
 1 © 2019 by ASME

Proceedings of the 2020 28th Conference on Nuclear Engineering

Joint With the ASME 2020 Power Conference
ICONE28-POWER2020

August 2-6, 2020, Anaheim, California, USA

ICONE28-POWER2020-XXXXX

BENCHMARKING AN AI-GUIDED REASONING-BASED OPERATOR SUPPORT SYSTEM
ON THE THREE MILE ISLAND ACCIDENT SCENARIO

Botros N. Hanna, Tran C. Son,
Computer Science Department, NMSU

Las Cruces, NM, USA

Nam T. Dinh
Nuclear Engineering Department, NCSU

Raleigh, NC, USA

ABSTRACT
In the Nuclear Power Plant (NPP) control room, the

operators’ performance in emergencies is impacted by the need
to monitor many indicators on the control room boards, the
limited time to interact with dynamic events, and the
incompleteness of the operator’s knowledge. Recent research has
been directed toward increasing the level of automation in the
NPP system by employing modern AI techniques that support the
operator’s decisions. In previous work, the authors have
employed a novel AI-guided declarative approach (namely,
Answer Set Programming (ASP)) to represent and reason with
human qualitative knowledge. This represented knowledge is
structured to form a reasoning-based operator support system
that assists the operator and compensates for any knowledge
incompleteness by performing reasoning to diagnose failures
and recommend executing actions in real time. A general ASP
code structure has been proposed and tested against simple
scenarios, e.g., diagnosis of pump failures that result in loss of
flow transients and generating the needed plans for resolving the
issue of stuck valves in the secondary loop.

In this work, we investigate the potential of the previously
proposed ASP structure by applying ASP to a realistic case study
of the Three Mile Island, Unit 2 (TMI-2) accident event sequence
(in particular, the first 142 minutes). The TMI scenario presents
many challenges for a reasoning system, including a large
number of variables, the complexity of the scenario, and the
misleading readings. The capability of the ASP-based reasoning
system is tested for diagnosis and recommending actions
throughout the scenario. This paper is the first work to test and
demonstrate the capability of an automated reasoning system by
applying it to a realistic nuclear accident scenario, such as the
TMI-2 accident.

Keywords: Operator Support System; Automated
Reasoning; Diagnosis; Three Mile Island Accident; Decision
Making; Logic Programming.

1. INTRODUCTION

1.1 Background

 In the Nuclear Power Plant (NPP) control room, various
challenges may impact the operators’ performance in
emergencies. Among these challenges [1] is the need to monitor
many indicators on the control room boards, the limited time to
interact with dynamic events, and the incompleteness in the
operator’s knowledge.

Recent research has been directed toward increasing the
level of automation in the NPP control room by employing
modern AI methods that support the operator’s decisions. Some
AI methods rely on statistical learning and the availability of big
data from the NPP history or the simulations of the NPP
transients. Statistical methods have been previously utilized for
different purposes, such as faults’ detection (see [2], [3]), faults’
diagnosis (see [4], [5]), and ranking the available control actions
(see [6]). These statistical methods are limited by data
availability and data bias. Besides, many data-driven models are
not interpretable and the logic behind these models’ predictions
cannot be explained. Hence, the operators may not trust these
black-box methods. Therefore, these statistical methods need to
be supported by other methods that represent and reason with
human qualitative knowledge.

Another type of AI methods is reasoning-based qualitative
methods. These methods are useful to represent our fundamental
understanding of the NPP system, the flow and heat paths, the
operating and emergency procedures. Researchers have
investigated fault diagnosis reasoning-based systems using a
logic programming language (see [7][8]) or the java-based rule
engines (see [9]–[11]). Event trees are also a standard method to
represent our qualitative knowledge of the NPP system. Besides,
they can be considered as a search space for corrective actions.
Therefore, event trees have been employed to generate possible
corrective control actions [6]. None of those above reasoning-
based systems ([7]–[11]) was tested against a realistic dynamic
scenario, such as the TMI-2 accident.

 2 © 2019 by ASME

1.2 This Work
Along with these efforts for NPP autonomous management,

the authors have previously proposed an AI-guided reasoning-
based operator support system. In our previous work ([12], [13]),
we have developed a novel reasoning system that is based on an
AI approach (namely, Answer Set Programming (ASP) [14]).
Compared to other knowledge representation and reasoning
methods, ASP has some attractive features:
• ASP is fully declarative. Declarativity is a programming

paradigm that expresses the logic of a computation without
describing its control flow [15]. Although ASP’s syntax is
similar to that of Prolog, the order of rules is insignificant,
unlike Prolog [16].

• ASP-based reasoning system proved to have better
performance and scalability compared to the Java-based
rules engines [17].

• ASP-based knowledge representation and reasoning system
has some advantages over knowledge representation using
event trees
• Each single event tree is constructed to represent the

possible scenarios that can occur as a result of an
initiating event. ASP code is a set of basic facts and logic
rules from which all the scenarios can be inferred.

• ASP code deals with the dynamic environment. The NPP
system indicators and the ASP code outputs are changing
over time (ASP-based reasoning system answers are
updated each timestep)

• Because all the rules are implemented in a logic program,
conditions guarantee the consistency of all these rules
exists, i.e., the correctness of systems developed in ASP
can be proven formally.

In our previous work ([12], [13]), we have employed ASP to
represent our knowledge of the nuclear power plant in the form
of logic rules. This represented knowledge is structured to form
a reasoning-based operator support system. When an incident
occurs, this ASP-based reasoning support system is
demonstrated to be capable of fault identification (diagnosis),
informing the operator of different scenarios and consequences,
and generating the control options (decision making). These
efforts ([12], [13]) are part of an ongoing research project
designed to develop a Nearly Autonomous Management and
Control System for Advanced Reactors (NAMAC [18]).
In this work, we investigate the potential of the previously
proposed reasoning system by applying the ASP to a more
complex and realistic scenario: The Three Mile Island (TMI-2)
accident event sequence (in particular, the first 142 minutes).
Compared to the simplified scenarios we considered before
([12], [13]), the TMI-2 scenario presents two significant
challenges for a reasoning system:
1. More time-dependent variables
Reasoning about more time-dependent variables implies
implementing more rules, increasing the search space, and
increases the ASP computational time needed to compute the
needed (diagnoses/recommendations) each time step.

2. Misleading readings
One of the complications of the TMI-2 scenario is the fact that
the pressurizer Pilot-Operated Relief Valve (PORV) was stuck
open. However, the operators believed that it was closed because
of the PORV corresponding light (see Sec. 2 for details).

The capability of the ASP-based reasoning system is tested
for diagnosis and recommending actions throughout the
scenario. To our knowledge, this is the first reasoning system to
address the TMI-2 scenario. An overview of the TMI-2 scenario
is presented in Sec. 2. The ASP method is briefed in Sec. 3. The
ASP-based reasoning method is proposed and applied to the
TMI-2 scenario in Sec. 4. The conclusions of this work are
discussed in Sec 5.

2. SYNOPSIS OF TMI-2 ACCIDENT

TMI-2 NPP contained a Pressurized Water Reactor (PWR)
with a reactor vessel, four reactor coolant pumps, and a
pressurizer. The Reactor Coolant System (RCS) consists of 2
flow loops (loops A and B), each with a once-through steam
generator. TMI-2 was the newest unit on site, and this unit was
operated at 97% of the full power [19]. Two off-normal
conditions existed before the initiating event: 1- A small leakage
occurred in the pressurizer Pilot-Operated Relief Valve (PORV).
This leakage raised the temperature downstream of the PORV. 2-
Two emergency feedwater valves, in the secondary loop, were
closed (by mistake).

The accident was initiated on March 28th, 1979, by the trips
of the condensate and feedwater pumps while the staff was
attempting to fix a blockage in one of the condensate polishers
(resin filters that clean the secondary loop water). The turbine
trip followed the trips of the pumps. Auxiliary emergency
feedwater pumps started to provide the steam generators with the
feedwater, but the emergency feedwater valves were
inadvertently left closed. Because of the lack of water to the
steam generators, the primary loop water was heating up,
expanding, and flowing to the pressurizer. Pressure in the
primary system increased, so the pressurizer PORV was
automatically opened.

The reactor tripped because of the high reactor pressure as
the RCS was heating up. Pressurizer PORV was opened to
release the pressure, but it failed to close (was stuck open) when
the pressure decreased. Operators believed that the pressurizer
PORV was closed because of the control room light, while this
light was only an indication that an electric signal was sent to
close the PORV. Checking the downstream temperature at the
PORV was the only way to find whether the PORV is closed, but
the temperature was already high (before the accident) because
of the small PORV leakage. Reactor pressure continued to
decrease, the coolant temperature continued to increase, and the
High-Pressure Injection System (HPIS) pumps were
automatically turned on to re-pressurize the RCS.

Water expansion and pressure decrease in the primary loop
led to the generation of steam in the reactor core and the rise of
water in the pressurizer. The operators decided to turn off the
HPIS (to avoid filling the system with water) while the water
level in the reactor was decreasing. Turning off the HPIS led to

 3 © 2019 by ASME

the absence of cooling, overheating, and fuel damage.
Pressurizer water level continued to increase because of the
growth of the steam region in the core. The combination of a
rising pressurizer water level, a decreasing primary loop
pressure, and rising primary loop temperature was not
understandable to the operators. Meanwhile, water escaping
through the PORV filled a drain tank, and the primary loop
pumps were shut because of the water-steam mixture in the
primary loop. It took more than 2 hours before the operators
realized that the PORV is stuck open, and they closed the PORV
block valve. Primary loop temperatures continued to increase, so
the operators decided to turn on the HPIS until the reactor core
was finally filled with water [19].

While the TMI-2 occurred as a result of various failures
(mechanical failures, human error, and lack of training), the
focus of this work is the reasoning process. In such a complex
dynamic scenario, it is challenging for the operators to perform
reasoning for diagnosis and making timely decisions considering
the changes of many variables. For instance, during the accident,
many alarms were turned on, and the operator did not notice the
containment sump high water level alarm (which indicated the
leakage in the primary loop). Also, the operators were concerned
about a rising primary water level, and they did not notice that
the primary loop water reached saturation pressure [20].

In this work, the potential of an automated reasoning system
is investigated by applying an ASP to the TMI-2 accident event
sequence (in particular, the first 142 minutes). The sequence of
events that are considered when constructing the ASP-based
reasoning system is presented in TABLE 1.

Table 1. TMI-2 sequence of events.

Time
(seconds)

Event

1 Condensate pump trips.
2 The main feedwater pumps trip.
2 The turbine trips.
2 Emergency auxiliary feedwater pumps start.
7 Primary pressure reached PORV setpoint, and the

PORV opens.
11 Reactor trips.
11 Primary pressure reduced below PORV setpoint,

but the PORV remains open.
122 HPIS starts automatically.
279 Operators throttle HPIS.
499 The block valve on the emergency feedwater

pump line is opened (loop A).
500 The block valve on the emergency feedwater

pump line is opened (loop B).
4402 The primary loop pumps are tripped offline (loop

A).
6036 The primary loop pumps are tripped offline (loop

B).
8521 The block valve on the pressurizer drain line is

closed.

3. ANSWER SET PROGRAMMING
Answer set programming (ASP) [14] is a high-level and

expressive language that is well-suited for knowledge
representation, reasoning, and solving combinatorial search as
well as optimization problems. ASP can be used to declaratively
represent the knowledge about dynamic systems and solve
combinatorial search problems such as diagnosis and planning.
ASP allows domain knowledge representation, including
commonsense knowledge, incomplete knowledge, defaults,
preferences, and negation. There is a growing number of ASP
applications in various areas [21]. In the area of diagnosis, an
ASP system was used to analyze the failures of Google’s ads
[22]. In the area of planning, an ASP system was employed to
generate plans for the space shuttle’s maneuvers [23]. ASP is also
employed to detect inconsistent information [24] in addition to
applications in the robotics domain [25]. ASP became attractive
for researchers and industry because of the availability of ASP
solvers. In this work, we use Clingo [26], a free ASP solver.

In ASP, a program is a set of logic programming rules, facts,
and constraints about some problem domain. ASP is oriented
toward solving combinatorial search problems where the goal is
to find a solution(s) among a finite large number of possibilities.
Figure 1 shows briefly the general steps in solving a problem
using ASP. As illustrated in Figure 1, modeling the problem leads
to creating a formal abstract general problem representation. The
Solving process is done by the computer, using ASP solver. We
have presented the ASP problem-solving steps in more detail in
previous work [13]. It is worth noting that several additional
features have been added to ASP (e.g., aggregates, choices, etc.)
to enable and simplify the use of ASP. Furthermore, ASP solver
with multi-shot capability has been developed, which allows the
programmers to change the computation, thus providing a
method for implementing a closed-loop system as described in
this paper.

We formalized a general structure of an ASP code (that can
be utilized to find the diagnoses or the needed actions) in an NPP
system (see next section).

Figure 1. The programming paradigm in problem-solving using
ASP code [18].

4. OPERATOR SUPPORT SYSTEM

The structure of the ASP-based reasoning system is depicted
in Figure 2.

4.1 Inputs

 Problem

Representation Output

Solution

Modeling

Solving

Interpreting

 4 © 2019 by ASME

As shown in Figure 2, the reasoning system has two types
of inputs:
A. The observed variables (the indicators): among many
measured variables, the list of observed variables (16 variables)

that are relevant to this scenario are listed in Table 2. Real
measurements [27] of seven of these variables (for the first 142
minutes) are depicted in Figure 3. The remaining variables have
binary values (for instance, a pump is on or off).

Figure 2. ASP-based reasoning system for diagnoses and recommendations.

Table 2. A list of TMI-2 scenario relevant variables.

1. The reactor coolant system pressure (in PSI).
2. The pump flow rate of the condensate pump in the

secondary loop (loop A).
3. The pump flow rate of the condensate pump in the

secondary loop (loop B).
4. The pump flow rate of the main feedwater pump in the

secondary loop (loop A).
5. The pump flow rate of the main feedwater pump in the

secondary loop (loop B).
6. The pump flow rate of the auxiliary feedwater pump in

the secondary loop (loop A).
7. The pump flow rate of the auxiliary feedwater pump in

the secondary loop (loop B).
8. The pump flow rate of the high-pressure injection pump
9. The reactor power.
10. The steam generator water level (loop A) in centimeters.
11. The steam generator water level (loop B) in centimeters.
12. The two primary pumps’ flow rates (loop A).
13. The two primary pumps’ flow rates (loop B).
14. RCS inlet temperature (loop A).
15. RCS inlet temperature (loop B).
16. Turbine power.

B. The attempted actions: actions that are known (to the
operator) to be executed (or attempted) by the operator or by any
automatic safety system. These actions may or may not have
been executed successfully. All these actions are corresponding
to some of the events in Table 1. The list of these actions is
implemented in the ASP code in the form of: attempted
(procedure, component, time in seconds). These actions are:
attempted(open,pressurizer_pilot_operated_relief_valve,7).
attempted(close,pressurizer_pilot_operated_relief_valve,11).
attempted(turn_off,high_pressure_injection_pump,279).
attempted(open,auxiliary_feedwater_pump_a_block_valve,499)
attempted(open,auxiliary_feedwater_pump_b_block_valve,500)
attempted(turn_off,primary_pump_a,4402).
attempted(turn_off,primary_pump_b,6036).
attempted(close,pressurizer_block_valve,8521).

The inputs (variables and actions) are passed to the ASP
code each time step (for 8521 timesteps corresponding to 8521
seconds), similar to the process of data streaming in the NPP
system. This real-time streaming is enabled by a Python script
that extracts the inputs and passes them to the ASP code every
time step (the controller in Figure 2).

4.2 ASP Knowledge Base
The knowledge base represented by ASP includes the

following elements:

 5 © 2019 by ASME

A. System description:
The list of components and the connections between these
components.

B. Variables’ ranges:
The possible range of each variable is known and
discretized.

Figure 3. TMI-2 data [27].

C. All the possible actions:
We hypothesize that all the executable actions are known, and
the reasoning system searches for the needed action each time
step.
D. The actions’ executability conditions:
For each action, we defined the executability condition so the
action cannot be executed (or recommended) if the execution
criteria are not satisfied. The execution criteria for the actions
relevant to the TMI-2 scenario can be listed as follows:
1. Tripping the reactor

• The reactor is tripped if the pressure is higher than a
predefined value, and the reactor is not already tripped.

2. Turning on pumps
• Auxiliary pumps are started if another pump in the same

loop was tripped, and the auxiliary pumps are not
already running.

• The HPIS pump is turned on if the pressure is lower
than a predefined value, and the HPIS pump is not
already running.

3. Opening valves
• The auxiliary pump block valve is opened if the

auxiliary pump is turned on, and its block valve is not.
• The auxiliary pump block valve is opened if the

auxiliary pump is turned on, and a lack of water supply
is detected (inferred) in the flow loop to which this
pump belongs.

• The pressurizer PORV is opened if the pressure is
higher than a predefined value.

• The pressurizer PORV is closed if the pressure is lower
than a predefined value

• The pressurizer backup block valve is closed if the
pressurizer valve is detected to be stuck open.

E. The inferred non-observed variables:
These are the variables that cannot be measured but are inferred
based on the observed variables. The relevant non-observed
variables are:
1. Lack of water supply

• Lack of water supply is inferred if one of the pumps in
the secondary loop is tripped, and the corresponding
steam generator water level is below a minimum value,
or the water level is continuously decreasing.

2. Stuck valve
• The PORV is considered stuck open if the valve was

opened, and the pressure continued to decrease below a
predefined minimum value at which the valve should
have closed.

• The PORV is considered stuck open if the drain tank
temperature is higher than a predefined temperature,
and the pressure in the primary loop is lower than a
specific value.

3. The status of the coolant:
• Depending on the coolant inlet temperature and

pressure, the status of the coolant can be inferred
(whether the coolant is still pressurized water or
saturated or superheated steam).

 6 © 2019 by ASME

F. The Inferred actions:
These are the actions that are implied even if not
attempted/executed by the operator. The action effect is detected
by watching the observed variables. For example, the reasoning
system infers that a pump is tripped if its flow rate changes from
any value above zero to zero.
G. Steam table:
A simple steam table is implemented (the water saturation
temperature and its corresponding saturation pressure). The
existence of steam in the coolant can be inferred using the steam
table.

4.3 ASP-Based Reasoning System Output
As shown in Figure 2, the ASP-based reasoning system

gives three time-dependent sets of answers (outputs). The first
output (Ans1) is the inferred actions (the actions that were
inferred) even if not executed by the operator. These actions may
be similar or different from the inputted attempted actions. The
occurrence of these actions is verified by detecting the action
effect and watching the observed variables. Listing 1 shows the
inferred actions (if any) at each time step. Each action has the
form: happened(procedure, component, time in seconds).

% TIME = 0 Second
% TIME = 1 Second
happened(trip,condensate_pump_a,1).
happened(trip,condensate_pump_b,1).
% TIME = 2 Second
happened(trip,feedwater_pump_a,2).
happened(trip,feedwater_pump_b,2).
happened(trip,turbine1,2).
happened(start,auxiliary_feedwater_pump_a,2).
happened(start,auxiliary_feedwater_pump_b,2).
% TIME = 11 Second
happened(trip,reactor1,11).
% TIME = 122 Second
happened(start,high_pressure_injection_pump,122).
% TIME = 278 Second
happened(trip,high_pressure_injection_pump,278).
% TIME = 4403 Second
happened(trip,primary_pump_a,4403).
% TIME = 6037 Second
happened(trip,primary_pump_b,6037).

Listing 1. The first output (all the inferred actions).

The second output (Ans2) is the inferred non-observed
variables. These are the significant variables that are inferred
based on the observed variables. Non-observed variables were
inferred at each timestep, but we show the answers only at some
of these timesteps in Listing 2. For instance, the lack of water
supply was inferred very early (t=2) because of the low steam
generator water level. Starting from t=16, the PORV was
inferred to be stuck open (because of the continuous decrease in

the RCP pressure below the PORV setpoint pressure). The
existence of steam, in the primary loop, was also inferred.

% TIME = 2 Second
lack_of_water_supply(secondary_loop_A,2).
lack_of_water_supply(secondary_loop_B,2).
% TIME = 3 Second
lack_of_water_supply(secondary_loop_A,3).
lack_of_water_supply(secondary_loop_B,3).
% TIME = 4 Second
lack_of_water_supply(secondary_loop_A,4).
lack_of_water_supply(secondary_loop_B,4).
% TIME = 5 Second
lack_of_water_supply(secondary_loop_A,5).
lack_of_water_supply(secondary_loop_B,5).
% TIME = 16 Second
lack_of_water_supply(secondary_loop_A,16).
lack_of_water_supply(secondary_loop_B,16).
stuck_open(pressurizer_pilot_operated_relief_valve, 16).
% TIME = 1000 Second
lack_of_water_supply(secondary_loop_A,1000).
lack_of_water_supply(secondary_loop_B,1000).
steam(primary_loop_B,1000).
steam(primary_loop_A,1000).
stuck_open(pressurizer_pilot_operated_relief_valve,
1000).
% TIME = 4000 Second
stuck_open(pressurizer_pilot_operated_relief_valve,
4000).
% TIME = 6000 Second
lack_of_water_supply(secondary_loop_A,6000).
steam(primary_loop_B,6000).
stuck_open(pressurizer_pilot_operated_relief_valve,
6000).
% TIME = 7000 Second
steam(primary_loop_B,7000).
stuck_open(pressurizer_pilot_operated_relief_valve,
7000).
% TIME = 8000 Second
steam(primary_loop_B,8000).
stuck_open(pressurizer_pilot_operated_relief_valve,
8000).
% TIME = 8521 Second
stuck_open(pressurizer_pilot_operated_relief_valve,
8521).

Listing 2. The second output (some of the non-observed
variables).

The third output (Ans3) is the recommendations. The
recommendations are the actions that are recommended if their
execution criteria are satisfied at any timestep. The same
recommendation can be given repeatedly until its execution
criteria are no longer satisfied. Listing 3 shows the

 7 © 2019 by ASME

recommendations that the reasoning system suggests each
timestep. We have chosen some timesteps to show their
corresponding recommendations in Listing 3).

% TIME = 1 Second
recommendation(start,auxiliary_feedwater_pump_a,1).
recommendation(start,auxiliary_feedwater_pump_b,1).
% TIME = 2 Second
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,2).
recommendation(open,auxiliary_feedwater_pump_b_block_v
alve,2).
% TIME = 30 Second
recommendation(close,pressurizer_block_valve,30).
recommendation(close,
pressurizer_pilot_operated_relief_valve,30).
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,30).
recommendation(open,auxiliary_feedwater_pump_b_block_v
alve,30).
% TIME = 2000 Second
recommendation(close,pressurizer_block_valve,2000).
recommendation(close,
pressurizer_pilot_operated_relief_valve,2000).
recommendation(start,high_pressure_injection_pump,2000).
% TIME = 6000 Second
recommendation(close,pressurizer_block_valve,6000).
recommendation(close,
pressurizer_pilot_operated_relief_valve,6000).
recommendation(open,auxiliary_feedwater_pump_a_block_v
alve,6000).
recommendation(start,high_pressure_injection_pump,6000).
% TIME = 7000 Second
recommendation(close,pressurizer_block_valve,7000).
recommendation(close,
pressurizer_pilot_operated_relief_valve,7000).
recommendation(start,high_pressure_injection_pump,7000).
% TIME = 8521 Second
recommendation(close,pressurizer_block_valve,8521).
recommendation(close,
pressurizer_pilot_operated_relief_valve,8521).
recommendation(start,high_pressure_injection_pump,8521).

Listing 3. The third output (some of the recommendations).

For example, a recommendation to start the emergency
feedwater pumps, at t=1, is suggested because of the tripped
pumps in the secondary loop. Because these emergency
feedwater pumps started automatically at t=2, this
recommendation is no longer proposed in the next timesteps.
Next, the block valve corresponding to each pump is
recommended to be opened. At t=30, the pressurizer block valve
is recommended to be closed, and so on.

4.4 Computational Expense and Data
Accumulation

ASP problem solving includes searching for solutions that

satisfy logic rules/constraints. The longer the scenario and the
more timesteps are accounted for by the ASP-based reasoning
system, the larger the search space is. If the reasoning system
“remembers” all the variables’ values and the occurrences at
each timestep, the computational expense will exacerbate over
time. Therefore, it is vital to decide which data are
“remembered” and which data are ignored. To resolve this issue,
the observed variables and the attempted actions, that occurred
more than one minute before the current timestep, are ignored.
On the other side, all the inferred actions and inferred non-
observed variables are “remembered.”

In this work, the computational expense of ASP-based
reasoning, about variables and actions within 142 minutes (8521
seconds) of the accident scenario, is 96 minutes (on a four-
processor machine). One of the significant challenges that face
the proposed ASP-reasoning system is the large number of
variables in the NPP system (a higher computational expense).
Besides, the values of all variables were updated each second,
which may not be needed.

Another challenge that faces this knowledge representation
system is the difficulty of verifying whether the implemented
qualitative knowledge is complete. Therefore, the reasoning
system needs to be reviewed and tested.

5. CONCLUSIONS

Recently, AI methods that support the operator decisions in

the control room have been proposed. Statistical AI methods rely
on the availability of big data from the NPP history or the
simulations of the NPP transients. The data-driven methods are
limited by data availability and data bias. Besides, many data-
driven models are not interpretable, and the operator may not
trust the logic behind these black-box models’ predictions.
Hence, these statistical methods need to be supported by other
reasoning-based methods that represent human qualitative
knowledge, such as the Answer Set Programming (ASP) based
reasoning method proposed in this work. Compared to other
reasoning-based methods that have been proposed in the
literature to support the operator decisions, the proposed ASP
reasoning system has better performance, scalability, and
declarativity. Additionally, the previously proposed reasoning
systems have not been tested against a realistic dynamic
scenario.

In this work, we applied an ASP-based reasoning system to
the Three Mile Island Unit 2 (TMI-2) accident event sequence
(in particular, the first 142 minutes). The ASP-based Reasoning
system accounted for 16 variables that change over 8521
timesteps to give faster than real-time answers each timestep.
These answers include inferring non-observed variables (such as
leakage and stuck valves) and giving recommendations
(suggested actions) to the operator.

 8 © 2019 by ASME

Based on this study, the proposed ASP-based reasoning
system has the potential to assist the operator in making timely
decisions because:
1. ASP can perform reasoning about many variables while the

human capacity to monitor and reason about many variables
is limited. In the TMI-2 scenario, the operator was
overwhelmed by many alarms and monitoring many
dynamic events. For instance, the operator did not notice the
containment sump high water level alarm (which indicated
the leakage in the primary loop). In this work, the
computational expense of ASP-based reasoning, accounting
for 16 variables and eight actions (attempted by the
operator) within 142 minutes of the accident scenario, is 96
minutes only. Although the number of variables, 16, is small
compared to hundreds of indicators in the NPP, it is worth
noting that we only used a four-processor machine, and
there is an opportunity of reasoning about more variables by
exploiting the high-performance machines. Additionally, we
assumed that NPP variables are updated each one second, so
new answers (diagnoses and recommendations) are required
each second. Depending on the variables’ time scale,
answers can be generated at a slower rate to decrease the
ASP computational time.

2. The proposed ASP code structure could distinguish between
the executed actions and the attempted actions by watching
the action effect. This feature is significant for the TMI-2
scenario because of the confusion about the PORV (an
action to close the PORV was attempted, but the valve was
not closed, and the primary loop pressure kept decreasing).

3. Because of the long duration of the TMI-2 scenario (and
NPP transients), more timesteps are accounted for by the
ASP-based reasoning system, and the computational cost
exacerbates, To resolve this issue, the observed variables
and the attempted actions, that occurred more than one
minute before the current timestep, are ignored. On the other
side, all the inferred actions and the inferred non-observed
variables are “remembered.” Hence, the ASP reasoning
system could provide timely answers.
This work is the first automated reasoning system to be

applied to a complex, realistic case study such as the TMI-2
scenario. We demonstrated the potential of applying an ASP-
based reasoning operator support system to a real-life scenario.

In future work, we will demonstrate that rational
explanations for each ASP answer can be computed. Generating
explanations for any diagnosis or recommendation, suggested by
the reasoning system, allows the operator to check the rationality
of each explanation and decide whether to trust the ASP
reasoning system answers.

ABBREVIATIONS

AI Artificial Intelligence
Ans Answer
ASP Answer Set Programming
HPIS High-Pressure Injection System

NAMAC Nearly Autonomous Management and Control
NPP Nuclear Power Plant
PORV Pilot-Operated Relief Valve
PWR Pressurized Water Reactor
RCS Reactor Coolant System
TMI Three Mile Island

ACKNOWLEDGMENTS

This research is supported by the US Department of
Energy’s Advanced Research Project Agency-Energy (ARPA-E)
MEITNER Program through award DE-AR0000976. The
authors would like to thank Dr. Robert Youngblood (Idaho
National Laboratory) for his stimulating and insightful
comments.

REFERENCES

[1] R. L. Boring, K. D. Thomas, T. A. Ulrich, and R. T. Lew,

“Computerized Operator Support Systems to Aid Decision
Making in Nuclear Power Plants,” Procedia Manuf., vol. 3,
pp. 5261–5268, 2015.

[2] B. R. Upadhyaya, K. Zhao, S. R. P. Perillo, X. Xu, and M.
G. Na, “Autonomous Control of Space Reactor Systems,”
Knoxville, TN, 2007.

[3] M. Peng et al., “An intelligent hybrid methodology of on-
line system-level fault diagnosis for nuclear power plant,”
Nucl. Eng. Technol., vol. 50, no. 3, pp. 396–410, Apr. 2018.

[4] K. Groth, M. Denman, J. Cardoni, and T. Wheeler, “‘Smart
Procedures’ : Using dynamic PRA to develop dynamic,
context-specific severe accident management guidelines
(SAMGs),” in PSAM International Conference on
Probabilistic Safety Assessment and Management, 2014.

[5] D. Lee, P. H. Seong, and J. Kim, “Autonomous operation
algorithm for safety systems of nuclear power plants by
using long-short term memory and function-based
hierarchical framework,” Ann. Nucl. Energy, vol. 119, pp.
287–299, Sep. 2018.

[6] S. M. Cetiner et al., “Supervisory Control System for
Multi-Modular Advanced Reactors,” Oak Ridge, TN, 2016.

[7] S. H. Chang, K. S. Kang, S. S. Choi, H. G. Kim, H. K.
Jeong, and C. U. Yi, “Development of the On-Line
Operator Aid System OASYS Using A Rule-Based Expert
System and Fuzzy Logic for Nuclear Power Plants,” Nucl.
Technol., vol. 112, no. 2, pp. 266–294, Nov. 1995.

[8] H. Qudrat-Ullah, “QES-shell: An expert system for nuclear
power plant operator’s training,” in Proceedings - 3rd
International Conference on Intelligent Systems Modelling
and Simulation, ISMS 2012, 2012, pp. 151–156.

[9] M. Lind and X. Zhang, “Functional modeling for fault
diagnosis and its application for NPP,” Nucl. Eng. Technol.,
vol. 46, no. 6, pp. 753–772, Dec. 2014.

[10] J. Reifman and T. Y. C. Wei, “PRODIAG: A Process-
Independent Transient Diagnostic System - I: Theoretical
Concepts,” Nucl. Sci. Eng., vol. 131, no. 2–3, pp. 329–347,

 9 © 2019 by ASME

1999.
[11] Y. S. Park and R. Vilim, “Implementation of new

PRODIAG algorithm and simulation-based acceptance
test,” in 10th International Topical Meeting on Nuclear
Plant Instrumentation, Control, and Human-Machine
Interface Technologies, NPIC and HMIT 2017, 2017, vol.
2, pp. 884–893.

[12] B. Hanna, T. C. Son, and N. Dinh, “An Artificial
Intelligence-Guided Decision Support System for The
Nuclear Power Plant Management,” in 18th International
Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH 2019), 2019, pp. 394–406.

[13] B. Hanna, T. C. Son, and N. Dinh, “AI-GUIDED
REASONING-BASED OPERATOR SUPPORT SYSTEM
FOR THE NUCLEAR POWER PLANT
MANAGEMENT,” Under Prep., 2020.

[14] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub,
“Answer set solving in practice,” Synth. Lect. Artif. Intell.
Mach. Learn., vol. 19, pp. 1–240, 2012.

[15] J. Lloyd, “Practical advantages of declarative
programming,” Jt. Conf. Declar. Program. GULP-PRODE,
pp. 1–15, 1994.

[16] W. F. Clocksin and C. S. Mellish, Programming in Prolog :
Using the ISO Standard. Berlin Heidelberg: Springer
Science & Business Media., 2003.

[17] S. Liang, P. Fodor, H. Wan, and M. Kifer,
“OpenRuleBench: An analysis of the performance of rule
engines,” in WWW’09 - Proceedings of the 18th
International World Wide Web Conference, 2009, pp. 601–
610.

[18] “Development of a Nearly Autonomous Management and
Control System for Advanced Reactors,” ARPA-E, 2018.
[Online]. Available: https://arpa-e.energy.gov/?q=slick-
sheet-project/management-and-control-system-advanced-
reactors.

[19] Nuclear Safety Analysis Center, “Analysis of Three Mile
Island - Unit 2 Accident,” Palo Alto, California, 1980.

[20] M. Derivan, “The Davis Besse Nuclear Power Plant Three
Mile Island Accident Precursor Event.” 2014.

[21] A. Falkner, · Gerhard Friedrich, K. Schekotihin, · Richard
Taupe, and E. C. Teppan, “Industrial Applications of
Answer Set Programming,” KI - Künstliche Intelligenz,
vol. 32, pp. 165–176, 2018.

[22] A. Brik and J. Remmel, “Diagnosing automatic
whitelisting for dynamic remarketing ads using hybrid
ASP,” in International Conference on Logic Programming
and Nonmonotonic Reasoning, 2015, vol. 9345, pp. 173–
185.

[23] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and
M. Barry, “An a-prolog decision support system for the
space shuttle,” in International symposium on practical
aspects of declarative languages, 2001, vol. 1990, pp. 169–
183.

[24] M. Albanese, M. Broecheler, J. Grant, M. V. Martinez, and
V. S. Subrahmanian, “PLINI: A probabilistic logic program
framework for inconsistent news information,” in Logic

programming, knowledge representation, and
nonmonotonic reasoning, vol. 6565 LNAI, Berlin
Heidelberg: Springer, 2011, pp. 347–376.

[25] E. Erdem, E. Aker, and V. Patoglu, “Answer set
programming for collaborative housekeeping robotics:
Representation, reasoning, and execution,” Intell. Serv.
Robot., vol. 5, no. 4, pp. 275–291, 2012.

[26] M. Gebser et al., A User’s Guide to gringo, clasp, clingo,
and iclingo. 2008.

[27] J. L. Rempe and D. L. Knudson, “Instrumentation
Performance during the TMI-2 Accident,” IEEE Trans.
Nucl. Sci., vol. 61, no. 4, p. 1963, 2014.

