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ABSTRACT 
In the Nuclear Power Plant (NPP) control room, the 

operators’ performance in emergencies is impacted by the need 
to monitor many indicators on the control room boards, the 
limited time to interact with dynamic events, and the 
incompleteness of the operator’s knowledge. Recent research has 
been directed toward increasing the level of automation in the 
NPP system by employing modern AI techniques that support the 
operator’s decisions. In previous work, the authors have 
employed a novel AI-guided declarative approach (namely, 
Answer Set Programming (ASP)) to represent and reason with 
human qualitative knowledge. This represented knowledge is 
structured to form a reasoning-based operator support system 
that assists the operator and compensates for any knowledge 
incompleteness by performing reasoning to diagnose failures 
and recommend executing actions in real time. A general ASP 
code structure has been proposed and tested against simple 
scenarios, e.g., diagnosis of pump failures that result in loss of 
flow transients and generating the needed plans for resolving the 
issue of stuck valves in the secondary loop. 

In this work, we investigate the potential of the previously 
proposed ASP structure by applying ASP to a realistic case study 
of the Three Mile Island, Unit 2 (TMI-2) accident event sequence 
(in particular, the first 142 minutes). The TMI scenario presents 
many challenges for a reasoning system, including a large 
number of variables, the complexity of the scenario, and the 
misleading readings. The capability of the ASP-based reasoning 
system is tested for diagnosis and recommending actions 
throughout the scenario. This paper is the first work to test and 
demonstrate the capability of an automated reasoning system by 
applying it to a realistic nuclear accident scenario, such as the 
TMI-2 accident. 

Keywords: Operator Support System; Automated 
Reasoning; Diagnosis; Three Mile Island Accident; Decision 
Making; Logic Programming. 
 

1. INTRODUCTION 
 
1.1 Background 

 In the Nuclear Power Plant (NPP) control room, various 
challenges may impact the operators’ performance in 
emergencies. Among these challenges [1] is the need to monitor 
many indicators on the control room boards, the limited time to 
interact with dynamic events, and the incompleteness in the 
operator’s knowledge.  

Recent research has been directed toward increasing the 
level of automation in the NPP control room by employing 
modern AI methods that support the operator’s decisions. Some 
AI methods rely on statistical learning and the availability of big 
data from the NPP history or the simulations of the NPP 
transients. Statistical methods have been previously utilized for 
different purposes, such as faults’ detection (see [2], [3]), faults’ 
diagnosis (see [4], [5]), and ranking the available control actions 
(see [6]). These statistical methods are limited by data 
availability and data bias. Besides, many data-driven models are 
not interpretable and the logic behind these models’ predictions 
cannot be explained. Hence, the operators may not trust these 
black-box methods. Therefore, these statistical methods need to 
be supported by other methods that represent and reason with 
human qualitative knowledge. 

Another type of AI methods is reasoning-based qualitative 
methods. These methods are useful to represent our fundamental 
understanding of the NPP system, the flow and heat paths, the 
operating and emergency procedures. Researchers have 
investigated fault diagnosis reasoning-based systems using a 
logic programming language (see [7][8]) or the java-based rule 
engines (see [9]–[11]). Event trees are also a standard method to 
represent our qualitative knowledge of the NPP system. Besides, 
they can be considered as a search space for corrective actions. 
Therefore, event trees have been employed to generate possible 
corrective control actions [6]. None of those above reasoning-
based systems ([7]–[11]) was tested against a realistic dynamic 
scenario, such as the TMI-2 accident. 
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1.2 This Work 
Along with these efforts for NPP autonomous management, 

the authors have previously proposed an AI-guided reasoning-
based operator support system. In our previous work ([12], [13]), 
we have developed a novel reasoning system that is based on an 
AI approach (namely, Answer Set Programming (ASP) [14]). 
Compared to other knowledge representation and reasoning 
methods, ASP has some attractive features: 
• ASP is fully declarative. Declarativity is a programming 

paradigm that expresses the logic of a computation without 
describing its control flow [15]. Although ASP’s syntax is 
similar to that of Prolog, the order of rules is insignificant, 
unlike Prolog [16]. 

• ASP-based reasoning system proved to have better 
performance and scalability compared to the Java-based 
rules engines [17]. 

• ASP-based knowledge representation and reasoning system 
has some advantages over knowledge representation using 
event trees 
• Each single event tree is constructed to represent the 

possible scenarios that can occur as a result of an 
initiating event. ASP code is a set of basic facts and logic 
rules from which all the scenarios can be inferred. 

• ASP code deals with the dynamic environment. The NPP 
system indicators and the ASP code outputs are changing 
over time (ASP-based reasoning system answers are 
updated each timestep) 

• Because all the rules are implemented in a logic program, 
conditions guarantee the consistency of all these rules 
exists, i.e., the correctness of systems developed in ASP 
can be proven formally. 

In our previous work ([12], [13]), we have employed ASP to 
represent our knowledge of the nuclear power plant in the form 
of logic rules. This represented knowledge is structured to form 
a reasoning-based operator support system. When an incident 
occurs, this ASP-based reasoning support system is 
demonstrated to be capable of fault identification (diagnosis), 
informing the operator of different scenarios and consequences, 
and generating the control options (decision making). These 
efforts ([12], [13]) are part of an ongoing research project 
designed to develop a Nearly Autonomous Management and 
Control System for Advanced Reactors (NAMAC [18]).  
In this work, we investigate the potential of the previously 
proposed reasoning system by applying the ASP to a more 
complex and realistic scenario: The Three Mile Island (TMI-2) 
accident event sequence (in particular, the first 142 minutes).   
Compared to the simplified scenarios we considered before 
([12], [13]), the TMI-2 scenario presents two significant 
challenges for a reasoning system: 
1. More time-dependent variables 
Reasoning about more time-dependent variables implies 
implementing more rules, increasing the search space, and 
increases the ASP computational time needed to compute the 
needed (diagnoses/recommendations) each time step. 
 

2. Misleading readings 
One of the complications of the TMI-2 scenario is the fact that 
the pressurizer Pilot-Operated Relief Valve (PORV) was stuck 
open. However, the operators believed that it was closed because 
of the PORV corresponding light (see Sec. 2 for details).  

The capability of the ASP-based reasoning system is tested 
for diagnosis and recommending actions throughout the 
scenario. To our knowledge, this is the first reasoning system to 
address the TMI-2 scenario. An overview of the TMI-2 scenario 
is presented in Sec. 2. The ASP method is briefed in Sec. 3. The 
ASP-based reasoning method is proposed and applied to the 
TMI-2 scenario in Sec. 4. The conclusions of this work are 
discussed in Sec 5. 
 
2. SYNOPSIS OF TMI-2 ACCIDENT 

TMI-2 NPP contained a Pressurized Water Reactor (PWR) 
with a reactor vessel, four reactor coolant pumps, and a 
pressurizer. The Reactor Coolant System (RCS) consists of 2 
flow loops (loops A and B), each with a once-through steam 
generator. TMI-2 was the newest unit on site, and this unit was 
operated at 97% of the full power [19]. Two off-normal 
conditions existed before the initiating event: 1- A small leakage 
occurred in the pressurizer Pilot-Operated Relief Valve (PORV). 
This leakage raised the temperature downstream of the PORV. 2- 
Two emergency feedwater valves, in the secondary loop, were 
closed (by mistake). 

The accident was initiated on March 28th, 1979, by the trips 
of the condensate and feedwater pumps while the staff was 
attempting to fix a blockage in one of the condensate polishers 
(resin filters that clean the secondary loop water). The turbine 
trip followed the trips of the pumps. Auxiliary emergency 
feedwater pumps started to provide the steam generators with the 
feedwater, but the emergency feedwater valves were 
inadvertently left closed. Because of the lack of water to the 
steam generators, the primary loop water was heating up, 
expanding, and flowing to the pressurizer. Pressure in the 
primary system increased, so the pressurizer PORV was 
automatically opened. 

The reactor tripped because of the high reactor pressure as 
the RCS was heating up. Pressurizer PORV was opened to 
release the pressure, but it failed to close (was stuck open) when 
the pressure decreased. Operators believed that the pressurizer 
PORV was closed because of the control room light, while this 
light was only an indication that an electric signal was sent to 
close the PORV. Checking the downstream temperature at the 
PORV was the only way to find whether the PORV is closed, but 
the temperature was already high (before the accident) because 
of the small PORV leakage. Reactor pressure continued to 
decrease, the coolant temperature continued to increase, and the 
High-Pressure Injection System (HPIS) pumps were 
automatically turned on to re-pressurize the RCS.  

Water expansion and pressure decrease in the primary loop 
led to the generation of steam in the reactor core and the rise of 
water in the pressurizer. The operators decided to turn off the 
HPIS (to avoid filling the system with water) while the water 
level in the reactor was decreasing. Turning off the HPIS led to 
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the absence of cooling, overheating, and fuel damage. 
Pressurizer water level continued to increase because of the 
growth of the steam region in the core. The combination of a 
rising pressurizer water level, a decreasing primary loop 
pressure, and rising primary loop temperature was not 
understandable to the operators. Meanwhile, water escaping 
through the PORV filled a drain tank, and the primary loop 
pumps were shut because of the water-steam mixture in the 
primary loop. It took more than 2 hours before the operators 
realized that the PORV is stuck open, and they closed the PORV 
block valve. Primary loop temperatures continued to increase, so 
the operators decided to turn on the HPIS until the reactor core 
was finally filled with water [19]. 

While the TMI-2 occurred as a result of various failures 
(mechanical failures, human error, and lack of training), the 
focus of this work is the reasoning process. In such a complex 
dynamic scenario, it is challenging for the operators to perform 
reasoning for diagnosis and making timely decisions considering 
the changes of many variables. For instance, during the accident, 
many alarms were turned on, and the operator did not notice the 
containment sump high water level alarm (which indicated the 
leakage in the primary loop). Also, the operators were concerned 
about a rising primary water level, and they did not notice that 
the primary loop water reached saturation pressure [20].  

In this work, the potential of an automated reasoning system 
is investigated by applying an ASP to the TMI-2 accident event 
sequence (in particular, the first 142 minutes). The sequence of 
events that are considered when constructing the ASP-based 
reasoning system is presented in TABLE 1. 

 
 

Table 1. TMI-2 sequence of events. 

Time 
(seconds) 

Event 

1 Condensate pump trips. 
2 The main feedwater pumps trip. 
2 The turbine trips. 
2 Emergency auxiliary feedwater pumps start. 
7 Primary pressure reached PORV setpoint, and the 

PORV opens. 
11 Reactor trips. 
11 Primary pressure reduced below PORV setpoint, 

but the PORV remains open. 
122 HPIS starts automatically. 
279 Operators throttle HPIS. 
499 The block valve on the emergency feedwater 

pump line is opened (loop A). 
500 The block valve on the emergency feedwater 

pump line is opened (loop B). 
4402 The primary loop pumps are tripped offline (loop 

A). 
6036 The primary loop pumps are tripped offline (loop 

B). 
8521 The block valve on the pressurizer drain line is 

closed. 

3. ANSWER SET PROGRAMMING 
Answer set programming (ASP) [14] is a high-level and 

expressive language that is well-suited for knowledge 
representation, reasoning, and solving combinatorial search as 
well as optimization problems. ASP can be used to declaratively 
represent the knowledge about dynamic systems and solve 
combinatorial search problems such as diagnosis and planning. 
ASP allows domain knowledge representation, including 
commonsense knowledge, incomplete knowledge, defaults, 
preferences, and negation. There is a growing number of ASP 
applications in various areas [21]. In the area of diagnosis, an 
ASP system was used to analyze the failures of Google’s ads 
[22]. In the area of planning, an ASP system was employed to 
generate plans for the space shuttle’s maneuvers [23]. ASP is also 
employed to detect inconsistent information [24] in addition to 
applications in the robotics domain [25]. ASP became attractive 
for researchers and industry because of the availability of ASP 
solvers. In this work, we use Clingo [26], a free ASP solver.  

In ASP, a program is a set of logic programming rules, facts, 
and constraints about some problem domain. ASP is oriented 
toward solving combinatorial search problems where the goal is 
to find a solution(s) among a finite large number of possibilities. 
Figure 1 shows briefly the general steps in solving a problem 
using ASP. As illustrated in Figure 1, modeling the problem leads 
to creating a formal abstract general problem representation. The 
Solving process is done by the computer, using ASP solver. We 
have presented the ASP problem-solving steps in more detail in 
previous work [13]. It is worth noting that several additional 
features have been added to ASP (e.g., aggregates, choices, etc.) 
to enable and simplify the use of ASP. Furthermore, ASP solver 
with multi-shot capability has been developed, which allows the 
programmers to change the computation, thus providing a 
method for implementing a closed-loop system as described in 
this paper.   

We formalized a general structure of an ASP code (that can 
be utilized to find the diagnoses or the needed actions) in an NPP 
system (see next section). 
 
 

 

Figure 1. The programming paradigm in problem-solving using 
ASP code [18]. 

 
 
4. OPERATOR SUPPORT SYSTEM 

The structure of the ASP-based reasoning system is depicted 
in Figure 2. 

 
4.1 Inputs 
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As shown in Figure 2, the reasoning system has two types 
of inputs:  
A. The observed variables (the indicators): among many 
measured variables, the list of observed variables (16 variables) 

that are relevant to this scenario are listed in Table 2. Real 
measurements [27] of seven of these variables (for the first 142 
minutes) are depicted in Figure 3. The remaining variables have 
binary values (for instance, a pump is on or off ). 

 

 

Figure 2. ASP-based reasoning system for diagnoses and recommendations.
 
 
Table 2. A list of TMI-2 scenario relevant variables. 

1. The reactor coolant system pressure (in PSI). 
2.  The pump flow rate of the condensate pump in the 

secondary loop (loop A). 
3. The pump flow rate of the condensate pump in the 

secondary loop (loop B). 
4. The pump flow rate of the main feedwater pump in the 

secondary loop (loop A). 
5. The pump flow rate of the main feedwater pump in the 

secondary loop (loop B). 
6. The pump flow rate of the auxiliary feedwater pump in 

the secondary loop (loop A). 
7. The pump flow rate of the auxiliary feedwater pump in 

the secondary loop (loop B). 
8. The pump flow rate of the high-pressure injection pump 
9. The reactor power. 
10. The steam generator water level (loop A) in centimeters. 
11. The steam generator water level (loop B) in centimeters. 
12. The two primary pumps’ flow rates (loop A). 
13. The two primary pumps’ flow rates (loop B). 
14. RCS inlet temperature (loop A). 
15. RCS inlet temperature (loop B). 
16. Turbine power. 

 
 

B. The attempted actions: actions that are known (to the 
operator) to be executed (or attempted) by the operator or by any 
automatic safety system. These actions may or may not have 
been executed successfully. All these actions are corresponding 
to some of the events in Table 1. The list of these actions is 
implemented in the ASP code in the form of: attempted 
(procedure, component, time in seconds). These actions are: 
attempted(open,pressurizer_pilot_operated_relief_valve,7). 
attempted(close,pressurizer_pilot_operated_relief_valve,11). 
attempted(turn_off,high_pressure_injection_pump,279). 
attempted(open,auxiliary_feedwater_pump_a_block_valve,499) 
attempted(open,auxiliary_feedwater_pump_b_block_valve,500) 
attempted(turn_off,primary_pump_a,4402). 
attempted(turn_off,primary_pump_b,6036). 
attempted(close,pressurizer_block_valve,8521). 

The inputs (variables and actions) are passed to the ASP 
code each time step (for 8521 timesteps corresponding to 8521 
seconds), similar to the process of data streaming in the NPP 
system. This real-time streaming is enabled by a Python script 
that extracts the inputs and passes them to the ASP code every 
time step (the controller in Figure 2). 
 

4.2 ASP Knowledge Base 
The knowledge base represented by ASP includes the 

following elements: 
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A. System description:  
The list of components and the connections between these 
components. 

B. Variables’ ranges: 
The possible range of each variable is known and 
discretized.  

 
 

 

Figure 3. TMI-2 data [27]. 
 

C. All the possible actions:  
We hypothesize that all the executable actions are known, and 
the reasoning system searches for the needed action each time 
step. 
D. The actions’ executability  conditions:  
For each action, we defined the executability condition so the 
action cannot be executed (or recommended) if the execution 
criteria are not satisfied. The execution criteria for the actions 
relevant to the TMI-2 scenario can be listed as follows: 
1. Tripping the reactor 

• The reactor is tripped if the pressure is higher than a 
predefined value, and the reactor is not already tripped. 

2. Turning on pumps 
• Auxiliary pumps are started if another pump in the same 

loop was tripped, and the auxiliary pumps are not 
already running. 

• The HPIS pump is turned on if the pressure is lower 
than a predefined value, and the HPIS pump is not 
already running. 

3. Opening valves 
• The auxiliary pump block valve is opened if the 

auxiliary pump is turned on, and its block valve is not.  
• The auxiliary pump block valve is opened if the 

auxiliary pump is turned on, and a lack of water supply 
is detected (inferred) in the flow loop to which this 
pump belongs. 

• The pressurizer PORV is opened if the pressure is 
higher than a predefined value. 

• The pressurizer PORV is closed if the pressure is lower 
than a predefined value 

• The pressurizer backup block valve is closed if the 
pressurizer valve is detected to be stuck open. 

E. The inferred non-observed variables: 
These are the variables that cannot be measured but are inferred 
based on the observed variables. The relevant non-observed 
variables are: 
1. Lack of water supply 

• Lack of water supply is inferred if one of the pumps in 
the secondary loop is tripped, and the corresponding 
steam generator water level is below a minimum value, 
or the water level is continuously decreasing. 

2. Stuck valve 
• The PORV is considered stuck open if the valve was 

opened, and the pressure continued to decrease below a 
predefined minimum value at which the valve should 
have closed. 

• The PORV is considered stuck open if the drain tank 
temperature is higher than a predefined temperature, 
and the pressure in the primary loop is lower than a 
specific value. 

3. The status of the coolant: 
• Depending on the coolant inlet temperature and 

pressure, the status of the coolant can be inferred 
(whether the coolant is still pressurized water or 
saturated or superheated steam). 
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F. The Inferred actions:  
These are the actions that are implied even if not 
attempted/executed by the operator. The action effect is detected 
by watching the observed variables. For example, the reasoning 
system infers that a pump is tripped if its flow rate changes from 
any value above zero to zero. 
G. Steam table: 
A simple steam table is implemented (the water saturation 
temperature and its corresponding saturation pressure). The 
existence of steam in the coolant can be inferred using the steam 
table. 

 
4.3 ASP-Based Reasoning System Output 
As shown in Figure 2, the ASP-based reasoning system 

gives three time-dependent sets of answers (outputs). The first 
output (Ans1) is the inferred actions (the actions that were 
inferred) even if not executed by the operator. These actions may 
be similar or different from the inputted attempted actions. The 
occurrence of these actions is verified by detecting the action 
effect and watching the observed variables. Listing 1 shows the 
inferred actions (if any) at each time step. Each action has the 
form: happened(procedure, component, time in seconds). 
 
 

% TIME =  0 Second 
% TIME =  1 Second 
happened(trip,condensate_pump_a,1). 
happened(trip,condensate_pump_b,1). 
% TIME =  2 Second 
happened(trip,feedwater_pump_a,2). 
happened(trip,feedwater_pump_b,2). 
happened(trip,turbine1,2). 
happened(start,auxiliary_feedwater_pump_a,2). 
happened(start,auxiliary_feedwater_pump_b,2). 
% TIME =  11 Second 
happened(trip,reactor1,11). 
% TIME =  122 Second 
happened(start,high_pressure_injection_pump,122). 
% TIME =  278 Second 
happened(trip,high_pressure_injection_pump,278). 
% TIME =  4403 Second 
happened(trip,primary_pump_a,4403). 
% TIME =  6037 Second 
happened(trip,primary_pump_b,6037). 

Listing 1. The first output (all the inferred actions). 
 
 

The second output (Ans2) is the inferred non-observed 
variables. These are the significant variables that are inferred 
based on the observed variables. Non-observed variables were 
inferred at each timestep, but we show the answers only at some 
of these timesteps in Listing 2. For instance, the lack of water 
supply was inferred very early (t=2) because of the low steam 
generator water level. Starting from t=16, the PORV was 
inferred to be stuck open (because of the continuous decrease in 

the RCP pressure below the PORV setpoint pressure). The 
existence of steam, in the primary loop, was also inferred. 

 
 

% TIME =  2 Second 
lack_of_water_supply(secondary_loop_A,2). 
lack_of_water_supply(secondary_loop_B,2). 
% TIME =  3 Second 
lack_of_water_supply(secondary_loop_A,3). 
lack_of_water_supply(secondary_loop_B,3). 
% TIME =  4 Second 
lack_of_water_supply(secondary_loop_A,4). 
lack_of_water_supply(secondary_loop_B,4). 
% TIME =  5 Second 
lack_of_water_supply(secondary_loop_A,5). 
lack_of_water_supply(secondary_loop_B,5). 
% TIME =  16 Second 
lack_of_water_supply(secondary_loop_A,16). 
lack_of_water_supply(secondary_loop_B,16). 
stuck_open(pressurizer_pilot_operated_relief_valve, 16). 
% TIME =  1000 Second 
lack_of_water_supply(secondary_loop_A,1000). 
lack_of_water_supply(secondary_loop_B,1000). 
steam(primary_loop_B,1000). 
steam(primary_loop_A,1000). 
stuck_open(pressurizer_pilot_operated_relief_valve, 
1000). 
% TIME =  4000 Second 
stuck_open(pressurizer_pilot_operated_relief_valve, 
4000). 
% TIME =  6000 Second 
lack_of_water_supply(secondary_loop_A,6000). 
steam(primary_loop_B,6000). 
stuck_open(pressurizer_pilot_operated_relief_valve, 
6000). 
% TIME =  7000 Second 
steam(primary_loop_B,7000). 
stuck_open(pressurizer_pilot_operated_relief_valve, 
7000). 
% TIME =  8000 Second 
steam(primary_loop_B,8000). 
stuck_open(pressurizer_pilot_operated_relief_valve, 
8000). 
% TIME =  8521 Second 
stuck_open(pressurizer_pilot_operated_relief_valve, 
8521). 

Listing 2. The second output (some of the non-observed 
variables). 

 
 

The third output (Ans3) is the recommendations. The 
recommendations are the actions that are recommended if their 
execution criteria are satisfied at any timestep. The same 
recommendation can be given repeatedly until its execution 
criteria are no longer satisfied. Listing 3 shows the 
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recommendations that the reasoning system suggests each 
timestep. We have chosen some timesteps to show their 
corresponding recommendations in Listing 3).  
 
 
% TIME =  1 Second 
recommendation(start,auxiliary_feedwater_pump_a,1). 
recommendation(start,auxiliary_feedwater_pump_b,1). 
% TIME =  2 Second 
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,2). 
recommendation(open,auxiliary_feedwater_pump_b_block_v
alve,2). 
% TIME =  30 Second 
recommendation(close,pressurizer_block_valve,30). 
recommendation(close, 
pressurizer_pilot_operated_relief_valve,30). 
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,30). 
recommendation(open,auxiliary_feedwater_pump_b_block_v
alve,30). 
% TIME =  2000 Second 
recommendation(close,pressurizer_block_valve,2000). 
recommendation(close, 
pressurizer_pilot_operated_relief_valve,2000). 
recommendation(start,high_pressure_injection_pump,2000). 
% TIME =  6000 Second 
recommendation(close,pressurizer_block_valve,6000). 
recommendation(close, 
pressurizer_pilot_operated_relief_valve,6000). 
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,6000). 
recommendation(start,high_pressure_injection_pump,6000). 
% TIME =  7000 Second 
recommendation(close,pressurizer_block_valve,7000). 
recommendation(close, 
pressurizer_pilot_operated_relief_valve,7000). 
recommendation(start,high_pressure_injection_pump,7000). 
% TIME =  8521 Second 
recommendation(close,pressurizer_block_valve,8521). 
recommendation(close, 
pressurizer_pilot_operated_relief_valve,8521). 
recommendation(start,high_pressure_injection_pump,8521). 

Listing 3. The third output (some of the recommendations). 
 
 

For example, a recommendation to start the emergency 
feedwater pumps, at t=1, is suggested because of the tripped 
pumps in the secondary loop. Because these emergency 
feedwater pumps started automatically at t=2, this 
recommendation is no longer proposed in the next timesteps. 
Next, the block valve corresponding to each pump is 
recommended to be opened. At t=30, the pressurizer block valve 
is recommended to be closed, and so on.   

4.4 Computational Expense and Data 
Accumulation 

 
ASP problem solving includes searching for solutions that 

satisfy logic rules/constraints. The longer the scenario and the 
more timesteps are accounted for by the ASP-based reasoning 
system, the larger the search space is. If the reasoning system 
“remembers” all the variables’ values and the occurrences at 
each timestep, the computational expense will exacerbate over 
time. Therefore, it is vital to decide which data are 
“remembered” and which data are ignored. To resolve this issue, 
the observed variables and the attempted actions, that occurred 
more than one minute before the current timestep, are ignored. 
On the other side, all the inferred actions and inferred non-
observed variables are “remembered.”  

In this work, the computational expense of ASP-based 
reasoning, about variables and actions within 142 minutes (8521 
seconds) of the accident scenario, is 96 minutes (on a four-
processor machine). One of the significant challenges that face 
the proposed ASP-reasoning system is the large number of 
variables in the NPP system (a higher computational expense). 
Besides, the values of all variables were updated each second, 
which may not be needed.  

Another challenge that faces this knowledge representation 
system is the difficulty of verifying whether the implemented 
qualitative knowledge is complete. Therefore, the reasoning 
system needs to be reviewed and tested. 
 
5. CONCLUSIONS 

 
Recently, AI methods that support the operator decisions in 

the control room have been proposed. Statistical AI methods rely 
on the availability of big data from the NPP history or the 
simulations of the NPP transients. The data-driven methods are 
limited by data availability and data bias. Besides, many data-
driven models are not interpretable, and the operator may not 
trust the logic behind these black-box models’ predictions. 
Hence, these statistical methods need to be supported by other 
reasoning-based methods that represent human qualitative 
knowledge, such as the Answer Set Programming (ASP) based 
reasoning method proposed in this work. Compared to other 
reasoning-based methods that have been proposed in the 
literature to support the operator decisions, the proposed ASP 
reasoning system has better performance, scalability, and 
declarativity. Additionally, the previously proposed reasoning 
systems have not been tested against a realistic dynamic 
scenario. 

In this work, we applied an ASP-based reasoning system to 
the Three Mile Island Unit 2 (TMI-2) accident event sequence 
(in particular, the first 142 minutes). The ASP-based Reasoning 
system accounted for 16 variables that change over 8521 
timesteps to give faster than real-time answers each timestep. 
These answers include inferring non-observed variables (such as 
leakage and stuck valves) and giving recommendations 
(suggested actions) to the operator.   
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Based on this study, the proposed ASP-based reasoning 
system has the potential to assist the operator in making timely 
decisions because:  
1. ASP can perform reasoning about many variables while the 

human capacity to monitor and reason about many variables 
is limited. In the TMI-2 scenario, the operator was 
overwhelmed by many alarms and monitoring many 
dynamic events. For instance, the operator did not notice the 
containment sump high water level alarm (which indicated 
the leakage in the primary loop). In this work, the 
computational expense of ASP-based reasoning, accounting 
for 16 variables and eight actions (attempted by the 
operator) within 142 minutes of the accident scenario, is 96 
minutes only. Although the number of variables, 16, is small 
compared to hundreds of indicators in the NPP, it is worth 
noting that we only used a four-processor machine, and 
there is an opportunity of reasoning about more variables by 
exploiting the high-performance machines. Additionally, we 
assumed that NPP variables are updated each one second, so 
new answers (diagnoses and recommendations) are required 
each second. Depending on the variables’ time scale, 
answers can be generated at a slower rate to decrease the 
ASP computational time. 

2. The proposed ASP code structure could distinguish between 
the executed actions and the attempted actions by watching 
the action effect. This feature is significant for the TMI-2 
scenario because of the confusion about the PORV (an 
action to close the PORV was attempted, but the valve was 
not closed, and the primary loop pressure kept decreasing). 

3. Because of the long duration of the TMI-2 scenario (and 
NPP transients), more timesteps are accounted for by the 
ASP-based reasoning system, and the computational cost 
exacerbates, To resolve this issue, the observed variables 
and the attempted actions, that occurred more than one 
minute before the current timestep, are ignored. On the other 
side, all the inferred actions and the inferred non-observed 
variables are “remembered.”  Hence, the ASP reasoning 
system could provide timely answers. 
This work is the first automated reasoning system to be 

applied to a complex, realistic case study such as the TMI-2 
scenario. We demonstrated the potential of applying an ASP-
based reasoning operator support system to a real-life scenario. 

In future work, we will demonstrate that rational 
explanations for each ASP answer can be computed. Generating 
explanations for any diagnosis or recommendation, suggested by 
the reasoning system,  allows the operator to check the rationality 
of each explanation and decide whether to trust the ASP 
reasoning system answers. 
 
ABBREVIATIONS 
 

AI Artificial Intelligence 
Ans Answer 
ASP Answer Set Programming 
HPIS High-Pressure Injection System 

NAMAC Nearly Autonomous Management and Control 
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PORV Pilot-Operated Relief Valve 
PWR Pressurized Water Reactor 
RCS Reactor Coolant System 
TMI Three Mile Island 

  
ACKNOWLEDGMENTS 
 

This research is supported by the US Department of 
Energy’s Advanced Research Project Agency-Energy (ARPA-E) 
MEITNER Program through award DE-AR0000976. The 
authors would like to thank Dr. Robert Youngblood (Idaho 
National Laboratory) for his stimulating and insightful 
comments. 
 
REFERENCES 
 
[1] R. L. Boring, K. D. Thomas, T. A. Ulrich, and R. T. Lew, 

“Computerized Operator Support Systems to Aid Decision 
Making in Nuclear Power Plants,” Procedia Manuf., vol. 3, 
pp. 5261–5268, 2015. 

[2] B. R. Upadhyaya, K. Zhao, S. R. P. Perillo, X. Xu, and M. 
G. Na, “Autonomous Control of Space Reactor Systems,” 
Knoxville, TN, 2007. 

[3] M. Peng et al., “An intelligent hybrid methodology of on-
line system-level fault diagnosis for nuclear power plant,” 
Nucl. Eng. Technol., vol. 50, no. 3, pp. 396–410, Apr. 2018. 

[4] K. Groth, M. Denman, J. Cardoni, and T. Wheeler, “‘Smart 
Procedures’ : Using dynamic PRA to develop dynamic, 
context-specific severe accident management guidelines 
(SAMGs),” in PSAM International Conference on 
Probabilistic Safety Assessment and Management, 2014. 

[5] D. Lee, P. H. Seong, and J. Kim, “Autonomous operation 
algorithm for safety systems of nuclear power plants by 
using long-short term memory and function-based 
hierarchical framework,” Ann. Nucl. Energy, vol. 119, pp. 
287–299, Sep. 2018. 

[6] S. M. Cetiner et al., “Supervisory Control System for 
Multi-Modular Advanced Reactors,” Oak Ridge, TN, 2016. 

[7] S. H. Chang, K. S. Kang, S. S. Choi, H. G. Kim, H. K. 
Jeong, and C. U. Yi, “Development of the On-Line 
Operator Aid System OASYS Using A Rule-Based Expert 
System and Fuzzy Logic for Nuclear Power Plants,” Nucl. 
Technol., vol. 112, no. 2, pp. 266–294, Nov. 1995. 

[8] H. Qudrat-Ullah, “QES-shell: An expert system for nuclear 
power plant operator’s training,” in Proceedings - 3rd 
International Conference on Intelligent Systems Modelling 
and Simulation, ISMS 2012, 2012, pp. 151–156. 

[9] M. Lind and X. Zhang, “Functional modeling for fault 
diagnosis and its application for NPP,” Nucl. Eng. Technol., 
vol. 46, no. 6, pp. 753–772, Dec. 2014. 

[10] J. Reifman and T. Y. C. Wei, “PRODIAG: A Process-
Independent Transient Diagnostic System - I: Theoretical 
Concepts,” Nucl. Sci. Eng., vol. 131, no. 2–3, pp. 329–347, 



 9 © 2019 by ASME 

1999. 
[11] Y. S. Park and R. Vilim, “Implementation of new 

PRODIAG algorithm and simulation-based acceptance 
test,” in 10th International Topical Meeting on Nuclear 
Plant Instrumentation, Control, and Human-Machine 
Interface Technologies, NPIC and HMIT 2017, 2017, vol. 
2, pp. 884–893. 

[12] B. Hanna, T. C. Son, and N. Dinh, “An Artificial 
Intelligence-Guided Decision Support System for The 
Nuclear Power Plant Management,” in 18th International 
Topical Meeting on Nuclear Reactor Thermal Hydraulics 
(NURETH 2019), 2019, pp. 394–406. 

[13] B. Hanna, T. C. Son, and N. Dinh, “AI-GUIDED 
REASONING-BASED OPERATOR SUPPORT SYSTEM 
FOR THE NUCLEAR POWER PLANT 
MANAGEMENT,” Under Prep., 2020. 

[14] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, 
“Answer set solving in practice,” Synth. Lect. Artif. Intell. 
Mach. Learn., vol. 19, pp. 1–240, 2012. 

[15] J. Lloyd, “Practical advantages of declarative 
programming,” Jt. Conf. Declar. Program. GULP-PRODE, 
pp. 1–15, 1994. 

[16] W. F. Clocksin and C. S. Mellish, Programming in Prolog : 
Using the ISO Standard. Berlin Heidelberg: Springer 
Science & Business Media., 2003. 

[17] S. Liang, P. Fodor, H. Wan, and M. Kifer, 
“OpenRuleBench: An analysis of the performance of rule 
engines,” in WWW’09 - Proceedings of the 18th 
International World Wide Web Conference, 2009, pp. 601–
610. 

[18] “Development of a Nearly Autonomous Management and 
Control System for Advanced Reactors,” ARPA-E, 2018. 
[Online]. Available: https://arpa-e.energy.gov/?q=slick-
sheet-project/management-and-control-system-advanced-
reactors. 

[19] Nuclear Safety Analysis Center, “Analysis of Three Mile 
Island - Unit 2 Accident,” Palo Alto, California, 1980. 

[20] M. Derivan, “The Davis Besse Nuclear Power Plant Three 
Mile Island Accident Precursor Event.” 2014. 

[21] A. Falkner, · Gerhard Friedrich, K. Schekotihin, · Richard 
Taupe, and E. C. Teppan, “Industrial Applications of 
Answer Set Programming,” KI - Künstliche Intelligenz, 
vol. 32, pp. 165–176, 2018. 

[22] A. Brik and J. Remmel, “Diagnosing automatic 
whitelisting for dynamic remarketing ads using hybrid 
ASP,” in International Conference on Logic Programming 
and Nonmonotonic Reasoning, 2015, vol. 9345, pp. 173–
185. 

[23] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and 
M. Barry, “An a-prolog decision support system for the 
space shuttle,” in International symposium on practical 
aspects of declarative languages, 2001, vol. 1990, pp. 169–
183. 

[24] M. Albanese, M. Broecheler, J. Grant, M. V. Martinez, and 
V. S. Subrahmanian, “PLINI: A probabilistic logic program 
framework for inconsistent news information,” in Logic 

programming, knowledge representation, and 
nonmonotonic reasoning, vol. 6565 LNAI, Berlin 
Heidelberg: Springer, 2011, pp. 347–376. 

[25] E. Erdem, E. Aker, and V. Patoglu, “Answer set 
programming for collaborative housekeeping robotics: 
Representation, reasoning, and execution,” Intell. Serv. 
Robot., vol. 5, no. 4, pp. 275–291, 2012. 

[26] M. Gebser et al., A User’s Guide to gringo, clasp, clingo, 
and iclingo. 2008. 

[27] J. L. Rempe and D. L. Knudson, “Instrumentation 
Performance during the TMI-2 Accident,” IEEE Trans. 
Nucl. Sci., vol. 61, no. 4, p. 1963, 2014. 

 
 
 


