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A B S T R A C T

This study first discusses the conditional mean, realizations, and effective hydraulic conductivity in a theoretical
framework. It then introduces Monte Carlo simulation (MCS) algorithms for constraining the outcome by either
hydraulic conductivity (K) samples or hydraulic head (h) measurements from the hydraulic tomographic survey
(HT). It demonstrates that kriging using K measurements leads to a conditional mean K field, while inverse
modeling using successive linear estimator (SLE) with head measurements of HT yields the conditional effective
K field. The effects of conditioning using K measurements are different from those using heads. Besides, the
conditional effective K leads to the unbiased prediction of the head that honors the observed head at mea-
surement locations. More importantly, the study reveals that the harmonic and geometric means of conditional
realizations of K fields of MCS, given head measurements, are equivalent to the conditional effective K in one-
and two-dimensional flows, respectively. The first-order approximation in the SLE results in a conditional
covariance similar to that from MCS with smaller magnitudes. Despite the difference, all approaches predict
unbiased conditional mean head behaviors.

1. Introduction

Interpreting and extrapolating spatial point data to other locations
or estimating spatial distributions of hydraulic properties using sparsely
observed system responses is a common problem in hydrology, geo-
physics, and other environmental sciences and engineering fields. For
solving these problems, many methods have been developed over the
past decades. Among all these methods, kriging is generally a widely
used method in the groundwater hydrology field. Similarly, model ca-
libration or inverse modeling is popular for extracting information
contained in the responses of aquifers to estimate the spatial distribu-
tion of hydraulic parameters (Franssen et al., 2009). While these
methods have become routine, the logic behind these approaches, and
characteristics of the estimates are unclear, let alone ways to address
the uncertainty of these estimates. For these purposes, we focus on the
estimates using kriging and hydraulic tomography (HT) and explain
conditional mean, realizations, and effective hydraulic conductivity
field engrained in these methods.

HT is a new generation of data collection and inverse modeling
strategy. Many (e.g.,Tosaka et al., 1993; Gottlieb and Dietrich, 1995)
proposed the concept of hydraulic tomography (HT) using pressure
variations induced by aquifer pumping to characterize hydraulic

property distribution in the aquifer. Yeh and Liu (2000) subsequently
developed the first fully 3-D steady-state hydraulic tomography, using a
successive linear estimator (SLE)–an inverse algorithm based on the
spatial stochastic concept (Yeh et al., 1995, 1996). The accuracy and
utility of HT were then tested and verified in sandbox experiments by
Liu et al. (2002). Later, Zhu and Yeh (2005) developed the transient
hydraulic tomography, and Xiang et al. (2009) expanded SLE to SimSLE
(Simultaneous SLE), which simultaneously includes all the pumping
test data sets for THT analysis.

Since then, the development and testing of this new technology
have thrived. More than two-hundred seventy related research activ-
ities and papers have burgeoned since then. Initially, research on hy-
draulic tomography consisted largely of numerical studies (e.g., Bohling
et al., 2002; Brauchler et al., 2003; Zhu and Yeh, 2005, 2006; Ni and
Yeh, 2008; Fienen et al., 2008; Castagna and Bellin, 2009; Xiang et al.,
2009; Liu and Kitanidis, 2011; Cardiff and Barrash, 2011). These nu-
merical studies are followed by laboratory sandbox and field studies
(e.g., Illman et al., 2007, 2009; Liu et al., 2007; Yin and Illman, 2009a,
2009b; Cardiff et al., 2013; Hochstetler et al., 2016; Sanchez-León et al.,
2016).

Over the past decades, HT has been analyzed mainly using geosta-
tistical inverse models (such as SLE developed by Yeh et al. (1996) or
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Quasi-Linear Geostatistical Approach (QLGA) developed by Kitanidis
(1995). Other approaches have also been used: the pilot point method
(e.g., Castagna and Bellin (2009); Lavenue and Marsily (2001)), a low-
frequency asymptotic approach by Vasco and Karasaki (2006), and ray
tracing methods (e.g., Brauchler et al., 2007). These algorithms focus
on estimating smooth fields except the recent application of ensemble
Kalman Filters (ENKFs) to HT by Schöniger et al. (2012). Recognizing
the stochastic nature of the inverse modeling, Nowak (2009) advocated
the benefits of empirical cross-covariances from Monte Carlo (MC)
analyses in the ENKFs.

In this paper, we first use a stochastic formulation to articulate
conditional mean, effective, and realizations of hydraulic conductivity
(K) and head fields. We then introduce kriging, which estimates the
conditional mean K field, and the KSA (kriging with a superposition
approach), and the Karhunen-Loeve expansion method (KLM), which
derive conditional realizations of K fields, conditioned on the K mea-
surements. Afterward, the successive linear estimator (SLE), which
derive the effective K field, conditioned on some observed heads, is
discussed. Subsequently, the Monte Carlo SLE (SLEMCS) and SLE with
KLM (SLEKLM) approaches for generating conditional realizations of K
fields, which honor the observed heads, are proposed. We then apply
these techniques to one- and two-dimensional numerical experiments to
corroborate the results of the stochastic theories.

2. Theories

Before discussing the stochastic theories, we assume that the fol-
lowing equations describe the steady-state flow field due to pumpings
in a saturated heterogeneous porous media:

+ =x x xK H Q·[ ( ) ( )] ( ) 0 (1)

with boundary conditions

= =x x nH H K H q| , [ ( ) ( )]· |1 1 2 (2)

In Eq. (1), H is the total head [L]; x is the location vector [L], Q is
the pumping rate [1/T]; K is hydraulic conductivity [L/T]. In Eq. (2), H1
is the prescribed total head on the Dirichlet boundary 1 and specific
discharge q [L/T] is specified on the Neumann boundary conditions 2 n
is a unit vector normal to 2.

2.1. Unconditional realizations and effective K

Investigation of effects of imposing hydraulic conductivity (K) and
head (H) on the analysis and simulation of groundwater flow in aquifers
is most appropriate to formulate the problem in a stochastic framework
and to consider a pumping test at a single well. The discussion starts
with the case where no point data can be used to condition the hy-
draulic conductivity or the resulting head fields.

Since xK ( ) is spatially varying and challenging to determine it at
every location of the aquifer, the stochastic analysis conceptualizes K as
a random field:

= +x xK K K( , ) ¯ ( , ) (3)

where K̄ is the unconditional mean (the arithmetic average of all pos-
sible K realizations), which are invariant in the spatial and ensemble.
The overhead bar stands for the expected value. The unconditional
perturbations at each x are xK ( , ), where is the ensemble realiza-
tion index ( = 1, ... ), which are characterized by their unconditional
covariance function. This covariance specifies the spatial variance, the
uncertainty of the perturbations, and the spatial relationship between
perturbations in the ensemble sense or the spatial sense if the spatial
domain is sufficiently large (i.e., ergodicity is met).

Accordingly, many possible steady head fields xH ( , ) exist in this
aquifer induced by a pumping test with a given Q. These fields are thus
a random field:

= +x x xH H H( , ) ¯ ( ) ( , ) (4)

in which xH̄ ( ) is the unconditional ensemble mean, which varies
with x and xH ( , ) is the perturbation at x.

Substituting Eqs. (3) and (4) into the governing flow equation Eq.
(1), we have

+ + =x x xK K H H Q·[( ¯ ( , )) ( ¯ ( ) ( , ))] (5)

Monte Carlo simulation is one way to derive the possible head fields
corresponding to all possible K fields. Averages of these fields over the
ensemble are their means, and their variances represent deviations of
the means from the true fields.

Instead of all possible xH ( ) fields, we can seek the unconditional
mean of xH ( , ) directly. To do so, we expand Eq. (5) and take the
expected value of Eq. (5) to derive an unconditional mean flow equa-
tion:

+ =x xK H K H Qx·( ¯ ¯ ( )) ·( ( , ) ( , ))¯ (6)

which can also be rewritten as:

=xK H̄ Q( )eff
2

0 (7)

The term = + x x xK K K H H¯ ·( ( , ) ( , ))¯ [ ¯ ( )]eff
2 1 is the un-

conditional effective parameter. Keff is often assumed to be invariant in
ensemble and space, while some analysis (e.g., Indelman, 2003) showed
that it varies with radial distance near the pumping well and then ap-
proaches some constant values at large radial distances. Nevertheless,
this Keff yields the ensemble mean of xH ( , ) field under all possible
heterogeneity, given the pumping discharge. Then, the unconditional
variance of xH ( , ) (Gelhar, 1986) quantifies the deviation of xH ( , )
from xH̄ ( ).

2.2. Conditional realizations and mean K with K samples

Suppose we know the K values at some sampling locations xs, and
we like to use them for mapping the K distribution of an aquifer to
increase the prediction accuracy of the flow field. A conditional ap-
proach is appropriate, which requires a highly parameterized model
and K fields that are consistent with the measured K values at the
sampling locations. For this purpose, we formulate a condition flow
equation:

+ + =x x x xK K H H Q·[( ¯ ( ) ( , )) ( ¯ ( ) ( , ))]c c cc (8)

where the subscript c denotes “conditioned.” Eq. (8) is the governing
equation for the flow in realizations of K fields conditioned on the K
samples. Notice that the K samples implicitly condition the head. Eq.
(8) can serve as the equation in which flow is conditioned on the head
measurements (to be discussed in Section 2.3.)

Solving Eq. (8) using conditional realizations of K fields,
+x xK K¯ ( ) ( , )c c , yields many realizations of heads +x xH H¯ ( ) ( , )c c ,

which reflect the effects of conditioning by the K samples. Notice that
xK̄ ( )c and xK ( , )c represent the conditional mean and perturbation of

K, respectively, while xH̄ ( )c and xH ( , )c are the conditional mean and
perturbations of heads, respectively. Implementation of this solution
requires one to generate all possible K field conditioned on the K
samples, using KSA or KLM methods (Section 3) first and then solves the
equation for all conditional head fields. This procedure is called the
conditional Monte Carlo simulations (conditional MCS). The average of
all conditional K fields from MCS results in the conditional mean K
field, while the average of all the simulated head is the conditional
mean head field, given the K samples.

Alternatively, one can expand Eq. (8) and take its expected value to
have

+

+ + =

K x H x K x H x

K x H x K x H x Q

·[( ¯ ( ) ¯ ( ) ( , ) ( )¯ )

( ¯ ( ) ( , )¯ ( , ) ( , )¯ )]
c c c c

c c c c (9)

Recognizing the expected value of the product of a perturbation and
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a mean of a variable is zero (the cross-out terms). We then normalize
x xK H( , ) ( , )¯

c with the mean flux x xK H¯ ( ) ¯ ( )c c , and lump the
normalized cross-covariance with xH̄ ( )c , one has

< + > =x x x x x xK H̄ K H K H Q·[ ¯ ( ) ( )(1 ( , ) ( , )¯ [ ¯ ( ) ¯ ( )] ) ]c c c c c c
1

or

=x xK H Q·[ ¯ ( ) ( ( ))]c ceff (10)

which is the conditional mean equation in which xK̄ ( )c is the condi-
tional mean K from kriging. That is to say, if we use the condition mean
K field to solve the flow equation, we directly obtain the conditional
effective head field Hceff . However, this head field is not the conditional
mean head field from the MCS approach.

To derive the conditional mean head, one can group the normalized
covariance with xK̄ ( )c . That is,

+ =x x x x x xK K H K H H Q·[ ¯ ( ) (1 ( , ) ( , )¯ [ ¯ ( ) ¯ ( )] ) ¯ ( )]c c c c c c
1 or

=x xK H Q·[ ¯ ( ) ( ¯ ( ))]ceff c (11)

Solving Eq. (11) with xK̄ ( )ceff yields the conditioned mean head,
given the K samples, which is identical to the conditioned mean head
from MCS. This approach, however, requires x xK H( , ) ( , )¯

c c to be
known beforehand.

2.3. Conditional realizations and effective K with head measurements

Similar to using K measurements to condition the simulated head
field, this conditional head approach also adopts a highly para-
meterized conceptual model. The governing equation is identical to Eq.
(8) but is for the flow in realizations of unknown K fields conditioned
on the head samples. That is, the mean and perturbation of K and head
in Eq. (8) are conditioned on the head measurements, instead of the
sampled K.

To determine these realizations of unknown K fields, we need to
solve an inverse problem using some algorithms (Section 3), which can
select all possible realizations of K fields with which the groundwater
flow model can reproduce the observed heads at the monitoring loca-
tions. In other words, a conditional MCS using SLEMCS or SLEKLM
algorithm (see Section 3) is necessary. Once all possible realizations of
K and H fields are obtained, their average leads to the conditional mean
K and H fields, respectively.

Instead of using the MCS, most inverse modeling efforts have at-
tempted to seek one possible of K field that can preserve the observed
heads when the flow equation is solved. To explain the theory, we make
the use of Eq. (11) as the conditional mean equation, but recognize the
equation is conditioned on the observed head, rather than the K mea-
surements. In this mean equation, xK̄ ( )ceff and xH̄ ( )c are the conditional
effective hydraulic conductivity and conditional mean heads, given the
head observations. Solving the conditional mean equation to match the
observed head in a least-square sense using an algorithm such as SLE
(Section 3), one has the conditional mean head and the effective K field.
While the effective K is not necessarily the same as the arithmetic mean
of all possible conditional realizations of K fields, it produces the con-
ditional mean head, which is unbiased and preserves the observed
heads.

3. Methods

To substantiate the above theories, we introduce several methods
that derive the conditional mean and realizations of K fields, given
some K samples. We also present methods for deriving conditional ef-
fective K and condition realizations of K, given some observed heads.

3.1. Conditional mean K field with K samples

Kriging is a widely accepted method to derive the conditional mean
K field, given the sampled K values. Readers are referred to the de-
scription of kriging in textbooks, such as Kitanidis (1997) and many

others.

3.2. Conditional K realizations with K samples

Kriging Superposition Approach (KSA). To create conditional
realizations, given some K measurements, we use a Monte Carlo si-
mulation algorithm based on superposition (e.g., Yeh, 1992). It consists
of four steps. Step 1: Use the natural logarithm of K (lnK or Y) to avoid
negative estimated values and generate a conditional mean lnK field
( xY f( , )¯c , where f denotes the given field data) using kriging and mea-
sured lnK* at measurement locations. Step 2: Generate k realizations of
the unconditional random field Y x( , ) (where is the realization
index, = k1, ... ) via a random field generator (e.g., Gutjahr (1989))
with a known mean, variance, and autocorrelation distances. Step 3:
Extract the lnK values from Y x( , ) at the same sample locations as
those at the field site. Then, use these sample values and kriging in Step
1 to calculate corresponding conditional mean fields, xY ( , )¯c ,

= k1, ... , given these generated samples. Next, we determine the
difference between each generated random field and its associated
conditional mean field. This is,

=D x Y x Y x( , ) ( , ) ( , )¯c (12)

Step 4: Add the differences in Eq. (12) to the conditional mean Y of
the field site from step 1 to derive the conditional realizations:

= +Y x Y x f D x( , ) ( , )¯ ( , )c c (13)

These conditional realizations thus preserve the sample values at
the sample locations of the field site since =D x( , ) 0 at these loca-
tions. At other locations, Y x( , )c ’s are random variables determined by
deviations D(x) and kriging estimates based on the field observations.

Karhunen-Loeve Expansion Method (KLM). In this method,
Y x( , )c , can be written as,

Fig. 1. The true K distribution (red circles denote K sampling locations) along a
one-dimensional horizontal confine aquifer, and the true steady-state head
distributions during the three stresses of HT.

Fig. 2. Comparisons of the true, the kriged, the KSA (mean of the conditional
realizations) hydraulic conductivity field, and selected conditional K realiza-
tions. Upper and lower bounds are the conditional standard deviation of kriging
estimates and that from conditional realizations using kriging superposition
approach (KSA).
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= +Y x Y x g( , ) ( , )¯c c (14)

where Y x( , )¯c is the conditional mean K derived from kriging or the
effective K from SLE. The last term in the Eq. (14), g, is the per-
turbation term, and ξ(ny × 1) are a set of uncorrelated random vari-
ables with zero mean and unit variance, i.e., =¯ 0i , =¯ 1i i , and

=¯ 0i j , when i ≠ j. Furthermore, g(ny × ∞) are orthogonal eigen-
vectors. λ(∞ × ∞) is a diagonal matrix filling with corresponding
nonnegative eigenvalues. Based on the conditional covariance function,
the eigenvalues and eigenvectors are obtained by eigenvalue decom-
position of the conditional covariance yy from kriging:

= g gyy
T (15)

The decomposition is easily accomplished by the built-in eig func-
tion in MATLAB, in which the eig function will automatically select the
Cholesky factorization algorithm to compute the λ and g since the
conditional covariance matrix is Hermitian (Ma, Dong, and Zhang,
2006; MathWorks, 2005; Yaz and Azemi, 1995). Afterward, we sort the
eigenvalues in the descending order. Then, only the ny eigenvalues and
the associated eigenvectors are retained to approximate the perturba-
tion term in Eq. (14). That is, the dimensions of matrix λ and g in the
truncated KL expansion are reduced to ny × ny . At last, with given
different random variables vectors ξ(ny × 1), different random fields
are generated. Note that Lu and Zhang, (2004) derived a solution for
eigenvalue decomposition in KL expansion, which is different from our
method.

3.3. Conditional effective K field with head data

While many different inverse methods could be used for this

purpose, we focus on HT estimates using the successive linear estimator
(SLE), Yeh et al. (1996), which has widely used as we mentioned in the
introduction.

Suppose we collect nd observed heads in space, denoted by the data
vector d* during a steady-state HT survey. The conditional effective
Y x( )ceff with given observations is determined using the following SLE:

= ++Y x Y x d d( ) ( ) ( )c ceff
r

eff
r r( 1) ( ) T ( ) (16)

where r is the iteration index; the vector d(r) is the simulated heads at
the observation locations obtained from the forward model (i.e., Eqs.
(1) and (2)), using Y x( )ceff at iteration r. When r = 0, Y x( )ceff is the
unconditional mean. The coefficient matrix, ω (nd × ny), denotes the
weights, which assign the contribution of difference between the ob-
served and simulated head at each observation location to the pre-
viously estimated Y x( )ceff field, and the superscript T denotes the
transpose. This coefficient matrix ω is derived by solving the following
equations:

+ =[ diag( )]dd
r r

dd
r r

dy
r( ) ( ) ( ) ( ) ( )

(17)

where dd is the covariance of the head, and dy is the cross-covariance
between lnK and head. The parameter θ is a dynamic stability multi-
plier, and diag( dd) is a stability factor, which is a diagonal matrix with
the same diagonal elements as dd. The covariance dd and cross-cov-
ariance dy, can be derived from the first-order numerical approxima-
tion (e.g., Yeh and Liu, 2000):

=

=

J J

J

,dd
r

d
r

yy
r

d
r

dy
r

d
r

yy
r

( ) ( ) ( ) ( )T

( ) ( ) ( )
(18)

where Jd (nd × ny) is the sensitivity (Jacobian) matrix of head data with
respect to lnK using the lnK estimated at the current iteration. At
iteration r= 0, the yy(ny × ny) is the unconditional covariance of lnK.
For r ≥ 1 the conditional or conditional covariance function are eval-
uated according to

=+
yy
r

yy
r

dy
( 1) ( ) T (19)

The above steps (Eq. (16) through Eq. (19)) are repeated until the
convergence of the solution is achieved. One convergence criterion is
the change in variances of the estimated lnK field between the current
iteration and the previous iteration. If this criterion is small, SLE cannot
improve the estimates any further. The other is the change of simulated
heads between successive iterations. If this quantity is small, the esti-
mates could not further fit the observed heads. Once one of the two
criteria is met, we consider the estimates to be optimal, and we ter-
minate the iteration.

Fig. 3. (a) Unconditional covariance matrix of lnK; (b) kriging conditional covariance matrix of lnK (the solid squares denote the K sample locations).

Fig. 4. Comparisons of kriging estimates and associated conditional standard
deviation of K with the conditional random field of case 1 (i.e., Kmeasurements
only) by using the Karhunen-Loeve expansion method (KLM).
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The above algorithm can be applied to each pumping test in HT
survey sequentially SSLE (Sequential SLE, Zhu and Yeh (2005)) or all
the pumping tests simultaneously (Simultaneous SLE, Xiang et al.
(2009)).

3.4. Conditional K realization with head data

MCS using SLE (SLEMCS). Besides the conditional effective hy-
draulic conductivity field, SLE can generate many possible realizations
of Y x( , )c fields that preserve the observed head, and satisfy their
underlying statistical properties (i.e., mean and covariance) as well as
the governing flow equation (Eqs. (1) and (2)). Similar to the approach
proposed by (Gutjahr et al., 1994; Hanna and Yeh, 1998), one way for
this purpose is the Monte-Carlo simulation (SLEMCS), as described
below.

This approach uses an unconditional realization K field as the
starting field, and its unconditional covariance is employed as the prior
covariance for SLE. Then, SLE iteratively updates the estimates and
conditional covariance until the simulated heads agree with the ob-
served ones. Once the estimated field converges, the estimated lnK field
becomes the conditional realization given head measurements of HT
survey. If we repeat this procedure with other unconditional realiza-
tions, we then have a conditional MC simulation for HT.

This approach is analogous to the iterative ENKFs (Nowak, 2009;
Schöniger et al., 2012), but it uses sensitivity and the first-order ana-
lysis to update the conditional covariances as opposed to calculating the
conditional covariances using the approximated conditional realiza-
tions during each iteration.

MCS using KLM (SLEKLM). As an alternative to SLEMCS, SLEKLM
takes advantage of the effective lnK field and the conditional covar-
iance ( yy) from SLE, and then directly uses KLM to generate conditional
realizations. That is, KLM generates zero mean realizations based on the
yy at the final iteration from SLE, which are then added to the effective

lnK field from SLE to produce the conditional realizations. This ap-
proach thus avoids the time-consuming conditioning MC simulation
based on SLE as in SLEMCS approach.

4. One-dimensional numerical experiments

4.1. Case Ⅰ: Conditioning using K measurements

For the sake of easy visualization and understanding, we use a one-
dimensional confined aquifer to demonstrate the algorithms above.
This aquifer is 128 m in length and is discretized into 128 elements
(each 1 m) and 129 nodes. Each element is assigned a K value from a
Fast Fourier Transform (FFT) random field generator (Gutjahr, 1989).
The generation assumes that the lnK has a jointly normal distribution
with a mean of 1.0, a variance of 1.0 and an exponential correlation
structure whose correlation scale equals to 10 m. This K field is depicted
in Fig. 1 as the solid black line, and the unit of K is m/s. The K values at
x = 32, 56, and 96 are taken as the hydraulic conductivity measure-
ments (red circles in the figure) so that there are 125 unknowns of K.
Using three K samples and the exact spatial statistics, we derive the
conditional mean K field, via kriging, and conditional realizations of K
fields, through KSA and KLM, given the three sample values.

Kriging. The conditional mean K field derived by kriging using
three K samples is displayed as a green long-dashed line in Fig. 2. This
figure also shows the upper and lower bounds of the kriging estimates
(i.e., the conditional mean values plus or minus one standard deviation
of the kriging), respectively.

KSA. The dotted color lines in Fig. 2 are three realizations from the
2,000 realizations generated from KSA. Means and standard deviations
of the realizations at each location are used to determine the upper and
the lower bounds. We observe that these means and the upper and
lower bounds agree with the conditional mean and the upper and lower
bounds derived from kriging mean and variance.

Fig. 5. (a) Comparisons of the true, the kriged, the KSA mean of hydraulic conductivity field with 1024 elements (The blue circles denote the sampled locations). (b)
Head simulations from the true field, kriging field, and KSA conditional random fields. (c) Scatter plot of true head vs. simulated head from the kriged field and
averaged KSA head.
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From Fig. 2, we observe 1) the conditional means at the sample
locations are identical to the values of the samples, 2) the conditional
mean K captures the general spatial trend of the true lnK field, and 3)
the closer the location to sampled locations (say, less than 10 m), the
smaller fluctuations of the lnK values of the realization. We also observe
that the smaller the distance to the sample location, the narrower the
gap between the upper and lower bounds. This result indicates that the
measurements have strong influences on the K at distances less than
10 m (the correlation scale of the heterogeneity) from the sampling
locations. Beyond this distance, the mean values remain the same as the
unconditional mean value. In other words, the uncertainty of the true
field around the conditional mean at these locations remains the same
as the variability of lnK (i.e., effects of conditioning are zero).

The unconditional covariance and the kriging (or conditional)

covariance matrices for this problem are exhibited in Fig. 3a and b,
respectively. For the unconditional case, the covariance decays rapidly
from the diagonal terms according to the correlation scale. The kriging
(i.e., conditional) covariance forms four distinct zones according to the
three sample locations, and in other areas, the covariance is zero due to
zero variance at the sample locations.

KLM. In this approach, the conditional covariance matrix from
kriging is directly used in KLM to generate 2,000 realizations of con-
ditional lnK fields. Three of the 2,000 realizations and the true K field
are illustrated in Fig. 4. Notice that the realizations are different from
those in Fig. 2, generated with KSA because a different random field
generator is used. Nevertheless, the conditional means and the upper
and the lower bounds of the realizations from KLM are comparable to
those derived from KSA. Besides, these realizations from KLM honor the

Fig. 6. Conditional effective K from SLE (Ke), the arithmetic (Ka), harmonic (Kh), and geometric mean (Kg) of the conditional Monte Carlo realizations using SLEMCS,
true field, and a realization of the SLEMCS: (a). for the unconditional variance of lnK= 1 (i.e., Var_lnK= 1); (b). for the unconditional variance of lnK= 3.0 (i.e.,
Var_lnK = 3). Figures (c) and (d) are the histogram, mean and standard deviations of these fields for Var_lnK = 1 and 3, respectively.
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sample values at sample locations.
In summary, kriging estimates are conditional means of all the

possible realizations in the ensemble; they are the means of all the
equally likely realizations, which agree with the sample values at the
sample locations. Kriging estimates are smoother than the true field
since they represent the most likely estimates at the locations where no
samples are available, and they are the sample values at the sampled
locations. Kriging variance is the statistics that describe the likely de-
viation of the true field from the conditional means. Notice that if
samples are taken at every location, the conditioning means are iden-
tical to the true field, and the kriging variance or conditional variance is
zero everywhere.

KSA and KLM generate conditional realizations, which have the
same spatial statistics (spatial variability) of the true field and honor the
sample values at the sample locations. They are as jagged as the true
field, but their ensemble averages are similar to the kriging means.

Conditioned Head Fields. To illustrate the effects of conditional
mean K field from kriging and conditional realizations of KSA on the
prediction of head distributions, we create a new 1-D aquifer, which has
1,024 elements (each 0.125 m) with random K values with the same
length of the aquifer and spatial statistics as in Fig. 1 and bounded by
constant heads of 1000 m on the both sides. We increase the number of
element of the aquifer to avoid the ergodicity issue. Fig. 5a is an il-
lustration of the K field and those from kriging and the average of KSA
realizations given the K values at three locations. It shows that the
kriging mean is identical to the conditional mean of KSA as they should
be.

We then simulate the steady head fields due to pumping at a loca-
tion with a rate of 0.1 m3/s. In Fig. 5b, the simulated head from the
kriged field is consistently higher than the true head of the hetero-
geneous aquifer, while the average of the simulated conditional head
fields (light blue lines in the figure) from conditional 1,000 realizations

Fig. 7. The simulated head distributions for the three stresses using the effective K, and harmonic, arithmetic, and geometric means of K, and one realization of K
from MCS, as well as those from the true K field, are shown. Left column, a, b, and c is for Var_lnK= 1, and the right (d, e, and f) is for Var_lnK= 3. Each predicted
head distributions K fields are based on the calibration of the stresses.
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of K fields based on KSA is close to the true field. The scatter plots of the
simulated head from the kriged K field and that from KSA vs. the true
field (Fig. 5c) also confirms that the kriged K field produces the con-
ditional effective head field and that KSA can yield the conditional
mean head field, as we have remarked in Section 2.2. The results of
KLM are identical to those of KSA and are not presented. However, we
cautiously point out that the unbiased prediction could vary with the
pumping location, in particular in 1-D aquifers since flow process er-
godicity should also be met (Yeh et al., 2015) because the heterogeneity
near the pumping well heavily controls the behavior. That is, the un-
biased prediction will always be true in the average sense over a larger
number of pumping tests at different locations.

4.2. Case Ⅱ: Conditioning using head data

In this case, two aquifers are considered (AQ1 and AQ2 with an
unconditional variance of lnK= 1, and 3, respectively), which have the
same mean, correlation scale, and random seed number as that in Case
I. The true K fields of the two aquifers are given in Fig. 6a and 6b, which
are bounded by the left-hand and right-hand prescribed head bound-
aries of 1000 m. Seven wells are located at x = 16, 32, 48, 64, 80, 96,
and 112 m of the aquifers. Three pumping stresses are conducted at
x = 32, 64, and 96 individually as the HT survey, with a constant
discharge ( =Q m s0.02 /3 ). We then use VSAFT2 (Yeh et al. 1993),
available at hptt://tian.hwr.arizona.edu/download, to simulate the
steady-state flow field induced by each test, and take the heads at the
other six wells for HT analysis. The red, the green, and the orange
dotted line in Fig. 1 are the simulated head field in AQ1 for stresses 1, 2,
and 3, respectively (the head in AQ2 is not shown).

Using head measurements from the six wells during each test, we
derive the most likely effective hydraulic conductivity using SLE
without any K measurements. Then, with the same head measurement
locations, SLEMCS derives 2,000 equally likely hydraulic conductivity
realizations that preserve the observed heads, and so does SLEKLM. The
conditional mean and covariance of these K realizations are then cal-
culated to compare with that directly from SLE. The results of this
analysis are given below.

4.2.1. SLEMCS
Conditional K fields. As shown in Fig. 6a and 6b, the conditional

effective K field from SLE captures the spatial trend of the true K field
but is smoother than the true field. On the other hand, the conditional
realizations from SLEMCS are as erratic as but different from the true
field, although with a similar trend. We also see that the harmonic
mean of the conditional K realizations agrees with the conditional

effective K, while the arithmetic and the geometric mean of the reali-
zations are consistently higher. Comparison of Fig. 6a and 6b indicates
that deviations of the arithmetic and geometric means from the effec-
tive K increase as the unconditional variance of lnK increases.

The histogram plots in Fig. 6c and 6d show that the distributions of
the true field, conditional effective K, and K fields from different
averages are log-normal. Notice that the distributions of the effective K
field and the harmonic mean of SLEMC are identical, and they have
similar means as the true field but smaller variances, reflecting effects
of conditioning (i.e., the posterior distribution in Bayesian theory).

These findings corroborate with the fact that 1) SLE produces the
conditional effective hydraulic conductivity field, as stated in Yeh et al.
(1996), and 2) the effective K in one-dimensional flow scenarios is the
harmonic average of all possible conditional realizations (see Yeh et al.,
2015).

Conditional head fields. To check if the conditional head fields
honor the observed heads, we simulate head fields corresponding to the
three pumping tests, using the 2,000 conditional random K fields from
SLEMCS, and calculate the conditional means and variances. Note that
the SLE approach substitutes the final conditional covariance of lnK
( yy) into Eq. (18) to determine the conditional head covariance dd in
which the diagonal elements are its conditional variances.

According to Fig. 7a-c effective K, conditional K realizations and
harmonic mean K from SLEMCS yield head fields that honor the ob-
served heads of each stress. They are unbiased estimates of the true
head field for each stress even if the unconditional variance of lnK is 3.0
(Fig. 7d-f). Notice that we present only one realization of heads cor-
responding to one conditional K realization (dotted pink line) in Fig. 7
since other realizations behave similarly. On the contrary, we observe
that the arithmetic and geometric means of the conditional K realiza-
tion form SLEMCS result in heads, departing from the observed, with
increasing deviations with the variance of lnK. These findings manifest
that the effective K is not equal to the ensemble (arithmetic) average of
the conditional realizations of K, but is their harmonic average.

The conditional head variances from SLE and SLEMCS are depicted
in Fig. 8a for the unconditional variance of lnK = 1; those for the
variance equal to 3 are in Fig. 8b. These figures indicate that the con-
ditional variance of the head at each observation location is zero, while
the other locations are not. The conditional variances of the head from
SLEMCS are larger than those from the first-order analysis used in SLE,
and the difference increases with the unconditional variance of lnK.
These results indicate that the head variances approximated by the first-
order analysis in SLE underestimate the conditional variances of the
head.

Conditional Covariance of lnK. In the case of SLE, the first-order

Fig. 8. Conditional head variances between the first-order analysis in SLE (the dashed lines) and those from MCS simulations (the solid lines) for the Var_lnK= 1.0
(a) or 3.0 (b).
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approximation of the conditional covariance matrix of lnK (Eq. (19)) at
the last iteration is used as the conditional covariance. On the other
hand, the conditional covariance matrix for the SLEMCS approach is
derived from a statistical covariance analysis of the 2,000 conditional
realizations. The covariance matrices for cases with the unconditional
variance of lnK of 1.0 from SLE and SLEMCS are displayed in Fig. 9a
and b, respectively. Fig. 9d and e show the corresponding covariances
for the unconditional variance of lnK of 3.0.

The patterns of these two conditional covariance matrices are si-
milar, although the values from SLEMCS are larger than those from SLE.
The difference increases with the unconditional variance of lnK (Fig. 9c
and f). The largest conditional variance of lnK (diagonal elements of the
matrices) is at the location of head measurement, while the minimum is
at the location between the head observed locations. That is, the head
data at the observation wells reduce the uncertainty of the lnK between
the observation wells but not that at the observation well. Such

Fig. 9. Comparisons of the conditional covariance of lnK from SLE and SLEMCS for the Var_lnK= 1.0 (a, b, and c) or 3.0 (d, e, and f). c and f are plots of covariance
along the cross-sections A-A’ and B-B’.

Table 1
The CPU time-demanding for generate 2000 conditional realizations by different MC methods and directly generate effective K field by SLE.

Methods Case of 1D HT for unconditional variance of lnK = 1.0 Case of 1D HT for unconditional variance of lnK = 3.0 Case of 2D HT

SLEMCS 182.334 228.719 499.554
SLEKLM 3.281 3.470 39.741
SLE 0.0349 0.585 0.2778

*Unit: minutes; CPU: Intel(R) Xeon(R) W-2133 @3.6 GHz; RAM: 32.0 GB.
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behavior is distinctly different from the conditional variance resulted
from conditioning with lnK measurements (Fig. 3b), where the condi-
tional variance is zero at the measurement locations. Such findings are
consistent with the explanation of the impacts of head measurements of
HT by Yeh et al. (2014). Notice that the variance is always positive, but

the covariance can be negative.

4.2.2. SLEKLM
SLEMCS evaluation is computationally intensive since it requires to

run SLE 2,000 times using 2,000 random realizations as initial fields. A
new approach (i.e., SLEKLM) is proposed. Specifically, it first employs
SLE to derive the conditional effective lnK field and conditional cov-
ariance matrix of lnK. Using the conditional covariance of lnK resulting
from SLE, SLEKLM then generates the zero mean conditional realiza-
tions. Afterward, these zero mean realizations are added to the condi-
tional effective lnK field to form the conditional realizations of lnK
fields, which are then converted to the conditional realizations of K
fields.

A comparison of the efficiency of the two methods of SLEMCS and
SLEKLM is shown in Table 1. Using SLEKLM method takes only a few
tenths of the computational-time of SLEMCS, while the CPU time re-
quired by SLE is much less than those of the SLEMCS and SLEKLM, since
SLE directly derives the conditional effective K field and associated
conditional covariance matrix.

Next, we investigate whether these conditional random fields de-
rived from SLEKLM honor the observed heads at the observed locations
during the HT survey. For this purpose, we use these conditional
random fields (2,000 realizations) to simulate the HT survey. In
Fig. 10a and b, we plot the simulated heads at the observation wells of
each pumping test against those heads simulated using the true K field
(observed true heads). These plots show that the simulated heads agree
with the observed heads only in an average sense: they scatter around

Fig. 10. Simulated head of SLEKLM versus observation head for three stresses for: (a) Var_lnK= 1 and (b) Var_lnK= 3; Comparisons of conditional variance of the
head using first-order analysis in SLE (the dashed lines) with the conditional variance of the head by SLEKLM method for three stresses for: (c) Var_lnK= 1 and (d)
Var_lnK = 3.

Fig. 11. The true conductivity field of the two-dimensional horizontal confined
aquifer. The black dots denote observation wells and the red dots represent the
pumping wells w1, w5, and w8, for the three stresses of the HT survey.
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the one-to-one line.
The conditional variances of the heads from SLEKLM for different

pumping stresses of HT are illustrated in Fig. 10c and d. The head
variances at the observation locations are nonzero, even though they
are much smaller than those at other locations, manifesting the effects
of head conditioning. In other words, SLEKLM does not guarantee the
preservation of the head measurements. Preservation of the observed
heads can only be accomplished via solving the governing flow equa-
tion, rather than generating them from the conditional covariance.

5. Two-dimensional numerical experiments

Reference field. Here, a two-dimensional heterogeneous aquifer
with a dimension of 128 m × 128 m is discretized into 1024
(4 m× 4 m) elements. Each element is assigned a K value using the FFT
random field generator. The generated K field (see Fig. 11) (i.e., the
true or reference field) has the unconditional mean and variance of lnK
of 1.0 and an exponential correlation structure with anisotropic corre-
lation scales ( = 40mx and = 20my in × and y directions, respec-
tively). The upper and lower sides of the aquifer are no-flow bound-
aries, and the left and right sides are constant head boundaries of
1000 m. Nine wells (w1 to w9) are installed, and three pumping stresses
are conduct at w1, w5, and w8 for HT survey. Each stress is a constant
discharge ( =Q m s0.05 /3 ) at one of the wells, and VSAFT2 simulates the
steady-state flow. The simulated heads at the other eight wells are
collected for each stress. Subsequently, a total of 24 head measurements

for the three tests are simultaneously used for inversion using SLE,
SLEMCS, and SLEKLM approach without using any K measurement.

Conditional K fields. The effective hydraulic conductivity from
SLE is displayed in Fig. 12a. With the same head measurements, we use
SLEMCS to derive 2,000 conditional K realizations that honor the ob-
served heads. The geometric, arithmetic, and harmonic averages of
these realizations are depicted in Fig. 12b-d, respectively. The scatter
plot comparing the true and effective K, and the geometric average
from SLEMCS is in Fig. 12e. The scatter plot for the arithmetic, and
harmonic averages of SLEMCS vs. the true field is in Fig. 12f.

From Fig. 12a and b, we notice that the effective K from SLE is
similar to the geometric mean of the K fields from SLEMCS; both are all
unbiased with the true field (Fig. 12e). The field from the arithmetic
mean of the SLEMCS generally is larger than the true field, while that
from the harmonic mean is smaller, as shown in Fig. 12f.

The patterns of the conditional variance of lnK from SLE and
SLEMCS (Fig. 12g and h, respectively) are similar, but the values from
SLEMCS are larger than those from SLE. Both yield small uncertainty of
the estimated lnK near the observation positions and significant un-
certainty far away from the observation ports, especially near the
boundary, consistent with those in one-dimensional results.

Conditional head Fields. We use the same procedure as in the 1-D
case to derive the conditional head fields. To check if the conditional
head fields honor the observed heads, we subtract the conditional head
field obtained by the three approaches from the true head field, and
then take its absolute value to obtain the Fig. 13a-c (only stress 1 is

Fig. 12. Contour plots of (a) the effective K from SLE; (b), (c), and (d) the geometric, the arithmetic, the harmonic mean of the SLEMC. Scatter plots of (e) the true lnK
field vs. the effective and the geometric mean of lnK field; (f) the true lnK field vs. the arithmetic mean and the harmonic mean of SLEMC. The conditional variance of
lnK from: (g) SLE and (h) SLEMCS.
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shown). The simulated head, based on the effective K, the average head
from SLEMCS, and that from SLEKLM honor the head observations.

Conditional head standard deviation from SLEMCS are generally
larger than those from the SLE and SLEKLM as shown in Fig. 13d-f.
Although the standard deviation of the head field from the SLEKLM at
the observation wells is not zero, the pattern is similar to those from the
SLE and SLEMCS approach.

6. Effect of ensemble size for MCS

To ensure our MCS results from the limited domain size are con-
clusive, we investigate the effect of the number of realizations on the
ensemble harmonic and the geometric mean of K from SLEMCS in
comparison with the effective K from SLE using the mean square error
as a criterion:

=
=

MSE
N

Z Z1 ( )
i

N

i i
1

2

(20)

This MSE measures the difference between Zi (the effective con-
ductivity from SLE) and Zi (the ensemble harmonic or geometric mean
of hydraulic conductivity from SLEMCS); N is the total number of ele-
ments. If the MSE value is small, then the averages of the SLEMCS is
equivalent to the effective K.

As shown in Fig. 14, for 1-D aquifers with the variance of lnK of 1
and 3, the MSE value of the harmonic mean of SLEMCS (Kh) drops
rapidly to a minimal value, and it stabilizes after about 500 realizations.
For 2-D aquifers, the geometric mean of the SLEMCS (Kg) also behaves
similarly.

7. Demonstration of the usefulness of the approaches

To demonstrate the utility of the SLE, SLEMCS, and SLEKLM, we
used their estimated K fields to predict an independent pumping test
using wells, not used in the previous HT analysis. The independent
pumping test experiment uses the same grid size and boundary condi-
tion as the 2-D HT experiment but uses different the pumping and ob-
servation well locations, i.e., the pumping well P5 with a constant
discharge ( =Q 0.2m /s3 ) and the observation wells, P1, P2, P3, and P4
as shown in Fig. 11. The specific storage (0.02/m) is known and uni-
form over the aquifer. The initial head is 1000 m at all nodes and equal
to the left and right boundary conditions. We then simulate transient
drawdown behaviors induced by this pumping based on the true and
the estimated K fields from the previous HT analysis from the three
different methods.

The drawdown distribution at the steady-state of the true K field is
displayed in Fig. 15a, while Fig. 15b presents the simulated drawdown
distribution using the conditional effective K derived from SLE. Mean-
while, the average of 1,000 realizations of simulated drawdown fields
using 1,000 conditional realizations of K fields derived from SLEMCS
and SLEKLM are presented in Fig. 15c and d, respectively.

Fig. 13. The absolute value of the difference between the true head field and (a) the simulated head field based on Ke; (b) the average head derived from SLEMCS; (c)
the average head derived from SLEKLM of stress 1. The conditional head standard deviation of stress 1 from (d) the first-order analysis in SLE, (e) the SLEMCS
simulations, and (f) those from the SLEKLM simulations.

Fig. 14. MSE of harmonic mean (Kh) for 1-D HT cases and geometric mean (Kg)
for 2-D HT case.
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The comparisons between the true and the simulated drawdowns
using the conditional effective K over the entire aquifer is illustrated in
Fig. 15e as the scatter plot. The scatter plot of the averaged drawdowns
from SLEMCS and SLEKLM vs. the true is presented in Fig. 15f. Overall,
the effective K from SLE yields unbiased predictions of the drawdown.
Likewise, the average of the simulated drawdowns from SLEMCS and
SLEKLM also are unbiased. Notice large scatterings at small drawdown
values in these scatter plots are attributed to the sparse well network
used in the HT survey and log-scale plot.

Lastly, the usefulness of the Monte Carlo simulations using SLEMCS
and SLEKLM for showing the uncertainty of the drawdown at the ob-
servation well P1 and P3 are illustrated in Fig. 16. In all these draw-
down-time plots, the solid black lines are the drawdown curves in the
true field, while the light blue lines are the 1,000 possible drawdown-
time curves simulated by the SLEMCS and SLEKLM. As we have re-
marked before, the SLEKLM likely underestimates the conditional var-
iance of lnK. As such, it produces narrow bands of possible drawdown-
time behaviors. Besides, the results in Fig. 16 also reveals that the un-
biased predictions shown in Fig. 15 do not apply to observed heads at
one or two locations.

8. Summary and conclusion

To explain conditional mean, effective, and realizations of con-
ductivity fields, we develop conditional Monte Carlo simulation algo-
rithms using hydraulic conductivity measurements (namely, KSA and
KLM) or based on hydraulic head measurements from the hydraulic
tomographic survey (SLEMCS and SLEKLM).

Results of the analysis of these algorithms can be summarized as
follows:

1. KSA and KLM can generate conditional realizations, which have the
same spatial statistics as the unconditional K field. Also, they yield
conditional mean and covariance, which are the same as the kriging
mean and conditional covariance.

2. Interpretation of HT data using SLE yields a conditional effective
hydraulic conductivity field and the conditional covariance of the
estimated field, given the head, discharge, and boundary informa-
tion during the HT survey. On the other hand, SLEMCS produce
conditional realizations (equally likely hydraulic conductivity
fields) that honor the observed heads during HT surveys and are as
jagged as the true field. The conditional effective hydraulic con-
ductivity of SLE is close to the harmonic average of all these reali-
zations for one-dimensional flow but agrees with the geometric
average for two-dimensional flow. The covariance functions of these
realizations from SLEMCS are similar in pattern with that of the
conditional covariance function of SLE, although the values from
SLEMCS are larger than those from SLE, and the deviation increases
with the unconditional variance of lnK.

3. SLEKLM can efficiently generate conditional realizations of hy-
draulic conductivity fields by taking advantage of SLE’s conditional
effective hydraulic conductivity field and conditional covariance
function. However, the simulated heads from the generated condi-
tional realizations of K match the observed head data of HT survey
only in the average sense.

4. Applications of SLE, SLEMCS, and SLEKLM to an independent flow

Fig. 15. The contour maps of the drawdown (S) at the steady state (i.e., t = 80 s) derived from (a) true K field; (b) the effective K field; (c) and (d) the conditional
realizations of SLEMCS and SLEKLM, respectively. The scatter plot of drawdown between (e) the true and effective K field; (f) the true and SLEMCS or SLEKLM.
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event demonstrate that all approaches yield unbiased prediction of
the true head field, and the uncertainty of drawdown around the
observed locations from SLEKLM are small.

Based on these results, we come to the following conclusions:

1. The effects of conditioning using K and head measurements are
different.

2. Harmonic and geometric averages of conditional hydraulic con-
ductivity realizations are equivalent to the effective hydraulic con-
ductivity derived from SLE for one- and two-dimensional flow pro-
blems, respectively.

3. The effective hydraulic conductivity from HT can predict head fields
that are unbiased and preserve the observed heads during each HT
pumping test. It also yields an unbiased prediction of the head field
under a different flow scenario.

4. While SLEKLM is more computationally efficient than SLEMCS, but
its conditional variance is smaller than that of SLEMCS. On the other
hand, SLE and a first-order analysis is a computationally efficient
approach for the same purpose but derives only conditional var-
iances, without the generation of conditional realizations.

Lastly, as stated in Yeh et al. (2015), the uncertainty analysis is not
to seek absolute uncertainty but to gauge the relative uncertainty be-
tween different operational strategies. Therefore, we recommend the
use of SLE or SLEKLM for practical applications, due to their compu-
tational efficiency. Moreover, if we just estimate the head and its un-
certainty, we recommend the SLE method since it can directly derive
the best-unbiased K estimates honoring the observations and the con-
ditional covariance addressing the uncertainty of estimates, and it also
avoids the MC intensive computational efforts. However, if we need to

estimate the uncertainty of flow and concentration fields and derive
possible realizations, we suggest the conditional realizations from
SLEMCS and SLEKLM.
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