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Abstract: To effectively disseminate location-linked information despite the existence of digital
walls across institutions, this study developed a cross-institution mobile App, named GeoFairy2, to
overcome the virtual gaps among multi-source datasets and aid the general users to make thorough
accurate in-situ decisions. The app provides a one-stop service with relevant information to assist
with instant decision making. It was tested and proven to be capable of on-demand coupling and
delivering location-based information from multiple sources. The app can help general users to
crack down the digital walls among information pools and serve as a one-stop retrieval place for
all information. GeoFairy2 was experimented with to gather real-time and historical information
about crops, soil, water, and climate. Instead of a one-way data portal, GeoFairy?2 allows general
users to submit photos and observations to support citizen science projects and derive new insights,
and further refine the future service. The two-directional mechanism makes GeoFairy2 a useful
mobile gateway to access and contribute to the rapidly growing, heterogeneous, multisource, and
location-linked datasets, and pave a way to drive us into a new mobile web with more links and less
digital walls across data providers and institutions.

Keywords: location-linked data; gateway; application-level data aggregation; citizen science; mo-
bile computing

1. Introduction

Earth observation (EO) data have been increasing exponentially in the past decades,
and have become a valuable data source in many important scientific and application
domains. Many useful insights and applications can be achieved once EO data are coupled
with other public data, like OpenStreetMap [1] and GeoNames [2] (as shown in Figure 1).
However, the data are stored in distributed institutions and governed by a different set
of regulations, policies, and standards [3]. Virtual walls exist among datasets and can be
strongly felt when trying to retrieve and carry out combined analyses. The heterogeneity
in formats, projections, metadata, structure, content, properties, protocols, and licenses,
exposes serious challenges for fusing the information from multiple providers to get a
comprehensive understanding of a specific location. In satellite datasets, digital walls are
very common. For example, NOAA (National Oceanic and Atmospheric Administration)
data centers mostly use NetCDF (Network Common Data Form) as a default form. NASA
(National Aeronautics and Space Administration) and DAAC (Distributed Active Archive
Center) data centers often use HDF (Hierarchical Data Format), and USGS uses GeoTIFF for
its satellite imagery. In industrial companies, e.g., social media, the data providers normally
serve datasets via some unique interfaces to maintain a relatively isolated ecosystem to
protect business interests. Although tremendous efforts were made to unify the metadata
and enroll datasets into one catalog or one abstract parent form [4], it is a complicated task
to retrieve all information across datasets about one location. For effective decision making,
it is a critical need to put together all information collected from various platforms into one
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report. As an important topic in the research of spatial data infrastructure (SDI), cracking
down these digital walls and one-stop retrieve multisource geospatial information is still
an unsolved issue.
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Figure 1. Location-linked data.

Mobile apps can facilitate a lot of location-based services (LBS) like reporting en-
vironment status, disseminating climate forecasts, monitoring particular regions, and
warning potential disasters. The popularity of LBS is creating a growing interest in many
stakeholder communities. app developers normally own datasets of points of interest
(POIs) [5,6]. Typical examples are Google Maps, Yelp, Twitter, Facebook, TripAdvisor,
FourSquare, OpenStreetMap, GRAB, etc. The availability of spatial data and the techniques
to manage and analyze those data allow researchers to study important environmental,
social, economic, and public health issues [7]. The spatial links within data offer new ways
of thinking, structuring, publishing, discovering, accessing, and integrating information.
Geospatial information is digested by mobile apps and inferred via their spatiotemporal
connections to deliver value-added information and services. However, most apps only
have a single data source and focus on one thing or one aspect. It is hard to retrieve a full
thorough report about real-time location, which is essential in making solid and correct
decisions on-site, by collecting multisource data and delivering them in a one-stop manner.

To address the challenge, this study developed a mobile app called GeoFairy2, which
is the new version of the award-winning app GeoFairy [8], by integrating the application-
level strategies to collect, couple, and deliver multi-source geospatial information from
distributed data centers in real-time. The one-stop app helps field workers such as farmers,
surveyors, geologists, travelers, to access and be notified about the environment and
socioeconomic dynamics. The app was tested in randomly selected places worldwide and
works as expected by successfully deliver historical, present, and forecasting information
on weather, soil, crops, and air quality. Meanwhile, the system can turn the mobile device
into a sensor by citizen scientists, to take photos, fill in questionnaires, and submit their
observations or feedback to refine the accuracy and resolution of the future information.
GeoFairy2 could provide a platform for nonprofessionals who might not possess any
or have only limited background knowledge of the studied subjects, but are willing to
contribute by collecting data. In the foreseeable future, mobile Apps would become
dominant data gateways and Apps like GeoFairy2 would see high demands. This work
paves a new way to drive us into a new mobile web with more links and fewer walls across
data providers and institutions [9].
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2. Related Work

Location-linked data come from various sources and are explicitly interconnected via
some descriptive properties, e.g., coordinates, spatial extents, materials, events, observation
time, etc. [10-13]. Those links could navigate from one dataset to the related datasets [11].
It has enormous benefits to link information across perspectives, dimensions, platforms,
and communities [14]. It will take much fewer costs and efforts to search for actionable
information. Instead of going through tens of thousands of records, location-linked data
allow efficient data discovery at a low cost. Data links to other data also increase their
value [15]. Its initial goal was to enable the query of all Web data as a single database [16],
due to the direct links among the data entities, which leads to the transition from data
islands to the global data web. There are some proposed linked data principles by Tim
Berners-Lee [17]. Many domains could be benefited by location-linked data, ranging
from geological field surveys, forest surveys, natural disaster management, agricultural
practice, and public health surveillance. Government agencies are looking for the scientific
intellect to challenge the common threat of big environmental issues, such as climate
change, pollution, food security, biodiversity [18], and location-linked data, which could
provide big help.

Smartphones that have an Internet connection and a touchscreen are now widely
owned and used all over the world. It is estimated that over 3.5 billion people own
smartphones [19]. As owners carry these devices around constantly, they are also ready to
access mobile apps in app stores, without the need for special preparations and equipment.
Apps for data retrieval and citizen sciences increased dramatically in recent years [20].
Most smartphones have built-in GPS receivers, cameras, and microphones [21].

The role of volunteered geographic information (VGI) in citizen science was explored
in recent studies [22]. Mobile phone data was accepted and have become a good platform
for data collection. The mobile map SDKs (Software Development Kit) like Google Maps
and Apple Maps and many other open-source sets of tools, have made it convenient to
implement a series of low-cost mobile apps to collect and disseminate geospatial data for
various communities. Normally, a mobile app does one or more of the following three
functions—data dissemination, data validation, and data collection. Smartphones’ locating
capability enables the geospatial data servers to serve location-specific information to the
users. Photographs can be taken and used to validate model-simulated data derived from
satellite data, such as land cover and soil maps. Electronic forms can be collected and used
as ground truths for analysis and aggregation. The use of mobile apps not only increases
efficiency but also allows the public to contribute as citizen scientists [23].

Apps such as Google Maps and OpenStreetMap were embraced by both scientists
and non-expert user communities [24]. Lutz et al. used a smartphone-based system to
intuitively retrieve the exact geometry of smaller objects, making it suitable to assess
agricultural entities like fields or ponds, with their exact extent and location [25]. They
used it to monitor agricultural development. Suporn et al. did a systematic review on
smartphone applications in the research literature that utilized smartphone built-in sensors
to provide agricultural solutions [26]. They overviewed 12 farming applications, 6 farm
management applications, 3 information system applications, and 4 extension service
applications. GPS and cameras are the most popular sensors in those apps. Compared to
traditional agriculture that was usually done within a family or a village, and accumulative
farming expertise and knowledge that were passed down to their future generations,
smartphone apps play an important role in disseminating knowledge and information on
agriculture today. In the foreseeable future, humans will no longer be the main observer
of the field conditions and the sole solution provider as problems arise. As the disruptive
climate and crop disease outbreaks could seriously damage farming productivity, more
profound and powerful farming management and practice technologies need to be invented
and adopted, to battle these issues. Precision agriculture is one of the most popular methods
that was invented. The use of field sensors, remote sensing, and smartphone-based apps is



ISPRS Int. ]. Geo-Inf. 2021, 10, 1

40f18

one of the key ideas in precision agriculture. All employed system will monitor the fields
constantly and help farmers to make informed decisions [26].

There are many mobile apps to deliver location-linked data. Agrofarm [27] is an
Android-based app that appeals to farmers, breeders, and people who like growing crops
and rearing animals. It helps farmers and breeders to track the time of every lubrication
or pesticide application, the quantity and cost, cultivation, the revenues, and expenses
of all farming activities by category or period, store the information for application of
drugs in animals as well as the full program of food, and record the fuel cost and the
maintenance program for all agricultural machineries. AgriApp [28] is another Android
app that provides complete information on crop protection, smart farming with agriculture,
and associated services. It is also an online marketplace bringing in farmers, retailers,
workforce hiring services into one common digital platform. Another App, Agrobase [29],
includes an agronomic knowledge database with pests, weeds, and disease catalog, and
all registered pesticides, insecticides, herbicides, in a chosen country. It could potentially
identify diseases, insects, or pests in fields, and find a solution to reach higher productivity.

Many Apps are developed to disseminate air quality data. An app called Air Vi-
sual [30] can deliver historical, real-time, and forecasted air pollution data based on real-
time location. It could provide data about key pollutants for more than 10,000 cities in
80+ countries. EPA (Environmental Protection Agency) AIRNow [31] can provide real-
time air quality. Their reports include ozone and fine particle pollution (PM2.5), and the
actions people can take at different air quality level. Other similar apps include PlumeLabs,
BreezoMeter, etc.

One common practice of the existing data applications is that all information is
aggregated at the provider level (as shown in Figure 2). For example, Google collected all
data and fused them into new products, and published them into Google Maps. Google
is playing the role of middleman to collect the datasets and merge them. As a result,
all users are over-confidently depending on Google and have less flexibility in customizing,
subscribing, and identifying information from the raw data, especially the temporal trends.

T
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Figure 2. Provider-level and application-level data aggregation.

The first version of GeoFairy was an innovative system that won the GEO Appthon
competition in 2014 [8]. It was proposed as a one-stop location-based service for retriev-
ing various kinds of geospatial information by integrating the state-of-art techniques in
geospatial web services and mobile applications. However, it was a relatively low-efficient
app and has hit bottleneck problems to serve many users all over the world concurrently.
The service quality over relies on the data aggregation services that are deployed on a
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small server in GMU (the provider-level aggregation in Figure 2). The design of old Ge-
oFairy caused issues on response time, system stability, and sustainability, according to
its past performance on operational running. Meanwhile, the GeoFairyl is a one-way
service that only transfers the information from official data providers to users. After six
years of research on how to improve the service, GeoFairy2 addressed these problems
by adopting the application-level aggregation (Figure 2) and successfully meeting the
growing requirements of intelligent data discovery and two-direction interaction to assist
data collection.

3. Framework

To address the legacy problems and incorporate new capabilities, a new design is
proposed (illustrated in Figure 3). It is a composition of multiple sub-module components
and the connections among them, which are introduced in detail below.
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Figure 3. System architecture (blue boxes—software components; green boxes—data).

3.1. Geospatial Web Service Module

This module refers to the Info Server block in Figure 3 and contains all information
services that are used to process data requests from GeoFairy2 and send back actual
information. To realize the application-level data aggregation, the architecture reuses the
existing geospatial web services to fill in this module. There are thousands of web services
offering tens of thousands of terabytes of geospatial data that are still growing [32-37].
However, selecting underlying web services for mobile Apps need extra attention to
quality [38]. The web services need to meet several criteria to become qualified as an
information source.
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3.1.1. High Sustainability

GeoFairy?2 architecture heavily rely on backend web services. The used web services
should have stable long-term availability. The services are better maintained if attended by
a specialized person. In that case, only the web services that are backed by well-reputed
businesses or reliable government agencies are appropriate to be relied on. Otherwise,
the solution code should be prepared for an unexpected situation, such as service offline,
interface altering, data gaps, internal errors if those prototype web services from research
projects are involved. It is questionable whether the service would persist after the funding
is over. Therefore, a modular design is highly recommended to avoid software collapse
when exceptions occur during the operation period.

3.1.2. High Throughput & Low Latency

A single server has limited capability in serving user requests. A reliable web service
needs solid gateway routers and robust hardware to deal with a large number of concurrent
requests. The network interface card (NIC) should have a very high throughput and spare
NICs are preferable. If the requests are at an overwhelming level, a load balancer would be
recommended and the requests on a single node should not exceed a threshold to provide a
low latent response. Memory leaking is a common issue that might cause the entire system
to collapse. High memory volume is important to ensure service stability. The volume
of Earth observations, especially remote sensing imagery datasets, is tremendous, and
processing them need a lot more computational power than normal datasets. Powerful
hardware and robust software is the prerequisite to enable low latency and high throughput.
These details need to be thoroughly investigated before adopting them [39].

3.1.3. Interoperable Interface

To address the data heterogeneity challenges, the interface of the candidate web
services should be easily interoperable [40]. There should be explicit manuals on calling the
services (e.g., Swagger). Standard interfaces such as OGC WMS (Web Map Service) [41],
WES (Web Feature Service), WCS (Web Coverage Service) are preferred. RESTful web
services with detailed documentation are also recommended. OpenAPI Specification
v3 [42] was released as a milestone for the API developer community, to adopt as a
common standard service interface. More standard web services are forthcoming and
could be easily integrated via these standards.

3.2. Communication Module

This module refers to all arrows and their associated interfaces in Figure 3. All
displayed information in GeoFairy?2 is real-time collected from the Internet. It has no
built-in data upon the installation. A valid Internet connection is required. For remote
sites where the signals might be weak, solutions like offline data storage are discussed.
The current design is based on the assumption that there are at least occasional Internet
connections to the smartphones.

The communication between client and server follows the standard protocols: HTTP
(Hypertext Transfer Protocol). Other lower-level network protocols such as TCP (Trans-
mission Control Protocol) or UDP (User Datagram Protocol) can also be directly used.
Today most smartphones are equipped with hardware to support multiple protocols like
Wi-Fi (IEEE 802.11), 4G LTE (IMT-2000), and Bluetooth, to transmit data wirelessly. To
communicate with the higher-level standard service interfaces, such as REST API, OGC
web services, the client and server need to use the same set of protocols for communication
between them. This requires a detailed specification of parameters, structures, encodings,
algorithms, etc. For geospatial information, further specifications and standards on projec-
tions, resolution, timestamp, data format, and metadata are mandatory for the other-side
program to correctly decode the information.

Fortunately, OGC, ISO, W3C, OpenAP]I, and many other standardization organiza-
tions already considered these issues and made a whole set of interoperability standards
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accordingly. Those web service standards fill in the vacuum of regulating geospatial infor-
mation communication from the bottom to the top. The interoperability standards cover
almost every aspect of the workflow to transmit geospatial information among individual
remote devices. The conventional OGC web services offer two types of protocols—plain
XML and SOAP (Simple Object Access Protocol). Recent development shows that RESTful
web services have become popular and JSON is now a routine format for information
exchange [43]. The popularity of RESTful web services is largely pinned on its simplicity
and generality, and is limited to several unified conclusive verbs: GET, POST, PUT, PATCH,
and DELETE, which cover almost all transaction requirements. In this architecture, the
communication between client and server is in multiple formats and should remain flexible,
according to real-world situations.

3.3. Mobile Gateway Endpoint Module

The internal design of the app includes four major data-centric submodules (the Data-
Client block in Figure 3). Each submodule deals with one specific kind of requirement.

3.3.1. Data Retrieval Queue Submodule

This architecture allows the client to talk to multiple web services simultaneously. The
data retrieval graph becomes complicated accordingly because of the network uncertainty,
hardware/software capacity, and variety of transferred data volume. Generally speaking,
the data retrieval speed is determined by the status of the loads on the client and the server,
and the network, which could be simply represented using the following equation:

T, =ax % +e D
where T, is the time cost of retrieving data from server to client; L, and L are the workload
on client and server; Oy is the complexity of the transmitted data, which is a combined
score measuring the volume, dimension, structure, format, encoding, etc.; Q, denotes the
quality of the network between the client and the server; C. and C; are the system capacity
of the client and the server and could be measured by the maximum data the system can
process every second. The coefficient a is a constant number transforming the ratio to a
time unit, and e is the uncertain error.

According to the equation, when the two endpoints and networks in between are
settled, the time cost is mostly decided by the real-time workload and data complexity.
To reduce the latency of the system, the average requests on each server node should
be balanced and remain under certain thresholds, the transmitted geospatial information
should be simple and low dimensional. However, in the proposed architecture, even though
the requests are simple, the client would struggle to handle the parallel requests to various
web services. To achieve a smooth use of the client, a queuing system should be placed to
avoid long-time freezing. The first step is to send all requests out via asynchronous channels.
A queued receiver will start to listen to the response. As more traffic is conducted on the
HTTP protocol, the requests would use the AJAX technique. However, WebSocket [44]
and other mutual communication protocols would be better for those tasks. For every
response received, the queue would assign a receiver to redirect the information to the
corresponding data processor (discussed in Section 3.3.3). The receiver queue is loosely
coupled with the interface module and would not crash or delay the user interface when
some service requests are jammed or failed.

Another important design principle of this module is to reduce the complexity of
the transmitted data. A high degree of complexity is one of the significant features distin-
guishing EO datasets from the others. The organization and storage of EO datasets on the
server side could add a big-time cost to the query and computing performances. To avoid
the intensive processing burden relocating to the client-side, the data to be transmitted
need to be in very fine grain. The data tree structure should be no more than three levels
and the information should be divided into the finest grain pieces. Information should
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be fragmented and the dimension should be lowered. For example, some satellite image
products have hundreds of bands and the coordinate system is three or more dimensional
(time and height). The best scale of the transmitted data in one transaction is one band
value at one location (three values—latitude, longitude, band value). It would not only
relieve the burden on the network and shorten the waiting time for the users, but would
also improve the system robustness by simplifying the data processing workflow on the
client-side.

3.3.2. Data Extraction & Fusion Submodule

The heterogeneity of multisource data makes it difficult to directly use the received
data, especially when there are more than two sources for the same data category. For
example, the Land Cover category has NASA NLCD (National Land Cover Database) [45],
NASA MODIS Land Cover products [46], USDA (United States Department of Agriculture),
CDL (cropland data layer) [47], GLC (global land cover), FROM-GLC, etc. The NLCD,
CDL, and FROM-GLC are in GeoTiff format, and the MODIS Land Cover products are in
HDF (Hierarchical Data Format). A large portion of the costs in reusing existing services
is charged by this step. The common processes to unify the datasets include reprojection,
resampling, regridding, reformatting, mosaic, merging, getting location reports, etc [48,49].
Most web services do all the preprocessing work. GeoFairy2 only needs to retrieve the
data via standard interfaces like WMS GetFeaturelnfo without worrying about the data
processing method. After retrieving the location-based information, GeoFairy2 needs
to do data harmonization, by integrating multi-source data into a co-registered dataset,
with the same or compatible spatial resolution and projection. As it is a point-based data
processing, the amount of information to be processed by GeoFairy?2 is tiny and can be
rapidly accomplished by mobile devices.

3.3.3. Data Store Listener Submodule

The results from the extraction module is pushed into the data store module. The data
store is a dedicated block in the smartphone’s memory. Each information category has a
separate data store. The data store and the user interface are synchronized. Any change in
the data store is instantly reflected in the interface. For example, the data store has new
weather forecasting information, the interface refresh is triggered instantly and the new
information is directly displayed. A listener is responsible for constantly monitoring the
data stores and triggering the rendering of the corresponding interface region. The listener
maintains a set of preinstalled rendering functions for various categories of information.
Besides the data from the retrieval module, the data store also saves the data about user
preference, e.g., users usually turn off some data categories that they are not interested in
to keep the interface concise. Unlike the other in-memory data stores that are cleaned after
the app is closed, the client data store would persist in a file database on the smartphone’s
external memory. Data persistence is also the responsibility of the data store listener.

3.3.4. Panel Context Management Submodule

As a general-purpose app, it covers multi-thematic information and the interface
design should contain multiple tab panels to keep the information organized. Each tab
panel is thematic and domain-specific. All panels must be about the same location and
this module is built to ensure that. Panel context is important to allow each tab panel
to manage their data, while keeping consistent on the target location. Every time users
switch to other locations (via clicking on the map or entering city names), the tab panels
can always quickly turn around and refresh their information to reflect the situation of
the last selected location. The context management also serves as a coordinator to link the
datasets via their properties. Sometimes the observations and data products do not agree
with each other. Context management is responsible to detect the inconsistency and warn
about it or discard the believed corrupted information based on quality control results.
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3.3.5. Visualization

The visualization of location-linked data are implemented in three major forms—
map, charts, and tables (as shown in the Visualization block in Figure 3). The details are
introduced in [8]. In this new design, the improvements are mostly done on adjusting the
composite and transitioning among the three forms. Notebook-style rendering has become
popular, along with the wide adoption of Jupyter Notebook [50], within both science
and industry. Users only need to swipe on the smartphone screen with all information
just under their fingertips. The tables, maps, and charts are aligned and fit into a one-
column document. Reading geospatial information should feel no different from reading a
newspaper.

3.4. Citizen Science Module

One of the major goals of GeoFaiy V2 is to engage the public to interact with geospatial
information, rather than just receiving the information. It means the data consumers could
also become data providers. There are many citizen science Apps out there, and most of
them follow a similar design. The sensors on the client devices are connected with the
software via system driver libraries and platform interfaces. For example, both Android
and iOS have API for a high-resolution digital camera, global positioning system (GPS)
sensor, accelerometer, gyroscope, magnetometer, ambient light sensor, and microphone.
The data collection function is developed and equipped within the client software or web
pages (Figure 4). When users browse around the client, they find it smooth to transit from
the role of users to providers. One or multiple customized data servers are set up to receive
the data collected by citizen scientists. In this architecture, a similar design is added on top
of the previous modules. The client prepares a few submission forms and embed navigating
buttons into the data forms. In the submission forms, users could enter their observations
associated with photos, location, and other sensed data. Two server-side programs are
deployed to receive the data submitted from the clients (the Crowdsourcing Data Server
in Figure 3). One program is a data server responsible for storing and querying the
data. People can select their interested citizen science project and the form is dynamically
changed for people to contribute observations.

- ; ! Citizen Science
ﬂ Froject Catalog ‘ Project Managers

“ Project Details

Professionals @

Project List @
@ async hold
Science

Enthusiasts Fields

Citizen @ ﬁg
Scientists Form Values Quality Control

Figure 4. Citizen Science Module Design.

Project |
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Input

Qutput

Project n

Another component is a validation service (the top left blue box in Figure 3) that is
responsible for validating the EO products by comparing them with the collected ground
truth observations or VGL. If the two disagree, a marker is labeled and the disagreement is
recorded for further investigation. If more than three separate individual clients feedback
the same disagreements, the validation server places a change request to the EO data server
for improvements. The VGl is attached as the new ground truth. If less than three separated
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feedbacks or the disagreement feedbacks are inconsistent, the request is withheld until
enough consistent observations are retrieved. Every client is able to browse its submitted
VGI and might also have access to the VGI submitted by other people. All stored VGI is
processed to remove personal information about the submitter on behalf of user security.
The collected VGI is open and freely accessible via the crowd data server and could benefit
tens of thousands of researchers in many disciplines.

4. Results
4.1. System Development

We implemented the proposed architecture into a smartphone App, GeoFairy2, which
is available on both the Google Play Store [51] and the Apple Appstore [52]. The app is
developed using cutting-edge techniques, such as React Native, Node.js, Expo, D3 chart,
Mobx JS data store, OpenLayers, Proj4, Bootstrap.js, Hyperflow, etc. The advantage of React
Native is that it can automatically generate installable Apps for Google Play and Appstore,
by only writing the JSX code once. It saves a huge amount of time to attract both Android
users and iOS users. The programming language of the app is JSX (JavaScript XML), and
the server-side programs in Java. The information server, crowd data server, and validation
server are deployed on a private cloud, GeoBrainCloud, powered by Apache CloudStack
and backed by the resources located in the Aquatic data center of GMU. The services on
GMU servers use many open source GIS libraries, such as GDAL, to preprocess, extract,
clip, reproject, resample the data residing on GMU servers, such as CDL, Crop Calendar
layer, etc. For the datasets not hosted in GMU, GeoFairy2 would directly query third-party
web services without going through the GMU server to avoid potential bottlenecks on
performance, relieve the burden on the proxy server, accelerate the information loading,
and eventually address the data heterogeneity challenges. Table 1 lists most of the datasets
displayed in GeoFairy2. Comparing to GeoFairy1l, we removed a few datasets that do not
have high-quality web services available to ensure good performance. As shown in Table 1,
the GMU server only provides crop-related information via WMS. Other web services are
backed by renowned federal research institutes or commercial companies. In addition to
WMS, GeoFairy? also uses REST APIs. The retrieved information is filtered and fused on
GeoFairy2 by pre-defined rules to only display information with high quality, resolution,
accuracy, and value. Both the GMU server and GeoFairy2 app are operationally maintained
and new versions are released regularly, with additional functionality and bug fixings.

Table 1. Data list and web service sources used in GeoFairy2.

Dataset Name Web Service Provider Interoperability Protocol
Satellite Imagery Layer Google & Apple Google Tile/ Apple Tile API
Street Map Layer Google & Apple Google Tile/ Apple Tile API
Weather & Forecasting NOAA [53] & OpenWeather [54] NWS API/Weather API
Cropland Data Layer GMU WMS
Crop Calendar Layer GMU WMS
Twitter Feeds Twitter Twitter API [55]
Vegetation Status GMU & NASA WMS
Air Quality World Air Quality Index [56] WAQI API
Geocoding Google Google API
Elevation USGS WMS
Atmosphere NASA [57] WMS
Global Land Cover 2000 JRC-IES [58] WMS

Agricultural Hardiness USDA [59] GIS REST API
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4.2. Demonstration

We tested Geofairy2 on real phones that have average 117 milliseconds on Ping,
0.48 Mbps on downloading speed, and 1.55 Mbps on uploading speed. As shown in Figure
5, there are four tabs on the bottom navigation bar: Home, Ground, Air, and Settings.
The first screenshot in Figure 5 is the Home panel that shows up when the app is opened.
It consists of a top menu, a map component, a geolocation row, a search field, and a
weather box. The satellite imagery portion is an interactive map component. If people click
on the map button on the top right, it switches to the street map view. GeoFairy2 used
the system-built-in map combo that provides a whole set of map functions like zooming
in/out, panning, switching view, and labeling locations with markers. The button on the
top left allows people to adjust system configuration, such as selecting or unselecting the
information categories. The two buttons on the right are for selecting from the gallery or
taking a new photo. Permissions are required to access the local photos and use the camera.
The map component is movable, zoomable, and clickable. Users can click on any location
of their interests. Upon every click, the target location changes and all information panels
refresh to load new information. The circle button on the top right can switch the base map
between street map tiles and satellite imagery. The button on the bottom right can re-center
the map to the device’s current location. The weather module is similar to popular weather
widgets, containing temperature, wind, humidity, visibility, sunrise, and sunset time, and
the forecasting table lists the model predictions for the next 12 h.
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Figure 5. Screenshots of GeoFairy2 (a) home panel; (b) farming advice and vegetation status; (c) land
cover history, and (d) air quality.

Figure 5b,c are taken from the Ground panel. The farming suggestion section gives
empirical knowledge on the mean dates of planting and harvesting, based on the histor-
ical calendars. The original data comes from the Wisconsin Crop Calendar dataset [60].
We downloaded and published it as an OGC WMS to support GeoFairy?2. It can be seen
that the section advises on potato, maize, oats, soybean, wheat, sweet potato, which are
very common food crops in America. The vegetation section lists the index products
calculated from satellite remote sensing data. The original data products come from USDA
VegScape [61]. One of the major indices is NDVI (Normalized Difference Vegetation Index),
whose values range from -1 to 1. It measures the greenness of the vegetation and the higher
values mean the vegetation is greener. Greenness is highly correlated to vegetation health
so many health indices are created based on NDVI, such as VCI (Vegetation Condition
Index) [62-64] and VHI (Vegetation Health Index) [65]. As the indices are calculated based
on remote sensing images that have serious gaps caused by clouds and shadows, there
are big blank regions in the images. To avoid cloud problems and make the products
more continuous and readable, maximum composites over some time, such as weekly,
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biweekly, and monthly, are generated. GeoFairy?2 searches and displays the index values
in the Vegetation section, and meanwhile, provides users a chart to check the history of
each index. In the third screenshot, the Land Cover section gives the history of the land
cover change of the location. The data come from various sources. In the United States,
GeoFairy2 uses CDL (Cropland Data Layer, annual products) provided by USDA NASS; in
Africa, it uses GLC30 (Global Land Cover 30 meter); in Asia, South America, and Europe, it
uses FROM-GLC (Finer Resolution Observation and Monitoring Global Land Cover) [66];
and in India, Bangladesh, and Nepal, it uses the products generated by CSISS (Center for
Spatial Information Science and Systems). For the CDL product, GeoFairy2 reuses web
services in CropScape [67]. The other land cover products are served on the information
proxy server in GeoBrainCloud [49,64]. The CDL has more classes than other land cover
products and gives more detailed records on crops. As CDL is not available in some states
and historical years, we used the machine learning (ML) technique to fill in the gaps [68-70].
The ML-derived data is labeled to differentiate from the original CDL. From the screenshot,
the cropland has a very obvious crop rotation in the past decade, which can keep the
soil productive.

Figure 6 shows the form of collecting and submitting ground truth samples to the
crowdsourcing server. The form started with a project dropdown selector. People can
choose the project they want to contribute to. Once a project is selected, the main body of
the screen is filled with empty fields such as dropdowns, radio groups, checkboxes, labels,
or questions that are predefined by the citizen science project managers. GeoFairy2 meets
the requirement by implementing the “Submit Ground Truth”, which would automatically
upload all saved ground truths on the mobile device to the remote server managed by the
corresponding project managers. The ground truth servers could use different servers, as
project managers might deploy their instances on some trusted facilities. GeoFairy2 just
serves as a gateway for citizen scientists to find the project, and channel their collected data
to the right places. The loose coupling among citizen scientists, GeoFairy2, and project
managers would form a decentralized network and grant a lot of flexibility to all parties.
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Figure 6. Flexible Citizen Science Module Demonstration.

If users find the displayed information incorrect or inaccurate, they can easily send
feedbacks by entering some text, selecting metadata, and taking a real-time photo. The
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tags contain a hierarchy of keywords. If users cannot find suitable words to label the
photo, they can type text in the field below. Once the submit button is hit, the photo, tags,
labels, together with all displayed information is sent to the crowdsourcing data server.
Attaching the original information to the citizen science dataset would greatly help the
validation server to compare and verify the disagreements between user observations and
the standard Earth observation products.

4.3. Testing

We tested GeoFairy2 in randomly selected locations worldwide (Figure 7), on several
testing devices located in Fairfax, Virginia of the USA. The loading time was less than
2 seconds for most information categories. The slowest sections were vegetation and land
cover, which normally required 3~4 seconds to complete the data retrieval. However, the
first piece of data (e.g., the land cover of 2019) arrived and was in sight within less than 1
second. The app runs smoothly in most places and might experience no data gaps in the
coastal regions, where some data products are clipped using inconsistent boundaries. A
typical example is in the San Francisco bay area. If clicking on the beaches, the planting
suggestion section disappears because of missing data. The total time cost of GeoFairy
could be tested from two aspects—download and upload. Downloading traffic includes
the transmission of information mainly from the server-side to users” phones. Uploading
traffic means that users submit their data to the ground truth server. The equation of the
overall time cost is:

n . . .
Tgeofairy = thc + tls + tln 2)
i

where 7 is the number of information types, t. is the time the mobile phone takes to
send /receive the data i, t! is the time cost of server response to requests on i, t, is the time
cost of network transmission of the data i. This equation tells that instead of depending on
one single data source, the overall GeoFairy’s performance relies on the communication
quality with multiple data providers. The more information categories, the longer the
loading takes. As shown in Figure 7, the uploading cost generally ranges from 0.09 to
0.51 s (without image attachment), and the retrieval cost ranges from 1.52 to 4.77 s. As
the requests are sent asynchronously, and the information is displayed upon receipt, the
actual waiting time for users is less. The results are very impressive as it is the overall
cost of fetching data from ten different servers distributed in the United States. Regionally,
the Midwest, Northeastern, and western coasts of the United States are a little slower on
uploading, and on the contrary, are faster on downloading data. Europe, northern Africa,
South Arica, Midwest Asia, India, Indonesia, Japan, and Australia are experiencing slower
retrieval experiences, while being relatively faster on submitting ground truths. Figure 8
shows the decomposition of the overall time cost. In the downloading cost, the land cover
of the United States (Cropland Data Layer) and the air quality take the biggest portion,
while the global land cover (GMU), weather (OpenWeatherMap), and geocoding (Google)
are the fastest services. In the uploading time cost, the ground truth submission (without
images) and the citizen science project management almost take an equal share. This test
demonstrates that GeoFairy can efficiently bring together heterogeneous information and
provide a robust mobile gateway for global users, as both an information dissemination
portal and a citizen science platform, to support crowdsourcing data collection and sharing.
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Additionally, GeoFairy2 can adapt to various types of devices and platforms due to
the employed framework. Most source code is developed based on Node.js and Expo React
Native, which provides a streamlined workflow to automatically generate installation
packages for various mobile operating systems. For different smartphone models, the
flexibility of the React-based user interface can ensure that it can correctly display and
function on various screens, processors, and sensors. The tested phone models so far
include iPhone 6/7/8/X/11/12, Samsung Galaxy S8/59/510/520, Pixel 3a/4a/5 (XL)/C,

iPad (7th), and iPad Mini (5th).

5. Discussion

The proposed architecture and GeoFairy2 could play an important role in the current
and future society. One of the target application domains is precision agriculture. For
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example, farmers need to make decisions on the amount of water to be irrigated. The
decision depends on various parameters—crop types, season, weather, phenological stages
of crops, soil moisture, and soil type. Soil loses water mainly through evapotranspiration
(ET) and replenish water through precipitation and irrigation. Crop water needs are
analyzed so that an adequate amount of water is added to the soil through irrigation, to
ensure that the soil moisture content is adequate to support the healthy growth of crops.
GeoFairy2 provides farmers with ET information derived from modeling and EO so that
they can schedule a better irrigation calendar rather than solely depending on manual
observations. A recent survey within farmers found that the potential of citizen science
projects is very promising, since the ownership and use rate of smartphones and farming-
specific management apps, and the percentage of farmers interested in and willing to
participate in agricultural citizen science projects are all very high.

Currently, it is used in the NSF WaterSmart project to help farmers in Nebraska
estimate the crop status and necessity of irrigation, and help people from Nepal ICIMOD
to collect rice samples in their fieldwork. Meanwhile, many datasets in GeoFairy2 are not
domain-specific and have a broad application scope. Soil properties [71] and lithospheric
data [72] are upcoming and will soon be available to help geologists and soil surveyors.
The current version can help them with its ground truth collection capabilities. They can
use GeoFairy to take field photos, label, and upload them to the GeoFairy ground truth
sever. If the Internet is not available on the site, they can save them on the phone and
submit them afterward. GeoFairy?2 facilitates the labeling of the location and time of the
samples of rocks, faults, thrusts, ridges, etc. All submitted samples are accessible and
downloadable via the GeoFairy2 ground truth web application.

The framework of GeoFairy?2 is designed to be flexible and prepared to plugin either
structured, semi-structured, or unstructured data at any time. VGI data like geo-tagged
tweets or even COVID risk reports [73] can be easily plugged into GeoFairy via the Data
Retrieval and Data Extraction and Fusion module, which is not hardcoded to specific data
structures. In fact, besides delivering the standard well-structured data, GeoFairy already
integrated Twitter RESTful API to show the related tweets from official accounts, based on
the users’ current location. The framework is well poised for integrating less structured
data. In the future, more informative VGI would be integrated to benefits more users.

6. Conclusions

This study proposed a mobile framework and developed a mobile app, GeoFairy?2.
The app is capable of disseminating location-linked information from distributed data
centers in a real-time and one-stop manner, and effectively address the heterogeneity
challenges in both datasets and mobile devices. The app can help field workers, such as
farmers, crop/soil surveyors, geologists, construction workers, travelers, to get a compre-
hensive location-specific report, by cracking down the digital walls among institutions
and retrieving information from various providers. The system was tested in random
places worldwide and works as expected, to deliver historical, present, and forecasted
information about weather, soil, crops, and air quality. Meanwhile, the system can turn
smartphones into sensors for citizen scientists to take photos, fill in questionnaires, and
submit their observations as ground truth, to validate and refine the service. GeoFairy?2
provides a general platform for nonprofessionals who might not possess any or possess
only limited background knowledge of the studied subjects, but is willing to contribute
by collecting data. In the foreseeable future, mobile apps would become dominant data
gateways and apps like GeoFairy2 would see high needs. This work paves a new way
to drive us into a new mobile web with more links and fewer digital walls across data
providers and institutions.
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