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Abstract: This paper describes and demonstrates an approach to improve the management of risks from small-probability
events that can lead to large consequences. It applies a decision-based theory to account for limited information in estimating
frequencies for rare events to large rockfill dam in Norway that is being assessed for rehabilitation. Uncertainties are
considered specifically in estimating the overtopping hazard for the existing dam and for an elevated dam crest. Uncertainty
in the estimates of the overtopping hazard curve means that smaller costs of dam failure and/or larger costs of rehabilitation
may be justified. From a practical perspective, a cost of rehabilitation in this case that is nearly ten times larger could be
justified when the uncertainty in the estimate of the hazard curve is considered. The value of perfect information about the
hazard curve increases as the amount of information available decreases and as the cost of failure relative to the cost of
rehabilitation decreases. In this case, the value of perfect information about the hazard curve is about 25 percent of the cost to
raise the dam crest.
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1 Introduction

The motivation of this paper is to describe and demonstrate an approach to improve the management of risks
from small-probability events that can lead to large consequences, such as estimating the overtopping hazard for
an existing dam in order to decide whether or not to raise its crest. The challenge with these events is that there is
relatively little information available to assess their probability. For example, a 1/10,000-year frequency will be
estimated with generally less than 100 years of data.

The approach to account for limited information used here is a new theory being developed by the authors to
frame uncertainty in the context of decisions that are affected by that uncertainty. The goal of the theory is to
facilitate assessing small probability values for use in decision analysis. This theory is applied to a large rockfill
dam in Norway being assessed for rehabilitation. Uncertainties in assessing the overtopping frequencies for the
existing dam and for an elevated dam crest are considered. The theoretical basis for the theory is described and
its implementation is demonstrated. Lastly, practical insight obtained from applying the theory to this problem is
discussed.

2 Decision Analysis for Nesjen Dam

Nesjen is a regulated reservoir created by a main rockfill dam and three secondary dams in Kvinesdal
municipality of Southern Norway. It is one of the input power sources of the Tonstad hydropower plant
downstream. The Nesjen dams and the Tonstad hydropower plant are owned by the Sira-Kvina Power Company.
The main Nesjen Dam was constructed in the 1960’s. To be compliant with current regulations, the crest of the
dam needs to be raised by 1 m, from Hy; = 716.6 m to H4, = 717.6 m. The question is: Is the cost of raising the
dam crest by 1 m worth the benefit in reducing the risk?

A decision tree framing this decision is shown in Fig. 1, where Pfa, and Pfa, are the probabilities the dam
fails due to overtopping in a 100-year planning period and fa, and fa, are the annual frequencies of overtopping
for crest heights H4; and H.., respectively. Based on hydrologic analyses and expert elicitation, the frequencies
of overtopping are estimated as fy; = 1/1,000 1/year for the existing crest height and f4, = 1/10,000 1/year for the
raised crest height. If the dam is overtopped, there is assessed to be a 0.002 probability of dam failure (NGI,
2018), meaning the probability of dam failure in 100 years is Pfy; = 0.002[1-(1-£4,)'%°¥¢%] for dam crest heights i
=1lor2.

The consequence of raising the dam crest by 1 m is ¢, and the consequence of failure if the dam due to
overtopping is ¢r, where ¢;, and ¢ are negative and can either be expressed as an economic cost or a non-
dimensional utility value. For context, the economic cost of raising the dam is on the order of $10,000,000 US.
The preferred alternative has the maximum expected utility, w4 versus w4, obtained from:
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Figure 1. Decision tree comparing two alternatives (A1 and Az) of the Nesjen dam
3 Uncertainty in Overtopping Hazard

There is considerable uncertainty in estimating the frequencies of overtopping for the two dam heights, f1, and fi..
The dam has only been in operation for less than 60 years; changing climatic conditions may change hydrologic
patterns in the future; the storage volume and release rates from the reservoir versus time are strongly dependent
on daily economic decisions related to power generation and storage; and the frequencies of interest are very
small (i.e., on the order of once per 1,000’s to 10,000’s of years).

If overtopping occurrences for each crest height are independent from year, then the likelihood of observing
X4, events where the existing dam crest is overtopped and Xy, events where the raised dam crest is overtopped
(note that X4, > X},) in a time period of # years is given as a function of fa, and fa, by a multinomial distribution:

POy X lfons fao) = K (U= Fu) ™ oy = fa) 72 0,72 ()

where k is constant independent of fa; and fa,. Since it is extremely unlikely that either of the dam heights will
have been overtopped in only 60 years (in fact, neither have been exceeded), the estimates for fy; and f4, are
based on significant extrapolation. If the time of observation is changed, then Eq. (3) can be generalized as
follows:

P(XA1:XA2 |fAlzfA2) =ky [(1 - fAl)t_XA1 (fA1 - fAZ)XAl_XAZfAZXAZ]N 4)

where N is the number of available time periods and ky is a constant. Without loss of generality, N could be
greater than one (a longer time period) or less than one (a shorter time period).

For this application, the available information will be represented as an equivalent time period of
information equal to #N (say 60 years). The estimate that the overtopping frequency for the existing dam height is
equal to 0.001 1/year will be represented by setting the equivalent number of overtopping occurrences to be
equal to the expected number of occurrences in tN, X4,N = 0.001zN; similarly, XN = 0.0001zN. This likelihood
function is illustrated in Fig. 2; note that the likelihood is sharper (more informative) as the equivalent time
period of information increases.

4 Incorporating Information about Overtopping Hazard into Decision

In order to decide between maintaining or raising the dam crest (Fig. 1), the probability for different
combinations of f; and f}> is obtained from Bayes’ theorem as follows:

P(XAI,XAZ|fA1,fAZ)P(fA1,fAZ|DeCi5i0n)
Satlfa,.fay PXayXag|fay.f az)P(fayf 4y |Decision)

P(fA1’fAz|XA1’XAz) = (5)
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where P(fAl, fA2|X A1'XA2) is the updated probability for fi, and f;» given the available information,
P(Xa,, Xa,|fa,r fa,) is the likelihood function (Eq. 4)', and P(fy,, fa,|Decision) is the prior (i.e., before
information) probability for fy; and f4. given the decision between maintaining or raising the dam crest. This
updated probability is incorporated into the decision analysis to obtain the expected utilities for each alternative i:

Elua,(fayr fa,)) = Zatt ra, 1, tay (Fass £, )P (fays f, Xy Xay) (6)
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Figure 2. Likelihood function of combinations of f1; and fi..

5 Non-Informative Prior Probability Based on Decision Entropy Theory

The Theory of Decision Entropy (Gilbert et al. 2012, 2016; Mostofi 2018) is being developed to establish non-
informative prior probabilities in the context of making a decision, P( fayr fa, |Decisi0n). This theory is derived
from three principles:
1. If no information is available about the probabilities of f4, and fi,, then a selected alternative is equally
probable to be or not to be the preferred alternative.
2. If no information is available about the probabilities of /4, and f4., then the possible differences in preference
between a selected alternative and the preferred alternative are equally probable.
3. Ifno information is available about the probabilities of f4, and £, then the possibilities of learning with new
information about the selected alternative compared to the preferred alternative are equally probable.
The theory is implemented mathematically using the Theory of Information Entropy (Shannon 1948). The
prior probability for a selected decision alternative is obtained by maximizing the entropy of the information
potential:

AuAj(fAlthz) = uAj(fAlJfAz) - max[uAl(fAlthz)lqu (fAllfAz)] 7

where AuAj ( fay fAz) is the information potential if either the dam is not raised (4;) or the dam is raised (4,). The
information potential is less than or equal to zero: it equals 0 if A; is the preferred alternative and it is less than
zero if Aj is not the preferred alternative. Accounting for uncertainty in fi; and f4., the preferred alternative will
have the maximum expected value of the information potential. For generality, the information potential will be
normalized here by the cost to raise the dam, ¢, The information potential depends both on the selected
alternative and on the ratio of cr/c; (Fig. 3).

Maximizing the entropy of the information potential according the three principles of the Theory of Decision
Entropy produces non-informative probability distributions for the information potential that have a probability
mass of 0.5 when information potential is 0 and a uniform probability density over the range of information
potential values less than 0 (Fig. 4). The non-informative probability distributions for f4; and f4 are obtained by
mapping the probability distributions for the information potential (Fig. 4) onto relationship between information
potential and f}, and f., in which the third principle of the Theory of Decision Entropy is approximately satistied
by making all combinations of f1; and f4. that give the same information potential equally probable. Example
non-informative probability distributions for f, and f}, are shown in Fig. 5.

! Note that the constant ky does not need to be explicitly evaluated since it is in both the denominator and the numerator of Eq. (5).
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Figure 3. Information potential for alternative dam crests versus annual frequencies of overtopping.
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Figure 4. Non-informative probability distributions of information potential for each alternative.
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Figure 5. Example non-informative prior probability distributions for f1, and fi2.
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6 Results

Example updated probability distributions for the overtopping frequencies, f; and f., from Bayes’ Theorem (Eq.
5) are shown in Fig. 6. The preferred alternative has the maximum expected information potential.

E [AuAj(fAl’fAz)] = Yau fayfay AuAj(fAlﬁfAz)P(fAl'fAz|XA11XAZ) (8)

In addition, the value of perfect information about the overtopping frequencies is equal to the negative of the
expected information potential.
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Figure 6. Posterior joint probability distributions for fi, and fi2.

The expected information potential for the preferred alternative is shown in Fig. 7 versus the normalized
cost of failure, cy/c;, for different amounts of information (i.e., the equivalent years of experience used to
estimate the overtopping frequencies, ¢N). For a given amount of information, the alternative of raising the dam
crest becomes preferred over maintaining the status quo as the cost of failure increases relative to the cost of
raising the dam crest. For the case of no information (#N = 0, which gives a flat likelihood function), raising the
dam crest is preferred for cz/c; > 1000 (Fig. 7). For the case of perfect information (¢/N = oo, which gives a
likelihood of 1.0 for the estimated values of £, = 0.001 1/year and f> = 0.0001 1/year and a likelihood of zero for
all other combinations), raising the dam crest is preferred for c#/c; > 6,000 (Fig. 7). For amounts of information
between nothing and everything, the threshold value of c¢s/c; ranges between the two extremes. The uncertainty
in estimates of the hazard curve (f, and f},) captured by the non-informative prior probability distribution means
that rehabilitation may be justified with smaller costs of dam failure and/or larger costs of rehabilitation.

From a practical perspective, the actual amount of information is closer to 100 years than 10,000 years.
However, in many risk assessments for a dam, the hazard curve would assume to be known (i.e., f1;, = 0.001
1/year and f1, = 0.0001 1/year). The difference between these two cases is that a cost of rehabilitation that is
nearly ten times larger could be justified when the uncertainty in the estimate of the hazard curve is considered.

The negative or absolute value of the expected information potential is equal to the value of perfect
information about the overtopping hazard curve (f;, = 0.001 1/year and fy.). For example, if the cost of a dam
failure is 1,000 times the cost of raising the dam crest and an equivalent of 100 years of experience are used to
estimate the overtopping hazard curve, then the value of perfect information about the hazard curve is about 25
percent of the cost to raise the dam crest (Fig. 7). This value of perfect information decreases as the amount of
information available increases (i.e., N increases) because more is known at the starting point. Also, this value
of perfect information for a given 7N value reaches a maximum when the cost of failure relative to the cost of
rehabilitation (cr/cy) is such that the decision maker is most indifferent between the two alternatives, and
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decreases as cr/c; decreases or increases from this point because one alternative becomes more strongly preferred
(e.g., the alternative of raising the dam becomes strongly preferred regardless of uncertainty in the overtopping
hazard curve for relatively large cr/c; values.
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Figure 7. Expected normalized information potential for different normalized failure cost.
7  Conclusion

This paper describes and demonstrates an approach to improve the management of risks from small-probability
events that can lead to large consequences. It applies a decision-based theory to account for limited information
in estimating frequencies for rare events to large rockfill dam in Norway that is being assessed for rehabilitation.
Uncertainties are considered specifically in estimating the overtopping frequencies for the existing dam and for
an elevated dam crest (i.e., points on the overtopping hazard curve).

Uncertainty in the estimates of the overtopping hazard curve means that smaller costs of dam failure may
justify rehabilitation and/or larger costs of rehabilitation may be justified. From a practical perspective, a cost of
rehabilitation in this case that is nearly ten times larger could be justified when the uncertainty in the estimate of
the hazard curve is considered. The value of perfect information about the hazard curve increases as the amount
of information available decreases, and it increases as the cost of failure relative to the cost of rehabilitation
decreases. In this case, the value of perfect information about the hazard curve is about 25 percent of the cost to
raise the dam crest.
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