologically diverse popula-
tion that shows varying degrees of branching within a subset
of glomeruli (Kiyokage et al., 2010). Depending on the na-
ture of this connectivity, the SAC network could mediate
selective interglomerular inhibition and odorant response
sharpening, global inhibition and intensity-dependent gain
control, or an alternate transformation of sensory input pat-
terns. We approached this question computationally, by ask-
ing whether an interglomerular network derived from the
known branching patterns of SACs is capable of mediating
selective lateral inhibition of glomerular output and how the
nature of SAC interglomerular connectivity impacts how this
circuit transforms odorant representations. We constructed
a simplified interglomerular network model based on quanti-
tative, anatomic reconstructions of SAC-glomerular innerva-
tions (Kiyokage et al., 2010), in which a single parameter
governed the selectivity of interglomerular inhibitory con-
nections. Using experimentally measured OSN responses to
odorant as inputs to the network and simulated M/T cell out-
puts from each glomerulus, we explored how odorant repre-
sentations are affected by SAC network selectivity.

We found that interglomerular networks based on SAC mor-
phologies are in fact capable of producing heterogeneous, glo-
merulus-specific inhibition when driven by realistic OSN input
patterns. We also found, surprisingly, that globally connected
networks were unable to produce input-output transformations
that matched experimental data and were poor mediators of
intensity-dependent gain control. Finally, we found that SAC
networks with connectivity tuned by sensory input profile decor-
related odorant representations more effectively than randomly
connected networks. These results suggest that, despite their
multiglomerular innervation, SACs are capable of mediating het-
erogeneous patterns of inhibition between glomeruli that could,

in theory, be tuned to optimize discrimination of particular
odorants.

Materials and Methods
Network connectivity
The models used in this study represent networks of nodes (glomeruli)
connected by SAC-mediated inhibitory connections. The connections of
individual SACs across the network were based on previously-reported
anatomic characterizations of SAC morphologies (Kiyokage et al., 2010).
Interglomerular connectivity (connections between nodes in the net-
work) resulted from the connections made by its constituent SACs. For
the two network instantiations (containing 105 or 94 glomeruli, respec-
tively), each glomerulus contained 40 SACs randomly sorted into two
groups, oligoglomerular and polyglomerular, with probabilities of 0.8
and 0.2, respectively (Kiyokage et al., 2010). Each oligoglomerular SAC
connected to four glomeruli and each polyglomerular SAC connected to
20. We modeled the selectivity of SAC networks by assigning each glo-
merulus a target set of glomeruli of sizem (Fig. 1A), a random set of glo-
meruli that its SACs were allowed to innervate. Thus, the magnitude of
m determined the selectivity of interglomerular connections in the net-
work, and the selectivity could be varied parametrically. We modeled the
nonuniform distribution of innervation degree of SACs across their tar-
get set by giving each connection made by a SAC a random weight
drawn from an exponential distribution with mean b = 1.25. The total
strength of connection from glomerulus i to glomerulus j (node i to
node j in the network model), wij, was the sum of the weights of the con-
nections made by the SACs in i and innervating j. Networks with global,
uniform connectivity were constructed by connecting each glomerulus
to all other glomeruli with the same mean strength of interglomerular
connections as described above.

Network activity
After each network was constructed, responses to OSN inputs were
computed using a simplified wiring scheme where a single excitatory
cell (EC) was associated with each glomerulus, as was a single repre-
sentative inhibitory SAC. Both cell types received excitatory input
from the OSN associated with that glomerulus. Each node’s EC
excited the SAC in its glomerulus, and the SAC inhibited the ECs in
other glomeruli using the network structure described above (Fig.
1B). Each EC and SAC had an activity level ranging between �0.1 to
1 and �0.05 to 1, respectively, where 0 corresponded to the spontane-
ous firing rate, 1 corresponded to its maximal firing rate, and negative
values corresponded to firing at rates below spontaneous (i.e., sup-
pression). Changes in activity of the EC and SAC were governed by
the sigmoidal functions (Fig. 1C):

SACi ¼ a11
1� a1

11 k1e�b1 Ii1ECið Þð Þ1=v
(1)

ECi ¼ a21
1� a2

11 k2e
�b2 Ii�«

P
wijSACjð Þ

� �1=v
; (2)

where a1 = �0.1, a2 = �0.05 were the activity levels’ lower bounds, b1 =
70, b2 = 10, v= 2.5 controlled the steepness of the sigmoids,

k1 ¼ �11 a1�1
a1

� �v
and k2 ¼ �11 a2�1

a2

� �v
set the neurons’ activity to

zero when the net input was zero, « controlled the strength of interglo-
merular inhibition, andwijwas the net connection strength from glomeru-
lus i to glomerulus j as defined in the network construction above. The
input Ii was the activity of the OSN connected to the ith glomerulus. The
result was a system of 2n algebraic equations, where n was the number of
glomeruli in the network, which we solved via MATLAB’s fsolve function.

Model inputs
To simulate biologically-constrained patterns of OSN input, we used
published datasets consisting of matrices of OSN activity measured
across many glomeruli in response to a large array of odorants (Ma et
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al., 2012; Burton et al., 2019). The first dataset, derived from Burton et
al. (2019), contained responses of OSN terminals in 105 glomeruli to 71
odorants (eliminating eight odorants that did not evoke a response in
any OSNs). The second dataset, derived fromMa et al. (2012), contained
the responses in 94 glomeruli to 59 odorants at three concentrations
(several odorant/concentration pairs were initially removed because they
did not evoke a response in any OSNs). For both datasets, all OSN
responses were normalized by the largest value in the dataset so that all
values were bounded between 0 and 1.

Measures of EC activity
We calculated the lifetime sparseness of ECs as a measure of the selectiv-
ity of responses of individual ECs (Figs. 4B, 6D). We used the formula
from Davison and Katz (2007):

SLi ¼ 1
1� 1=N

1�
P

k

h k

N

� �2

P
k

h 2
k

N

2
6664

3
7775;

where N was the number of odorants presented to the network and h k

was the response of the EC of the ith glomerulus to odorant k. If an EC
responded to only one odorant, the lifetime sparseness was maximal at
1, and if it responded to all odorants equally, the lifetime sparseness was
0. Similarly, we studied the sparseness of the patterns of activity evoked
by odorants by calculating the number of ECs that were excited (activity
above 0.045) or suppressed (activity below�0.07) by each odorant.

To examine the relationship between glomerular excitation and the
prevalence of suppression, for each odorant we calculated the fraction of
non-excited ECs that were suppressed (the number of ECs whose activ-
ity went below �0.07 divided by the number whose activity was below
0.045) as a function of the total excitation elicited by the odorant (the
summed activity of ECs whose activity exceeds 0.045). We fitted the
responses of the selective and nonselective networks with the rational
function:

f xð Þ ¼ �2x2 1 �1x� �0

m3x3 1m2x2 1 1
1p0;

using MATLAB’s fminsearch function and the cost function:

J ~y;~xð Þ ¼ c1
Xk�1

‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y‘2 � f 2ðx‘Þ

p
1 c2

XN
‘¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y‘2 � f 2ðx‘Þ

p
;

where x‘ was the total excitation of odorant ‘ and y‘ was the fraction of
non-excited glomeruli that were suppressed by odorant ‘, k was chosen
such that xk occurred near where the data saturates, N was the total
number of odorants, and c1 . c2. Similarly, responses of the global net-
works that exceeded a threshold were fit using fminsearch and a quad-
ratic polynomial:

f xð Þ ¼ y 2x
21y 1x1y 0;

and the cost function

J ~y;~xð Þ ¼
X
‘¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y‘2 � f 2ðx‘Þ

p
;

where x‘ and y‘ are the same as above. Below the threshold, the
responses were fitted with a straight line.

We computed the Pearson correlation coefficient between odorant
representation pairs using only OSNs/ECs that were responsive to at
least one of the odorants. The decorrelation between the OSN and EC
representations of odorant pairs was quantified using:

Dr ¼ rEC � rOSN ;

where rEC and rOSN were the Pearson correlation coefficients of the EC
and OSN representations of the same odorant pair (Figs. 5, 8G).

Interpolation across concentrations
To facilitate visualization of network effects on concentration-response
functions (Fig. 7A,B), we expanded the OSN responses of the Ma et al.
(2012) dataset by linearly interpolating OSN responses to concentrations
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Figure 1. SACs mediate interglomerular connectivity in a simplified OB model. A, Diagram showing interglomerular connectivity. Oligoglomerular (orange) and polyglomerular (teal) SACs
form directed connections from their parent glomerulus to glomeruli in its target set. Oligoglomerular SACs form few connections compared with polyglomerular SACs but are much more com-
mon. B, The full connectivity diagram of SACs, ECs, and OSNs. Excitatory connections are represented by arrows, inhibitory connections are represented by circles. C, The responses of ECs and
SACs to total input (excitation and inhibition) as measured by change in firing rate from baseline. D, The percentage of SACs’ total connection strength each innervated glomerulus receives. E,
left, The adjacency matrix of a selective (m� n) network with few, strong inhibitory connections between glomeruli. Right, The adjacency matrix of a nonselective (m� n) network with
many weak inhibitory connections.
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between the three experimentally measured concentrations and linearly
extrapolating responses to concentrations lower than those measured
experimentally. For each odorant, we interpolated the response of every
OSN using 99 artificial concentrations equally spaced between the lowest
and middle concentrations and 99 artificial concentrations equally spaced
between the middle and highest concentrations. If an OSN was not active
at a measured concentration, an artificial concentration in an interval
around the measured concentration was selected for it to become activated
such that OSNs that were the most active at the next measured concentra-
tion were activated at the lowest concentration. To explore how odorants
were represented at the lowest concentrations detectable by the olfactory
system, OSNs responses that were nonzero at the lowest measured con-
centration were linearly extrapolated 100 steps (of the same size as those
used for the interpolation above) to lower concentrations.

Discriminability
We calculated the cosine distance between pairs of OSN and EC odorant
representations using the following formula:

d ~o‘;~okð Þ ¼ 1� cos uð Þ ¼ 1� ~o‘ �~ok

k~o‘kk~okk ;

where~o‘ and~ok were column vectors with the activity levels of the neu-
rons (either OSNs or ECs) representing odorant ‘ and k, respectively,
and ko*k was the magnitude of the vector (Fig. 7C,E–H).

We modeled odorant representations of randomly distributed active
neurons (either OSNs or ECs) using vectors x* and w

* of length d with p
and q active cells respectively (Fig. 7E–H). Vector entries corresponding
to active cells were given a value of 1 and those corresponding to inactive
cells were given a value of 0. We calculated that the expected cosine dis-
tance between x

* and w
* was:

E½d x
*
; w

**
� �

� ¼ 1� E cos u½ � ¼ 1� E x
* � w*

	 

ffiffiffiffiffi
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p
k
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q�k

� �
d
q
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pq

p
d

:

The result is a surface over a coordinate plane in which the height of
the plane over the location (p,q) was the expected cosine distance
between odorant representations with p and q cells active, respectively.
We compared this theoretical cosine distance to the cosine distances
between odorant representations of our model inputs and outputs by
plotting their cosine distances as a function of the number of active cells,
averaging the cosine distance if multiple odorant pairs had the same
number of active cells.

Input-tuned networks
To examine the impact of input-tuned interglomerular networks (Fig.
8), we modified the network model described above such that the target
sets of each glomerulus were chosen such that glomeruli inhibited those
who had similar OSN input profiles. To do this, we created sets of artifi-
cial OSN inputs which were divided into four groups that preferentially
activated different subsets of OSNs (Fig. 8A). The likelihood that each of
the groups activated specific glomeruli was determined by four normal
distributions (s = 8.5, truncated at 2s ) whose means were equally
spaced across the arbitrarily indexed glomeruli. For each of the four dis-
tributions in an input set, we generated 71 OSN inputs with similar ac-
tivity levels to 71 odorants from Burton et al. (2019) and with
correlations spanning the full range of�1 to 1. We determined the target
set of each glomerulus first by calculating the cosine distance between all
pairs of OSN response profiles using the formula:

dð~g ‘;~gkÞ ¼ 1� ~g ‘ �~gk

k~g ‘kk~gkk
;

where~g ‘ and~gk were column vectors of OSN ‘ and k’s response to all
odorants. The target set of each glomerulus was then selected to be the

20 glomeruli whose response profiles had the smallest cosine distance.
Once each glomerulus’ target was nonrandomly chosen, SAC connec-
tions were assigned as described above (Fig. 8B).

Results
Model interglomerular network construction
We sought to determine whether broadly-distributed inhibitory
connections, such as those mediated by SACs in the mouse OB
(Aungst et al., 2003; Kiyokage et al., 2010; Banerjee et al., 2015),
can mediate heterogeneous patterns of inhibition across a net-
work with odorant-evoked sensory inputs to OB glomeruli. We
also sought to explore how the structure of inhibitory connec-
tions between glomeruli impacts the input-output transforma-
tion of the OB network. We generated a reduced model of
glomerular OB circuitry consisting of an array of ;100 glomer-
uli, each receiving OSN input and having a single excitatory out-
put, EC, as well as a population of inhibitory interneurons
representing SACs that mediate inhibitory connections to other
glomeruli in the network (Fig. 1A). OSN inputs mediated feed-
forward excitation to the EC and SAC, and the EC in turn
excited the SAC associated with its glomerulus (thus, SACs
received both monosynaptic and disynaptic excitation); SACs
mediated lateral inhibition through inhibitory connections onto
ECs of other glomeruli (Fig. 1B). EC excitation (or inhibition)
was used as a measure of glomerular output. Thus, in our simpli-
fied model, ECs encapsulate both M/T cells, which are the princi-
pal OB output neurons, as well as external tufted cells, which
mediate feedforward excitation to M/T cells and SACs (De Saint
Jan et al., 2009; Gire et al., 2012; Banerjee et al., 2015; Liu et al.,
2016). We chose this simplified structure, rather than attempting
to recapitulate the entire glomerular circuit, because external
tufted cells are thought to play a major role in driving M/T cell
excitation (Hayar et al., 2004; De Saint Jan et al., 2009; Liu et al.,
2013), and by merging the synaptic transfer functions of this
feedforward excitatory pathway, we significantly reduced the
number of parameters and equations in the model. We made
this transfer function highly nonlinear (Fig. 1C) to account for
the very nonlinear responses of ET cells, which respond with
spike burst to levels of sensory input above a certain threshold
(Hayar et al., 2004; Gire and Schoppa, 2009). Although not ex-
plicitly included, the feedforward excitation was factored into the
nonlinearities in the input-output functions of the EC and SAC
(Fig. 1C). The result was a minimal network that was computa-
tionally efficient and tunable, but with its key features (i.e., com-
binatorial patterns of sensory input to glomeruli and SAC
interglomerular innervation) constrained by experimental data.
This minimal network allowed us to focus specifically on
response properties that were determined by the structure of
interglomerular inhibition, decoupled from the detailed cellular
properties of individual neuron types and from intraglomerular
or feedback inhibition mediated by other OB circuit elements.

We used several key findings from Kiyokage et al. (2010) to
guide construction of the interglomerular network model. First,
the SAC population included two morphologically distinct
subtypes, termed oligoglomular and polyglomerular by Kiyokage
et al. (2010), with differential abundance within the population.
The “oligoglomerular” SAC subpopulation targeted relatively
fewer glomeruli than the “polyglomerular” subpopulation but
made up ;80% of the total population (for details, see
Materials and Methods). Second, the percentage of the total
connection weight made by a SAC (and thus the inferred
strength of inhibitory connection) was nonuniform across the
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glomeruli innervated by a particular SAC, but instead decayed
roughly exponentially. Formally, the interglomerular connec-
tions of each SAC were wired to ho or hp glomeruli (represent-
ing oligoglomerular and polyglomerular SACs, respectively),
chosen randomly and without repetition, each with a weight
drawn from an exponential distribution modeling the percent-
age of SACs’ processes in each glomerulus in Kiyokage et al.
(2010). This distribution is summarized in Figure 1D, where
the weights of outgoing connections of a single representative
SAC are shown in descending order. Finally, each glomerulus
was associated with 40 SACs, based on previously-published
estimates (Parrish-Aungst et al., 2007). As a result, the popula-
tion of all SACs associated with a glomerulus, which we subse-
quently refer to as a SAC-glomerulus module, innervated a
“target set” of many or relatively few other glomeruli, depend-
ing on the degree to which the different “sister” SACs of a glo-
merulus innervated the same or different glomeruli.

We used the degree of selectivity of this glomerular targeting,
defined by the target set of m glomeruli innervated by one SAC-
glomerular module, as the primary independent parameter for
exploring how interglomerular network structure impacts olfac-
tory processing. All connections sent by a single SAC-glomerulus
module can only connect to nodes in the target set m. The total
strength of connection from one module to another is then the
sum of the weights of all the SAC connections originating from
that glomerulus. Varying the parameter m, the size of the target
set of glomeruli, produced “selective” networks with fewer,
stronger connections when m was low, or “nonselective” net-
works with more and weaker connections whenm was high.

The connectivity matrix of a representative network of each
type is shown in Figure 1E. Note that the color scale bar is the
same for both figures, and the difference in color represents the
overall difference in connection strengths. We also considered
“globally” connected networks as explored in earlier theoretical
work (Cleland and Sethupathy, 2006; Polese et al., 2014), in
which each SAC-glomerulus module was connected to all other
glomeruli with equal strength. The same average strength of con-
nections was set to be the same as in the selective and nonselec-
tive networks (for details, see Materials and Methods). Thus, in
the subsequent figures and text we refer to selective (m= 20),
nonselective (m = 94 or 105, the total number of glomeruli in the
network), or global networks.

To model neural activity in the cells we used a firing-rate-type
model in which two families of algebraic equations were associ-
ated with ECs and SACs (Fig. 1C) that modeled their deviation
from spontaneous firing rates. Note that because the plots repre-
sent response relative to spontaneous firing rate, the negative
part of the input-output function corresponds to the suppression
of spontaneous action potential firing. The shallower slope of the
SAC response function, relative to that of the EC, was chosen
based on recent reports of a log-linear relationship between
odorant concentration and SAC activation in vivo, as measured
by calcium indicator fluorescence changes (Banerjee et al., 2015).

SAC networks can support heterogeneous interglomerular
inhibition
We first examined how the strength of interglomerular connec-
tions formed by a single SAC-glomerulus module is affected by
the selectivity of interglomerular inhibition (represented by the
size of the target set, m) by examining only the connectivity mat-
rices of the interglomerular networks. We measured the total
strength of each module’s outgoing connection to another glo-
merulus by summing the weight of all connections from the

source glomerulus to the target glomerulus. Figure 2A shows the
strength of all outgoing connections of a representative SAC-glo-
merulus module to the 93 other glomeruli in an example net-
work with m=20 (selective, top), m= 93 (nonselective, middle),
and global (bottom) networks. When m=20, the glomerulus did
not connect to the vast majority of the other glomeruli in the net-
work, although the few connections it did form were very strong.
Asm increases, the connection strength became much more uni-
form. When connectivity was global, all the glomeruli received
connections and the strengths of these connections was homoge-
neous and generally weaker than the m=93 case. These observa-
tions from a single representative glomerulus are generalized in
Figure 2B, which shows the distribution of outgoing connectivity
strength from 100 simulations of networks with selective
(m= 20, top), nonselective (m= 93, middle), or global (bottom)
connectivity. When m=20, the distribution was very wide with
large zero strength probability. As m increased the distribution
shifted to the left and became much narrower with a smaller zero
strength probability. Overall, when inhibition was selective,
interglomerular connections were heterogeneous with the few
connections that are formed having a high average strength as
well as highly variable strength. Conversely, as m increased (i.e.,
selectivity decreased), interglomerular connections became more
homogeneous as well as weaker.

We next examined the extent of connectivity as a function of
selectivity of inhibition (Fig. 2C). When m was relatively small,
each SAC-glomerulus module tended to connect to every glo-
merulus in their target set. Asm increased, the fraction of the tar-
get set receiving connections decreased. Note that, although
possible, it was very unlikely that a single glomerulus would con-
nect to every other glomerulus in the network even whenm=93.
We also examined the distribution of the strength of incoming
connections that each glomerulus received across different values
of m (Fig. 2D). The mean of the distribution was constant,
because the total number of SAC connections made was constant
as m was varied, but the distributions narrowed as m increased.
The coefficient of variation of the distributions of incoming con-
nection strength decreased as m increased (Fig. 2E), indicating
that the inhibition received by each glomerulus was much more
variable in the sparse, m= 20, condition compared with the
broad, m=93, condition. These results demonstrate that, despite
a high divergence of SACs from one glomerulus to others and
despite the fact that multiple such SACs extend from each glo-
merulus, inhibitory networks mediated by SACs can, in theory,
result in heterogeneous patterns of inhibition across the glomer-
ular array. The degree of heterogeneity depends on the selectivity
of this interglomerular connectivity. Our results also confirm
that changing m widens the distribution of interglomerular inhi-
bition without affecting the average inhibition between glomer-
uli, allowing us to compare the effect of the breadth of SAC
connectivity in addition to the effect of the strength of inhibition
on the patterns of EC suppression and excitation elicited by OSN
inputs.

Effect of SAC network structure on glomerular outputs
We tested the effect of selectivity in SAC connectivity on the
transformations of OSN inputs performed by this simplified net-
work. OSN inputs were taken from previously-published data
consisting of optical signals representing activity of OSN popula-
tions converging onto distinct glomeruli, in response to a large
panel of odorants (Ma et al., 2012; Burton et al., 2019). The initial
dataset included 71 odorants across nine chemical classes, tested
at a single concentration and imaged across 105 glomeruli in a
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single field of view (Burton et al., 2019). Response patterns were
converted into magnitudes of input to each glomerulus in the
model array, normalized to the strongest observed OSN response
(Fig. 3A). Different odorants evoked different patterns of OSN
input across the glomerular array and covered a range of sparse-
ness values. Across all input patterns, there was an approximately
linear relationship between OSN input strength and total
amount of SAC activation (Fig. 3F), consistent with previously-
reported experimental results (Banerjee et al., 2015).

Next, the system of algebraic equations representing the glo-
merular network was solved (see Materials and Methods), yield-
ing an array of output values for the EC from each glomerulus.
The EC response to an odorant was bounded between �0.1 and
1 and was classified as “excited” if it exceeded an upper threshold
of 0.045, “suppressed” if it was below a lower threshold of�0.07,
or “neutral” between these two values. We assessed the impact of
network connectivity on glomerular outputs by varying selectiv-
ity values (m) and mean inhibitory strength («). For each param-
eter setting, we measured the distribution of EC activation by
generating 50 networks and calculating their responses to all
odorants (an example network response to a collection of input
odorants is shown in Fig. 3B).

The primary transformation mediated by the SAC network
was, as expected, the introduction of suppressive responses that

were not present at the input stage. In addition to suppressing
EC responses below baseline, the inhibitory SAC network also
transformed input representations by eliminating weakly excita-
tory responses, resulting in a sparsening of the glomerular
response map (light red indices; Fig. 3, compare Ci, Cii). All net-
works, regardless of selectivity or inhibition strength, sharpened
glomerular tuning, with EC outputs from individual glomeruli
activated by fewer odorants than their corresponding OSN
inputs (Fig. 3D). All networks also produced a variety of suppres-
sive responses in EC (Fig. 3E).

We separately examined the impact of selectivity and inhibi-
tion strength on network output, focusing first on how these pa-
rameters impacted the relative proportions of excited, suppressed,
and neutral glomeruli. Both excitation and suppression are funda-
mental measures of neuronal networks known to affect their
function. As expected, these proportions were strongly impacted
by the strength of SAC inhibition, with network output shift-
ing from being dominated by excitatory outputs to being
dominated by suppressed outputs as inhibition strength
increased (Fig. 4A). Numbers of excited and suppressed glo-
meruli were roughly equal at « values of 0.001 (Fig. 4Aii).
Notably, inhibitory network selectivity (m) had little impact
on this balance at a given « value, at least when averaged
across all odorant input patterns (Fig. 4A).

B

491 Glomeruli 
0

10

20

0 10 20 30 40
Outgoing Connection Strength

Global

Nonselective

Selective

O
ut

go
in

g 
C

on
ne

ct
io

n 
St

re
ng

th
 (a

.u
.)

Global

Nonselective

Selective

0

0.05

Pr
ob

ab
ilit

y

A Outgoing Connection Example Outgoing Connection Summary

Selective

Nonselective

10 20 70 80 900
Glomeruli 

Pr
ob

ab
ilit

y

0.2

0.1

0

C
Number of Glomeruli Innervated

0

10

20

0

10

20

0 10 20 30 40

0 10 20 30 40

0

0.05

0

0.05

491

491

Pr
ob

ab
ilit

y
Pr

ob
ab

ilit
y

0
20 60 90

m

0

0.1

0.2 Coeff. of  Variation

Total Incoming Connection Strength
200 300 400 500 600100

Global

Nonselective

Selective

0.05

Pr
ob

ab
ilit

y

D Incoming Connection Summary

200 300 400 500 600100

200 300 400 500 600100
0

0.05

0

0.05

Pr
ob

ab
ilit

y
Pr

ob
ab

ilit
y

Figure 2. SAC-mediated interglomerular connectivity is heterogeneous. A, Examples of the strength of outgoing connections formed by a single glomerulus in selective, nonselective, and
globally connected networks. B, Distributions of the strengths of outgoing connections made by all glomeruli. C, The distributions of the number of glomeruli innervated by a single glomerulus
in selective and nonselective networks. D, Distributions of the total incoming strength of connections received by glomeruli. Inset, The coefficient of variation of the total incoming strength as
a function of selectivity (m).

Zavitz et al. · Interglomerular Inhibitory Networks J. Neurosci., July 29, 2020 • 40(31):5954–5969 • 5959



To characterize the impact of network structure on individual
odorant representations, we computed the lifetime sparseness
of the network responses to all odorants (see Materials and
Methods; Fig. 4B). Similarly, we characterized the network impact
on the representation of individual odorants by computing the
number of odorants exciting and suppressing each glomerulus
(Fig. 4C). Increasing inhibition strength (« ) led to an overall
increase in sparseness of odorant responses (Fig. 4B), and an
increase in the number of odorants eliciting suppressive responses
in a glomerulus (Fig. 4C). Intermediate values of inhibition
strength led to roughly similar distributions for the number of
exciting or suppressing odorants per glomerulus (Fig. 4C). Again,
the selectivity of the SAC network had little impact on the distri-
butions of the number of exciting or suppressing odorants and
lifetime sparseness. These results suggest that the selectivity of the
SAC-mediated interglomerular network does not play a major
role in sharpening odorant representations with respect to
response spectra of individual glomeruli or sparseness of glomeru-
lar representations.

Finally, we examined the relationship between the prevalence of
suppressed and excited glomeruli within a single odorant response.
With lateral inhibitory networks, suppression of non-excited glo-
meruli should emerge and scale as the total amount of excitation to
the network increases; this relationship is thought to mediate an in-
tensity-dependent gain control of glomerular output (Cleland and
Sethupathy, 2006; Banerjee et al., 2015). Here, we found that this
function depended heavily on the mean strength of inhibition in
the network. At the weakest inhibition strength (« = 0.0005), the
prevalence of suppressive responses did not scale monotonically
with total excitation for any network structure (Fig. 4Di). Instead,

increases in total excitation beyond a certain value led to a reduction
in the fraction of suppressed glomeruli, as excitation outweighed
interglomerular inhibition (note the low values of all fitting curves
in Fig. 4Di when excitation is high). Doubling the mean inhibition
strength between glomeruli (« = 0.001) reduced this effect, with
suppressive responses persisting at the highest levels of excitation
(Fig. 4Dii), and further increases in inhibition strength (« = 0.00175
and « = 0.004; Fig. 4Diii,Div, respectively) led to excitation-suppres-
sion relationships that were closer to monotonic as net excitation
levels increased across the glomerular array.

Notably, however, the structure of the interglomerular SAC
network had a substantial impact on the relationship between ex-
citation and suppression. In particular, at a given inhibition
strength, less selective networks led to increasingly nonlinear
relationships between total excitation and prevalence of suppres-
sion. For example, at the two highest strengths of inhibition,
selective SAC networks resulted in a gradual, near-linear increase
in the prevalence of suppressed glomeruli as total excitation
increased, saturating at the highest levels of excitation (Fig. 4Diii,
Div, purple plot), while nonselective networks resulted in a
steeper relationship better fit by a sigmoid (Fig. 4Diii,Div, green
plot). Finally, networks with global connectivity yielded a discon-
tinuous relationship between total excitation and suppression at
all inhibition strengths, in which no glomeruli are suppressed
when total excitation is low, but when excitation exceeds a cer-
tain threshold, nearly all non-excited glomeruli become sup-
pressed (Fig. 4D, gray plots). This discontinuity resulted from
the uniform strength of inhibition between all glomeruli: when
total excitation is low, all glomeruli are inhibited uniformly and
weakly such that even glomeruli receiving no OSN input are not
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sufficiently inhibited to be considered suppressed; however, as
total excitation increases, the strength of global inhibition
becomes sufficiently strong to suppress most or all non-excited
glomeruli. This relationship persists even if 10% variability is
added to the strength of the global connections to break the sym-
metry, and it also persists if the input-output curve of the EC
cells shown in Fig. 1C is made less steep, similar to the steepness
of the SAC curve of Fig. 1C. Overall, these results suggest that
SAC networks with selective, rather than global, inhibition
between glomeruli, allow for a more linear relationship between
total input strength and prevalence of suppressive odorant
responses, and are better able to match recent experimental data
(Banerjee et al., 2015; Economo et al., 2016).

Network function
Next, we explored how SAC network structure alters the repre-
sentation of odorant identity by the glomerular array. Previous

experimental work has implicated the SAC network in decorre-
lating odorant representations by M/T cells (Banerjee et al.,
2015), such that the correlation coefficient between pairs of
odorant representations is lower at the level of glomerular output
than at the level of OSNs (see Materials and Methods). To evalu-
ate the impact of network structure and strength on input-output
transformations with our model, we measured the correlations
of EC odorant responses to odorant pairs resulting from selec-
tive, nonselective, and global networks.

To illustrate, the impact of the SAC network on the correla-
tion between two representative pairs of odorants is shown in
Figure 5A. The correlation coefficient for the OSN input patterns
for each pair is shown by the dashed line (r = 0.49 and 0.83 for
the upper and lower pair, respectively). Each plot shows the dis-
tribution of correlation coefficients for the EC output patterns
across 100 independent realizations of either selective (m= 20,
purple) or nonselective (m=93, green) networks. All iterations
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of both selective and nonselective networks led to lower correla-
tion coefficients, indicating a decorrelation of the glomerular
odorant representations for each odorant pair, consistent with pre-
vious models of OB network function (Cleland and Sethupathy,
2006; Wiechert et al., 2010; Banerjee et al., 2015). In addition, the
selective networks yielded a wider range of correlation coefficients
across the 100 network iterations in both cases (i.e., the purple dis-
tribution is wider than the green; Fig. 5A).

To expand this analysis to all possible odorant pairs, we com-
puted the input (OSN) correlation coefficient for each pair, and
the mean correlation coefficient of the EC responses to the same
pair across the 100 randomly generated network iterations. We
then calculated the amount of decorrelation by the SAC network
(i.e., the reduction in correlation coefficient from OSN input to
EC output) as a function of the OSN input correlation, for all
odorant pairs with input correlation above 0.5 (Fig. 5B). All net-
work structures decorrelated inputs to a similar degree (Fig. 5B),
with the exception of the strongest level of inhibition (« = 0.004),
where selective networks generated modestly greater decorrela-
tion of OSN input patterns than nonselective or globally-con-
nected networks. In addition, all networks decorrelated highly
correlated odorant pairs (rOSN . 0.95) significantly less than
moderately correlated pairs (rOSN , 0.95). Decorrelation in
moderately correlated odorant pairs results from ECs in a partic-
ular glomerulus receiving enough net excitatory input to become
excited by one odorant of a pair but not the other. In contrast,
odorant pairs with highly correlated OSN representations evoked
activity that was so similar that the ECs of few or no glomeruli
were excited by only of the odorants. This resulted in highly cor-
related activity and low decorrelation (Fig. 5B).

Importantly, the plots in Figure 5B show the mean degree of
decorrelation across all 100 instances of each network structure.
However, as seen in Figure 5A, this value could vary considerably
for different instances of a network. Variability arose due to the
heterogeneous connectivity between different glomeruli, and the
fact that each odorant activated a different combination of glo-
meruli. Thus, the degree of decorrelation varied with the odorant
pair and, for a given odorant pair, with the particular glomerular
connectivity at each network instance. Figure 5C shows this vari-
ation, plotted as coefficient of variation of decorrelation across
the 100 network instances (global networks did not have a coeffi-
cient of variation because only a single network was created).

Notably, the amount of this variation in decorrelation was
greater for selective networks than for nonselective networks
(Fig. 5C). In addition, this variability increased with the mean
strength of inhibition (« ) in the network, particularly for selec-
tive networks and particularly for odorant pairs with a high OSN
input correlation. These results indicate that while all connectiv-
ity schemes decorrelate odorants similarly on average, particular
instances of selective networks have the capacity to decorrelate
odorant representations significantly more than unselective or
globally-connected SAC networks.

Odorant concentration and discriminability
Earlier computational and experimental studies have suggested
that interglomerular inhibition mediated by the SAC network
contributes to concentration-invariant odorant representations
by implementing an intensity-dependent gain control across all
glomerular inputs (Cleland and Sethupathy, 2006; Banerjee et al.,
2015). These predictions arise from assumptions of global (or
near-global) SAC connectivity. Thus, we next sought to examine
the effect of SAC network structure on input-output transforma-
tions as a function of odorant concentration. To test this using
OSN input patterns constrained by experimental data, we used a
different previously-published dataset that included OSN inputs
to 94 glomeruli imaged in response to three concentrations of
the same odorants (Ma et al., 2012; Fig. 6A).

First, we confirmed that our SAC network model behaved
similarly with this input dataset as with our initial dataset. As in
the initial characterization, we measured the distribution of
EC activations in response to each odorant response in the Ma
et al. (2012) dataset across all three connectivity schemes (see
Materials and Methods). An example EC response matrix of a
selective network with intermediate connection strength (« =
0.00175) is shown in Figure 6B. We found similar effects of SAC
network inhibition strength and network structure with this new
input dataset. For example, the strength of inhibition in the net-
work had similar effects on the lifetime sparseness and relative
prevalence of excited and suppressed glomeruli, with a similar
balance at intermediate inhibition strengths (« = 0.00175 or
0.001), and with network structure having little impact on these
proportions (Fig. 6C–E). As with the Burton et al. (2019) dataset,
network structure did impact the relationship between total exci-
tation and fraction of suppressed glomeruli, with the most linear
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relationship occurring with selective networks and a nonlinear
relationship occurring with the globally-connected network
(compare Figs. 6F, 4D). Finally, all SAC network structures
decorrelated OSN input representations to a similar degree (Fig.
6G). These results suggest that the effects of the SAC network
model on input-output transformations across the glomerular
array are generalizable across different experimental datasets.

Next, we investigated intensity-dependent transformations by
the network by comparing concentration-response functions for
inputs and model EC outputs from individual glomeruli as well
as across the population. To facilitate the comparison of OSN
and EC concentration-response functions, we generated simu-
lated OSN responses at concentrations not included in the origi-
nal dataset by interpolating responses for each OSN between the
three experimentally-tested concentrations and, in some cases,
extrapolating to fill in concentrations lower than those measured
experimentally (see Materials and Methods). Figure 7A, left
panel, shows an example of OSN responses to a single odorant
across concentrations. The remaining panels of Figure 7A show
the corresponding EC activity evoked in networks with each con-
nectivity scheme. The threshold concentration for the emergence
of suppressive responses among ECs is highly variable in the selec-
tive and non-selective networks, while in the global network, it is
stereotypical, with all ECs showing suppression at the same
concentration. This property underlies the discontinuity
observed in the excitation-suppression relationship of global
networks (Fig. 4D) and does not match experimental observa-
tions in which suppressive responses emerge at a range of con-
centrations (Banerjee et al., 2015; Economo et al., 2016).
Variability in concentration-response functions across differ-
ent network instances was largest among selective networks,

because of their relatively greater variability in connectivity;
this variability is highlighted in plots of the OSN inputs and
EC outputs of three individual glomeruli across three realiza-
tions of each type of network (Fig. 7B).

We then explored the effect of concentration on discrimina-
bility by computing the cosine distance between all pairs of OSN
odorant representations at each of the three experimentally
measured concentrations, as well as the cosine distance between
all EC odorant representation pairs, for each network connectiv-
ity type with « = 0.00175 (Fig. 7C, markers are medians, error
bars are quartiles). As concentration increased, the cosine dis-
tance between OSN representation pairs decreased, indicating an
increase in pattern similarity and a resulting decrease in discrimi-
nability. This effect was reduced among EC representations for
all network types, indicating that interglomerular inhibition miti-
gated the loss of discriminability at higher concentrations that
arises from increasing overlap in OSN input patterns.

It is important to note that the cosine distance is highest for
pairs that are represented by non-overlapping sets of cells and
that it is easier to maintain non-overlapping sets if fewer glomer-
uli are involved. Thus, the number of active glomeruli in each
odorant representation may play an important role in discrimi-
nability. The number of active OSNs/ECs per odorant increased
with concentration; the number of active OSN inputs grew rap-
idly (Fig. 7D), while the number of active EC outputs remained
much lower due to interglomerular inhibition (yellow markers
compared with purple/green/gray markers; Fig. 7D). The growth
in the number of active glomeruli among both OSNs and ECs
closely mirrored the drop in the cosine distance across concen-
tration, suggesting that the number of active glomeruli might be
the determining factor in odorant discriminability. Therefore,
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the ability of the OB network to maintain
odorant discriminability across concentra-
tions might be primarily determined simply
by sparsening the response, as opposed to a
transformation of response patterns that
more efficiently encodes odorant identity
by virtue of their particular correlation
relationships.

To test this possibility, we analytically
calculated the expected cosine distances of
theoretical activity patterns in which the cor-
relational structure in the patterns was elimi-
nated and only response sparseness was
represented (described in following para-
graph). We then compared this theoretical
expected cosine distance, sparseness rela-
tionship to that taken from OSN or EC
response patterns in the experimentally-
derived datasets. If, indeed, solely the
number of cells activated determines
discriminability, the theoretical and experi-
mentally-derived cosine distances should be
similarly distributed. However, if changes to
the correlational structure of EC responses
plays a significant role in determining dis-
criminability among output patterns, then
the distribution of cosine distances between
EC responses should deviate from the theo-
retical relationship.

To analytically compute the expected co-
sine distance between odorant representa-
tions with no correlation structure, we
considered theoretical odorant representa-
tions whose number of active cells were
within the same range as the experimental
set. The identities of active cells were chosen
randomly and independently, and their activ-
ity levels were set to 1. A formula describing
the expected discriminability of odorant rep-
resentation pairs (as measured by the cosine
distance) was derived. For a pair of odorants
that have p and q active cells, the expected co-
sine distance was the following:

E 1� cosu½ � ¼ 1�
ffiffiffiffiffi
pq

p
d

:

We generated a surface of this expected
distance over the (p,q) plane (Fig. 7E,F,
grid). If the cosine distances between the
OSN or EC response patterns in the actual
dataset were determined purely by the num-
ber (and not the identity or the relative firing
rates) of the active glomeruli, then the model
data should fall very close to the theoretical
surface. We compared the theoretical surface
of expected cosine distances of p and q ran-
domly activated cells to the cosine distances
of pairs of OSN or EC responses from a sin-
gle selective network composed of p and q
active cells (Fig. 7E, yellow triangles, F, pur-
ple circles, respectively). We also took two
two-dimensional vertical slices, with the line
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in these plots corresponding to a slice through the theoretical
surface, and the symbols the same as those in the full surface
plots, with error bars (SD) added (Fig. 7G,H). The cosine distan-
ces of EC representations of odorants fit the theoretical expected
value surface well, except for cases when both odorants have a
high number of active glomeruli (Fig. 7F–H).

Interestingly, we found that the distances between OSN input
representations did deviate from those predicted by the theoreti-
cal distance-sparseness relationship, falling mostly above the
theoretical surface/curves (Fig. 7E,G,H). In other words, the ex-
perimental OSN dataset had less overlap between odorant pairs
than would be expected randomly based on the number of glo-
meruli activated, consistent with a nonrandom correlational
structure in the odorant response specificities of OSN inputs to
glomeruli. When comparing representations with the same num-
ber of active glomeruli, EC odorant-response pairs had smaller
cosine distances and less discriminability relative to OSN pairs
(yellow triangles are generally above the purple circles and black
lines in Fig. 7G,H). However, across concentrations, EC repre-
sentations were sufficiently sparse that they were much farther
apart than their OSN counterparts (purple/green/gray lines are
above the yellow line in Fig. 7C).

Overall, this analysis indicates that the increase in discrimina-
bility of EC odorant representations relative to OSN repre-

sentations is driven primarily by reductions in the numbers of
active glomeruli (i.e., sparsening) and not by changes to the cor-
relational structure of their population activity patterns. It also
raises the possibility that if inhibitory interglomerular connec-
tions were tuned to reflect the non-overlapping structure of OSN
inputs, perhaps through preferential inhibition of glomeruli with
similar input profiles, the SAC network could improve the dis-
criminability of OB odorant representations through sparsening
while preserving the non-overlapping structure already present
in OSN representations. We explored this possibility in the fol-
lowing set of simulations.

Input-tuned networks
Earlier studies have suggested that interglomerular inhibition
may be nonrandom (Girardin et al., 2013; Economo et al., 2016;
Mohamed et al., 2019) and further that interglomerular inhibi-
tion that is “input-tuned,” such that glomeruli with similar
response profiles are more likely to connect, may enhance odor-
ant discrimination (Linster et al., 2005; Girardin et al., 2013).
Thus, we asked whether directing the selectivity of SAC connec-
tivity based on input tuning would produce different results than
random connectivity. To test this, we generated idealized datasets
of OSN inputs in which glomerular inputs had well-defined rela-
tionships to one another in terms of response tuning and
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explored the impact of selective SAC networks with particular
connectivities related to this input structure. Each of the 25 artifi-
cial input datasets consisted of four sets of artificial odorants that
activated OSNs corresponding to one of four normal probability
distributions (truncated at 2s ) whose means were evenly distrib-
uted across the population (Fig. 8A). Individual odorant
responses were constructed by taking the 71 odorant responses
from Burton et al. (2019) and randomly reassigning the index of
nonzero responses using each of the four distributions (for a total
of 284 odorant responses in each input dataset). We generated
input-tuned selective networks by creating SAC target sets
(m= 20) for each glomerulus comprised of those glomeruli that
respond most similarly to each other across the artificial odorant
panels (Fig. 8B, right panel). We also generated random selective
networks (with randomly selected target sets) as described earlier
(Fig. 8B, left panel) as well as nonselective networks. We then
compared the effects of selective, nonselective, global, and input-
tuned networks at two values of « to test for interactions between
the mean and variance of inhibition between glomeruli. This
strategy allowed us to evaluate input-output transformations
across many instances of network connectivity and to compare
differences in network function for input-tuned versus ran-
domly-connected networks.

These input-tuned networks transformed OSN input patterns
in a manner distinct from that of selective but randomly-con-
nected networks as well as the other connectivity schemes. First,
the architecture of interglomerular connectivity differed from
that of selective networks, with input-tuned networks exhibiting
a broader distribution of the total strength of incoming SAC con-
nections to a glomerulus (orange vs purple distributions; Fig.
8C). Second, input-tuned networks had four groups of glomeruli
(corresponding to the four input distributions) with many recip-
rocal connections linked together by glomeruli that are in the
intersection of two adjacent input distributions and consequently
send and receive connections to and from glomeruli in adjacent
groups. Thus, we found that input-tuned networks may differ
from randomly connected networks both in straightforward top-
ological measures like weighted in-degree distribution but also in
more abstract topological measures like community structure,
depending on the input statistics to which they are adapted.

Second, input-tuned SAC networks differed in their impact
on OSN input patterns. Input-tuned networks resulted in sparser
outputs than random networks, with the largest change being a
decrease in the number of suppressive responses (Fig. 8D).
Relatively more glomeruli responded with either excitation or
suppression to a few odorants while not responding at all to the
remaining odorants in the input-tuned networks, compared with
random-selective and global networks (Fig. 8E). Thus, input-
tuned network odorant representations were sparser and glomer-
ular tuning sharper than in random networks. In addition,
input-tuned networks maintained more balanced outputs and
prevented the excessive suppression seen with greater mean inhi-
bition in the selective and global networks when connection
strength was moderately high (« = 0.00175). The fraction of exci-
tatory and suppressive responses elicited in the network when «
= 0.00175 was similar, particularly when compared with the
responses in the random selective and global networks (Fig. 8D),
and the distributions of the number of exciting and suppressing
odorants per glomerulus were highly overlapping.

We next measured the relationship between total excitation
and prevalence of suppression, as done with the responses to
experimentally measured OSN input datasets in Figure 4D. Here,
the random selective and nonselective networks and the globally-

connected networks produced results similar to those seen with
experimental inputs, with a linear-saturating increase in fraction
of suppressed glomeruli with increasing total excitation in sele-
ctive networks and a step-wise jump from no inhibition to
near-total inhibition in globally-connected networks (Fig. 8F).
Input-tuned networks produced a scaling relationship between
excitation and suppression at either « value tested, but with no
saturation and a smaller amount of excitation overall. This fur-
ther demonstrated that the structure of SAC networks substan-
tially affects the relationship between excitation and inhibition.

Finally, we analyzed decorrelation of odorant representations
by the three networks, calculated as in Figure 5. Here, we saw a
substantial effect of network structure on decorrelation, with
input-tuned networks decorrelating input patterns between me-
dian values of Drtuned = �0.47 when rOSN = 0 to its minimum of
Drtuned =�0.54 when rOSN = 0.4, while the median decorrelation
of random, selective networks varied between Dr = �0.19 and
�0.33 over the same range (Fig. 8G, bottom panel, « = 0.004). At
the maximum amount of decorrelation (when the OSN correla-
tion is between 0.2 and 0.6), input-tuned networks (with « =
0.004) decorrelate odorant representations approximately twice as
much as randomly and globally connected networks. This indi-
cates that network connectivity determined by the statistics of the
inputs, resulting in glomeruli preferentially inhibiting those that
receive similar inputs, leads to an enhanced ability of the interglo-
merular network to separate overlapping odorant representations.
Thus, adaptation of the interglomerular network to the statistics of
stimuli presented to the network is important in producing bal-
anced, decorrelated network responses.

Discussion
We explored how the structure of a lateral inhibitory network
affects computations in a simplified model of the mouse OB. We
constructed a mathematical model of SAC-mediated lateral inhi-
bition and glomerular responses to OSN input and considered
four connectivity schemes: selective, where SACs in each glomer-
ulus randomly connect among a random set of 20 target glomer-
uli; nonselective, where the set of possible target glomeruli is
increased to include the entire network; global, where all SAC-
glomerulus modules are connected to all others; and input-
tuned, where SAC-glomerulus modules connect to glomeruli
that receive similar OSN inputs. We found that selective and
nonselective networks behave similarly with respect to many fea-
tures of odorant representations. However, globally connected
networks were distinct in that they produced no suppression
when total excitation in the network was below a threshold and
ubiquitous suppression of non-excited glomeruli when excitation
exceeds a threshold, a result that is inconsistent with experimen-
tal data in which suppression scales with excitation (Economo et
al., 2016). Finally, we found that organizing connectivity such
that similarly tuned glomeruli are preferentially connected
enhances decorrelation performed by the network.

Our model was constructed to be as simple as possible, taking
into account only SAC anatomic data and including two func-
tions found to be critical to OB activity: nonlinear feedforward
excitation of output neurons and inhibitory interneurons and
recurrent inhibition between glomeruli. By simplifying intraglo-
merular circuitry, we were able to focus on the effects of interglo-
merular inhibition on responses to experimentally measured
OSN input. The parameters of network structure were extrapo-
lated from anatomic data from individual SACs (Kiyokage et al.,
2010). We assumed that the synaptic efficacy between individual
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SACs and the glomeruli they innervate is governed by the per-
centage of their total processes innervating each glomerulus. In
addition, we assumed that the strength of connection from glo-
merulus i to glomerulus j is the sum of all connections made
by SAC in i innervating j. Thus, the percentage of the total
SAC connection strength received by each glomerulus is sim-
ilar to the percentage of total SAC processes entering each
glomerulus observed in Kiyokage et al. (2010). Despite the
detail in which SAC anatomy was modeled, our network
framework is generic enough to incorporate additional inter-
neuron anatomic data from the OB or to model another neu-
ral structure entirely.

We asked whether interglomerular networks with data-
driven connectivity properties and OSN input can produce
heterogeneous and sparse inhibition, as has been observed
in OB recordings in vivo (Soucy et al., 2009; Economo et al.,
2016). We found that heterogeneity (as measured by the
strength of connections) and sparseness (as measured by
the number of glomeruli innervated) are intrinsic to SAC-
mediated interglomerular networks, despite the broad
interglomerular innervation of individual SACs. Although
these features were enhanced in the selective networks with
a broader distribution of connection strengths and many
fewer outgoing connections, nonselective networks were
also both heterogeneous and sparse compared with the
globally connected networks. Notably, ,10% of glomeruli
in nonselective networks connect to all other glomeruli.
Similarly, we find that the strength of interglomerular inhi-
bition each glomerulus receives is heterogeneous. The dis-
tribution of incoming connection strength is most variable
for selective networks but the coefficient of variation for
nonselective networks is still approximately half that of the
selective networks.

Although our network models have heterogeneous connec-
tions, it was not clear that they would produce selective sup-
pression of glomerular output when driven by realistic OSN
input patterns that activate multiple glomeruli. Examination
of responses in selective networks showed that ECs receiving
OSN input exhibited suppressed and neutral responses in
addition to excited responses. Similarly, ECs that did not
receive OSN input were suppressed to varying degrees or
remained neutral. All networks produced a variety of suppres-
sive responses. However, selective networks produced many
more maximally suppressed responses (,�0.095) and, more
importantly, more responses with little change in activity than
nonselective and global networks (;0; Fig. 3E). Together with
the connectivity calculations, this echoes previous experimen-
tal results in which suppression is combinatorial and glomeru-
lus specific (Economo et al., 2016).

How do responses of selective, nonselective, and global net-
works differ? We found that many measures of activity, includ-
ing the relative fraction of excited/neutral/suppressed responses,
lifetime sparseness, and mean pattern decorrelation do not differ
across connectivity schemes. However, global networks were dis-
tinguished from selective and nonselective networks by their
relationships between the prevalence of excitation and inhibition.
The fraction of suppressed ECs in selective and nonselective net-
works scaled with total excitation (for « . 0.001), matching ex-
perimental results (Economo et al., 2016). In contrast, global
networks produced ubiquitous suppression when excitation
exceeded a threshold and no suppression otherwise. These

results indicate that, despite its use in numerous prior models of
OB function (Cleland and Sethupathy, 2006; Polese et al., 2014;
Banerjee et al., 2015), a globally connected network with uniform
connection weights is unlikely to reflect the reality of interglo-
merular connectivity, at least in the mammalian OB.

Instead, we speculate that SACs constitute a network better
described by our selective or nonselective models, although more
investigation is necessary to distinguish between these two
connectivity schemes. For example, both the total strength of
incoming connection as well as the decorrelation of odorant
representation pairs had similar mean values across randomly
connected network structures. Experiments aimed at distin-
guishing between selective and nonselective connectivities could
measure variability both in network structure and response to
stimulation. Our result that selective and nonselective networks
decorrelate odor representations equally well contrast with those
from Wiechert et al. (2010), in which networks with sparse,
strong connections decorrelated odorant pairs more effectively
than those with many, weak connections. However, all of our
network models were significantly less sparse than those used in
Wiechert et al. (2010), which may account for the different
results.

Similar to a previous study (Linster et al., 2005), we found
that constructing interglomerular inhibition networks based on
similarity of OSN input profiles improves contrast enhancement
as measured by decorrelation between OSN and EC odorant
representation pairs. Whether such input-tuned connectivity
actually exists among glomeruli of the mouse OB remains
unclear, although advances in our understanding of the structure
of odorant coding space and its relationship to glomerular maps
provide a platform for testing this hypothesis (Bozza et al., 2009;
Chae et al., 2019). For example, inhibitory interglomerular con-
nectivity could be domain specific, in which glomeruli receiving
input from the same class (Bozza et al., 2009) preferentially in-
hibit each other and connections do not cross domain bounda-
ries. Alternatively, inhibitory network structure may reflect
odorant space with respect to behavioral meaning of the odor-
ants. For example, recent work in the antennal lobe of the fly has
found specific, non-random inhibitory connectivity between glo-
meruli involved in antagonistic behaviors (Mohamed et al.,
2019).

Our results also support a role for recurrent inhibition and
output normalization in maintaining dissimilar odor representa-
tions (for review, see Carandini and Heeger, 2011). Previous
work demonstrated that purely feedforward inhibitory networks
perform much worse than feedback inhibitory networks at
decorrelating similar inputs (Wick et al., 2010). Our model
incorporated both types of connectivity between SAC and EC,
but we did not investigate the contributions of each type of con-
nection; such an exploration would be an interesting direction in
a future study.

Input-tuned, adaptive connectivities may also exist
among other inhibitory networks within the OB, for exam-
ple, the synaptic interactions between granule cell and M/T
cells. Computational and experimental studies indicate that
granule cell structural and synaptic plasticity supports the
ability of the granule cell–M/T cell network to maintain
output discriminability across changing input sets and fol-
lowing associative learning (Sailor et al., 2016; Grelat et al.,
2018; Li et al., 2018). Furthermore, integration of new in-
hibitory connections through granule cell neurogenesis
serves to refine odor representations (Moreno et al., 2009;
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Lepousez et al., 2013; Huang et al., 2016; Li et al., 2018).
While these two layers of the OB network may affect out-
puts similarly, differences in their connectivity could con-
tribute to the ability of the network to adapt to changing
input environments on different timescales or to meet dif-
ferent behavioral requirements.

How such selective connectivity could arise remains an open
question. Activity-dependent, inhibitory interglomerular con-
nectivity could be accomplished in the mammalian OB through
multiple mechanisms. Anatomical connections could be refined
in an activity-dependent fashion, as they are for intrabulbar
tufted cell projections (Marks et al., 2006). The dopaminergic
phenotype and physiology of SACs are also modulated in an ac-
tivity-dependent manner (Saino-saito et al., 2004; Chand et al.,
2015); such plasticity could result in a redistribution of inhibitory
connection strength that produces preferential inhibitory con-
nectivity depending on receptive field tuning, as has been found
in the visual cortex (Znamenskiy et al., 2018). Integrating learn-
ing rules into the SAC network model, as well as incorporating
additional circuit elements such as feedforward, intraglomerular
inhibition (Carey et al., 2015), would be useful in exploring these
possibilities to guide additional experiments aimed at under-
standing the logic of inhibitory circuits in the OB circuits and
their role in odorant coding.
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