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Abstract

Soft materials are driving the development of a new generation of robots that are intelligent, versatile, and adept at
overcoming uncertainties in their everyday operation. The resulting soft robots are compliant and deform readily to
change shape. In contrast to rigid-bodied robots, the shape of soft robots cannot be described easily. A numerical
description is needed to enable the understanding of key features of shape and how they change as the soft body
deforms. It can also quantify similarity between shapes. In this article, we use a method based on elliptic Fourier
descriptors to describe soft deformable morphologies. We perform eigenshape analysis on the descriptors to extract
key features that change during the motion of soft robots, showing the first analysis of this type on dynamic systems.
We apply the method to both biological and soft robotic systems, which include the movement of a passive tentacle,
the crawling movement of two species of caterpillar (Manduca sexta and Sphacelodes sp.), the motion of body
segments in the M. sexta, and a comparison of the motion of a soft robot with that of a microorganism (euglenoid,
Eutreptiella sp.). In the case of the tentacle, we show that the method captures differences in movement in varied
media. In the caterpillars, the method illuminates a prominent feature of crawling, the extension of the terminal
proleg. In the comparison between the robot and euglenoids, our method quantifies the similarity in shape to*85%.
Furthermore, we present a possible method of extending the analysis to three-dimensional shapes.
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Introduction

Soft materials are inspiring a new generation of intelli-
gent, versatile, and adaptive robots capable of handling

unexpected interactions in uncertain environments.1 The nature
of these materials is such that they exhibit large deformations
under the loads that they typically encounter.2 As a result, the
robots fabricated out of these materials are compliant and
readily change shape. The pursuit of such soft robots is driven
by scientific endeavors to mimic a biological organism,3 to
operate safely for human assistance,4 to harvest energy,5 or to
impart intelligence to a robot’s body.6 In these applications,
elastic and nonlinear properties of softmaterials are exploited to
implement mechanisms that vary by body shape and stiffness.7

Unlike in the case of rigid bodies, it is not trivial to describe
the shape of a soft deformable body. A quantitative measure
to describe body shape is therefore extremely useful in the
design and analysis of soft robots. Abstraction is a key step in

bioinspired design8 and identifying the key features of a
shape could influence design choices such as the material of
construction or actuation technology. A numerical repre-
sentation of the shape could be used to build a model of the
compliant body. This description could be used to optimize
locomotion of a soft robot,9 actively deform a compliant
object through visual inspection,10 or in the case of mor-
phological computation, be used to represent the intelligence
inherent to the body of a robot.11

Several approaches have been proposed to quantitatively de-
scribe shape. The difference between approaches is character-
ized by the features used to describe a form, such as themeasures
of distances, position of landmarks, description of the boundary,
and details of texture. Landmark-based approaches consider
relative pose of an identified set of points while excluding in-
formation about curvature between them. It has been argued that
landmark based metrics are incomplete representations of the
formand thatmuch of the information of potential significance is
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not captured, particularly in the case of biological systems.12 The
choice of landmarks is also subjective. In contrast, methods that
rely ondescription of boundaries focus on theoutline of the form.
In this article, we consider one such method that uses elliptic
Fourier descriptors.13 This descriptor has been used to describe
biological shapes such as those of nuclei,14 shells,15 leaflets,16

and roots.17 We have used this method and performed eigen-
shape analysis to characterize the shapes ofmodel organisms and
a soft robot based on them. We believe that this model-free
method is appropriate to describe the shape of nonlinear, dy-
namic soft robots where the complexity of high dimensions re-
stricts the use of model based approaches. It should be noted at
the outset that since this approach uses information of the
boundary alone and does not capture motion of landmarks, it
comes with associated drawbacks such as its inability to capture
mechanical interactions. Possible extensions to overcome this
limitation are discussed at the endof the article.While the studies
mentioned above used the descriptors to study static shapes, the
novelty of the presentwork is in applying thismethod to describe
dynamic shapes of soft robots.

In addition to presenting shape descriptors as a means of
understanding changes in shape, we also compare the shape of
a soft robot to that of its biological inspiration. A boundary
based approach is advantageous in this case as there is no need
to define equivalent landmarks between the systems, which
may not be possible in all cases. We start with the analysis of a
passive and compliant soft tentacle. We then look at the
crawling locomotion of two different species of caterpillar, the
Manduca sexta and the Sphacelodes sp. followed by a study on
the shapes of individual segments in the M. sexta, whose
movements have been used to inspire several nonpneumatic
soft robots.18 Finally, we use the method to compare the per-
formance of a soft robot3 to that of the unicellular organism,
Eutreptiella sp., that has a characteristic form of locomotion
featuring large shape change.

Materials and Methods

Shape estimation using elliptic Fourier descriptors

The elliptic Fourier descriptor of shape for closed con-
tours13 belongs to a class of descriptors that use a Fourier
series to approximate the boundary of a shape. It is a proce-
dure that fits a closed curve to a set of two-dimensional (2D)
points with arbitrary precision. The advantage of these de-
scriptors over other boundary methods is that they preserve
information of the contour such that it can be reconstructed
in the absence of the original specimen.12 In addition, both
global and localized aspects of the contour are amenable to

analysis. The descriptor can also be made invariant to
translation, rotation, and scale. In this work, we implemented
the descriptor in 2D (although line contours can be processed
in three dimensional [3D19,20]).

To capture shapes of the robots and organisms in all the
experiments presented in this study, their movement was first
recorded on video. Movement of the specimen can be described
as a progression of shapes, each of which is captured in a single
frame of the video. Individual frames were extracted as images
and processed to extract the elliptic Fourier descriptors of shape
(Fig. 1). Wherever required, these images were processed to
highlight the regions of interest. In cases where the image had
poor contrast, such as in the recording of organisms in their
natural environments with no artificial light, desired regions
were marked by hand. This was not required for the case of the
robots since experiments were carried out in a well lit area
against a contrasting background. An automated computer vi-
sionmethodwas used to extract the desired region in such cases.

Amedian filter with a 3· 3 kernel was used to remove noise.
The high resolution of the camera used for capture resulted in a
jagged contour (Fig. 1b), which is likely to produce erroneous
high frequency coefficients when performing Fourier analy-
sis.12 To avoid this, the image was dilated using a disk-shaped
structuring element with a radius of three pixels. Next, the
contour of this smoothed region was determined as a discrete
representation of the boundary. The Freeman chain of inte-
gers21 was then used to obtain a piece-wise linear approxi-
mation of the contour while preserving information about
the local orientation of the curve. The x and y projections of the
chain segments can be represented as a Fourier series.13 The
approximation up to N harmonics (Xn and YN) is given as

XN(l)¼ a0 þ +
N

n¼ 1
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2npl
L

þ bn sin
2npl
L

� �
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L

� �
:

(1)

Here, l is one step along the contour (periodic with period
L), a0 and c0 are the bias components of the Fourier series
corresponding to a frequency of 0, and an, bn, cn, and dn are
coefficients of the nth harmonic. These coefficients are given
by the following expressions and constitute the description of
the shape. Here, K is the number of points on the contour.
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FIG. 1. From the input im-
age (a), the region of interest
(b) is extracted. Next, the
contour (c) is identified. From
this, the Fourier coefficients
are determined. The shape can
then be reconstructed (d) from
the coefficients.
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Once the set of Fourier coefficients has been computed, the
curve was reconstructed using the same equations as those for
the approximation. The number of harmonics dictates the ac-
curacy of the approximation.This is shownvisually inFigure 2a.
To quantify the closeness of fit, an error function in terms of the
mean difference between points on the reconstructed contour
and the original contour was used.

ef ¼
1

K
+
K

i¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xi � ri)

2 þ (yi � si)
2

q
: (4)

Here, xi and yi are points on the original contour, and ri and
si are points on the reconstructed contour that are closest in
Euclidean distance from xi and yi, respectively. The average
ef across 98 distinct shapes of the tentacle during its move-

ment was computed for increasing the number of harmonics
(Fig. 2b). As can be observed, the residual drops significantly
with increasing harmonics up to a certain point. In this case,
at 20 harmonics, the mean error across shapes is less than
0.5mm (for a robot of length 400mm and mean diameter of
25mm) and can be considered to be a sufficiently detailed
approximation.

Eigenshape analysis

As described above, the representation of a shape in terms of
elliptic Fourier features produces four coefficients per harmonic,
which constitute its mathematical description. An approxima-
tion using N harmonics results in a set of 4N-3 normalized
coefficients. For a video containing a sequence ofM frameswith
one shape in each frame, the complete description of all shapes
is a matrix of coefficients D2RM · (4N� 3) (Fig. 3). These co-
efficients have little physical meaning in their raw form. To
extract key features that describe the shape in a physical
sense, principal component analysis was used.22 The aim is to
describe independent trends in shape, for which the principal
components are an ideal choice by virtue of being mutually

FIG. 2. (a) Estimate of the shape of the tentacle as the number of harmonics increases. (b) Mean error in the estimate of 98
distinct shapes of the tentacle during its movement. The shaded region indicates one standard deviation away from the mean.

FIG. 3. The matrix D 2 RM· (4N� 3) consists of normalized Fourier coefficients (iaj, superscript indicating the frame
number and subscript indicating the harmonic that it corresponds to). Using principal component analysis followed by
dimensionality reduction, a reduced matrix of coefficients DE 2 RM ·Ne is obtained, where E 2 R(4N� 3) ·Ne is the matrix of
Ne eigenvectors. Elements of DE, that is, isj represent component scores with superscripts indicating the frame number and
subscripts indicating the principal component that the coefficient corresponds to.
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orthogonal. In addition, we seek to reduce the dimensionality
of data by describing it in terms of a smaller number of
components, Ne << (4N- 3).

Each row of D represents one shape. First, the covariance
matrix of D, CD 2 R(4N� 3) · (4N� 3) is computed. Next, the
eigenvectors of the covariance matrix are evaluated. Let
E 2 R(4N� 3) ·Ne be the matrix whole columns that contain the
first Ne eigenvectors of the covariance matrix, CD. The rows
in the product matrix DE 2 RM ·Ne represent the coefficients
(also referred to as component scores) in terms of the ei-
genvectors and convey a more meaningful description of the
shape. Variance of columns in DE is the corresponding ei-
genvalues. These represent the amount of variance in shape
captured by each eigenvector.

The mean shape can be constructed using the mean of the
coefficients. The effect of each eigenvector can be indepen-
dently studied to understand which features of the shape change
during deformation. To compare shapes of two entities such as a
robot and an organism, variances of columns in the product
matricesDrEo andDoEr (subscripts indicate robot or organism)
were considered. The resulting eigenvalues, computed between
two sets of data, are thus a quantitative measure of similarity.

Case Studies

Soft tentacle

In the first case study, we analyzed the movement of a soft
tentacle.11 The body is entirely passive with no sensors or ac-
tuators present along its length. In the presence of an oscillatory
actuation at one extremity, the shape of the body is purely a
result of its interaction with the environment. The material of
construction (Ecoflex 30, Smooth-On) is nonlinear.23 The de-
formation of the structure and shape of the body are difficult to

predict. This makes it a suitable candidate for the current study
where a model-free approach is used to describe the shape.

The tentacle was suspended from a movable platform and
enclosed in a tank filled with either water or air. The platform
was oscillated along a horizontal rail at a specific frequency
and amplitude. Two different input oscillations were pro-
vided, one with an amplitude of 12.5mm and frequency of
3Hz and the other with an amplitude of 40mm and frequency
of 1.5Hz. The experiment was performed twice, once with
the tentacle in water and the next with it in air. The defor-
mation of the tentacle in the plane of motion was recorded at
30 fps using a camera (Fujifilm S2100HD). Descriptors of
shape were extracted from each frame using an approxima-
tion of up to 20 harmonics.

The data from the shapes were then reduced to three
principal components. The first two components are shown
for each frame of the swinging tentacle (f = 3Hz, A = 12.5mm)
in Figures 4 and 5a and b. Horizontal lines in the plot indicate
one standard deviation (r) from the mean (l). To illustrate
the effect of principal components on the shape representa-
tion of the robot tentacle, weights on the components were
independently varied up to two standard deviations on either
side of the mean, and the reconstructed shapes have been
plotted. Figure 4c and d corresponds to the case when the
tentacle is moving in water, and Figure 5c and d corresponds
to that in air. The components for which the weights were
varied are indicated as li � ri, i 2 1, 2f g, whereas those that
were maintained constant at the mean are indicated as
lj, j 2 1, 2f g. The third principal component is not shown
here and was fixed at its mean in all the reconstructed shapes.
The corresponding figures for the second actuation signal
(f = 1.5Hz, A = 40mm) are presented in the Supplementary
Data (Supplementary Figs. S1 and S2).

a

b

c

d

FIG. 4. Estimated shapes of the tentacle when moving in water. Change in scores on the (a) first and (b) second principal
components. (c, d) show the effect on shape due to changes in weights on these principal components. The subscripts 1 and
2 indicate the component over which the mean and standard deviation were computed.
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These results demonstrate the ability of the elliptic Fourier
descriptors to describe the shape of an unpredictable, de-
formable soft robot to an arbitrary degree of precision. The
principal components describe different aspects of the shape.
In case of the experiment in water, the first principal com-
ponent captures the curvature of a larger portion of the
structure (Fig. 4c), while the second component has a more
local influence and describes subtle changes in shape near the
tip (Fig. 4d). This implies that there is a more prominent
global change in shape as opposed to the curving of the tip.

As expected, the shapes exhibited by the tentacle are dif-
ferent in various media. The shape has a higher order of
curvature when the medium is water (S shaped, Fig. 4)
compared to that in air (C shape, Fig. 5). Curving of the tip is
not predominant when the medium is air. This is immediately
evident when the shapes are plotted as points in the space of
the components (Fig. 6). The points have less span along the
second principal component in the case of air. In terms of
modes of vibration, movement in air can be described as
being composed of fewer prominent modes than that in water,
as shown by the principal components.

Crawling motion of caterpillars

The crawling motion of two different species of caterpillar
was studied next. The first organism, the M. sexta (tobacco
hornworm), has been described as an ideal organism to study
soft-bodied locomotion.24 This caterpillar shifts the segments
of its body as a succession of steps, delayed in phase, from the
posterior to the anterior. In the second species, Sphacelodes

sp., there is a more pronounced change in the body shape
termed ‘‘inching’’ locomotion, with the organism curling up
into a shape similar to the Greek letter O (Fig. 8c).

Movement of both the caterpillars was recorded in a nat-
ural setting. Individual frames from the video (recorded at 30
fps) were processed manually to highlight the body of the
caterpillar. This was necessary because the creatures were
camouflaged and it was not possible to isolate the creature
from its background using an automated computer vision
technique. In both cases, six harmonics were sufficient to
capture the details of shape.

Deformations of the body during locomotion of the cat-
erpillars, M. sexta and Sphacelodes sp., are shown in Fig-
ure 7. Again, scores on the first two principal components
were varied to illustrate the effect of their change on specific
features of the shape. The difference in gaits of the two
species is immediately evident. The first principal component
in the case of theM. sexta captures the convexity in the shape
of the body. In other words, it gives information on whether
the body is raised or lying flat on the ground. The location
along the length of the body where the body is raised from the
ground is captured by the second component. In the case of
the Sphacelodes sp., the first principal component again de-
scribes the convexity of the body. It is more pronounced in
this case, capturing the curling up of the body. The second
component represents the leaning of the body in the curled up
configuration, either toward the anterior or the posterior.

In addition to looking at the deformation of the whole body
of the caterpillar, changes in shapes of individual segments of
the body in the case of the M. sexta were also analyzed. A

a

b

c

d

FIG. 5. Estimated shapes of the tentacle when moving in air. Change in scores on the (a) first and (b) second principal
components. (c, d) The effect on shape due to changes in weights on these principal components. The subscripts 1 and 2
indicate the component over which the mean and standard deviation were computed.
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potential application is in identifying parts of the body that
perform specific functions during locomotion such as initi-
ating movement. Individual segments of the body were
identified (Fig. 8) and marked by hand on each frame of a
high resolution video showing the creature in motion. In
particular, abdominal segments A3 to A6 and the terminal
segment, TS, were analyzed. Movement of the thoracic
segments was not considered as it has been found that they
are not necessary to achieve locomotion.24

Changes in shape of individual segments of the M. sexta
are shown in Figure 9. The first principal component was
varied while keeping the second component fixed at the
mean. To understand the phase difference between move-
ment of segments, the scores on these components are plotted
as function of time (Fig. 10).

Since the principal components capture the most significant
changes in shape, analysis of individual body segments revealed
interesting insights regarding the nature of movement of each

FIG. 6. Shapes plotted as
points in the space of the
components. Themotion of the
tentacle is a closed loop in the
space of thefirst three principal
components. The curve in vi-
olet represents the movement
of the tentacle through water.
The green curve is for the ex-
periment in air. Color images
are available online.

a

b

FIG. 7. Effect of changes in the first two
principal components (a, b) on the estimated
shapes of Manduca sexta and Sphacelodes
sp. The subscripts 1 and 2 indicate the com-
ponent over which the mean and standard
deviation were computed. Color images are
available online.
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segment. The most prominent change is seen in case of the
terminal segment, where the shape changes are due to the ex-
tension of the terminal proleg (TP). The extension of TP
(Fig. 8b) precedes the swing phase of the segment at the start of
each crawl cycle and has been described as being a distinctive
feature of caterpillar locomotion.24 This extension represents
the drag force component of the stance phase, which is a
characteristic of the tension-based crawling strategy used by
Manduca.25 This key feature is captured by the first principal
component (Fig. 9). In addition, the kinematic analysis of
movement of the abdominal segments revealed that segments
A3 to A6 see little extension of the prolegs.24 This is seen in
Figure 9 where there is no significant change in the shape to-
ward the bottom of the segments A3 to A6. In contrast, the
segments bulge out toward the top and curve inwards near the
middle. More analysis is required to understand what these
changes represent and if they are purely a result of the rotation
of segments or if they are caused due to movement of internal
organs which has been observed in the M. sexta.26

The principal component scores plotted against time for
the various segments (Fig. 10) show the progression of
movement from the posterior to the anterior through the ab-
dominal segments. There is about 2.5 s of phase delay be-
tween the motion of the segments, which agrees with the
results from the kinematic analysis. This demonstrates po-
tential for the use of the shape descriptors in combination
with eigenanalysis to discern dynamic properties of loco-
motion. Other features of locomotion such as steering and
grasping that are commonly observed in these caterpillars can
be studied in a similar manner using images from multiple
viewing directions.

Euglenoid movement and comparison with a robot

In the last case, the locomotion of a soft robot27 was ana-
lyzed and compared to its biological inspiration, a unicellular
protist called a euglenoid. The specimen in our study is the
Eutreptiella spyrogyra.28 The purpose of this case study is to
present this method of shape analysis as a quantitative mea-
sure of comparison between shapes, which, in this case, al-
lows us to compare a soft robot and a biological organism.

The euglenoids display a characteristic type of locomotion
called euglenoid movement in which the body undergoes a
giant change in shape.29 The body undergoes a transition in
shape from a spherical ball-like form to an elongated rod-like
form with a wide range of intermediate shapes (Fig. 11b).
Measurements of the cell body of Euglena fusca have shown
that it nearly doubles in radius while contracting by about 37%
in the longitudinal direction.30 Change in shape is crucial to the
locomotion of this organism because of the low Reynolds
number regime in which it moves.31 A detailed analysis is
presented in Reference.32 Taking inspiration from the eugle-
noid, we designed a completely autonomous soft robot, using
hyperelastic bellow actuators,3 that moves by replicating eu-
glenoid movement (Fig. 11c). The robot was made to swim
autonomously in a tank of viscous fluid to replicate the natural
hydrodynamics. Change in shape was achieved by moving
fluid between the chambers of the robot. Videos of the robot
were recorded on camera and processed as described in Shape
Estimation Using Elliptic Fourier Descriptors section. The
shapes of the robot were compared to that of the euglenoid.

The comparison of shapes is presented in Figure 12. The
dashed line shows the true shape of the euglenoid (Fig. 12a)

FIG. 8. (a) Segments on the body of the Manduca sexta as identified in Ref.,24 marked using dotted lines: TS, TP, (A3–
A6) abdominal segments, (T) thoracic segments, and (H) head. (b) Close-up views showing the extension and contraction of
the TP. (c) Two frames from the motion of the Sphacelodes sp. showing the neutral from and characteristic curled up O
form. TP, terminal proleg; TS, terminal segment.

FIG. 9. Effect of changes in the first principal component on the estimated shapes of segments in the Manduca sexta. TS,
(A3 to A6) abdominal segments (defined in Fig. 8). The subscripts 1 and 2 indicate the component over which the mean and
standard deviation were computed. Color images are available online.
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and the soft robot (Fig. 12b). Following the comparison
process described in Eigenshape Analysis section, shapes of
the robot were reconstructed (solid outlines) using compo-
nents from the organism and vice versa.

In addition to demonstrating visual likeness, the principal
components can be used to quantify similarity in shapes. Care
must be taken to choose the components that describe the
same trend in shape from both the systems for a meaningful
comparison. The first principal component that describes the
anterior–posterior mass transfer captures 78.78% of the shape
of the euglenoid when described using eigenvectors from the
robot. Similarly, 84.95% of robot shapes were described by
the eigenvectors from the euglenoid. A key highlight in this
study is that it enabled the direct qualitative and quantitative
comparison of a microscopic organism and a centimeter scale
robot. Thus, the method of shape comparison can be applied
to studies across a diversity of scales.

Discussion

Generality of shapes

The method of describing contours as a set of descriptors is
applicable to a wide range of shapes. The case studies showed
the approximation applied to simple shapes. A few specific
examples are presented here to demonstrate the generality of
shapes to which the method may be applied and the limita-
tions involved.

First, consider the case of hollow shapes such as the de-
formable silicone ring presented in Figure 13a and b. Shapes
such as this are characterized by more than one contour; one
for the outer boundary and one for each hollow formwithin it.
The shape descriptors can then be computed for each contour
separately. Change in shape can also be tracked indepen-
dently. Note that the number of contours is an upper bound
for the number of sets of descriptors for each shape. In special
cases such as a toroid where the deformation of one contour
may be deduced from knowing the deformation of the other,
or in the case of a meta-material where the deformation of
hollow forms is similar across the bulk of the material, fewer
sets of descriptors may be required.

Shapes with more complex contours such as fractals of
increasing complexity are considered next. Take the Koch
snowflake shown in Figure 13c–e, with 1, 5, and 10 iterations,
respectively. This fractal generates closed curves in the
plane. The number of harmonics used to reproduce the curves
was 20, 1000, and 100,000, respectively. Although the ap-
proximation captures the general shape of the contour, a very
large number of harmonics was required in the case of the
complex fractal (10 iterations) to capture the more intricate
undulations. In such a case, the shape is perhaps better de-
scribed quantitatively in terms of fractal iterations rather than
in terms of the elliptic Fourier descriptors.

In theory, the shape descriptors presented are strictly de-
fined for closed contours. However, open curves in the 2D
plane may also be approximated. The contour in this case is a

FIG. 10. Scores on the first principal
component for various segments in the
Manduca sexta as a function of time. Color
images are available online.

FIG. 11. (a) Euglenoid (Eu-
treptiella spyrogyra28) and a
soft robot that replicates eu-
glenoid movement. (b) Var-
ious shapes of the euglenoid
ranging from an elongated
slender form to a rounded up
form. (c) Various configura-
tions of the soft robot demon-
strating shapes similar to that
of the euglenoid.
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directed curve formed by traversing the open curve from one
end to the other and back again in the opposite direction. A
simple example is that of a straight line which the descriptors
approximate as a flattened ellipse. A more complex open
curve with multiple changes in direction and no self-
intersection is shown in Figure 13f and g, which is the sixth
iteration of the dragon fractal. The approximated curve with
100 harmonics resembles the fractal to a close degree but fails
to capture all the details.

Curves with intersecting lines or branches are also ame-
nable to approximation. Consider the T-shaped curve in
Figure 13h. The contour in this case may be defined as a
directed curve that traces around the top line and shaft
forming a closed loop (see arrows). Approximations using 5

and 25 harmonics are shown in Figure 13i and j, respectively.
Self-intersecting curves may also be treated in a similar
manner by carefully defining the contour as a directed closed
curve. In these cases, it is also possible to calculate an upper
bound for the error of approximation.13

The final case that is presented, which may be more rele-
vant to image based generation of contours, is that of two
rectangles overlapping each other (Fig. 13k). Assume, for the
sake of discussion, that this picture is the result of some
preprocessing applied to the image of a system. Many var-
iations of directed closed curves exist for this pair of rect-
angles, each distinguished by the direction that the contour
follows at the intersection. For instance, when traversing the
curve in an anticlockwise direction, turn right at intersection

a

b

FIG. 12. Comparison of shapes between euglenoid and the soft robot at three different instances during one cycle of
locomotion. (a) The dashed line indicates the true shape of the euglenoid. The solid outline is the shape estimated using the
scores on the first principal component from the shape of the robot. (b) The dashed line indicates the true shape of the soft robot.
The solid outline is the shape estimated using the scores on the second principal component from the shape of the euglenoid.

a b c d e

f g h i j

k l m n o

FIG. 13. (a) Hollow object before deformation. (b) Hollow object after deformation. (c) Koch snowflake of 1 fractal
iteration approximated using elliptic Fourier descriptors with 20 harmonics. (d) Koch snowflake of 5 fractal iterations
approximated using descriptors with 1000 harmonics. (e) Koch snowflake of 10 fractal iterations approximated using
descriptors with 100,000 harmonics. (f) Dragon fractal with six iterations. (g) Approximation using descriptors with 100
harmonics. (h) T shaped curve with arrows indicating direction of contour. (i) Approximation using descriptors with five
harmonics. (j) Approximation using descriptors with 25 harmonics. (k) Two rectangles overlapping each other. (l–o)
Approximations of contours using different traversal rules. Color images are available online.
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rule results in the approximation of Figure 13l, turn left at
intersection rule results in the approximation of Figure 13m,
go straight at intersection rule results in that of Figure 13n,
and an alternating turn rule results in a single curve as in that
of Figure 13o. Resolving the direction of the curve at the
intersection is a key step in arriving at the correct represen-
tation of the contour. The location of the starting point of the
contour also affects the result. Additional information about
the system is necessary to determine the correct rule for
traversing the contour. For example, occlusion analysis might
reveal that the two rectangles have different depth values, and
hence, the correct resolution is that from Figure 13n. This
would be useful in the case of the tentacle arm from Soft
Tentacle section when it overlaps itself. Other information
such as that from 3D capture, knowledge of geometry, and
multiple viewpoints could potentially assist in defining the
contour correctly.

The case studies of Case Studies section looked at motions
that were periodic for the most part. This resulted in shapes
that repeat periodically, and hence, the weights on principal
components were also periodic (e.g., Figs. 4 and 5). However,
the analysis may also be applied to nonperiodic movements.
In this case, the observations would vary depending on the
duration over which they are made. An example of a non-
periodic motion is shown in the Supplementary Data (Sup-
plementary Fig. S3). The system analyzed was the passive
tentacle from Soft Tentacle section, but the actuation was
nonperiodic. Conclusions regarding the trends in shape cap-
tured by the principal components can still be drawn and are
distinguishable in the figure even when the change in com-
ponent weights is not periodic.

Extension to three dimensions

The analysis presented above was on 2D shapes of robots
and organisms. The method of using elliptic Fourier de-
scriptors can be extended to 3D movement. One possible
extension would be to consider a third coordinate z in addi-
tion to the x and y coordinates and represent it as a Fourier
series on its own. This method was followed to study the
shape of the skull in rabbits.19 It is to be noted that this
method helps in describing 3D curves but not surfaces or
volumes. An example would be the curve traced by the end
effector of a soft manipulator.

A different approach is to treat the 3D object as a collection
of 2D shapes. For instance, a study on the anatomy of the
nasal cavity used 3D geometry obtained from CT scans and

sliced it into 2D curves, each of which was represented using
Fourier descriptors.33 A method of reconstructing the 3D
geometry from sectional slices using radial basis functions is
also proposed. In a similar manner, we visualize the 3D shape
from two different viewing planes, essentially reducing the
problem to a pair of simultaneous 2D representations. Since
the silhouette is recorded in both the viewing planes, this
approach captures surface projections of a 3D object. We
applied this approach to the motion of an actively controlled
soft pneumatic tentacle. Unlike the passive tentacle consid-
ered in the first case study, the continuum robot considered
here consists of three segments that can be actuated inde-
pendently and bend in orthogonal directions. The tentacle
was suspended from a rigid support and its motion was re-
corded from two perpendicular viewing directions. Two of
the segments (S1 and S3 in Fig. 14) were actuated to move in
directions perpendicular to each other. The corresponding
shapes and principal components are shown in Figure 14. The
first principal component in each case clearly captures the
deformation of the tentacle at different positions on the body
as seen from the two viewpoints.

Limitations

In this section we point out some of the limitations of using
elliptic Fourier descriptors. The descriptors only contain in-
formation regarding the perimeter (silhouette) of the organ-
ism or robot under investigation. Information concerning
position and orientation of an entity is neglected. This limits
their use in kinematic analysis of motion. For example, the
analysis of body segments of the caterpillar cannot determine
the degree of rotation or the lateral displacement of each
segment during a cycle of locomotion. Using our shape de-
scriptors in combination with other additional shape infor-
mation such as a set of landmarks would help overcome this
problem. In addition, some details of the shape are not cap-
tured. For example, points and features on the surface of the
3D object are not projected. There is therefore a partial loss in
information in terms of the evolving location in space of these
markers. Hence this approach may not be suitable for studies
of mechanical interactions between objects and their sur-
roundings where the interaction is defined by the position and
velocity of markers on the surface. Because of this, our ap-
proach cannot say anything about the frictional interaction
between the caterpillar’s feet and the substrate, which is a key
feature of caterpillar locomotion and its control. Similarly, in
the case of hydrodynamic studies, this approach is unable to

FIG. 14. Estimated shapes of the active tentacle when captured from two perpendicular viewpoints. Bending of segment S1
is in the plane of the camera recording from view 2 and perpendicular to that from view 1 and is therefore not visible in the first
camera. The effect on shape due to change in the first principal component is shown.
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provide information regarding the flow of the surface. This
problem has been addressed in the case of euglenoids34 and in
the change in shape and the emerging flow around fluid
membranes.35 A third example is one that dealt with evolving
shapes and flows of liquid droplets.36 The study on nasal
cavities mentioned earlier33 proposed that the slicing of ge-
ometry could be chosen to pass through landmark points,
providing yet another way to keep track of them. The methods
described in these studies could provide inspiration to over-
come some of the limitations of the proposed approach.

Using multiple viewpoints of the 3D object has been
proposed as a possible solution to capture more information
about the shape of the deformable object. This approach may
not be feasible in certain applications such as the study of
microscopic organisms where it is difficult to obtain images
from different directions with sufficiently high magnifica-
tion. Additional information about the system can help
overcome this limitation. An interesting study is the flagellar
swimming in the case of a unicellular organism (Euglena
gracilis) where simultaneous knowledge of 2D shapes and
the corresponding orientation of the object were used to re-
construct the 3D shape of a revolving object,37 thus recov-
ering the lost information.

The descriptors are susceptible to artifacts caused during
recording. For example, in earlier trials with the passive
tentacle, the camera that was used to record motion was not
sufficiently fast to capture the swinging movement of the
robot. This resulted in some image frames containing a blur at
the tip where the body was swinging at the fastest velocity. If
not accounted for during preprocessing, the principal com-
ponents capture this as a bulging of the tip. This might result
in the under representation of some components, skewing the
analysis.

Conclusion and Future Work

In this work, we have shown how shapes of soft robots and
soft organisms can be described using elliptic Fourier de-
scriptors. The eigenshape analysis identified key features that
change during the movement of these entities. Different
modes of oscillation were identified in various media in the
case of the passive tentacle. Differences in locomotion be-
tween two species of caterpillar were captured by the shape
descriptors. In the case of the locomotion of theM. sexta, the
analysis correctly identified extension of the terminal seg-
ment as the key feature of crawling. Dynamics such as cyclic
shape change and phase delay between movements of seg-
ments were also captured. Furthermore, we used the de-
scriptors to quantitatively measure similarity of shapes and
showed an 85% similarity in shape between a soft robot and
the euglenoid. We also showed that the method works across
diverse scales.

Extending the use of elliptic Fourier descriptors to dy-
namic tasks such as the control of a deformable robot will be
considered in the future. A possible application is in using
visual feedback to deform objects into a desired shape.38

Applications to morphological computation will also be
studied. An interesting use of the measures would be to
quantify the amount of computation happening in the body
using a low dimensional representation of observed behavior
to distinguish between morphologies that are useful and
harmful to a desired functionality.39 Quantifying shape

change also enables the use of artificial intelligence ap-
proaches (e.g., neural networks) to analyze or control soft
robots, since the component scores can be used to train the
neural network.
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